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Abstract
Deficiencies remain in current health impact assessment (HIA) and environmental impact assessment (EIA) projects.
To address the shortcomings in EIA theory, a case of odors from a municipal sewage treatment plant (MSTP) was
examined and geographic factors were employed to associate the spatial diffusion of the pollutants with the popula-
tion’s activities based on land-use attributes. After screening the MSTP priority control pollutants, odors, hydrogen
sulfide, and ammonia were selected for this study. Then, the spatial parameters for the pollutant simulation were
surveyed, including parameters concerning the meteorological analysis, environmental emission monitoring, and emis-
sion source analysis, and a prediction of the pollutant diffusion as imaged and identified. The types of human social
activity and exposure patterns were sorted as land-use attributes. An integration of the spatial diffusion of the pollut-
ants with the exposure profiles of the scenario population according to the land-use attributes was achieved using
counterpart spatial coordination factors. In our study, the commonly applied method of HIA risk calculation was
followed and then extended by the spatial techniques introduced. The results of the scenario HIA contours are
presented here, making it easy to determine the acceptable levels of the MSTP odor pollutants on a geographic scale.
This study examines a significant approach to associate HIA with post-EIA via spatial factors and addresses the
deficiencies of HIA in EIA empirical applications.

Keywords Health impact assessment (HIA) . Spatial factor linkage . Environmental impact assessment of operational projects
(post-EIA) . Odors . Municipal sewage treatment plant (MSTP)

Introduction

A health impact assessment (HIA) is a process to estimate
the nature and probability of adverse health effects in
humans who may be exposed to chemicals in contaminated
environmental media, now or in the future. Protecting hu-
man health from the risk of pollutant exposure is the ulti-
mate goal of environmental protection. Even though envi-
ronmental impact assessment (EIA) has been a proven tool
over the past 35 years and has a good track record in eval-
uating the environmental risks and opportunities of project
proposals and improving the quality of outcomes, its the-
ory and practice for HIA continues to lag behind policy
expectations (Lebret 2015; Rouéle and Jabot 2018).
China has experienced a worsening environmental situa-
tion in recent years due to rapid industrialization (Niu
et al. 2017; Lamoreaux and Arizona 2019). While HIA is
a part of the EIA system, as claimed by the China Act
Environmental Impact Assessment (revised edition, 2018),
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a theory integrating HIA into EIA is still under develop-
ment and remains inadequate in practice (Chang et al.
2017). Most local administrative requirements for HIA in
project planning EIA are relatively weak and may even be
thoroughly ignorant of environmental decision-making,
therefore making them disconnected from HIA in practice.

There is increasing interest in merging HIA into an opera-
tional project EIA (post-EIA), which is important for decision-
making when planning surrounding land-use and the regula-
tion of protection polices for nearby populations. However,
the key technology for merging HIA into EIA is still a chal-
lenge and most HIA studies have focused on the accuracy of
risk assessments in toxicology and epidemiology (Ruby et al.
1999, Bari and Kindzierski 2018a, b), while there has been
little focus on concepts linked to spatial factors. The area
impacted by an operational project is defined by its geograph-
ic location and the emission intensity, as well as the likely
level of exposure, which is associated with the spatial disper-
sion concentration and the population’s exposure patterns.
Therefore, more scientific techniques are expected to be intro-
duced into the theory of EIA. With insights into exposure
assessments, more scientists are beginning to associate popu-
lation exposure profiles on a geographic scale with the diffu-
sion of pollutants (Wang et al. 2018a). A geographic informa-
tion system (GIS) provides a perfect solution to overcome the
obstacle of a scenario population’s exposure profiles based on
the population’s social characteristics and the spatial distribu-
tion of the pollutants (Vu et al. 2013; Minolfi et al. 2018),
which forms a linkage for an HIA scenario based on land
use to a post-EIA via counterpart spatial analysis. Several
similar studies on how to conduct an HIA have been outlined,
some of which are inspiring (Aliyu et al. 2014; Boudet et al.
1999; Spickett et al. 2012; Lei and Hilton 2012; Lebret 2015).
Of these, one study was on the health risk assessment of a
modern municipal waste incinerator that proposed linking an
air pollutant dispersion model to the exposure parameters
using the demographic characteristics of the nearby popula-
tion Boudet et al. 1999). Other studies have attempted to in-
corporate wind flow effects in land-use regression models to
predict nitrogen dioxide concentrations for health exposure
studies, with some adopting remote sensing techniques
(Arain et al. 2007; Knibbs et al. 2018). This inspired us to
introduce spatial factors to link a scenario HIA via land-use
analyzes to a post-EIA.

