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Abstract
Benzene, toluene, ethylbenzene and xylene isomers (BTEX) are volatile organic air pollutants of concern which arise from
natural and anthropogenic sources. This study aims to determine and evaluate the BTEX levels in ambient air in selected areas of
Malaysia, namely: Kuala Lumpur (KL-urban), Penang (PG-urban), Bangi (BG-suburban), Langkawi (LGK-suburban) and the
DanumValley (DV-rural). Active sampling with sorbent tubes was applied in this study and samples were analysed using thermal
desorption (TD) coupled with gas chromatography-mass spectrometry (GC-MS). The results show that the urban area of KL had
the highestΣBTEX (40.36 ± 6.99 μg/m3) followed by PG (30.82 ± 8.06μg/m3).ΣBTEX concentrations in the suburban areas of
LGK and BG were measured as 20.22 ± 11.42 μg/m3 and 12.36 ± 2.26 μg/m3, respectively. The rural area of DV had the lowest
concentration of ΣBTEX (5.55 ± 2.54 μg/m3). The average toluene to benzene (T:B) ratio at KL, PG and LG were found to be
within the range of 2.00–5.00 thus indicating vehicle emissions as the main source. The benzene level at both KL (7.43 μg/m3)
and PG (5.12 μg/m3) were found to be slightly higher than the annual benchmark of 5μg/m3 as suggested by the EuropeanUnion
(EU). The results of health risk assessments found that the cancer risk (CR) based on benzene concentrations in urban, suburban
and rural areas was > 10−6 thus indicating a link between human cancer risks and ambient benzene exposure.
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Introduction

A class of volatile organic compounds (VOCs), namely ben-
zene, toluene, ethylbenzene and xylene (BTEX) isomers are

well-known toxic air pollutants. Recently, there has been in-
creasing concern over BTEX levels, particularly in urban and
industrial areas due to the adverse effects of these compounds
on human health (Cerón-Bretón et al. 2014; Marć et al. 2014;
Miri et al. 2016; Dehghani et al. 2018). BTEX compounds can
cause adverse health effects on the respiratory and nervous
system, even at low concentrations (Amini et al. 2017;
Heibati et al. 2018). The World Health Organization (WHO
1996) and the International Agency for Research on Cancer
(IARC 2012) have classified benzene as the most toxic of the
BTEX compounds and one which is highly carcinogenic to
humans. Based on the estimation by WHO (1996), lifetime
exposure to benzene concentrations of 1.0 μg/m3 in urban
environments causes six cases of leukaemia per 1 million
inhabitants (Buczynska et al. 2009; Zhang et al. 2012). The
European Union (EU) directive 2000/69/EC sets the permis-
sible limits of benzene in ambient air at an annual average of
5 μg/m3 (European Commission 2000; Walgraeve et al. 2011).

Growing urbanisation, which leads to growth in transpor-
tation as well as industrial activities is largely responsible for
the production and emissions of BTEX in ambient air (Marć
et al. 2016; Jiang et al. 2017; Hajizadeh et al. 2018; Liu et al.
2018). Many researchers suggest that the dominant sources of
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BTEX emissions from urban areas into the atmosphere are the
combustion engine-led movement of motor vehicles, the
evaporation of fuels, automobile service stations, solvent us-
age, industrial emissions, oil refining, and individual domestic
heating systems which use low-quality coal (Okada et al.
2012; Marć et al. 2016; Masih et al. 2016; Dehghani et al.
2018). Interspecies BTEX ratios can be used for the identifi-
cation of BTEX emission sources and the photochemical age
of the air parcel in the area (Tiwari et al. 2010; Kumar et al.
2018). The toluene to benzene (T:B) ratio is commonly used
as an indicator of vehicular emissions (Miri et al. 2016; Jiang
et al. 2017). The worldwide ratio of T:B, however, differs
depending on the type of gasoline formulation used by vehicles
(Cerón-Bretón et al. 2014). Meanwhile, the xylene to benzene
(X:B) and mp-xylene to ethylbenzene (mp-X:EB) ratios can
provide information on the photochemical age of an air mass
within a given area (Alghamdi et al. 2014; Marć et al. 2014).

