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Abstract
Based on the 2015 transportation CO2 emissions and economic and social data for the 286 cities in China, exploratory spatial data
analysis (ESDA) method and a geographically weighted regression (GWR) model were used to analyze the spatial distribution
characteristics of transportation CO2 emissions and their influencing factors. The results showed that the CO2 emissions from
urban transportation in China featured significant spatial agglomeration. The high emission areas were mainly concentrated in
Beijing, Shanghai, Chongqing, Chengdu, Nanjing, and other regional core cities, while the low emission areas were mainly
concentrated in the cities of Gansu, Guizhou, Yunnan, and other underdeveloped provinces. Considering the overall evolution of
the factors affecting transportation CO2 emissions, private car ownership, technological innovation, and industrial structure
correlated positively with transportation CO2 emissions. Population density, urbanization rate, per capita urban road area, and
transportation structure could significantly inhibit transportation CO2 emissions. The impact of per capita GDP, public transpor-
tation, and environmental regulation on transportation CO2 emissions was insignificant. From the perspective of spatial hetero-
geneity, there were significant regional differences in the impact of various factors on CO2 emissions. Private car ownership,
technological innovation capacity, and per capita GDP all had a positive impact on transportation CO2 emissions. Urbanization
rate, urban road area per capita, and transportation structure all had a negative impact on transportation CO2 emissions.
Population density, industrial structure, public transportation, and environmental regulation all had a two-way impact on trans-
portation CO2 emissions in different cities.

Keywords Transportation CO2 emissions . Exploratory spatial data analysis . Geographically weighted regression . Spatial
heterogeneity

Introduction

Transportation is one of the main sources of carbon emissions.
According to the International Energy Agency (IEA), in 2016,
the carbon emissions of the transportation industry accounted
for 24.3% of energy-related emissions worldwide and 30% of
that for OECD countries (IEA 2018). In developing countries,
CO2 emissions from vehicles and traffic have become an im-
portant factor in the increase in global greenhouse gas emis-
sions (ADB 2019). The transportation sector is expected to be

the largest emitter of greenhouse gases by 2050, accounting
for 80% of global greenhouse gas emissions, with most of the
growth expected to come from developing countries in Asia
(ADB 2019). According to the National Bureau of Statistics,
from 2000 to 2017, the energy consumption of the transpor-
tation industry in China has been on the rise, increasing by 3.3
times in 17 years. With the advancement of China’s industri-
alization and urbanization process and the increasing demand
for transportation, the oil consumption of the transportation
industry ranks first among all industries in China. The increas-
ing rate of transportation CO2 emission also ranks first among
the six major industries, and the transportation industry has
become the second largest CO2 emission sector after industry
(Lu et al. 2017). Against a background of increasing green-
house gas emissions and frequent smog, in 2015, the Chinese
government proposed that China would reduce its carbon di-
oxide emissions per unit of GDP by 2030 to 60–65% lower
than the level in 2005, and total emissions would have reached
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its peak (Feng et al. 2019). In the face of the arduous emission
reduction target, as a key sector of emission reduction in
China, the transportation sector should shoulder its share of
the important responsibility of reducing carbon emissions, and
reducing CO2 emissions from transportation is the main way
to achieve its climate change mitigation target. Because of the
imbalanced urban development in China, there are significant
differences in transportation CO2 emissions between cities.
Therefore, it is very important to study the spatial distribution
and influencing factors of transportation CO2 emissions in
China to realize a low-carbon lifestyle and fulfill the promise
of energy conservation and emission reduction.

At present, scholarly research on transportation carbon
emissions mainly focuses on the measurement of carbon emis-
sions, its influencing factors, and so on. In terms of carbon
emission measurements, Nocera et al. (2018a, b) used the
TANINO model to estimate the carbon dioxide emissions
along the ring road of Sevilla in Spain, and this model
proved more accurate than the common estimation methods.
Yang et al. (2020) calculated the traffic carbon emissions of
Beijing, Xi’an, Wuhan, and Bangalore by constructing a
carbon emission estimationmodel. Bai et al. (2020) calculated
China’s provincial transport carbon emissions from 2005 to
2015 by using a top-down method based on final energy con-
sumption in the transport industry. The main factors affecting
carbon emissions from transportation are economic growth,
urbanization, transportation structure, energy efficiency, and
so on. Some scholars have used the environmental Kuznets
curve (EKC) or the decoupling model to analyze the nonlinear
relationship between economic growth and transportation
CO2 emissions and argued that carbon emissions and per
capita GDP had an inverted u-shaped relationship (Wang
and Feng 2019; Lv et al. 2019). Compared with the EKC,
the decoupling model was considered to o have more advan-
tageous (Han et al. 2018; Liu and Feng 2020). Some scholars
have explored the effect of urbanization on transportation car-
bon emissions (Huang et al. 2019; Yang et al. 2019). Cities are
considered to be one of the important sources of factors lead-
ing to global climate change (Cai et al. 2018; Ahmed et al.
2019). Approximately 60–80% of energy consumption and
70% of global greenhouse gas emissions come from cities.
Cities are population and transportation aggregation areas.
Urbanization can result in the growth of the transportation
industry, such as through an increase in cargo volume and
air transportation volume, thereby increasing transportation
CO2 emissions (Lv et al. 2019). Some scholars have explored
the influence of transportation structure on carbon emissions
(Abdull et al. 2020). Among all transportation modes, road
freight is considered to have the highest carbon emissions,
and in the freight industry, it also has the fastest growth in
carbon emissions (Lv et al. 2019). The use of railways, electric
vehicles public transport, and alternative fuels has generally
proven to be a reliable way to reduce carbon emissions (Liu

