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Abstract
Tehran, the capital city of Iran, is among the world’s most polluted cities. Tehran is exposed to different types of pollutants, one of
which is the suspended particles of PM2.5. One of the steps that should be taken to reduce hazardous effects of this pollution on
the health of society is timely prediction and announcement of its increased levels. Different methods can be used for predicting
PM2.5 concentration. This study used a variety of models for predicting PM2.5 concentrations, including linear, nonlinear, and
hybrid models. More specifically, the models which were used consisted of multiple linear regression, multi-layer perceptron
(nonlinear model), and a combination of ensemble empirical mode decomposition and general regression neural network
(EEMD-GRNN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) (hybrid of nonlinear models). The independent variables
in the current study were air quality parameters, which were measured in reference to PM2.5, PM10, SO2, NO2, CO, and O3 and
meteorological data which included average atmospheric pressure (AP), average maximum temperature (Max T), average
minimum temperature (Min T), daily relative humidity level of the air (RH), daily total precipitation (TP), and daily wind speed
(WS) in 2016 in Tehran. The results indicated that the ANFIS model exhibited the most accurate prediction in the training phase
(R2 = 0.99, RMSE (root mean square error) = 0.4794 and MAE (mean absolute error) = 0.1305) and in the testing phase (R2 =
0.82, RMSE = 3.2979 and MAE = 2.1668). As it can be concluded, in comparison with a linear model, hybrid models are of
higher precision in predicting PM2.5 concentration.
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Introduction

Background

A remarkable number of cardiovascular and respiratory dis-
eases can be caused by air pollution (Pope et al., 2004). As one
of the major environmental problems these days, suspended
particulate matter (SPM) in high concentrations can cause
climate change (Haywood and Boucher 2000) and growth

stunting or mortality of plant species (Bench 2004). SPM
has negative effects on housing market (Kim and Yoon
2019), tropopause height (Wu et al. 2013), surface tempera-
ture and energy budget (De Menezes Neto et al. 2017; Tzanis
and Varotsos 2008), and childcare facility (Oh et al. 2019).
Due to its small size, SPM can penetrate the lower and upper
parts of our respiratory system (Liu et al. 2019), and thus, it
can harm human health (Sahu et al. 2019; Wang et al. 2016;
Yadav et al. 2019). Exposure to high levels of PM2.5 causes
3.15 million premature deaths worldwide every year, and
overall outdoor air pollution causes 3.3 million mortality an-
nually (Lelieveld et al. 2015). Although in the developing
countries, most cities have similar air pollution problems, each
city has different sources of air pollution and its own particular
geographical and climatic features.

Motivation

Tehran is located in a developing country where rapid urban-
ization and population growth have resulted in its continuous-
ly expanding residential area, considerable changes in its land
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cover, and land use (Alizadeh-Choobari et al. 2016).
Reportedly in 2012, air pollution caused premature deaths of
a considerable number of people (N = 4500) in Tehran
(Ministry of Health and Medical Education, 2012). There is
empirical evidence that indicates Tehran is one of the cities in
the world in which high mortality is caused by long-term
exposure to fine particular matter (Lelieveld et al. 2015).