As reviewed by Han and Naeher (2006), many urban areas
in developing countries are challenged by traffic-related VOC
pollutants including BTEX. There are several related studies
on BTEX, many of which are focused on urban areas of South
East Asian (SEA) countries. Gee and Sollars (1998),
Tunsaringkarn et al. (2014) and Wong et al. (2013) found that
the mean levels of benzene in Bangkok, Thailand; Manila,
Philippines and Singapore were 18.2 μg/m3, 12.6 μg/m3 and
3.46 μg/m3, respectively. While Lan and Binh (2012) deter-
mined the levels of benzene at urban roadsides locations in
many urban SEA areas: Ho Chi Minh City (87 μg/m3), Hanoi
(52 μg/m3), Kuala Lumpur (48 μg/m3) and Singapore (6.9μg/
m3). Their study found that motor vehicle emissions seriously
impacted air quality through the production of BTEX pollution
in urban areas, such as Kuala Lumpur and those in Vietnam.

As there is a lack of detailed studies on BTEX in different
environments in Malaysia, this study aims to determine the
concentrations of BTEX at a variety of Malaysian sites. The
measurements of BTEX will primarily be focused on Kuala
Lumpur’s urban environment with comparisons then made
with other urban and suburban areas and also rural areas to
assess background BTEX concentration levels. The BTEX
ratio will be used to determine potential sources. This study
also aims to evaluate the potential health risks of BTEX ex-
posure based on available data collected.

Material and methods

Sampling sites

Sampling was conducted at five sites, namely: Danum Valley
(DV, n = 9); Kuala Lumpur (KL, n = 7); Bangi (BG, n = 7);
Penang (PG, n = 7) and Langkawi (LGK, n = 8) from 31 July
to 5 August, 1 to 2 and 18 to 19 September, 21 to 24
September, 4 to 7 November and 3 to 6 December 2015,

respectively (Fig. 1, Supplementary 1). KL and PG represent
the urban areas in the middle and northern areas of the
Malaysian Peninsula. The KL sampling site is located near
the Chow Kit Road area which is the most crowded and
traffic-heavy area in KL (Jamhari et al. 2014). The volume
of vehicles on the road in KL in the year 2015 was reported as
being over 4.8 million which is the highest for all Malaysian
states (www.data.gov.my). KL is also known as the most de-
veloped area within Malaysia comprising a mix of commer-
cial areas, hotels, shopping malls and tourist attractions. The
sampling site at PG was located in the George Town area
which is the capital city of Penang state. This area is also
heavily developed, particularly with commercial and residen-
tial areas. Georgetown is the second largest city in Malaysia,
located on Penang Island and connected to the mainland via
the 13.5-km-long Penang Bridge which crosses the Penang
Strait. The sampling site for this location was close to a road
that was especially busy during peak hours. The nearest in-
dustrial areas to this site were in Perai (~ 20 km) and Bayan
Lepas (~ 25 km), both of which are popular with electrical and
engineering manufacturers. The sampling site Bangi (BG)
was located at Universiti Kebangsaan Malaysia (UKM),
Bangi. The BG site was in a well-developed semi-urban town
in Selangor state which predominantly comprises residential
and industrial areas (Wahid et al. 2014). Langkawi (LGK),
another sampling site, represented a suburban study area.
LGK was located in Kedah state, which is in the north of the
Malaysian Peninsula and is well-known in Malaysia for being
a tourist island. The sampling site was located in Kuah Town,
which is the largest town on Langkawi Island. This area has a
high density of commercial areas, such as shopping malls,
hotels and restaurants. The LGK site is congested with traffic,
especially during school holidays (December). In contrast,
DV represents a rural and remote site on the island of
Borneo. The location is assigned as a regional Global
Atmospheric Watch (GAW) station, is surrounded by lowland
tropical forest and has very limited human activity (Sumari
et al. 2010). The classification of urban and suburban areas
was based on population, non-agricultural activities and the
development of the gazetted areas (Hasan and Nair 2014).
Detailed descriptions of the study areas and the meteorologi-
cal conditions (temperature and humidity) for each during the
sampling period are described in Supplementary 1.

