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Abstract
Fine particulate matter (PM2.5) has been considered one of the most harmful atmospheric pollutants to the health. PM2.5 has as its
main origin vehicular emissions, a characteristic source in megacities. In order to predict pollution episodes in different areas
(rural, industrial, and urban), two models were applied, Holt–Winters (HW) and artificial neural network (ANN), using PM2.5

concentration time series. PM2.5 samples were collected using Hi-Vol samplers during a period of 24 h, every 6 days, from
January 2011 to December 2013, in Rio de Janeiro, Brazil. Meteorological data was also obtained for use in the models. The
PM2.5 dataset was the longest obtained for this megacity and the Holt–Winters (HW)model was used, for the first time, to predict
air quality. The results of the PM2.5 data series showed daily concentrations ranging from 1 to 65 μg m−3. The root mean square
error (RMSE) was calculated for each model for the three sites. The HW model best explained the simulation of PM2.5 in the
industrial area, since it presented the lowest RMSE (5.8 to 14.9μgm−3). The ANNwas the most appropriate model for urban and
rural areas with RMSE between 4.2 to 9.3 μg m−3. Overall, both forecast models proved accurate enough to be considered useful
tools for air quality management and can be applied in other world regions.
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Introduction

Fine particle (PM2.5) concentrations in the air contribute to
harmful health effects (Rodríguez-Cotto et al. 2014). In
November 2019, the Brazilian Environmental Council
(CONAMA 2018) updated air quality standards, including
the standard for PM2.5. This update, however, will be imple-
mented in steps. Initially, the intermediate standard for PM2.5

will be 20 μg m−3 per year and 60 μg m−3 in 24 h. The final
standard will meet the World Health Organization (WHO)

recommendations, i.e., 10 μg m−3 or 25 μg m−3 per day. In
this study, we will compare PM2.5 levels with the guidelines
recommended by the WHO.

Rio de Janeiro state has the oldest air quality monitoring
network in Brazil and one of the oldest in Latin America,
having been in operation since the 1960s (Gioda et al.
2016). However, only in 2010 did the Rio de Janeiro network
start PM2.5 monitoring (Ventura et al. 2017a, b).

Due to the mortality and morbidity caused by PM2.5, air
pollution controls have become urgent (Liu and Peng 2018;
Pope et al. 2018). Making predictions based on time series
prediction techniques is fundamental to the analysis and sup-
port needed for environmental agencies to make decisions
(Relvas and Miranda 2018; Mehdipour et al. 2018).

Statistical models of air quality forecasting have been
sparsely used in South America to predict critical pollution
episodes, hampering the ability to control emissions on crit-
ical days (Perez 2012). There are many statistical models
available to predict air pollutant concentrations, such as prin-
cipal component analysis with multiple linear regression
(PCA-MLR) (e.g., Ul-Saufie et al. 2013), autoregressive in-
tegrated moving average (ARIMA) (e.g., Díaz-Robles et al.
2008), nearest neighbor model (NNM) (e.g., Perez 2012),
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and artificial neural network (ANN) (e.g., Perez and Reyes
2006; Chattopadhyay and Chattopadhyay 2012; Luna et al.
2014). Among these models, artificial neural networks have
proven to be useful and effective to predict PM2.5 concentra-
tions in local scale (Perez et al. 2000; Mckendry 2002;
Ordieres et al. 2005; Thomas and Jacko 2007; Voukantsis
et al. 2011). On the other hand, theHolt–Winters (HW)mod-
el, which is a seasonal time series prediction techniquewide-
ly known and used (Dantas et al. 2017), was never applied to
predict air quality levels. According to Tratar and Strmčnik
(2016), the Holt–Winters model is very simple and robust.
This model has been used to predict sales (Ribeiro et al.
2017), energy demand (Tratar and Strmčnik 2016), food in-
dustry (Veiga et al. 2014), air transportation demand (Dantas
et al. 2017), traffic in cities (Baghyasree et al. 2014), tourism
(Lim et al. 2009), power generation (Muche 2014), and solid
waste generation (Bezerra 2006). This method allows
modeling data through an average, a trend and a seasonal
factor, all of which are updated by an exponential smoothing
(Winters 1960).

This study aims to evaluate two air quality forecasting
models (Holt–Winters [HW] and artificial neural networks
[ANN]) using time series of PM2.5 concentrations from three
different areas (rural, urban, and industrial) in the metropolitan
region of Rio de Janeiro, Brazil. It is the longest time series
data of PM2.5 obtained in Rio de Janeiro and one of the longest
in South America. According to our knowledge, this is the
first study developed in a tropical region of South America
applying ANN and HW models to predict PM2.5 daily
concentrations.