Here, a case of municipal sewage treatment plant
(MSTP) volatile organic compounds (VOCs) is presented.
Odors released from treatment units have long been a chal-
lenge when managing MSTPs (Gruchlik et al. 2017) and
are naturally linked to the adopted treatment technique.
MSTP odors are regarded as typical MSTP pollutants
(Wang et al. 2018a, b) and generate wide concern. Here
MSTP odors are taken as an example to probe HIA theory
with a post-EIA. This paper addresses a way to introduce

the geographic factors of a scenario HIA via land-use to the
post-EIA of an operational MSTP.

Materials and methods

Screening priority control MSTP pollutants

MSTP odors are reported widely and are classified as odors
volatile pollutants, including alkanes, alkenes, aromatic hy-
drocarbons, halogenated hydrocarbons, sulfur-containing or-
ganic compounds, oxygenated organic compounds, hydrogen
sulfide (H2S), ammonia (NH3), and carbon disulfide
(Lewkowska et al. 2016; Liu et al. 2017). Additional odors
pollutants have been confirmed as being released from grate,
grit chamber, and sludge treatment units (Liang and Liu 2016;
Meng et al. 2016; Ren et al. 2018). In this paper, two typical
pollutants, H2S and NH3, were chosen as characteristic pol-
lutants indicating odors because neither has ever been ex-
plored at high levels, that is, H2S levels of 145,700 μg/m3

and NH3 levels of 63 μg/m3 (QEP et al. 2010; Lehtinen and
Veijanen 2011; Wang 2013), for an extreme situation at an
operational MSTP.

Meteorological parameters

The studied MSTP is located in the Haidian District of
Beijing. Meteorological data from 1992 to 2016 were sur-
veyed and used for further analyzes. Wind directions, which
play an important role in pollutant diffusion predictions, were
summarized. Austal 2000 G was employed to simulate the
pollutant diffusion, and meteorological data of the annual
2017 parameters were adopted.

Pollutant diffusion simulations

Environmental monitoring

The environmental monitoring included both manual and
online methods. The monitoring time was set to the sum-
mer because volatile odors are known to be relatively se-
rious during this period. Manual sampling was conducted
following the requirements of China standard Air and ex-
haust gas monitoring and analysis methods. The H2S anal-
ysis followed the China standard GB/T11742–1989, the
NH3 analysis followed the China standard HJ533–2009,
and the odor analysis followed the China standard GB/
T14675–93. All the procedures, including manual sam-
pling, monitoring, and analysis, complied strictly with
quality control regulations. The manual monitoring period
lasted from August 28 to 30, 2018, with a frequency of two
times a day. The monitoring times were 03:00–04:00 and
16:00–17:00, avoiding rainy and windy days.
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The OLFOSENSE (AIRSENSE) instrument was
adopted as an online monitor; this instrument is composed
of a variety of hybrid sensor arrays (four metal oxide sen-
sors, one photo-ion detector, and four types of electro-
chemical sensors). The levels of the pollutants, that is,
H2S, NH3, and odors, were recorded by the online instru-
ments in real time. Instantaneous data were read five times
a minute, with the average value being calculated and
recorded automatically. All equipment was regularly
inspected and maintained in a timely manner to ensure
the quality of the readings. Abnormal MSTP operating
conditions may produce extreme emissions; to obtain the
frequency of such extremes, we used the maximum value
monitored, divided by the average annual predicted value.

Prediction of the emission source

Two situations were taken into account to evaluate the source
emissions: normal and extreme conditions that are, assuming
that all deodorization measures failed. The incident probabil-
ities of an extreme condition were weighted by the accident
odds for similar industries.