Sampling for BTEX

Samples for each location were collected during the daytime
between 10 and 11 a.m. and between 4 and 5 p.m. over a
period of 4 to 5 days. These specific times were selected and
used consistently to represent BTEX concentrations in ambi-
ent air outside peak hours. The sampling times relate to mid-
range level of the solar radiation period. Solar radiation will
affect the abundance of BTEX compounds through
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photochemical reactions. Therefore, consistent sampling time
is important to represent the concentration of BTEX at differ-
ent locations. The active sampling method was performed
using a stainless steel sorbent tube (89 mm length × 6.4 mm
internal diameter) packed with 350 mg multi-sorbent Tenax®
TA/Carbograph 1TD (Markes, UK) absorbent. A low flow
pump (Supelco, PAS, USA) and dual flow pump (Gemini,
UK) were calibrated with an air flow calibrator (Sensidyne,
Go-Cal, USA) to operate at a flow rate of 50–100 mL/min for
60min of sampling and collect approximately 3–6 L of air. All
absorbent tubes were positioned at least 3 m above the ground.
Prepared samples in sorbent tubes were sealed with brass
screw caps combined with PTFE ferrules and then stored at
− 4 °C in a refrigerator. All samples were analysed within
1 week.

Analysis for BTEX

Air samples collected in the Tenax® TA/Carbograph 1TD
tubes were analysed using a combination of thermal desorp-
tion (TD), gas chromatography (GC), and mass spectrometry
(MS). TD was undertaken using a Unity-2 and Ultra-TD

sampler (Markes, UK). The desorbed analytes from the sam-
ples were refocused on an electrically cooled adsorbent trap
(Air Toxic Analyser Trap U-T15ATA-2S, (Markes, UK) to
concentrate the BTEX before further desorption was under-
taken by the GC-MS systems. In the above analysis, the sep-
aration of gases was performed using GC (Agilent 6890N,
USA) and detected via Mass Spectrometry (Agilent 5975C,
USA). A capillary column (DB-624, J&W Scientific, USA)
with a particular specification (30 m length, 0.32 mm i.d, 1.80
μm film thickness) was used for the separation process. The
optimised parameters for TD and GC-MS systems were mod-
ified from the previous studies by Ramírez et al. (2010) and
Ribes et al. (2007) as shown in Supplementary 2.

Quality assurance and quality control

In order to quantify the concentrations of BTEX, multiple
point calibrations of a BTEX standard were prepared using
the mixed 62 compounds (including BTEX) of the 100 ppb
VOC gas standard (SCOTTY, USA) in nitrogen. TD tubes
were reconditioned prior to sampling to remove available
BTEX. The concentrations of BTEX in the blank tube were

Fig. 1 Sampling sites for BTEX determination in urban, suburban and rural area in Malaysia
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also determined to ensure the interference did not affect the
BTEX measurement calculations. Gas standards were then
transferred onto Tenax® TA/Carbograph 1TD tubes at differ-
ent volumes via the calibration sampling loading rig (CSLR).
The flow rate was controlled at 100 mL/min to provide only
the specific volume required. The range of 30–400 ng for
individual BTEX mass was selected for multiple calibration
points. A good correlation, r2 > 0.986, was found for all com-
pounds as is shown in Supplementary 3. The breakthrough
value (BTV) is an important parameter to evaluate the loss
of analyte during sampling. Sorbent tubes were arranged in
parallel series and 100 mL of 100 ppb VOC gas standard was
pumped in with a 100 mL/min flow rate. Both sorbent tubes
were analysed and the mass volume was calculated. The BTV
value was calculated as the percentage of VOC mass found in
the back tube relative to the total mass in both tubes (Ribes
et al. 2007). BTV values for individual BTEX were found to
be < 5%. A certified Reference Standard (Markes, UK) con-
taining 100 ng of benzene, toluene, and xylenes in Tenax®
sorbent tubes were tested to evaluate the method performance.