et al. 2015; Wu et al. 2018). If the growth of motor vehicle use
is controlled below zero, the use of hybrid vehicles is encour-
aged, and a carbon quota allocation is implemented, we will
probably achieve the carbon emission target by 2050; reduc-
ing the use of vehicles will bring carbon emissions 1.30–
5.18% below the target by 2050 (Chang and Chung 2018).
Some scholars suggest that the factors affecting transportation
CO2 emissions will change over time, that is, uncertainties
exist, such as the vehicle scrap rate, annual growth rate in
recent driving kilometers, total vehicle sales, technical uncer-
tainty, economic uncertainty, and decision uncertainty.
Therefore, to ensure the appropriateness of policy and invest-
ment decisions, decision-makers need to first understand the
different types of uncertainties that exist and then find
methods to solve them (Bastani et al. 2012; Nocera et al.
2018a, b). In addition, some scholars believed that energy
efficiency, income, vehicle ownership, government invest-
ment, and per capita traffic expenditures had a significant
impact on transportation CO2 emissions (Wang et al. 2017;
Wu and Xu 2019; Lv et al. 2019).

Considering 286 cities in China as samples, this paper uses
the ESDA method to analyze the spatial distribution charac-
teristics of transportation CO2 emissions and adopts the GWR
model to explore the spatial characteristics of the factors af-
fecting transportation CO2 emissions. The main contributions
of this paper are as follows. First, the existing research largely
studies transportation CO2 emissions at the provincial or na-
tional levels, but the data at these levels cover up spatial dif-
ferences at the city level. The city is the main body aggregat-
ing transportation CO2 emissions, and the city scale is impor-
tant for discussing the relationship between CO2 emissions
and social development. Therefore, this paper takes cities
above the prefecture level as the research object, discusses
the differences in transportation CO2 emissions, and addresses
the shortcomings of the existing research. Second, although
China is a vast country, its cities are connected with each other
in geographical space. However, most of the existing studies
only focus on time series, ignoring the interdependence of the
spatial effects between cities. This paper uses the ESDAmeth-
od to reveal the spatial agglomeration characteristics of trans-
portation CO2 emissions. Finally, most of the existing litera-
ture studies the factors driving transportation CO2 emissions
using the common ordinary least squares (OLS) model, but
the coefficients of this model will only reflect the average
impact and not the spatial difference in the impact results.
Therefore, the GWR model is introduced to obtain a more
detailed understanding of the spatial scale of the socioeco-
nomic factors driving transportation CO2 emissions. Carbon
emissions of emerging economies such as China, Brazil,
India, Mexico, and South Africa are still on the rise, and there
are imbalances in regional development and differences in
carbon emissions within these countries. Therefore, investi-
gating the spatial heterogeneity of the factors influencing
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carbon emissions at the urban level will help each city formu-
late differentiated energy conservation and emission reduction
policies, which will help them not only realize a green and
low-carbon life within the city but also achieve the emission
reduction objectives of the Paris Agreement. The research
methods and conclusions of this paper also have important
reference value for other emerging economies.

Materials and methods

Models

Global spatial autocorrelation

Spatial autocorrelation analysis can well explain the spatial
distribution characteristics of transportation CO2 emissions
in various cities and reflect the spatial agglomeration through-
out China. Global spatial autocorrelation is a global index that
measures whether a certain spatial attribute has obvious clus-
tering in a given geographical location. The global Moran’s I
index is used for evaluation, and the z-score is calculated to
test the significance of the measurement results. In this paper,
the index is used to measure the global correlation in China’s
urban transportation CO2 emissions, and the formula is
outlined as follows.

I ¼
n∑

i

n
∑
n

j≠i
wij xi−x

� �
x j−x

� �

∑
n

i¼1
xi−x

� �2
∑
n
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∑
n

j≠i
wij

ð1Þ

where n is the number of cities,wij is the spatial weight matrix,
Xi and Xj are the transportation CO2 emissions of cities i and J,
respectively, and x is the average transportation CO2 emis-
sions of each city. I > 0 represents positive spatial correlation,
I < 0 represents negative spatial correlation, and the smaller
the value of I is, the greater the spatial difference is.
Otherwise, I = 0 represents no spatial correlation.