Literature

PM2.5 concentrations can be predicted using various forecast-
ing models. Artificial intelligence (Ventura et al. 2019), chem-
ical transport (Sun et al. 2013), linear regression,
(Vlachogianni et al. 2011), nonlinear regression (Baker and
Foley 2011), and time series (Wang et al. 2012) are some of
the commonly used types of forecasting models. Additionally,
by combining some of these models, researchers have been
able to provide more accurate prediction results (Ausati and
Amanollahi 2016; Zhou et al. 2014). One such example is the
Adaptive Neuro-Fuzzy Inference System (ANFIS), which has
a hybrid algorithm and was proposed by Jang et al. (1997).
Research evidence indicates that as a powerful methodANFIS
can be used for modeling dust storm occurrences
(Kaboodvandpour et al. 2015), air quality forecasting
(Ghasemi and Amanollahi 2019), predicting ambient CO con-
centration (Jian et al. 2010), and predicting PM2.5 based on
GTWR model and remotely sensed data (Mirzaei and
Amanollahi 2019). Ghasemi and Amanollahi (2019) showed
that integrated forward selected method and ANFIS model
increased the accuracy of air quality forecasting. Mirzaei and
Amanollahi (2019) compared the artificial neural network
(ANN), linear regression, general regression neural network
(GRNN), and ANFIS models to improve the correlation coef-
ficient between output (PM2.5) of GTWR model and ground
measurement PM2.5 concentration. They concluded that
ANFIS model had a better performance than other models.
In a study aimed at predicting PM2.5 concentration 1-day-
ahead, a hybrid ensemble empirical mode decomposition
(EEMD) and GRNN were util ized by Ausati and
Amanollahi (2016). They compared the prediction accuracy
of the results obtained by a principal component regression
(PCR) model, an ANFIS, and a hybrid EEMD-GRNN model
with a multiple linear regression (MLR) by using the values of
mean absolute error (MAE) and root mean square error
(RMSE) obtained from each model. Their results indicated
that the hybrid EEMD-GRNN model exhibited the highest
accuracy in predicting PM2.5 in Sanandaj, Iran. Using
EEMD-GRNN model, Zhou et al. (2014) predicted the 1-
day-ahead PM2.5 pollution in Xian, China. Zhu et al. (2018)
proposed EEMD and endpoint condition mirror method to
predict the time series of air quality index in Hefei, the hybrid
forecasting model. ANN and hybrid models, such as EEMD-
GRNN and ANFIS, appear to be capable of predicting PM2.5

more accurately. Therefore, the objective of the current study
was the comparison of PM2.5 prediction accuracy of a linear
model, such as MLR, and nonlinear models, such as EEMD-
GRNN, ANFIS, and ANN in Tehran.

Material and methods

Study area

The location of this study is a metropolitan area, called
Tehran. This city is surrounded by the high Alborz
Mountain range to its north and east, and to the south, it meets
the Kavir Desert (Fig. S-1). The wind directions in Tehran are
greatly affected by these topographical features; during the
day, prevailing southwesterly winds blow from the desert to-
ward the mountains while during the night, heading from the
mountains toward the plains are the prevailing northwesterly-
westerly winds which dominate especially the western half of
Tehran. The Department of Environment in Tehran provided
the data including PM2.5, PM10, SO2, NO2, CO, and O3. The
Bureau of Meteorology of Tehran provided the following me-
teorological data related to the year 2016: the average atmo-
spheric pressure (AP), average maximum temperature (Max
T), average minimum temperature (Min T), daily relative hu-
midity level of the air (RH), daily total precipitation (TP), and
daily wind speed (WS). These data were classified into two
separate datasets which included 335 datasets for simulation
purposes and 30 datasets for the purpose of testing the models.

Multiple linear regression model

Statistical Package for Social Sciences (SPSS, version 16) was
used for analyzing the data. Multiple linear regression was
used for determining the significance of correlations between
independent variables and a dependent variable. The MLR
model is presented as follows (Eq. 1):

Y ¼ B0 ¼ B1X1 ¼ B2X2þ…þ BkXk þ ε ð1Þ

In this equation, the dependent variable is signified by Y;
the independent variables are signified by X1, X2, …Xk and
the error term by ε. An important assumption of multiple
linear regression is that the independent variables should have
linear relationships. In MLR, the method which is used for
testing linearity is called the variance inflation factors (VIF)
(Table 1). VIF values greater than 10 indicate that the assump-
tion of linearity is met.

According to Table 1, some of the variables (AP,Min T,…)
had VIF values more than 5, indicating the existence of
multicollinearity among these variables. Stepwise regression
was used in order to overcome this problem, by determining
the most effective set of independent variables that would
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predict the dependent variable. Table 2 shows the results of
stepwise regression analysis.

Based on the results of Table 2, after stepwise method was
run, none of the VIF values was larger than 10 for any of the
independent variables.