All sampling tubes were reconditioned for 30 min at
310 °C prior to the sampling task. A blank value for each tube
was recorded for further calculations. Additionally, field
blanks (not exposed to air) were transported to the site during
sampling. The limit of detection (LOD) for BTEX was calcu-
lated based on seven replicates of the blank values. Quality
assurances (QAs) of the sampling process were maintained by
routinely checking the calibrated sampling pump flow rate
and artefacts/carryover blank checks from the sampling tubes.
BTEX quantitation was established by comparing the targeted
integrated BTEX peak areas with the calibration curve. The
mass (ng) of the compounds collected in the sorbent tubes was
converted to concentrations (ppbv) using the formula:

Concentration ppbvð Þ ¼ Mass ngð Þ
Molecular Weight g=molð Þ

�
Molar Volume

mol

L

� �

Volume Lð Þ

The concentration of BTEX (ppbv) was then converted to
micrograms per cubic metres.

Estimation of health risk

Human exposure to BTEX is largely through the inhalation
pathway. Benzene and ethylbenzene are categorised as carci-
nogenic pollutants, while toluene, mp-xylene and o-xylene are
classified as non-carcinogenic but still hazardous to human
health (Masih et al. 2016). The health risk from BTEX expo-
sure in ambient air due to inhalation was estimated based on
cancer risk (CR) and non-cancer risk, as hazard quotient (HQ).

The chronic effects of the compounds were calculated by fol-
lowing the USEPA guidance (USEPA 2009) and applied in
several other studies undertaken by Li et al. (2014); Bari and
Kindzierski (2017). In this study, the estimation of CR andHQ
are shown in the following equations:

Cancer risk CRð Þ ¼ EC� IUR

Non−cancer risk or hazard quotient HQð Þ ¼ EC

RfC� 1000

where EC is the exposure concentration (μg/m3), IUR is the
inhalation unit risk (μg/m3)−1 and RfC is the reference con-
centration (mg/m3).

The IUR and RfC values were derived from the Integrated
Risk Information System (IRIS) database. The toxicity value
(IUR) for benzene, as reported by website USEPA (2015), is
7.8 × 10−6 μg/m3 as a maximum value. Meanwhile, the ethyl-
benzene IUR value, as reported by the Office of Environmental
Health Hazard Assessment (OEHHA), California
Environmental Protection Agency (CalEPA 2007), is 2.5 ×
10−6 μg/m3. The non-cancer risk values for RfCs as given for
benzene, toluene, ethylbenzene and xylene according to
USEPA (2015) were 0.03, 5, 1 and 0.1 mg/m3, respectively.

The EC calculation was based on chronic exposure via
inhalation by adult non-workers for the residential receptor.
ECs can be estimated using the following equation;

EC ¼ CA� ET� EF� EDð Þ=AT

where

EC (μg/m3) the exposure concentration;
CA (μg/m3) the contaminant concentration in

air;
ET (h/day) the exposure time (4 h for non-

workers);
EF (days/year) the exposure frequency

(350 days);
ED (years) the exposure duration (24 years)

for HQ and 70 years for CR
AT (ED in years ×
365 days/year × 24 h/
day)

average time

Results and discussion

Level of BTEXs in ambient air

The concentration levels of BTEX in the ambient air of Kuala
Lumpur (KL), Penang (PG), Langkawi (LGK), Bangi (BG)
and Danum Valley (DV) during the sampling period are
shown in Table 1. The average of the total BTEX levels was
found to be the highest in KL (40.36 ± 6.99 μg/m3) followed
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by PG (30.82 ± 8.06μg/m3), LGK (20.22 ± 11.42μg/m3), BG
(12.36 ± 2.26 μg/m3) and DV (5.55 ± 2.54 μg/m3).
Comparison analyses between sites using analyses of variance
(one-way ANOVA) showed that all BTEX compositions were
significantly different (p < 0.05). Whilst all compounds were
dominant in urban areas, KL experienced the highest individ-
ual compound with benzene (10.73 μg/m3), toluene
(26.46 μg/m3), ethylbenzene (5.43 μg/m3) and o-xylene
(6.04 μg/m3). Meanwhile, the highest mp-xylene level was
detected at PG at 6.12 μg/m3, demonstrating that the PG area
was also exposed to air pollution in the form of industrial
emissions, particularly from the metal, electronic and chemi-
cal industries (Ismail et al. 2017). The lowest BTEX was ob-
served at rural DV with benzene (0.84 μg/m3), toluene
(1.13 μg/m3), ethylbenzene (0.33 μg/m3) and o-xylene
(0.41 μg/m3). The lowest mp-xylene detected was at LGK at
0.20 μg/m3. Figure 2 clearly shows that the BTEX level was
higher in ambient air in urban (KL, PG) > suburban (LGK,
BG) > rural area (DV).