Local spatial autocorrelation

The global Moran’s I index only reflects the difference
in spatial mean value and may ignore the atypical char-
acteristics of the transportation CO2 emissions of some
cities in local areas (Elhorst 2012). The local Moran’s I
index mainly verifies the distribution pattern of each
element in the heterogeneous elements and can measure
the local spatial correlation between each region and its
surrounding regions. The index can explore the change
pattern of transportation CO2 emissions in different cit-
ies. The formula is as follows.

I i ¼
n xi−x
� �

∑n
j¼1 xi−x

� �2 ∑
n
j¼1Wij xi−x

� �
ð2Þ

where Ii is the local Moran’s I index, and the other
indicators have the same meaning as in Formula 1.
Ii > 0 indicates that transportation CO2 shows high-high
or low-low agglomeration, while Ii > 0 indicates that
transportation CO2 emissions show high-low or low-
high agglomeration. The local Moran’s I clusters can
help to identify regions with high CO2 emissions.

GWR model

The GWR model is an improved spatial linear regression
model that overcomes the defects of the OLS method, ignor-
ing spatial effects and presupposing homogeneity between
variables (Qin et al. 2019). In the analysis of influencing fac-
tors, the GWRmodel fully considers the role of spatial effects,
embeds geographic information into the original regression
equation, and uses the local weighted least squares method
to estimate the parameters of each research region, thereby
better reflecting the spatial dependence and spatial differences
among economic variables. The formula is as follows.

Y i ¼ c ui; við Þ þ ∑
m

j
b j ui; við Þ xij þ εi ð3Þ

where Yi represents the transportation CO2 emissions of city i,
(ui, vi) is the longitude and latitude coordinate of city i, c(ui, vi)
is the constant term, bj(ui, vi) is the regression coefficient of the
influencing factor J in city i, and εi is the residual term. The
nonstationarity of spatial relations can be intuitively detected
by how the regression coefficient changes with the geograph-
ical location.

Variable description

Explained variables: TCE

Since there are no data on transportation CO2 emissions at the
city level in the existing database, this paper will calculate
these data indirectly, including the three areas of road, railway,
and air transportation CO2 emissions. For road transportation
CO2 emissions, first, carbon emissions are calculated accord-
ing to the energy consumption of road traffic in each province;
the specific calculation method can be found in Cai et al.
(2012). Second, China’s road network (GIS) data are divided
into freeway and first-class, second-class, third-class, and
fourth-class highways. With the designed daily traffic volume
of different road levels as the weight, provincial traffic carbon
emissions are allocated to each road segment in every 1-km
spatial grid. Finally, the transportation CO2 emissions of each
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urban road are summarized based on the GIS spatial boundary
of China’s cities. For railway transportation CO2 emissions,
first, the carbon emissions of railways in each province are
calculated based on railway turnover and energy consumption
data. Second, according to the railway network data of each
province (GIS data), the railway emissions from each prov-
ince are allocated to each section of the railway in each 1-km
spatial grid. Finally, the railway transportation CO2 emissions
of each city are summarized and formed based on the GIS
spatial boundaries of Chinese cities. For transportation CO2

emissions, first, the CO2 emissions of each airport are calcu-
lated based on oil consumption. Second, the oil consumption
of the transportation, storage, and postal industries in each
province is used to verify the sum of the airport fuel consump-
tion without considering international aviation.

Explanatory variables

This paper chooses 10 indicators—private car ownership
(CAR), technological innovation (TI), population density
(PD), urbanization rate (UR), per capita urban road area
(UA), transportation structure (TS), industrial structure (IS),
per capita GDP (RGDP), public transport (BUS), and the level
of environmental regulation (ER)—as the factors influencing
transportation CO2 emissions in the GWR model. These indi-
cators and their impacts on transportation CO2 emissions can
be simply described as follows. CAR is measured by the num-
ber of private cars per 10,000 people, which reflects the satu-
ration of a city with private cars. Cars are an important source
of transportation CO2 emissions. TI is measured by the num-
ber of patent authorizations per 10,000 people and is consid-
ered to be one of the important ways to solve the carbon
emission problem. However, technological progress can also
have a rebound effect, which can result in an increase in CO2

emissions. PD ismeasured by the number of people per square
kilometer and is generally considered to be positively related
to transportation carbon emissions. UR is expressed as the
proportion of the urban population. UR is an important factor
affecting transportation CO2 emissions, as generally, the
higher the urbanization degree is, the more developed the
transportation industry is, and the higher the corresponding
carbon emissions are. However, higher urbanization can also
mean more intensive energy utilization and, thus, reduced
carbon emissions. UA reflects urban road construction.
Generally, the better the road construction is, the less likely
it is that there will be traffic jams, and therefore, the lower
carbon emissions will be. TS is the ratio of railway transport
turnover to total comprehensive transport turnover. Generally,
a higher proportion of railway transport turnover means a
lower promotion of transportation CO2 emissions. IS is
expressed by the proportion of secondary industry, as a higher
proportion of secondary industry generally leads to greater
carbon emissions. RGDP reflects the quality of economic