Material and methods

Sampling

The metropolitan region of Rio de Janeiro (MRRJ) has differ-
ent air pollution sources associated with a complex topogra-
phy that inhibits air mass movement and consequently affects
pollutant dispersions (Ventura et al. 2017a, b).

For this study, three sampling sites in MRRJ were selected:
(1) Seropédica (22° 45′ 28.14 S/43° 415.85″W), a region with
rural characteristics; (2) Taquara (22° 56′ 58.34″ S/43° 21′
33.94″W), an urban area with high population concentration,
heavy traffic and some pharmaceutical industries; and (3)
Duque de Caxias (22° 40′ 26.50″ S/43° 17′ 12.99″ W), the
main industrial area inMRRJ, composed bymany petrochem-
ical industries, a power plant, and a refinery, in addition to
heavy traffic.

PM2.5 samples were collected by the Environment Institute
of Rio de Janeiro State (INEA) from January 2011 to
December 2013, including rain days, totaling 180 samples
per site. The samples were collected in glass fiber filters using

Hi-Vol samplers (AGVMP252/Energy, Brazil) with a flow
rate of 1.14m3min−1, simultaneously at all sites, every 6 days,
for 24 h (NBR 13412 method, similar to ASTM-D 4096
method).

Meteorological data

Meteorological data were measured every 15 min by public
agencies (INMETand INEA) from January 2011 to December
2013. Meteorological variables were temperature (T), relative
humidity (RH), wind speed (WS), and atmosphere pressure
(P). Although solar radiation is a good meteorological param-
eter to be used for modeling, it was not monitored at all sites;
therefore, this parameter was not used in the models. Wind
direction was also not used because several studies did not
show significant correlation with PM2.5 (Luna et al. 2014;
Ventura et al. 2017a, b; Mehdipour et al. 2018).

Descriptive statistics for these variables are presented in
Table S1 in Supplementary Material.

Prediction of PM2.5 concentration applying
Holt–Winters model

Holt–Winters is an exponential prediction model used since
the 1960s to predict the linear trend and seasonality of time
series, and it is an extension of exponential smoothing meth-
od. The HW model uses a modified form of exponential
smoothing, and it applies three exponential smoothing formu-
lae. The mean is smoothed to give a local average value for the
series (Eq. 1). The trend is smoothed, and lastly each seasonal
sub-series is smoothed separately to give a seasonal estimate
for each season (Eq. 2). The exponential smoothing formula is
applied to a series with a trend and constant seasonal compo-
nent using the HWadditive or multiplicative methods (Eq. 3).

Lt ¼ α Y t−St−sð Þ þ 1−αð Þ Lt−1 þ bt−1ð Þ ð1Þ
bt ¼ β Lt−Lt−1ð Þ þ 1−βð Þbt−1 ð2Þ
St ¼ γ Y t−Ltð Þ þ 1−γð ÞSt−s ð3Þ

Where α, β, and γ are the smoothing parameters, at is the
smoothed level at time Lt, bt is the change in the trend at time t,
St is the seasonal smoothing parameter at time t, and s is the
number of seasons per year.

An additive model is used when the amplitude of seasonal
variation remains constant, and a multiplicative model is used
when the amplitude of the seasonal variation increases in time
(Winters 1960). The Holt–Winters additive model was used in
this study, and it was calculated as the sum of the level com-
ponents, trend, and seasonality (Eq. 4).

Ftþm ¼ Lt þ bt−mð ÞSt−sþm ð4Þ
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All data values in a series contribute to the calculation of
the prediction model (Winters 1960). To optimize estimative
smoothing parameters (α, β, and γ), the lowest mean squared
error (MSE) was adopted. The seasonality used was four sea-
sons during the year. The training set used was the first 173
observations of PM2.5 time series. On the other hand, the tests
were performed with the last 5 and last 10 observations regis-
tered in the PM2.5 time series to estimate the next 5 or
10 PM2.5 concentrations, respectively.