Pollutant diffusion simulation

The main simulated data came from the monitor results,
and the diffusion variation was simulated using the Austal
2000 G software. The odor time, that is, the duration of
the odors, was chosen as the basic parameter. Odor levels
higher than the value set as the olfactory threshold, cGS,
were selected by the program. The hourly average values,
c, of the selected odor parameters were calculated with a
guarantee rate of more than 90%, c0.9. When the hourly
average value of c0.9 was higher than the threshold value
cGS, the odor duration time of the monitored odors in that
hour was recorded. That is, when the odor value c0.9 was
higher than the threshold value cGS, the time in which
odors were monitored in the counterpart hour was record-
ed as the odor duration time. In the spatial analysis, each
grid from others’ distance for prediction was 20 m, and the
total number of grids was 200 × 200. The center point
coordinate was near the main odor discharge cylinder in
the MSTP. The research area was designated by a geo-
graphic cycle with a radius of 4 km from the center point.

Scenario exposure levels according to the land-use
analysis

Exposure profile survey

The demographic characteristics and the counterpart exposure
behaviors were obtained via the land-use attributes. The land-
use information was obtained from the municipal land

administration. According to the information offered by the
local government, the land uses in the Haidian District were
classified into several types, including commercial, office,
residential, school, and grassland. These classes were verified
by our field investigation and data analysis. The results indi-
cate that there were no other industries near the MSTP; how-
ever, there were some residential areas and office buildings. A
grid of 20 m × 20 m was set in the program. The population
number in each land grid was counted, along with the social
characteristics of the population. Similar land-use types were
consolidated into a single type, and then the counterpart pop-
ulation’s exposure behavior was investigated. To obtain the
average behavioral parameters, a group of users or residents
on each type of land was selected randomly to answer a ques-
tionnaire; their exposure profiles were surveyed and then
employed as land-use attributes.

A total of 310 residents around the MSTP were selected
randomly for the questionnaire. All questionnaires were ad-
ministered on the condition that informed consent forms were
signed. The questionnaire content included education, occu-
pation, lifestyle, daily life exposure patterns, and the partici-
pant’s subjective understanding of the risk of odors. The pop-
ulation was categorized by socioeconomic factors including
stay-at-home residents, office workers, and students. The like-
lihood exposure times according to the demographic charac-
teristics were summarized and assigned to counterpart land-
use attributes.

Exposure levels based on the land-use analysis

Following the simulation of the spatial superimposed distribu-
tion of the pollutants, the grid center concentration was taken
as the average inhalation level for that particular location.
Exposure levels for different land uses were calculated follow-
ing Eq. (1), a popular technique used to make inhalation ex-
posure assessments.

ADD ¼ c*IR*ET*EF*ED
BW*AT

ð1Þ

Here, ADD is the daily average exposure dose; C indicates
the concentration of the chemical substances in the air; IR
represents the amount of respiration; ET indicates the duration
of daily exposure; EF designates the frequency of exposure;
ED indicates the duration of the exposure; and BW represents
the local population’s average weight, according to the data
gathered by our investigation. The final parameter AT is the
total expected exposure time.

For mixed land-use areas, the average exposure levels were
estimated using Eq. (2).

PWEL ¼ ∑ pi� cið Þ
∑pi

ð2Þ
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PWEL is the population’s average exposure level, where
the population refers to people with activities in a certain geo-
graphic area, which can be divided into grid numbers i on a
map; pi represents the population inside each grid and ci indi-
cates the average concentration of air pollutants inside each
grid in units of μg/m3 or mg/m3. Different types of people,
categorized by their exposure patterns based on their social
attributes, may experience large differences in their exposure
to MSTP pollutants. To establish the PWEL values, it is im-
portant to obtain practical activity behaviors for the demo-
graphic characteristics. In our study, we attributed the social
attribute types of the population on the combined gridded map
because it is easy to attribute people’s exposure profiles to
spatial data.

Scenario health risk analysis

After assigning the exposure amount to each geographic co-
ordinate, a scenario health risk analysis was further conducted
with respect to the traditional inhaled HIA (Zhou et al. 2011);
the hazard quotient (HQ) was used to describe the risk rating:

HQ ¼ E=RfD;

where E indicates the total exposure amount and RfD indicates
the reference dose. If HQ ≥ 1, the HIA is unacceptable; other-
wise, it is acceptable.

Some uncertainty factors that may contribute to varia-
tions in the health risk need to be considered. The

collected material was assumed to have an accuracy devi-
ation of ±5%. Different types of people, such as children,
elder, and pregnant women, were assigned a health risk
sensitivity scope of ±5%. In addition, the cumulative ef-
fects of social factors (e.g., economic income and profes-
sional background) contributed an uncertainty of ±10%.
Considering the comprehensive uncertainty mentioned
above in HIA, the final evaluated HIA should be adjusted
such that the prediction value is R ± R × 20%.