The average benzene concentration in ambient air at KL
(7.43 ± 1.90 μg/m3) and PG (5.12 ± 0.52 μg/m3) exceeded the
yearly average permissible limit of 5 μg/m3 as set by the EU
directive 2000/69/EC for 2010 (European Commission 2000).
Furthermore, Norbäck et al. (2017) observed that the level of
benzene in outdoor urban areas in Johor Baharu, Malaysia

was 5.1 μg/m3. However, the benzene level at KL in this study
was found to be lower than the roadside value (48 μg/m3)
reported by Lan and Binh (2012). These differences present
clear evidence that heavy traffic is a prominent source of ben-
zene. According to Lan and Binh (2012), the high level of
benzene in Malaysia was due to the considerable number of
motorcycles on the roads and their high emissions. Another
reason for such significant benzene levels in urban locations
such as Vietnam and Kuala Lumpur is due to the high benzene
content in the fuel used (Lan and Binh 2012). Conversely, the
average benzene level was lower at BG (3.43 ± 0.56 μg/m3),
LGK (2.43 ± 0.84 μg/m3) and DV (1.84 ± 0.19 μg/m3). In
these locations, it was below the tolerance limit.

The relative abundance for BTEX in urban areas was in the
following order: toluene > benzene > mp-xylene/ethylben-
zene/o-xylene. While in the suburban areas of BG and LGK,
abundance followed the order: toluene > benzene > ethyl ben-
zene > mp-xylene/o-xylene. Similarly, urban and suburban
areas all over Asia were reported by Ho et al. (2004);
Laowagul et al. (2008) and Niu et al. (2012) as showing a
dominance of toluene in relation to the other compounds.
DV demonstrated the lowest BTEX, with the following com-
position: benzene/toluene >mp-xylene > o-xylene > ethylben-
zene. Interestingly, benzene and also toluene were found at
higher levels than the other compounds at DV. This pattern
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Table 1 Daytime BTEX concentrations (μg/m3) at urban, suburban and rural sampling areas

Location DV - (rural) KL - (urban) BG - (suburban) PG - (urban) LGK - (suburban)

VOCs concentration (μg/m3) Mean Range Mean Range Mean Range Mean Range Mean Range

Benzene 1.81 0.84–2.68 7.43 5.93–10.73 3.43 2.78–4.43 5.12 3.68–8.64 2.43 1.47–3.34

Toluene 1.82 1.13–2.84 19.18 14.09–26.46 6.15 5.10–8.44 14.20 5.82–20.24 14.20 7.06–23.33

Ethylbenzene 0.41 0.33–0.49 4.45 3.63–5.43 1.39 1.02–1.88 3.92 2.45–4.61 2.08 1.88–2.37

mp-Xylene 0.82 0.29–2.28 4.49 2.45–5.79 0.94 0.73–1.31 3.88 1.75–6.12 0.53 0.20–0.86

o-Xylene 0.69 0.41–0.82 4.81 2.49–6.04 0.45 0.29–0.73 3.71 1.55–5.95 0.98 0.65–1.43

Total BTEXs 5.55 40.36 12.36 30.82 20.22
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resembled one from studies undertaken by Villanueva et al.
(2014) in a rural national park. It is quite possible that this area
was affected by air from a nearby urban site which had under-
gone the chemical oxidation process and degraded the alkylated
benzene to benzene (Atkinson 1990). The highest average con-
centrations at KL and PG revealed that these cities were heavily
polluted by BTEX. The main source of which was vehicular
emissions. BG ambient air was also polluted by BTEX, which
was likely due to an increasing volume of automobiles used in
BG (Wahid et al. 2014) as well as the industrial sources located
near Bangi and Nilai (Fujii et al. 2016). DV, as a rural area
sampling site, was exposed with to the lowest average of
BTEX, indicating trans-boundary distribution to an otherwise
pristine region. MacKenzie et al. (2011) also reported a lower
BTEX level (< 0.5 ppbv) at DVusing photon transfer reaction–
mass spectrometry (PTR-MS). However, the BTEX levels in
the forested DVarea was found to be higher when compared to
BTEX levels in the Amazon rainforest, as reported by Paralovo
et al. (2016). However, it should be noted that small amounts of
BTEX may arise from biogenic emissions. As such, since DV
is situated in a forest area, some BTEX such as toluene, could
well be emitted by plants (Yu et al. 2008).