growth. The EKC shows that economic growth can both in-
crease and reduce transportation CO2 emissions depending on
the starting economic level. BUS is measured by the number
of buses per 10,000 people, as buses are regarded as a power-
ful measure for reducing transportation CO2 emissions. ER is
calculated by the entropy weight method and reflects the gov-
ernment’s administrative intervention in environmental
governance.

Data description

Due to the lack of data for some cities, this paper selected 286
cities above the prefecture level in China as the research ob-
jects in 2015. The data are mainly from the China City
Statistical Yearbook, the Yearbook of China Transportation
& Communications, and the provincial Statistical Yearbooks.
Descriptive statistics of the variables are shown in Table 1.

Results and discussion

Spatial distribution pattern of TCE

The distribution of total transportation CO2 emissions in
China is shown in Fig. 1. Chongqing, Shanghai, and Beijing
are the three cities with the highest CO2 emissions. Most cities
with high CO2 emissions are regional core cities, such as
Tianjin, Chengdu, Wuhan, Dalian, Shenyang, Guangzhou,
and Suzhou. Cities with low transportation CO2 emissions
are mostly concentrated in underdeveloped areas, such as the
northwest, northeast, and southwest of China. Thus, the spa-
tial distribution characteristics of transportation CO2 emis-
sions are closely connected with the level of regional econom-
ic development. Coastal areas have good geographical advan-
tages, rapid urban economic development, and high CO2

emissions. Northeast China is mainly an old industrial base
and is facing a serious problem with population loss. In recent
years, the decline has been obvious, and even negative growth
has been observed. Compared with the eastern and central
regions, the development of the vast western regions of
China is relatively slow. Although it accounts for 72% of the
total area of the country, the total population is only approx-
imately 29% of the country. Approximately 48% of the land
resources are the Gobi Desert and alpine areas with an altitude
of more than 3000 m. All of these factors will have important
impacts on transportation CO2 emissions.

Global and local correlation

According to Formula 1, the Moran’s I index is 0.098796, the
p value is 0.000, and the z-score is 4.422. The results show that
the Moran’s I index is greater than 0, the p value is less than
0.01, and the z-score is greater than 1.96, which indicates that
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the transportation CO2 emissions in China’s cities have sig-
nificant spatial clustering characteristics and positive spatial
autocorrelation.

The distribution of the local indicators of spatial association
(LISA) of transportation CO2 emissions, which can be used to
explore the local characteristics, is shown in Fig. 2. There are

four main forms of spatial agglomeration: high-high, high-
low, low-high, and low-low. Among them, the transportation
CO2 emissions of high-high agglomeration cities and their
neighboring cities are relatively high and are mainly concen-
trated in developed provinces, such as Beijing, Tianjin,
Shanghai, Jiaxing, Hangzhou, and Guangzhou. The possible

Fig. 1 Spatial distribution of transportation CO2 emissions

Table 1 Statistical description of
variables Description Max Min Mean Std. Dev.

TCE Transportation CO2 emissions (10
4 ton) 3772.84 267.24 12.61 342.74

CAR Private car ownership (unit) 5,350,000.00 593,475.00 41,999.00 693,057.90

TI Number of patent authorization per 104

people (unit)
118,225.00 6204.47 73.00 13,576.61

PD Population density (people/km2) 2501.14 436.64 5.77 338.21

UR Urbanization rate (%) 1.00 0.56 0.29 0.14

UA Per capita urban road area (m2) 105.02 13.23 1.78 9.31

TS Transportation structure (%) 1.00 0.89 0.26 0.17

IS Proportion of secondary industry (%) 0.71 0.47 0.15 0.09

RGDP Per capita GDP (Yuan) 207,163.00 51,125.54 10,987.00 29,543.82

BUS Number of buses per 104 people (unit) 225.50 9.61 1.04 14.97

ER Environmental regulation level 0.95 0.76 0.39 0.11
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reasons for the high emissions include urban agglomeration,
large economic capacity, and intensive human activities. The
transportation CO2 emissions of high-low agglomeration cit-
ies are high, while those of surrounding cities are low, and
these are mainly represented by Nanjing, Chengdu,
Chongqing, and other regional core cities. The transportation
CO2 emissions of low-high agglomeration cities are low,
while those of surrounding cities are high; these include cities
such as Zhenjiang, Changzhou of Jiangsu Province, and the
peripheral cities of Beijing. The transportation CO2 emissions
of low-low agglomeration cities and the surrounding cities are
relatively low and mainly concentrated in Guizhou and
Yunnan, where the economy is underdeveloped and human
activities are relatively scattered; thus, the carbon emissions
are low.