Statistical analyses

Statistical analyzes were performed using the SPSS 18.0
software. All the monitoring data were submitted to a
Kolmogorov–Smirnov (K–S) normal distribution test.
When P > 0.05, the data are considered to be consistent
with a normal distribution. ARC GIS 10.4.1 was used to
map the risk contours.

Results

Meteorological analysis

The wind direction frequency (FWD) was summarized by
analyzing the meteorological data (Table 1). Due to the
influence of the monsoon, the FWD varies with the sea-
son. The dominant wind direction in winter is considered
to be NNE, NE, and N, with appearance frequencies of

Table 1 Statistics of frequency of wind direction (%)

Wind direction Spring
(March–May)

Summer
(June–August)

Autumn
(September–November)

Winter
(December–February)

Annual

N 9.3 10.7 11.0 12.3 10.8

NNE 11.0 13.0 14.7 15.3 13.5

NE 9.3 11.0 13.7 13.7 11.9

ENE 3.3 3.7 3.0 2.3 3.1

E 2.0 2.7 1.7 1.3 1.9

ESE 1.0 1.7 1.0 1.0 1.2

SE 2.7 3.0 1.3 0.7 1.9

SSE 3.7 3.7 2.0 1.3 2.7

S 11.0 12.0 7.7 4.7 8.8

SSW 12.3 10.0 6.7 6.7 8.9

SW 5.3 5.7 5.0 4.3 5.1

WSW 2.0 2.3 2.0 2.0 2.1

W 2.3 2.0 2.3 2.3 2.3

WNW 2.3 1.0 2.0 2.7 2.0

NW 5.3 2.3 5.3 7.3 5.1

NNW 9.7 5.0 7.0 12.0 8.4

C(Static wind) 6.7 11.0 13.3 9.3 10.1
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15.3%, 13.7%, and 12.3%, respectively. In spring, the
FWD shifts to SSW and S, with frequencies of 12.3%
and 11.0%, respectively, followed by NNE, with a report-
ed frequency of 11.0%. The dominant wind direction in
summer was confirmed to be NNE, NE, and N, with fre-
quencies of 13.0%, 11.0%, and 10.7%, respectively,
followed by S and SSW. Meanwhile, in autumn, the dom-
inant wind direction was NNE, NE, and N, with frequen-
cies of 14.7%, 13.7%, and 11.0%, respectively. With re-
spect to the historic meteorological data, annual meteoro-
logical data including hourly data of the meteorological
parameters in 2017 were set as the main meteorological
parameters for the simulation, and a breeze rose diagram
(Fig. 1) indicates that the wind frequency in 2017 was
similar to that in previous years. In 2017, the dominant
wind directions were NNE, NE, and N, with frequencies
of 13.5%, 11.9%, and 10.8%, respectively, and rather low
FWD values were seen for E, ESE, and SE, with frequen-
cies of 1.9%, 1.2%, and 1.9%, respectively. Our findings
suggest that the main FWDs affecting air pollutant diffu-
sion were in the NNE and NE directions.

Contaminant diffusion simulations

To map the spatial diffusion of the pollutants, we need to
obtain the emission strength and predict the diffusion accord-
ing to the geographic and meteorological parameters.

Environmental monitoring

Air samples were monitored in August, when extremely hot
weather conditions are ideal for VOC emissions. The hourly
average levels of the pollutants were monitored (Table 2), as
well as the values lower than the standard (0.01 mg/m3). The
duration of the online monitoring was from 0:00 on August 24
to 12:00 on September 2 (Fig. 2, including Figs. 2a–d). The
maximum pollutant period was observed to be between 14:00
and 18:00 (Table 3). The maximum value during this period
was taken assuming that the extremely risk from source emis-
sion may took place. Here, the odor concentration was esti-
mated to be 1318 (nondimensionalize value), the H2S emis-
sion rate was approximately 6.94 × 10−5 kg/h, and the NH3

emission rate was 6.75 × 10−2 kg/h. The extreme pollution

Fig. 1 Wind rose map in 2017
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levels were set assuming that all deodorization measures had
failed; these values were assumed to be 4169 for odors, 1.96 ×
10−4 kg/h for H2S, and 1.96 × 10−2 kg/h for NH3.