The BTEX levels in major cities of South East Asia (SEA)
are tabulated in Table 2. The occurrence of the BTEX com-
pounds in all major cities indicates that the ambient air was
polluted by anthropogenic sources. The average BTEX results
for KL and PG in this study were found to be within the range
detected in other SEA cities. The highest∑BTEX results were
reported in Manila, followed by Hanoi, Bangkok, Ho Chi
Minh City, Kuala Lumpur, Penang and Singapore.
Compared with other SEA cities, the average levels of
BTEX at KL and PG were lower than all the other locations
studied apart from Singapore. Lan and Binh (2012) also found
that roadside benzene levels in Singapore were lower when
compared to other SEA cities. The levels of BTEX at KL and
PG were identical to those in Hanoi, as reported by Phuc and
Kim Oanh (2018). Since SEA cities generally have similar
climatic and meteorological conditions, the variations in
BTEX distribution could be the result of traffic density, indus-
trial activities, fuel composition and combustion, solvent us-
age in industrial processes, the intensity of human activities,
land use patterns and the chemical removal of BTEX from the
atmosphere (Alghamdi et al. 2014). Besides, several local
conditions including wind speed and direction, pressure, tem-
perature, topography, seasonality, location and magnitude of
emission sources have also been shown to influence BTEX in
ambient air (Słomińska et al. 2014).

BTEX correlation and ratio analysis

Table 3 shows the Pearson correlations between BTEX com-
pounds in the study areas. BTEX correlations were evaluated
for each site. The overall data is in normal distribution based Ta
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on probability plots (P-P and Q-Q plots). A significant corre-
lation was found at KL for toluene to other compounds
(p < 0.05). As shown in Table 3, correlations between ben-
zene, ethyl benzene and xylenes were good (r > 0.86). At the
same time, these three molecules did not have good correla-
tions with toluene. Correlations (r values) of benzene, ethyl-
benzene and xylenes with toluene are only 0.15, 0.53 and
0.34, respectively. The low correlation of toluene with other
molecules was possibly due to multiple sources of this com-
pound within the PG areas especially, from point sources such
as industry activities. PG is also known as industrial area, and
besides the emission from vehicles, other sources might be
nearby industries and nearby fuel station. Solvents used in
industries may possibly increase the level of toluene at PG.
A high correlation of BTEX species at KL and PG clearly
showed that these pollutants were likely to have derived from

the same source. Meanwhile, the correlation of BTEX at BG
showed a negative correlation for o-xylene with other com-
pounds. As xylene essentially originates mainly from indus-
trial and motor vehicle sources (ATSDR 2007) this indicates
that the area is unlikely to be influenced by o-xylene. A neg-
ative correlation for benzene with other compounds at LGK
may be due to a mix of potential sources of BTEX at this site,
which is in an area where diesel-engine vessels are frequently
used for tourism. Benzene at DV also showed a significant
correlation (p < 0.05) with the other compounds even though
BTEX predominantly originated from anthropogenic sources.
A lower concentration of BTEX might have been emitted
from the vehicles used by the researchers at the nearby field
centre. The presence of BTEX in the rural DVarea could also
be the result of trans-boundary anthropogenic pollutants as
explained by Ashfold et al. (2015).

The average observed BTEX ratios are shown in Fig. 3.
The toluene to benzene (T:B) ratios for LGK, PG andKLwere
5.01, 2.37 and 2.22, respectively, thus indicating that the study
areas were polluted by vehicular emissions. Results of the T:B
ratios for KL and PG also clearly revealed that vehicular
emissions were the main source. Al Madhoun et al. (2010)
reported that in Penang, the levels of benzene were relative
to traffic volume. As expected, even though LGK is only a
suburban island, tourist activities leading to a high usage of
motor vehicles have led to the area being affected by BTEX.