Adaptive Neuro-Fuzzy Inference System model

ANFIS model has a hybrid algorithm. Its learning algo-
rithm was initially created by Jang et al. (1997) who ap-
plied the least squares method and gradient descent. Based
on a feed forward network, ANFIS is capable of optimiz-
ing parameters of a fuzzy system in order to achieve accu-
rate results. ANFIS model consists of two components
which are called primary and inference parts. These two
are connected with fuzzy rules by a network. The fuzzy
inference system (FIS) of this structure, which develops

in an adaptable network, is composed of directly connected
nodes (Matlab 2018). The output of ANFIS is dependent
on its input parameters. The input data of ANFIS are nor-
malized for minimizing the error rate by the learning algo-
rithm. FIS framework, on the other hand, has three major
parts, which include (i) a fuzzy rule (if-then), (ii) a data-
base (its membership functions defined according to the
fuzzy rule), and arguments mechanism that follows the IF
and THEN theory (Matlab 2018). For example, if X and Y
are the two inputs of an FIS framework and if Z is its
output which follows a fuzzy if-then rule, then:

Rule 1. if X is A1 and Y is B1 then f1 = p1x + q1y + r1.
Rule 2. if X is A2 and Y is B2 then f1 = p2x + q2y + r2.

In these rules, f(x, y) is a polynomial, and the name of the
created model is Sugeno Fuzzy (Guneri et al. 2011). ANFIS

Table 1 VIF values for the
independent variables Model Unstandardized

coefficients
Standardized
coefficients

t Sig. Collinearity Statistics

B Std.
error

Beta Tolerance VIF

1 (Constant) − 367.2 222.2 − 1.652 0.100

SO2 0.145 0.101 0.070 1.443 0.150 0.868 1.1520

NO2 − 0.057 0.047 − 0.074 − 1.205 0.229 0.545 1.8360

CO − 0.394 0.646 − 0.035 − 0.610 0.542 0.635 1.5760

PM10 0.115 0.025 0.241 4.691 0.000 0.786 1.2720

PM2.5 P 0.337 0.048 0.352 6.968 0.000 0.812 1.2310

O3 − 0.154 0.075 − 0.125 − 2.057 0.041 0.564 1.7740

Min T 0.156 0.406 0.090 0.383 0.702 0.038 26.503

Max T 0.116 0.380 0.080 0.305 0.760 0.030 33.085

AP 0.111 0.039 0.204 4.212 0.021 0.435 1.5120

RH 0.203 0.086 0.234 2.345 0.020 0.208 4.7990

PR − 0.269 0.413 − 0.037 − 0.652 0.515 0.651 1.5360

WS − 0.996 0.399 − 0.118 − 2.498 0.013 0.921 1.0860

Table 2 VIF values after
stepwise regression Model Unstandardized

coefficients
Standardized coefficients t Sig. Collinearity

statistics

B Std. error Beta Tolerance VIF

(Constant) 8.263 2.737 3.020 0.003

PM2.5 P 0.361 0.047 0.376 7.641 0.000 0.862 1.159

RH 0.203 0.043 0.234 4.766 0.000 0.868 1.153

PM10 0.110 0.023 0.231 4.873 0.000 0.930 1.075

WS − 1.210 0.386 − 0.144 − 3.136 0.002 0.993 1.007

O3 − 0.127 0.059 − 0.103 − 2.141 0.033 0.910 1.099

AP 0.610 0.066 0.286 5.562 0.000 0.811 1.331
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model has a five-layer network (Wei et al. 2007). Its first layer
is connected to a fuzzy model (Fig. S-2) which follows Eq. 2:

O1
i ¼ μAi xð Þ ð2Þ

in which i and Ai constitute the linguistic variables, x indi-

cates the input node, and O1
i stands for the membership func-

tion of Ai. The function of the second layer of the model is the
implementation of “AND” (Fig. S-2). The second layer con-
sists of ring layers which are multiplied by the input layers
while the output is obtained by Eq. 3:

wi ¼ μAi xð Þ � μBi yð Þ; i ¼ 1:2 ð3Þ

Normalization is the function of the third layer (Fig. S-2),
in which the mean score of the ist created rule is calculated for
each node using Eq. 4:

wi ¼ wi

w1 þ w2
; i ¼ 1:2 ð4Þ

In the fourth layer, the fuzzy rules are used (Fig. S-2) in
which every node of i is a square node consisting of a mem-
bership function (Eq. 5):