Prediction of the emission source and spatial simulation

Diffusion levels of the average annual H2S emissions were
plotted spatially (Fig. 3). The maximum was 2.8 × 10−3 μg/
m3, appearing 100 m southwest of the emission source, with a

0.14% ratio to the standard value (0.01 mg/m3). The annual
average H2S levels around the spatial grids for the sensitivity
subjects whereas the population was concentrated changed
from 1.39 × 10−4 to 6.10 × 10−4 μg/m3 (not shown). The
levels of the H2S prediction were far lower than the standard,
and the maximum H2S value appeared southwest of the emis-
sion source. The annual average levels of NH3 (Fig. 4) showed
a diffusion trend similar to H2S with respect to the geography
(Figs. 3 and 4). The average odor levels exhibited the
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Fig. 2 Levels of H2S and NH3. Note: Air samples were monitored in the
August, the days an extremely hot weather condition for the VOCs
emission. Duration monitor online had been performing from 0:00

August 24–12:00 September 2 (a–d). The emission levels fell down to
zero during the night-time because of all running chambers closed. The
maximum value were chosen for the extremely scenario risk calculation

Table 2 Hourly average levels of
pollutants Pollutants Monitor sites Concertation

(mg/m3)
Standard
limit
(mg/m3)

Concentration
ratio
to the standard (%)

Over-standard
rate (%)

H2S 1 0.005 0.01 undetected /

2 0.005~0.007 undetected ~70 /

3 0.005~0.008 undetected ~80 /

4 0.005~0.008 undetected ~80 /

NH3 1 0.015~0.084 0.2 7.5~42 /

2 0.024~0.083 12~41.5 /

3 0.012~0.086 6~43 /

4 0.016~0.086 8~43 /

odor 1 10 10 undetected /

2 10 undetected /

3 10 undetected /

4 10 undetected /

Monitor sites were set 1000m away from the source emission.Monitor sites numbers were assigned. The east one
was 1, the west one was 2, the north one was 3 and the south one was 4. The determination limits (DL) of H2S was
set as 0.005 mg/m3 , as well as NH3 and odor was 10 mg/m3 . DL was replaced with the lowest level on condition
that the level was lower than DL
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frequency of annual odor occurrences in each grid (Fig. 5).
More than 4% of the high-frequency odors occurred at a dis-
tance of 1000 m from the emission source. The extreme con-
dition revealed that odors occurred frequently around the sen-
sitivity points, varying from levels of 3.2% to 10.8% (not
shown) and at levels of more than 6% in some locations. It
is suggested that the MSTP should take measures to mitigate
odors and avoid occurrences of extreme conditions. The cur-
rent findings, the prediction of the emission source, and the
simulation on the spatial grids can be used to associate the
pollutants with potentially sensitive segments of the popula-
tion that may be exposed to these pollutants (Fig. 6).

Exposure parameters of sensitive populations
according to the land-use analysis

Exposure parameters

Based on the land-use analysis, the main geographic grids
affected by pollutant diffusion were residential estates, a kin-
dergarten, and parts of office buildings. Other areas were
grassland. Similar land-use function grids (20 m × 20 m) were
combined for the spatial analysis (Fig. 6), and the counterpart
population were classified into several types according to their
social attributes. According to our investigation, younger

people paid more attention to MSTP risks and hazardous ma-
terials because they were better educated with respect to the
potential risks of odors and were more exposed to social me-
dia than the older population. Office workers preferred to
spend less time outdoors than children. Older residents mostly
preferred to stay home with their windows closed. The socio-
classification types of the population were sorted, and their
exposure profiles are summarized in Table 4 (including 4a–
4f). The behaviors of the exposure types were queried and
investigated statistically; however, there was no difference
on prevention odor (p > 0.05).

Estimation of the exposure amount

To protect the population as much as possible, the scenario
emission amounts were assumed to be at the extreme condi-
tion for the following exposure evaluation. The annual expo-
sure levels of sensitive populations (Table 5) were estimated
taking into account parameters reported previously (Zhou
et al. 2011; Du et al. 2014).