The T:B ratio for KL (2.22) was similarly reported by Lan
and Binh (2012). According to Niu et al. (2012), The T:B ratio
of 2 indicates vehicular emissions as the main source and a
higher ratio of T:B suggests additional sources. Nevertheless,
many South East Asian (SEA) cities reported a T:B ratio great-
er than 2, for example, Bangkok (8.7) and Manila (13.4), as
noted by (Gee and Sollars 1998). The differences in T:B ratios
within urban areas were mainly due to variations in vehicular
fleets, urban infrastructure, fuel type and climatic influences
(Alghamdi et al. 2014).

The ratios for mp-xylene to benzene (mp-X:B) and o-xylene
to benzene (o-X:B) for all sites were relatively low (< 1) thus
indicating that xylene was actively involved in photochemical
reactions with OH radicals to produce ozone at those locations
(Bauri et al. 2016). It also indicates the age of the air mass
(Tiwari et al. 2010). Interestingly, both xylene to ethylbenzene
(X:EB) and mp-xylene to ethylbenzene (mp-X:EB) ratios at
DV recorded higher values of 3.73 and 2.04, respectively.
The ratios were greater than those in the observed urban sites
of PG (1.94 and 0.99) and KL (2.08 and 1.00). It might be due
to a lower level of ethylbenzene at DV since the ethylbenzene
sources were mainly derived from vehicular emissions. Miri
et al. (2016) also suggested that a ratio of 1.5–4.3 indicated
vehicular emissions as a source. According to the data from
other literature, higher values of the mp-X:EB concentration
ratio (> 3.28) imply a fresh air mass and a fresh emission source
(Miller et al. 2011; Marć et al. 2014).

Table 3 BTEX Pearson correlation matrix (r) in different study areas

B T EB mp-X o-X

KL (n = 7)

B 1.00

T 0.66 1.00

EB 0.76* 0.94*** 1.00

mp-X 0.51 0.90** 0.72* 1.00

o-X 0.82* 0.90** 0.89* 0.72* 1.00

PG (n = 7)

B 1.00

T 0.15 1.00

EB 0.86** 0.53 1.00

mp-X 0.96*** 0.35 0.94*** 1.00

o-X 0.96*** 0.34 0.95*** 0.99*** 1.00

BG (n = 7)

B 1.00

T 0.70 1.00

EB 0.86* 0.89** 1.00

mp-X 0.71 0.98*** 0.94** 1.00

o-X − 0.08 − 0.64 − 0.57 − 0.72 1.00

LGK (n = 8)

B 1.00

T − 0.13 1.00

EB − 0.28 0.96*** 1.00

mp-X − 0.14 0.99*** 0.96*** 1.00

o-X − 0.10 0.94*** 0.98*** 0.95*** 1.00

DV (n = 9)

B 1.00

T 0.73* 1.00

EB 0.76** 0.24 1.00

mp-X 0.75** 0.94*** 0.33 1.00

o-X 0.70* 0.73* 0.63* 0.85** 1.00

Significant at ***P < 0.01; **P < 0.05; *P < 0.10
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Health risk assessment

Cancer risk (CR) and non-cancer risk (HQ) were evaluated for
BTEX in ambient air based on an average of 1 h daytime
sampling within the studied areas. CR > 1 × 10−6 is considered

to be an unacceptable limit and can pose a cancer risk to
humans (USEPA 2009). Meanwhile, the HQ> 1 is considered
to be an unacceptable limit for non-cancer risk. The results for
the health risk estimations are presented in Table 4. The aver-
age benzene level in urban, suburban and rural areas clearly

Table 4 BTEX health risk
estimation for cancer risk (CR)
and hazard quotient (HQ) at
studied areas

Compound Sites Average
concentration

Exposure
concentration

Cancer
risk (CR)

Hazard
quotient (HQ)

(μg/m3) (EC)