Spatial heterogeneity characteristics of the
influencing factors

OLS regression results

The OLS model is used to estimate parameters before using
the GWR model, and the results are shown in Table 2. The

ANOVA F test shows that the model has strong significance,
and the VIF values of all variables are far less than 10, indi-
cating that there is no serious collinearity problem in the mod-
el. The coefficients show that most of the explanatory vari-
ables have a significant correlation with transportation CO2

emissions. The three factors of private car ownership,

Fig. 2 Local Moran’s I clusters of transportation CO2 emissions in China

Table 2 OLS regression results

Coefficient Std. Error t value p value VIF

Constant − 0.698 1.049 − 0.67 0.506

CAR 0.385 0.051 7.49 0.000 2.42

TI 0.260 0.038 6.75 0.000 3.73

PD − 0.221 0.049 − 4.55 0.000 2.18

UR − 1.053 0.339 − 3.11 0.002 2.49

UA − 0.230 0.072 − 3.19 0.002 1.74

TS − 0.361 0.193 − 1.87 0.063 1.24

IS 0.115 0.071 1.61 0.097 1.06

RGDP 0.146 0.102 1.43 0.155 3.14

BUS 0.042 0.055 0.77 0.443 1.78

ER 0.126 0.326 0.39 0.699 1.45
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technological innovation, and industrial structure have signif-
icant positive effects on transportation CO2 emissions, and
every 1% increase in these three factors can lead to an increase
of 0.39%, 0.26%, and 0.12% in transportation CO2 emissions,
respectively. The rapid growth in the number of private cars
and low fuel efficiency are considered themain factors leading
to transportation CO2 emissions. In some developed cities,
such as Beijing, the CO2 emissions of private cars can account
for as much as 88% of traffic CO2 emissions. The influence
coefficient of technological innovation found here is not con-
sistent with the conclusions of Pei et al. (2019) and other
scholars. The possible reason for this difference is that this
paper uses the number of patent authorizations rather than
automobile technology as a measure of technological innova-
tion. In practice in China, a large number of patents come from
universities and research institutes, and these cannot be con-
verted into technical applications and thus cannot reduce CO2

emissions. In addition, most enterprises apply for patents to
develop new products and expand production, which will pro-
mote energy consumption and increase CO2 emissions. In
2019, the proportion of secondary industry in China was as
high as 39.0%, which is far higher than that of developed
countries. The demand for raw materials and product trans-
portation in secondary industry is still huge, and this inevita-
bly leads to an increase in transportation CO2 emissions.
Population density, urbanization rate, per capita urban road
area, and transportation structure can significantly inhibit
transportation CO2 emissions, and every 1% increase in these
four factors reduces the corresponding transportation CO2

emissions by 0.22%, 1.05%, 0.23%, and 0.35%, respectively.
The lower the population density, the lower the number of
cars, lessening traffic and lowering the corresponding CO2

emissions. A large amount of transportation CO2 emissions
comes from the production and life of rural residents. With
urbanization, energy is intensively used, and utilization effi-
ciency is greatly improved, correspondingly reducing CO2

emissions. Under the high degree of urban construction and
land utilization, land resources are scarcer, which will encour-
age local governments to replace traditional energy with more
environmentally friendly energy to reduce transportation CO2

emissions (Liu et al. 2016). Compared with highway transpor-
tation, railway transportation is a lower carbon mode. The
impact of per capita GDP, public transport, and environmental
regulation on transportation CO2 emissions is insignificant.
Due to the large regional economic development gap in
China, some cities with high per capita GDP have high CO2

emissions, but some resource-based cities with low per capita
GDP also have high CO2 emissions. It may be that these
contrasting situations result in per capita GDP not being sig-
nificant in this paper. China began developing public transport
relatively late, especially in the central and western cities, and
the corresponding level of public transport development is far
lower than that of developed countries, making it difficult to

curb transportation CO2 emissions. Due to China’s special
decentralized fiscal system, local governments tend to relax
environmental regulation standards and collude with polluting
enterprises to pursue GDP and expand fiscal revenue, render-
ing environmental regulation policies ineffective (Shen et al.
2017).

GWR regression results

Since the OLSmodel cannot explain the local heterogeneity in
the impacts of the 10 variables on transportation CO2 emis-
sions, this paper will use the GWR model for further analysis,
and the local R2 value of the spatial distribution is shown in
Fig. 3. The R2 value varies between 0.4788 and 0.7973, and
the degree of fit for different regions varies. The R2 value
gradually decreased from Northeast China and North China
to Central and Northwest China. The area best fitting the
GWR model is Northeast China, and the areas with the worst
fit are Central China, South China, and Northwest China. This
result shows that in Northeast China, the relationship between
driving factors and transportation CO2 emissions is better
reflected in the regression model. Across all cities, the local
R2 value of Hulunbuir City in Inner Mongolia is the highest
and that of Jiuquan City in Gansu Province is the lowest.