Prediction of PM2.5 concentrations by applying
artificial neural network

Artificial neural networks were originally developed to mimic
basic biological neural systems, which are composed of neu-
rons. An artificial neuron is a mathematical structure that
seeks to simulate the shape, behavior, and functions of a
biological neuron. An artificial neural network corresponds
to a set of artificial neurons separated in layers (input, hidden,
and output) (Chattopadhyay and Chattopadhyay 2012;
Relvas and Miranda 2018). According to Luna et al. (2014),
this model was successfully used for other authors to predict
air quality levels.

To apply the artificial neural networks, it was necessary to
set the lag number (input variables) and the neuron number in
each hidden layer. Lag numbers were defined by the autocor-
relation function (ACF) selecting the last number of autocor-
relation that exceeds the confidence level of 95% (Fig. S1,
Suppl. Material). To apply the ANN, the validation set was
not used and the training was conducted with 1000 interac-
tions. Applying the descent gradient method by batch, using
as the training, the 173 PM2.5 concentrations initial dataset
without the last 10 observations of each input variable for
the performance of the tests with the next 5 and 10 PM2.5

concentrations predicted. Due to the low number of input
variables, topologies (neurons quantity in the hidden layer)
equal to 1 were used for Taquara and Seropédica and equal
to 2 for Duque de Caxias.

Prediction of PM2.5 concentrations by applying ANN
associated to meteorological parameters

To input in prediction model, the meteorological variables
were transformed in daily means. The lowest MSE was
used as the criterion for the choice of topology (Table S2,
Suppl. Material). The MSE averages for Taquara,
Seropédica, and Duque de Caxias were based on 100 ini-
tializations of the network calculated for the next 10 PM2.5

concentrations predicted, considering the input variables
and different topologies. The results indicated that the ideal
number of the topology is 2 for Taquara and Seropédica
and 4 for Duque de Caxias.

Comparison between the prediction models

After the model is specified, its performance characteristics
should be verified or validated by comparing its forecasts with
historical data using accuracy measures. Root mean square
error (RMSE) results and the prediction of the next 5 and
10 PM2.5 concentrations were adopted to compare the PM2.5

concentrations predicted in MRRJ by Holt–Winters and arti-
ficial neural networks models. Furthermore, to improve the
assessment of the forecasting models, determination coeffi-
cients (R2) were generated from estimated values against the
real values for each model, separated by wet and dry season
and for each sampling year (2011–2013).

All statistical analyses were performed using statistical
computing free R Language (R Development Core Team
2014).

Results and discussion

PM2.5 concentrations

Table 1 shows the maximum, minimum, and annual average
of PM2.5 concentrations from 2011 to 2013, and the number of
times that concentrations exceeded the daily guideline recom-
mended by theWHO (25 μg m−3). In Seropédica, a rural area,
PM2.5 average concentrations were the lowest registered (10–
11 μg m−3). These averages were slightly above the annual
limit recommended by the WHO (10 μg m−3) and only 2
exceedances occurred.

The monitoring data from Duque de Caxias revealed that
from 2011 to 2013, the annual average PM2.5 concentrations
had similar behavior (18–20 μg m−3) in exceeding the WHO
limit, with 9–13 exceeding days. The maximum concentration
in this area was two times higher than in Seropédica in 2013.
These high concentrations are related to the proximity of an
industrial complex and roads with heavy traffic.

Compared to other sites, Taquara presented the highest
concentrations in 2011 (30 μg m−3) and 2012 (23 μg m−3).
In 2011, it registered the highest number of exceedances (35)
of the daily standard—three times higher than others in the
study. However, as a positive fact, the annual average PM2.5

concentrations suffered a 23% reduction from 2011 to 2013.
These results were similar to the ones observed by Godoy
et al. (2009) and Ventura et al. (2017a, b), which also indicated
Taquara as the place with the worst air quality among sites
analyzed in MRRJ.

Comparing the three sites, it can be observed that the an-
nual average of PM2.5 concentrations was higher in Taquara
and lower in Seropédica. These results showed that vehicle
emissions are the main source of fine particles in MRRJ, with
Taquara as most representative of urban areas.
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Predictions of PM2.5 concentration

Holt–Winters model

The Holt–Winters model was applied in the time series of
PM2.5 concentrations monitored from January 2011 to
December 2013 in the rural, urban, and industrial areas
(Fig. 1). The estimations using the HW model explained very
well the central results (median) observed for all sites.
However, when taking into account the seasonality and the
linear trends, this model was not able to explain PM2.5 con-
centration peaks in Seropédica (Fig. 1a). Nonetheless, for data
from Duque de Caxias, the model estimated successfully
(Fig. 1c). The effectiveness of this model for the industrial
region was due to the fact that emissions are continuous, so
seasonality is an extremely important factor in determining the
success of this prediction model.