O4
i ¼ wi f i ¼
wi pixþ qiyþ rð Þi ð5Þ

where wi shows the third layer’s output, while pi, qi, and ri
indicate the final parameters. The fifth layer involves the
defuzzification process whereby all input signals are added to
compute a single node of total output (Fig. S-2). Equation 6 is
employed in this process for transforming the output of every
fuzzy rule to the defuzzification output (Guneri et al. 2011):

O5
i ¼ ∑

i
wi f i ¼

∑iwi f i
∑iwi

ð6Þ

Empirical mode decomposition and general
regression neural network model

EEMD-GRNN is composed of twomodels, called EEMD and
GRNN. First, EEMD is employed for decomposing the orig-
inal time series into a certain set of IMFs. The residual rn is
assumed to be IMF. The next step involves using the GRNN
model to predict each decomposed set of the IMFs, which was
defined in Step 1. The value of the corresponding IMF series
is forecast for the next day by using the GRNN model. As a
final step, in order to obtain the final forecast, the output of the
previous step is aggregated.

Ensemble empirical mode decomposition

As an adaptive method used for analyzing non-stationary
and nonlinear signals, empirical mode decomposition
(EMD) was initially proposed by Huang et al. (1998).
EMD can be applied for decomposing a signal into sev-
eral IMFs. The signal must meet two conditions before it
can turn into an IMF mode: (i) the mean scores of the
lower and upper envelopes should be ubiquitously zero,
and (ii) the number of zero crossings and the number of
extreme cases should be equal or not greater than one. A
major drawback of EMD is the presence of almost iden-
tical oscillations in diverse modes or presence of oscilla-
tions of very dissimilar amplitudes in a mode, also known
as “mode mixing” (Huang et al. 1998). Ensemble empir-
ical mode decomposition (EEMD) was a possible solution
offered by Wu and Huang (2009). As an updated version
of the EMD, EEMD has a noise-assisted system. The
mode mixing problem can be solved with the support of
this white noise (Wu and Huang 2009).

In order to determine the EEMD algorithm of a signal x(t),
the following steps are taken. First, the amplitude of the added
white noise and the ensemble number M are initialized. The
mth trial is the second step that is conducted to produce the
noise-added data xm(t) by adding random white noise wm(t)
into x(t) (Eq. 7).

xm tð Þ ¼ x tð Þ þ wm tð Þ ð7Þ

The objective of the third step is to identify all the local
minima and maxima of xm(t) and using the cubic spline func-
tions to obtain the lower and upper envelopes. The fourth step
involves the computation of the mean m1(t) of the lower and
upper envelopes and the calculation of the difference h1t be-
tween the mean and the signal (Eq. 8).

h1t ¼ xm tð Þ−m1 tð Þ ð8Þ

In step five, Eq. 9 is used to define r1(t) providing that h1
meets the conditions of IMF, and that h1(t) constitutes the first
IMF component from the signal (h1(t) = c1(t)):

r1 tð Þ ¼ xm tð Þ−c1 tð Þ ð9Þ

Steps 3 to 5 should be repeated if these conditions are not
met.

To identify the residue r1(t) as a new signal and to sift out
other IMFs until the stopping criteria are satisfied, steps 3 to 5
are repeated n times. If the residue rn(t) or the IMF component
(cn(t)) is smaller than the predetermined value, the stopping
criterion has occurred. The original signal can be shown as the
total of all IMFs plus the residue after sifting (Eq. 10):

xm tð Þ ¼ ∑n
i¼1ci tð Þ þ rn tð Þ ð10Þ
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in which n stands for the number of IMFs, ci(t)for the ith IMF
and rn(t) for the final residue.

Next, m = m + 1 is set if m <M and steps 2 to 5 above
are repeated until m =M, but each time indicating a dif-
ferent white noise. As a final point, for every IMF, we
calculate the ensemble mean ci of the M trials (Lu and
Shao 2012).