HIA scenarios

Next, the non-carcinogenic risk was assessed. The RfD value
for the risk assessment was derived from data on the Internet

Table 3 Prediction of the
emission sources Odor factors Normal working

condition
Abnormal
condition

90% working
condition

Odor concentration(Dimensionless) 1318 4169 417

Hydrogen sulfide(kg/h) 6.94 × 10−5 1.96 × 10−4 1.96 × 10−5

Ammonia(kg/h) 6.75 × 10−2 0.196 1.96 × 10−2

Note: Odor concentration was addressed in the ratio format with the detection method “Three-point comparison
stinky bag method”, china standard GB/T 14675–93. By the standard, the limit value was set as 2000 on the
exhaust height 15 m, and 6000 in the exhaust height 25 m

Fig. 3 Average annual H2S concentration distribution diagram (Unit:μg/m3) Fig. 4 Average annual NH3 concentration distribution diagram (μg/m3)
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(https://rais.ornl.gov/cgi-bin/tools/TOX_seaScenariorch?
select=chem). The sub-chronic oral reference dose for H2S
was 3.00 × 10−2 mg/kg-day and the chronic oral reference
dose for NH3 was 3.40 × 10 mg/kg-day. The HIA contour
map is displayed in Fig. 7. This map demonstrates that both
the H2S and NH3 health risks were acceptable for all grids,
even for the extreme condition, and that both odds were less
than one in a hundred. Therefore, the post-EIA of the MSTP
verified the security of the surrounding population. Given that
uncertainty factors were taken into account, the HIA is within
acceptable levels.

Discussion

EIA has been successfully promoted to integrate environmen-
tal considerations into development projects. The practical
applications of EIA have led to the emergence of two spin-
off assessment approaches: social impact and cumulative im-
pact assessments. Such assessments not only identify the stra-
tegic choices that might lead to more sustainable health out-
comes but also reduce risks to an already operational project.

Many researchers have attempted to integrate HIA into
EIA (Fehr 1999; Demidova and Cherp 2005; Bhatia 2007;
Corburn and Bhatia 2007; Rajiv and Aaron 2008; Valeberg
et al. 2009; Harris et al. 2015; Chanchitpricha and Bond
2018), and some have tried to employ geographic parameters
to identify the scope of the health effects and the emission
source sites (Johnston et al. 2019); however, a standard guide-
line for how to integrate HIA into EIA has not yet come into
being due to academic complications with respect to this in-
tegration. The lack of HIA in EIA practices is a difficult ob-
stacle to overcome when human health protection is con-
cerned; however, this is less of a problem in post-EIA. The
usual HIA procedure contains four steps: (1) hazard identifi-
cation, (2) dose response, (3) exposure assessment, and (4)
risk characterization. Exposure assessment, a crucial step in
HIA, is usually performed using monitoring data with weak
spatial identification (Bari and Kindzierski 2018a, b; Huang
et al. 2019). The reason for the HIA deficiency in EIA in
practice is the lack of a spatial factor in its overall theoretical
system compared to EIA. To integrate HIA into EIA, we con-
nected the simulation of the pollutant diffusion with the sce-
nario population’s exposure via spatial land-use parameters. A
case examining odors from an MSTP was addressed here.

Three aspects to this problem need to be considered.
Traditionally, the first step involves identifying the types
of adverse health effects that can be caused by exposure
to the pollutants in question and characterizing the qual-
ity and weight of evidence supporting this identification.
Complying with this principle, the priority control pol-
lutants of the MSTP were weighed by their emission
amounts, which are linked closely with the treatment
units and techniques (Jianting et al. 2015; Lewkowska
et al. 2016). H2S and NH3 were both chosen as charac-
teristic pollutants indicating odors because they have
both been released in large amounts, causing wide con-
cern (Bandosz et al. 2000). Both are often produced from
the microbial breakdown of organic matter by sulfate-
reducing microorganisms in the absence of oxygen gas,
in a process commonly known as anaerobic digestion.
These gases can cause an unpleasant smell and produce
long-term adverse effects.

The second problem relates to defining the dose–response
parameters. Usually, for available toxic dose–response param-
eters that have been approved and deduced by previousFig. 6 Geographical distribution of the sensitivity people

Fig. 5 Average annual odor hours frequency (Total releases 4169 OU/s,
Unit: %)
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studies, the dose–response parameters can be cited directly. In
this study, a sub-chronic oral reference dose of H2S of 3.00 ×
10−2 mg/kg-day and a chronic oral reference dose of NH3 of
3.40 × 10 mg/kg-day were used.