The statistical description of the influencing coefficient of
each variable in the GWR model on transportation CO2 emis-
sions is shown in Table 3. The standard deviation of the esti-
mated coefficient varies widely, with a minimum value (TS)
of 0.027 and a maximum value (IS) of 0.108. The larger the
range of each coefficient is, the greater the spatial variation in
the influence degree of each factor, and the more appropriate
the GWR model will be in local estimation. Table 3 also
shows the proportion of cities with significant estimated coef-
ficients (p < 0.10), and the proportion of cities with positive
and negative estimated coefficients. To explore the spatial
heterogeneity of the relationship between various influencing
factors and transportation CO2 emissions, this paper describes
the spatial distribution characteristics of the estimation coeffi-
cients, as shown in Fig. 4.

The impact of private car ownership on transportation CO2

emissions is positive, and it is significant in 99.3% of the
cities, which is basically consistent with the estimates of the
OLS model. In the cities of Shandong, Liaoning, Jiangsu,
Anhui, Zhejiang, Fujian, and other eastern provinces, private
cars have the highest impact on transportation CO2 emissions,
while the impact is lower in western cities. The possible rea-
son is that there are many more private cars in developed
coastal cities than that in other regions, and the rapid growth
in the number of private cars and low fuel efficiency are con-
sidered the main factors leading to transportation CO2 emis-
sions. Therefore, the impact of private cars is higher in coastal
regions than in other regions.
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The influence coefficient of technological innovation on
transportation CO2 emissions is positive, and it is signifi-
cant in 60.14% of cities; the degree of influence gradually
increases from South to North China. Among these cities,
technological innovation has the highest impact in
Heilongjiang, Jilin, Liaoning, Inner Mongolia, and other

regions. Northern China is rich in energy resources and is
China’s heavy industry base. It may be that patents are
promoting the progress of energy consumption technology,
which may lead to the substitution of energy elements for
nonenergy elements and have a positive influence on trans-
portation CO2 emissions.

Fig. 3 Spatial distribution of R2 values

Table 3 Descriptive statistics of
regression coefficients in GWR
model

Coefficients Percent of cities by significance of T test

Max Min Mean Std. Dev. p < 0.1 + (%) − (%)

CAR 0.734 0.112 0.599 0.070 99.30 100.00 0.00

TI 0.549 0.049 0.196 0.108 60.14 100.00 0.00

PD 0.191 − 0.220 − 0.008 0.090 29.37 47.55 52.45

UR − 0.014 − 0.180 − 0.060 0.026 29.37 0.00 100.00

UA − 0.077 − 0.246 − 0.126 0.031 83.92 0.00 100.00

TS − 0.034 − 0.157 − 0.100 0.027 73.78 0.00 100.00

IS 0.164 − 0.230 − 0.025 0.096 41.26 38.11 61.89

RGDP 0.215 0.006 0.063 0.028 15.03 100.00 0.00

BUS 0.224 − 0.163 − 0.048 0.062 30.77 0.00 100.00

ER 0.069 − 0.147 − 0.081 0.054 52.45 0.00 100.00
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Fig. 4 Spatial distribution of regression coefficients based on the GWR model
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Population density has a two-way effect on transportation
CO2 emissions: significantly positive in eastern cities and signif-
icantly negative in other western cities. The influencing coeffi-
cient between the two regions is not significant and cannot be
revealed by the OLS model. There are many employment op-
portunities in the eastern coastal cities attracting a large amount
of talent, and the population density is high, which will lead to
increased demand for travel and infrastructure, resulting in in-
creased CO2 emissions (Wang and Lin 2016).

The impact of the urbanization rate on transportation CO2

emissions is negative and only significant in 29.37% of cities.
These cities are mainly located in Gansu, Qinghai, Ningxia,
Shaanxi, and other western provinces, and the impact is not
significant in other regions. The possible reason is that the
urbanization rate of most cities in the eastern region is rela-
tively high, and urban development has entered a relatively
ideal stage. The urban infrastructure has been improved, and
the urbanization rate has reached a high level, so the impact on
transportation CO2 emissions is very small.

The influence of per capita urban road area on transporta-
tion CO2 emissions is negative and significant in 83.92% of
cities, which shows that improvement in road traffic condi-
tions is conducive to reducing transportation CO2 emissions.
The degree of influence decreases from East toWest China. In
the eastern cities, the impact of per capita urban road area on
transportation CO2 emissions is the highest, while the impact
is much smaller in the western cities. The possible reasons are
the rapid urbanization process in the eastern region, the high
degree of urban construction and land utilization, and the
scarcity of land resources, which together encourage local
governments to use more environmentally friendly energy to
replace traditional energy and vigorously develop public
transport.