Benzene KL 7.43 1.19 9.26E-06 3.96E-02

PG 5.12 0.82 6.38E-06 2.73E-02

BG 3.43 0.55 4.28E-06 1.83E-02

LGK 2.43 0.39 3.03E-06 1.30E-02

DV 1.81 0.29 2.26E-06 9.64E-03

Toluene KL 19.18 3.07 6.13E-04

PG 14.20 2.27 4.54E-04

BG 6.15 0.98 1.97E-04

LGK 14.20 2.27 4.54E-04

DV 1.82 0.29 5.82E-05

Ethylbenzene KL 4.45 0.71 1.78E-06 7.11E-04

PG 3.92 0.63 1.56E-06 6.26E-04

BG 1.39 0.22 5.54E-07 2.22E-04

LGK 2.08 0.33 8.31E-07 3.33E-04

DV 0.41 0.07 1.63E-07 6.52E-05

mp-Xylene KL 4.49 0.72 7.17E-03

PG 3.88 0.62 6.19E-03

BG 0.94 0.15 1.50E-03

LGK 0.53 0.08 8.48E-04

DV 0.82 0.13 1.30E-03

o-Xylene KL 4.81 0.77 7.69E-03

PG 3.71 0.59 5.93E-03

BG 0.45 0.07 7.17E-04

LGK 0.98 0.16 1.56E-03

DV 0.69 0.11 1.11E-03
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Fig. 3 BTEX interspecies ratio in
sampling areas
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indicated a potential cancer risk as the CR value for benzene >
10−6. The highest benzene CR observed was at the urban KL
site (9.26 × 10−6) and the lowest at DV (2.26 × 10−6). In a
previous study, Hamid et al. (2017) estimated the CR from
benzene in outdoor suburban areas of Malaysia at 4.35 × 10−6.
Additionally, the CR for ethylbenzene at urban KL and PG
was calculated as 1.78 × 10−6 and 1.56 × 10−6, respectively.
Meanwhile, the CR for ethylbenzene in suburban and rural
areas was calculated < 10−6. Clearly, the cancer risk in urban
areas due to benzene and ethylbenzene was significantly
higher and exceeded the recommended safe limit. The results
suggested that a cancer risk could potentially occur in any of
the study areas, but more so in the urban ones.

In addition, the HQ for other compounds was found to be <
1, which indicated fewer non-cancer risks within the studied
areas. The HQ values for benzene and xylene for all sampling
locations was found to be higher compared to other com-
pounds, specifically in urban areas, indicating that a non-
cancer risk from benzene and xylene is possible. Based on the
results of the BTEX health risk estimation, both the cancer and
non-cancer risks observed posed a greater and more hazardous
impact on humans in urban > suburban > rural areas.

Conclusion

BTEX compounds were successfully detected at all sites using
a sorbent tube with active sampling, followed by TD-GCMS
analysis. The total observed average BTEXwas in the follow-
ing order for urban KL (40.36 ± 6.99 μg/m3) and urban PG
(30.82 ± 8.06 μg/m3), followed by suburban LGK (20.22 ±
11.42 μg/m3) and BG (12.36 ± 2.26 μg/m3) and lastly, the
local site, DV (5.55 ± 2.54 μg/m3). The results clearly showed
BTEX due to anthropogenic sources following the order ur-
ban > suburban > rural areas. Even though the level of BTEX
in the rural and forest areas of DV was the lowest, a chronic
cancer risk was still viable. Estimation of the health risks
established that urban, suburban and rural areas all had a ben-
zene CR > 10−6 which means there is a potential for benzene
to be harmful to humans. The ethylbenzene CR for urban sites
KL and PG was found to be > 10−6 suggesting a high health
risk due to this compound. The toluene to benzene ratio (T:B)
indicated that the KL, PG and LGK areas were all affected by
vehicular or traffic emissions. Since BTEX levels in urban and
suburban areas were found to be relatively high and the num-
ber of vehicles on the road is ever increasing, there is a real
need for the relevant authorities to implement a control strat-
egy in order to reduce traffic, particularly in urban areas.
Continuous monitoring of BTEX and other hazardous air pol-
lutants in these urban areas is also essential if a better under-
standing of the pollutants and their potential public health
risks are to be discerned. In future work, BTEX profiles with
continuous sampling are suggested during the daytime and

night time for more accurate investigation. The BTEX content
of local gasoline and diesel fuel also needs to be study thor-
oughly for source identification. Detailed studies on the ef-
fects of these parameters need to be conducted on a regular
basis, particularly in locations which are close to roadsides
and/or industrial areas.
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