General regression neural network

By analyzing its past input and output data, GRNN can
estimate any function. GRNN is the fastest in training and
modeling nonlinear functions in comparison with all the
other models. An additional distinctive feature of GRNN
is its smoothing factor that enables this model to estimate
the optimum value in the process of numerous perfor-
mances in relation to the mean square error (Leung et al.
2000). GRNN consists of four layers. The first layer is the
input layer, in which the data are keyed into the model. In
a GRNN, the quantity of input neurons equals that of the
variables in the input vector. The next layer is referred to
as the pattern layer, the neurons of which can memorize
the correlation between the proper response of the pattern
layer and the input neurons. The quantity of the neurons
in this layer equals that of the training cases. The follow-
ing equation helps determine the Gaussian function of the
pattern Pi:

Pi ¼ exp
X−Xið ÞT X−Xið Þ

2σ2

 !
ð11Þ

In the equation above i = 1, 2,⋯, n, σ signifies the smooth-
ing parameter (also known as a spread parameter); X shows
the independent variable; and Xi signifies a training sample
for the ith neuron of the second layer.

The third layer is known as the summation layer to which
the output of the second layer is imported. In this layer, two
total values, referred to as Ss and Sw, are computed. The
summation of the pattern outputs is calculated with the help
of Eq. 12 below:

SS ¼ ∑
n

i¼1
Pi ð12Þ

Equation 13 is used for determining the weighted sum of
the pattern outputs:

SW ¼ ∑
n

i¼1
WIPi ð13Þ

In this equation,WI stands for the weight of the i
th neuron in

the pattern layer which is linked to the third layer. The final
layer is the output layer to which the results of the third layer

are sent. Equation 14 is used for determining the output that is
signified by y:

y ¼ SW=SS ð14Þ

Artificial neural network model

Artificial neural network (ANN) was initially proposed by
McCulloch and Pitts (1943), who were inspired by neural net-
work systems and the brain of living organisms. ANN is known
as a simulating method. It is commonly employed for
predicting the various methods that could replace linear regres-
sion, multivariate regression, and trigonometric functions
among other statistical methods (Guneri et al. 2011). Detailed
descriptions of ANN are available in the literature (for example,
Nørgaard et al. 2000). Among other types of ANN, the most
commonly used type is the multi-layer perceptron (MLP). MLP
is composed of three distinct layers: (i) its input layer in which
the data are distributed over the network; (ii) its hidden layer in
which the data are processed; and finally (iii) the output layer
where the results for certain inputs are extracted (Fig. S-3).
Sometimes, there can be more than one hidden layers and a
main parameter of the network may be set by the number of
its units. In this study, Matlab, 2018 was used for running
ANFIS, EEMD-GRNN, and ANN models.

Evaluation of models

R2 is a statistical parameter commonly used to determine the
validity of the model’s output. The value of R2 which ranges
between 0 and 1 is used as an index for determining the preci-
sion of the regression line. The closer the value of R2 is to one,
the better compliance is estimated for the predicted and ob-
served data. Nevertheless, according to Legates and McCabe
(1999), R2 should be used cautiously as its value can be affected
by the Perth data. Therefore, it should be employed alongside
other parameters such as mean absolute error and root mean
square error (RMSE) in order to determine the validity of the
output (Noori et al. 2010). In order to calculate the root mean
square error and mean absolute error, Eqs. 15 and 16 are used
(Alimissis et al. 2018; Ding et al. 2016; Tzanis et al. 2019;
Willmott and Matsuura 2005), respectively.

RMSE ¼
ffiffiffi
1

n

r
∑n

i¼1 Ydp−Yda
� �2 ð15Þ

MAE ¼ 1

n
∑n

i¼1 Ydp−Yda
�� �� ð16Þ

where Yda denotes the real value, Ydp signifies the predicted
value, and n shows the sample size.
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Results and discussion

Prediction of PM2.5 concentrations in Tehran via
multiple linear regression model training and testing