The third aspect deals with how to conduct exposure as-
sessments by incorporating spatial factors into the HIA theory,
the most important procedure to incorporate HIA into post-
EIA. Two aspects need to be coordinated using the same geo-
graphic factors. First, the diffused contaminants need to be
obtained based on the geography, and then the exposure
amount, which is linked closely with the population’s expo-
sure profiles on the counterpart lands, needs to be estimated.
People’s activities, which are determined by their social char-
acteristics, are correlated closely with the land-use areas in
which they are located.

Meteorological parameters are critical factors in the con-
taminant diffusion simulation. In our study, historic FWD sta-
tistics were analyzed (Table 1) and used to evaluate the main
wind directions in the prediction. The dominant historic wind

Table 4 The exposure profiles were summerized

a. People exposure profiles on spatial
Crowd sensitive target Distance(m) Population socail type
Qicaihuayuan village 490 Mixed
Summer Palace Garden Villa’s 510 Mixed
Geracomium 410 Elderly
Kindergarten 490 Children
Destruction center 490 Mixed
Xiaojiahe village 610 Mixed
Shu vilage 550 Mixed
Plain white banner Vilage 950 Mixed
Fengzeyinghe village 900 Mixed
Wanshu village 950 Mixed
Malianwajuyuan 1950 Mixed
Malianwazhuyuan 1950 Mixed
Boya village 840 Mixed
Shangdi west village 1700 Mixed
Shangdi east village 2100 Mixed

b. Exposure parameters of residential adult inhalation
Residence adult IR m3/d ET h/d EF d/a ED 年 BW kg AT d/years×365
Male 18.65 1 292 40 67.78 40 × 365
Female 14.93 1 292 40 59.00 40 × 365
Avg. 16.79 1 292 40 63.39 40 × 365

c. Exposure parameters of children (<6 years old)
Residence Children IR m3/d ET h/d EF d/a ED 年 BW kg AT d/years×365
Avg. 5.6 0.33 237 10 16.61 10 × 365

d. Exposure parameters of old man (>60 years old)
Residence Elder IR m3/d ET h/d EF d/a ED 年 BW kg AT d/years×365
Avg. 13.24 1 365 30 60.28 30 × 365

e. Exposure parameters of students (>12 years old)
Residence Student IR m3/d ET h/d EF d/a ED 年 BW kg AT d/years×365
Avg. 14.65 0.5 365 70 59.65 70 × 365

f. Exposure parameters of office man
Residence Office worker IR m3/d ET h/d EF d/a ED 年 BW kg AT d/years×365
Avg. 16.79 0.5 292 40 63.39 40 × 365

For those mixed types of residential adults live surrounding, exposure amount were set as the scenario extremely exposure to MSTP, with the daily
exposure time 24 h, the exposure frequency was estimated as 80% of the annual, and thus, the EF was set as 292 days, while the duration lifetime was
40 years

Table 5 Estimation of the sensitivity people’s average exposure amount

Sensitive crowd H2S(μg/m3) NH3 (μg/m
3)

Qicaihuayuan village 0.131 3.51

Summer Palace Garden Villa’s 0.126 3.38

Geracomium 0.154 4.11

Kindergarten 0.131 3.51

Destruction center 0.131 3.51

Xiaojiahe village 0.104 2.78

Shu village 0.116 3.12

Plain white banner village 0.059 1.59

Fengzeyinghe village 0.068 1.81

Wanshu village 0.064 1.71

Malianwajuyuan village 0.059 1.59

Malianwazhuyuan village 0.023 0.61

Boya village 0.023 0.61

Shangdi west village 0.070 1.87

Shangdi east village 0.027 0.73
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directions were NNE, NE, and N, with frequencies of 13.5%,
11.9%, and 10.8%, respectively, in keeping with the annual
meteorological parameters for 2017, the trends of which are
shown on a wind rose map (Fig. 1). The results indicate that
the main wind directions affecting the air pollutant diffusion
were NNE and NE.

In general, pollutants released from the MSTP during nor-
mal conditions need to be known, and while assessing HIA,
the abnormal condition in which all deodorization measures
failed should be taken into account.