The influence of transportation structure on transportation
CO2 emissions is negative and significant in 73.78% of cities,
and the degree of influence weakens from East toWest China.
The transportation structure in the eastern coastal area has the
strongest restraining effects, which may be due to better

Fig. 4 (continued)
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infrastructure and more developed railway transportation con-
ditions in that area, especially the large-scale construction of
high-speed railways in China in recent years, which has main-
ly occurred in the eastern area. In southwestern areas, such as
Guizhou, Yunnan, and Guangxi, the inhibition effect of the
transportation structure is the weakest and not significant,
which may be because these areas are basically remote moun-
tainous areas, with less railway mileage and low passenger
and freight volumes, making it difficult to inhibit transporta-
tion CO2 emissions.

There are two-way effects of industrial structure on trans-
portation CO2 emissions. In the eastern coastal cities, the im-
pact coefficient is significantly negative, while it is signifi-
cantly positive in the western cities. The possible reason is
that secondary industry in coastal provinces has become rela-
tively developed, especially in recent years, and after industri-
al transfer and structural upgrading, some enterprises with
high-energy consumption have moved to the western region.
The characteristics of the upgraded industrial structure are
obvious, resulting in low-carbon emissions (Zhao and Yin
2011). However, to catch up and surpass demand, the central
and western cities have no choice but to introduce some high-
energy consumption enterprises when engaging in industrial
transfer, and the demand for raw materials and the transporta-
tion of goods is increasing daily. Therefore, significant de-
mand for transportation in the process of industrialization will
inevitably lead to an increase in carbon emissions.

The impact coefficient of per capita GDP on transportation
CO2 emissions is always positive but only significant in
15.03% of the cities. These cities are mainly located in
Heilongjiang, Jilin, Gansu, Ningxia, Shaanxi, and other west-
ern regions. In most other cities, the impact of per capita GDP
is not significant. This result shows that at present, economic
development is still an important factor leading to CO2 emis-
sions inWest China, the relationship between the environment
and the economy are still on the left side of the EKC, and the
level of economic development has not reached the inflection
point. Of course, the impact of per capita GDP on transporta-
tion CO2 emissions is no longer significant in developed cit-
ies, such as Beijing, Tianjin, Shanghai, Hangzhou, and
Suzhou. According to the current development trend, there
may be a turning point in the near future (Wang and Feng
2019). In fact, the CO2 emissions of developed regions over
the years are higher, and they have a greater responsibility to
reduce CO2 emissions.

There are two-way effects of public transport on transpor-
tation CO2 emissions. In Shanghai, Zhejiang, Jiangsu, Fujian,
and other coastal cities in East China, the impact coefficient is
significantly negative, indicating that the development of pub-
lic transport can inhibit transportation CO2 emissions. The
possible reason is that public transport in East China is devel-
oped and obviously superior to that in other cities. People have
a strong willingness to go green, and residents are relatively

more willing to choose public transport. Compared with pri-
vate cars, using public transportation can reduce CO2 emis-
sions (Ercan et al. 2016). The impact of public transport in
other cities is not significant, which may be because they lack
development in these cities, so it would be difficult for them to
have a negative effect on CO2 emissions.

There are two-way effects of the environmental regulation
level on transportation CO2 emissions. In Beijing, Tianjin, and
other northern cities, the impact coefficient is significantly
negative, indicating that environmental regulation can inhibit
transportation CO2 emissions. The possible reason is that for a
long time, the northern region has been the most developed
heavy industrial area and the most polluted region in China.
Therefore, in recent years, the government has strengthened
environmental regulation and taken various traffic measures,
such as restrictions on the number of cars and on the volume
of traffic, which will not only improve air quality but also
reduce transportation CO2 emissions. In other cities, the im-
pact coefficient is not significant, which may be due to the
weak level of environmental regulation in these areas, and
there is also a tradeoff between environmental governance
and economic development.

Conclusions and policy implications

Conclusions

In this paper, 286 cities in China are taken as samples to
analyze the spatial distribution characteristics of transportation
CO2 emissions considering the global and local dimensions
using the ESDAmethod, and the GWRmodel is used to study
the spatial differences in the factors affecting urban transpor-
tation CO2 emissions by considering the spatial effects among
regions. The main conclusions are as follows.

First, the transportation CO2 emissions in China’s cities
show significant spatial clustering characteristics. The cities
with high transportation CO2 emissions are mainly concen-
trated in Beijing, Shanghai, Chongqing, Chengdu, Nanjing,
and other regions, while the cities with low transportation
CO2 emissions are mainly concentrated in Gansu, Guizhou,
Yunnan, and other underdeveloped provinces in the midwest-
ern region. For areas with high transportation CO2 emissions,
collaborative emission reduction policies should be formulat-
ed when addressing CO2 emissions.