In the current study, MLR was the first model which was
used for predicting the PM2.5 concentration. MLR is used
for determining the variables which have statistically sig-
nificant effects on the dependent variable. Many previous
studies have frequently applied this method (Golchoubian
et al. 2012; Pouretedal et al. 2018). Among commonly
used methods in the MLR model is the stepwise method.
The predicting variables that remained in the model in the
current study were O3, PM2.5 on the previous day, PM10,
RH, and WS. This means that the concentration of PM2.5

of Tehran is affected by the concentrations of these vari-
ables. According to MLR results (Eq. 17), the variables
O3, PM2.5 on the previous day, PM10, RH, AP, and WS
had positive associations with PM2.5 concentrations in
Tehran. Figure 1 illustrates the training results of multiple
linear regression model for prediction of PM2.5 suspended
particle concentration in Tehran and what follows is the
obtained equation (Eq. 17):

PM 2:5F ¼ 8:263þ 0:203RH þ 0:11PM 10

þ 0:361PM 2:5P þ 0:127O3 þ 1:21WS

þ 0:61AP ð17Þ

In this equation, PM2.5F is the predicted concentration of
PM2.5 while PM2.5P is the PM2.5 concentration on the previous
day. The equation that follows is formulated according to the
results of this section: R2 = 0.38, RMSE = 11.8095, and
MAE = 8.8234 (Fig. 1).

The MLR testing phase results (R2 = 0.44 RMSE = 7.6402
and MAE = 5.9961) are presented in Fig. 2

Numerous assumptions have to be met before applying
MLR. Considering all these assumptions makes running
MLR a challenge. Therefore, this method seems to be less
efficient and less practical than nonlinear models

Prediction of PM2.5 concentrations in Tehran via
artificial neural network (multiple linear regression)
model training and testing

Based on the results, as compared with the other methods,
MLP model was ranked second for its accuracy for estimation
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of the PM2.5 concentrations in Tehran. As a nonlinear model,
the advantage of MLP is its high tolerance for the small num-
ber of errors in the related data. Several studies (for example,
Mashaly and Alazba 2016; Messikh et al . 2017;
Thorkashvand et al. 2017) provide evidence for the superiority
of MLP model over other models. The training results of the
MLP model to forecast PM2.5 concentrations in Tehran are
shown in Fig. 3. In comparison with MLR results, the simu-
lated accuracy of MLP turned out to be higher in terms of R2,
RMSE, and MAE between the simulated and observed data at
0.67,7.8849, and 6.4209, respectively.

The results of the MLP model, which was used to
predict PM2.5 concentrations in Tehran, are illustrated in
Fig. 4.

In comparison with the MLR results, the consistency was
higher for the predicted and observed data of MLP model
(Fig. 4). Moreover, as compared with the MLR data, RMSE
and MAE in MLP model were lower (RMSE = 6.2522 and
MAE = 4.4781) while R2 in MLP model (R2 = 0.51) was
higher than those of MLR.

EEMD results—predicting PM2.5 suspended particle
concentrations for Tehran using general regression
neural network model training and testing

The first step in the EEMD-GRNN is breaking down the
original signal (PM2.5), and then, using the GRNN model
to predict each component. In EEMD model, ranges of
white noise and the number of tests are respectively 0.2
and 100 for analyzing PM2.5 signal (Lu and Shao 2012).
PM2.5 signal consists of seven intrinsic mode functions
and a residual. The residual is regarded as an intrinsic
mode function (Fig. 5).

As ANFIS model inputs, GRNN model inputs are
MLR model outputs. That is to say, for the purpose of
training, the independent variables are used by the model.
These variables influence the PM2.5 concentrations, as the
dependent variable. For estimating the output with vary-
ing smoothing factors, network training was conducted.
The factor value always ranges from 0 to 1 (Gheyas and
Smith 2009). Gheyas and Smith (2009) showed that
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GRNN model has superiority over MLP in forecasting
univariate time series and suggested that GRNN perfor-
mance is not very sensitive to smoothing factor. As the
smoothing factor increases, the correlation coefficient val-
ue gradually decreases in data training, and yet this value
slowly rises for test data. Figure 6 indicates the training
results of the EEMD-GRNN model that was used to pre-
dict concentrations of PM2.5 suspended particles in
Tehran. Here is a summary of the results presented in this
section: R2 = 0.98, RMSE = 1.8622, and MAE = 1.1639.