The monitoring of the hourly average pollutant levels via
manual sampling was performed (Table 2) and indicated that
all results were lower than the standard (0.01 mg/m3). The
maximum values were defined as the top values from the
online duration monitor (Fig. 2), which had a fluctuating

scope. That is, the extreme risk was assumed at the maximum
value. The predictions of the emission source contained both
conditions (Table 3). The extreme odor level was 4169, and
the emission rates for H2S and NH3 were 1.96 × 10−4 and
1.96 × 10−2 kg/h, respectively. The extreme HIA health risk
scenario was based on the conditions necessary to eliminate
most of the health risk.

More challenging techniques were employed to develop
the spatial HIA. The spatial variations in the pollutant diffu-
sion were simulated using Austal 2000 G (Figs. 3, 4, and 5).
All pollutant distributions had trends similar to the FWD
(Fig. 1). The maximum annual average of H2S concentration
was found to be 2.8 × 10−3 μg/m3, appearing southwest of the
emission source with a 0.14% ratio to the standard (0.01 mg/
m3). This finding implies that this area is of primary concern.

Fig. 7 Contour map of HRA
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A further analysis revealed that the annual average H2S level
around the sensitive points where the population was concen-
trated changed from 1.39 × 10−4 to 6.10 × 10−4 μg/m3. Our
results indicate that the predicted H2S level was far lower than
the standard and the maximum levels southwest of the emis-
sion source. However, both H2S and NH3 had the same trends
as the odors, and the meteorological data played an important
role in their diffusion. The dependency of the diffusion con-
ditions of the air pollutants on the meteorological parameters
is supported by previous studies (Ilten and Selici 2008;
Sabetghadam and Ahmadigivi 2014).

Based on the diffusion map (Figs. 3, 4, and 5), the land
uses in each grid were investigated. Crowded areas were
defined as sensitive points, and the geographic distribution
of their coordinates was surveyed (Fig. 6); most residents
are located north of the emission source in the upwind
direction. Subsequently, similar land-use grids were
merged. Most areas were classified as living areas, residen-
tial houses, elderly care centers, offices, and a kindergar-
ten. Other areas were designated as grassland. Population
classes and exposure profiles were summarized based on
the land-use (Table 4). Mixed buildings indicated the pres-
ence of different social types of people in the same build-
ing, including office workers, retired individuals, and stu-
dents. Multi-function buildings were composed of accom-
modations and business offices. The behaviors of the ex-
posure types were further queried, and the results indicate
that there is no difference on prevention odor (p > 0.05).
The younger generation paid more attention to the risks of
the MSTP. It is important to define a timeframe for HIA,
and all lifetimes were set to 70 years. Combined with the
exposure parameters reported previously (Bai et al. 2007;
Huang et al. 2017), the annual exposure amounts of the
sensitive populations were calculated (Table 5) assuming
the extreme condition.

In the final step, the spatial risk scenario characterizations
provided a risk appraisal calculated on the basis of the expo-
sure and hazard. An HIA contour map was created according-
ly, showing the spatial factors linking HIA to the pollutant
diffusion (Fig. 7). This map summarizes the information inte-
grated from the proceeding steps of the risk assessment, mak-
ing it easy to assess the HIA spatially. In this case, both the
H2S and NH3 health risk levels were acceptable on all grids,
even for the extreme condition. Including the uncertainty fac-
tors, the HIA is still at an acceptable level. Therefore, the HIA
of H2S and NH3 for the MSTP post-EIA indicated that the
surrounding population is not in danger.

In this paper, we proposed a systematic and thorough
approach to connect HIA with post-EIA and to motivate
the integration of HIA into post-EIA using the case of an
MSTP. This approach will provide environmental evi-
dence to support decision-making related to the protection
of human health.

Conclusions

Human health protection is considered to be a major target of
EIA, by both decision-makers and the public. However, in
current operational projects, human health protection is
constrained by the lack of techniques for post-EIAs. This pa-
per presents an approach to develop an HIA scenario for post-
EIA systems by introducing a spatial factor including the spa-
tial diffusion of pollutants and the population’s activity char-
acteristics based on land-use at the geographic scale. A spe-
cific case, the linkage of HIA to the EIA of an MSTP, was
discussed here, addressing an approach to resolve the lack of
HIA in the current EIA. It is important to complete EIA theory
and to promote the most conducive strategy to enhance human
health protection and reduce negative impacts. Further theo-
retical and practical studies still need to be conducted.
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