Second, from the perspective of the overall national evolu-
tion of the factors affecting transportation CO2 emissions, pri-
vate car ownership, technological innovation, and industrial
structure are the main promoters of transportation CO2 emis-
sions, while population density, urbanization rate, per capita
urban road area, and transportation structure are the main re-
straints on transportation CO2 emissions. The impact of per
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capita GDP, public transport, and environmental regulation on
transportation CO2 emissions is not significant.

Third, the coefficient of each driving factor is shown local-
ly by the GWRmodel. The impact of private car ownership on
transportation CO2 emissions is always positive and is signif-
icant in 99.3% of the cities; in the eastern cities, it has the
highest impact coefficient. The impact coefficient of techno-
logical innovation on transportation CO2 emissions is positive
and significant in 60.14% of cities. In the northern cities, the
impact coefficient is the highest, and the rebound effect of
technological progress is more obvious. Population density
has a two-way impact on transportation CO2 emissions, as it
is significantly positive in eastern cities and significantly neg-
ative in western cities. The impact of the urbanization rate on
transportation CO2 emissions is negative and only significant
in 29.37% of cities, which are mainly located in the western
region. The impact of per capita urban road area on transpor-
tation CO2 emissions is negative and significant in 83.92% of
cities. The degree of influence decreases from East to West
China, which shows that the improvement in road traffic con-
ditions is conducive to reducing transportation CO2 emis-
sions. The impact of transportation structure on transportation
CO2 emissions is negative and significant in 73.78% of cities.
The degree of influence is weakened from East toWest China,
which shows that railway transportation is conducive to re-
ducing transportation CO2 emissions. There are two directions
for the effects of industrial structure on transportation CO2

emissions; these are significantly negative in eastern coastal
cities and significantly positive in western cities. The impact
of per capita GDP on transportation CO2 emissions is positive
and only significant in 15.03% of the cities that are located in
the western regions. There are two-way effects of public trans-
port on transportation CO2 emissions. In the eastern coastal
cities, the impact coefficient is significantly negative, while
the impact coefficient is positive but insignificant in other
cities. There are two-way effects of environmental regulation
on transportation CO2 emissions. In the northern cities, the
impact coefficient is significantly negative.

Policy implications

The above conclusions have certain significance for the for-
mulation and adjustment of China’s environmental policy.
Because the development process, natural resources, and geo-
graphical location of each city differ, environmental policies
should be formulated in line with the characteristics of each
region. According to the conclusions of this paper, the follow-
ing suggestions are proposed.

First, the government should strictly control the number of
private fuel vehicles; continue to vigorously promote the de-
velopment of pure electric, hybrid, hydrogen energy and other
new energy vehicle industries; and promote the application of
new energy for public transport, large passenger cars, and

trucks. Second, energy-biased technological progress should
be reduced to weaken the rebound effect. Especially in its
northern cities, China should focus on the development of
new energy technology and low-carbon technology and intro-
duce market mechanisms to ensure the development and ap-
plication of low-carbon technology. Third, we should attract
population transfer to central and western cities by means of
industrial transfer, which will reduce population pressure in
large cities in the East and promote urbanization in the central
and western regions. Some effective talent introduction poli-
cies should be implemented to promote the rational flow of
population. Fourth, the existing land resources should be used
to widen the urban road area. For the newly planned urban
area in particular, the design standard of the road area should
be improved, such as changing from four lanes to six lanes.
Fifth, railway construction should be accelerated in Southwest
China, and road transport should be transferred to railways,
inland river transport, and other more environmentally friend-
ly transport modes as much as possible to promote the low-
carbon development of comprehensive transport systems.
Overload and overrun should be strictly controlled so that
the transportation of bulk goods will shift from highway trans-
portation to railway transportation for the sake of cost and
carrying capacity. Sixth, the central and western cities should
be encouraged to change their economic development mode
and constantly optimize their industrial structure. In particular,
central and western cities should not blindly accept foreign
high-energy consumption industries but should choose low
pollution and low emission green industries. Only by chang-
ing from the original extensive economic development mode,
optimizing the economic growth structure, and striving to
achieve a balance between the economy and the environment
can the low-carbon development of transportation be ensured.
Seventh, in the eastern developed areas, China should
strengthen investment in the construction of the public trans-
port system, eliminate the old means of transport, accelerate
the construction of low-carbon transport systems such as mass
transit and urban rail transit, provide more convenient and
efficient transport services, and encourage the use of shared
bicycles. Finally, it should further strengthen environmental
regulation, consider the heterogeneity of regional economic
development and carbon emission intensity, and adopt differ-
entiated environmental regulation tools. For the eastern devel-
oped cities, China should consider people’s increasing de-
mand for environmental quality and green products and adopt
a higher intensity of environmental regulation. The intensity
of environmental regulation should be moderate for the less
developed cities in the central and western regions.
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