Figure 7 shows the results of suspended particle concentra-
tions of PM2.5 tests in Tehran using the EEMD- GRNN mod-
el. A summary of the results reported in this section may be
presented thus: R2 = 0.76 RMSE = 4.2655 and MAE =
3.7427.

Predicting PM2.5 suspended particle concentrations
for Tehran using Adaptive Neuro-Fuzzy Inference
System model training and testing

As compared with MLR and MLP, ANFIS model performed
better. The model, which functions based on Takagy-Sugeno,
consists of five input and one output parameters. ANFIS follows
five phase rules. Each of these rules will be influenced by input
parameters; that is, any changes in the input value will result in a
change in the respective output value. One of the major limita-
tions of the models which do not follow Fuzzy logic-based
methods is that they are sensitive to errors in the data. MLR
model output comprises the inputs of ANFIS model. That is to
say, in order to train, ANFIS uses the predicting (independent)
variables that affect the concentrations of predicted (dependent)
variable (PM2.5). The testing phase results of fuzzy inference
system according to neural network are illustrated in Fig. 8.
The results reported in this section may be summarized thus:
R2 = 0.99,RMSE= 0.4794, and MAE= 0.1305.

The testing phase results of ANFIS model are presented in
Fig. 9. These results could be summarized thus: R2 =
0.82,RMSE = 3.2979, and MAE = 2.1668.

Based on the results of ANFIS (Figs. 8 and 9) that was used
to predict the suspended particle concentrations of PM2.5 in
Tehran, it was found that the value was higher than the values
ofMLR andMLPmodels. These results are in agreement with
the findings reported by Shahbazi et al. (2013), Amirkhani
et al. (2015), Kaboodvandpour et al. (2015), and
Zendehboudi et al. (2017). As the results indicated, however,
the suspended particle concentrations of PM2.5 in Tehran as
predicted by ANFIS were close to those of EEMD-GRNN
model. As it appears and Table 3 shows, the linear model
could not deliver a model to take the fluctuations of time series
of the PM2.5 concentrations into account since these fluctua-
tions were high. It seems that nonlinear models such as
ANFIS and EEMD-GRNN can be considered very practical
replacements for linear models since they are able to test the
nonlinear associations between the inputs and outputs. As the
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Table 3 Models error
MLR MLP EEMD-GRNN ANFIS

Error Train Test Train Test Train Test Train Test

RMSE 11.8095 7.6402 7.8849 6.2522 1.8622 4.2655 0.4794 3.2979

MAE 8.82340 5.9961 6.4209 4.4781 1.1639 3.7427 0.1305 2.1668
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results illustrated, among the models, in the training phases,
the lowest R2 was reported for MLR at 0.38 while the highest
R2 value was obtained by ANFIS at 0.99. Likewise, in the
testing phases, MLR model acquired the lowest R2 value
(0.44) while the highest R2 value (0.82) was obtained for
ANFIS model. In terms of model accuracy, as compared with
the other models, ANFIS and EEMD-GRNN models exhibit-
ed the best results in predicting PM2.5 in Tehran with the
lowest RMSE and MAE values and the highest R2 values in
training and testing phases

Conclusion

Public health can be affected by the prediction accuracy of
PM2.5 concentrations. This study compared the accuracy of
linear model (MLR), nonlinear models (MLP) and hybrid
models (EEMD-GRNN and ANFIS) in predicting PM2.5 con-
centrations in Tehran. As it could be concluded based on the
overall results, in comparison with the linear and nonlinear
models, the hybrid of nonlinear models exhibited higher accu-
racy in prediction of PM2.5 concentrations. However, the com-
parison of the results emphasizes that the ANFIS model obtain-
ed the highest accuracy for training (R2 = 0.99, RMSE =
0.4794, and MAE = 0.1305) and testing phases (R2 = 0.82,
RMSE = 3.2979, andMAE= 2.1668) to predict the PM2.5 con-
centrations but the results of hybrid models used in this study
were close to each other. To generate the ANFIS model, the
grid partition FIS (pimf) was applied. The best model generated
by ANFIS consisted of three input MFs and nine fuzzy rules.
To conclude, the best model, which was obtained for predicting
PM2.5 concentrations in Tehran was created by ANFIS with
pimf-type input and three input MFs.
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