For a method to be adequate for predictions, estimating the
concentration peaks is extremely important, because peak days
indicate critical episodes of air pollution, demanding that author-
ities take action to control the emission source and minimize
future concentrations. The HWmodel showed itself to be weak
at rendering this kind of estimation in rural and urban areas.

The HWmodel did not predict satisfactorily PM2.5 concen-
trations from urban areas. According to Winters (1960), this
model is not suitable for estimating variables with cyclical
frequencies, which is what occurs in cities, due to the cycle
of vehicle circulation, which can vary during the weekends
and holidays.

Artificial neural network model

The same time series for PM2.5 concentrations applied to the
HW model was used in artificial neural networks (ANN1) in
the industrial, rural, and urban areas (Fig. 2). For urban and rural
areas, ANN1 estimated the PM2.5 concentrations better than the
HW model, as can be seen in Fig. 2a, b, where the values
observed corresponded well to the values estimated. However,
for the industrial area (Fig. 2c), the model was inaccurate.

In industrial areas, PM2.5 concentrations have a more con-
stant profile than in urban areas, due to the fact that emissions
in industrial areas follow a certain linearity while urban areas
have a more cyclical profile due to irregular traffic emissions.

Table 1 Maximum, minimum,
and average PM2.5 concentrations
(μg m−3) and the exceeding
number of the air quality
guidelines from the World Health
Organization (WHO 2006)

Site Year Median Average Maximum Minimum Number of Exceedances

Duque de Caxias 2011 19 20 59 2 13

2012 17 18 46 1 9

2013 17 20 65 3 12

Seropédica 2011 10 11 32 1 2

2012 10 10 28 1 1

2013 8 10 32 1 2

Taquara 2011 28 30 61 5 35

2012 23 23 60 8 12

2013 18 17 46 1 8
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Fig. 1 Forecast PM2.5 concentration using Holt–Winters model in rural
(a), urban (b), and industrial (c) areas
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Besides, any changes in the daily activity of the region, such
as traffic accidents or civil work, can influence the monitored
concentrations.

Artificial neural network with meteorological variables

It is well established that air quality relies strongly on meteo-
rological conditions. Therefore, the effects of different mete-
orological variables are already implied in the structure of the
time series of a determined pollutant, such as PM2.5. Due to
the complexity of the correlation and also because of the pres-
ence of noise, an explicit consideration of variable effects,
such as temperature, wind speed, and relative humidity, can
yield a better prediction of particle concentrations (Perez et al.
2000; Luna et al. 2014). Therefore, the time series of PM2.5

concentrations measured from 2011 to 2013, together with
meteorological data, were evaluated by artificial neural net-
works (ANN2) (Fig. 3).

The artificial neural network model, when associated to
meteorological data, improved at estimating PM2.5 concentra-
tions in urban and rural areas (Fig. 3a, b). An increase in infor-
mation can augment the interpretation of the artificial neural
network model because it facilitates synapse learning. Many
studies (e.g., Ordieres et al. 2005; Thomas and Jacko 2007;
Perez 2012) have already indicated that the adequate choice
of variable access could be the most important step in statistical
modeling, considerably increasing the predictive power of
models when local meteorological variables are added. On
the other hand, this model remained insufficient to explain
the concentrations observed in the industrial area (Fig. 3c).
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Fig. 2 Forecast PM2.5 concentration using artificial neural networks in
rural (a), urban (b), and industrial (c) areas
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Fig. 3 Forecast PM2.5 concentration using artificial neural networks
associated to meteorological variables in rural (a), urban (b), and
industrial (c) area
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Predicted models accuracy

In order to evaluate numerically the accuracy of the models
(HW, ANN1, and ANN2), the root mean square error (RMSE)
was used for the stages of simulation (train) and the estimation
of the next 5 and 10 PM2.5 concentrations (Table 2). For the
three forecasting models, the train RMSE varied from 3.6 to
11.1 μg m−3 and the prediction RMSE ranged from 4.2 to
14.9 μg m−3. The lowest RMSE in the train simulation are
justified, since the more information number to be input for
the model about study variation, the better its response func-
tion will be.

For future concentrations, the estimated RMSE were al-
ways higher for the next 10 PM2.5 concentrations. However,
the difference in the prediction ranged only from 4 to 11% in
relation to the forecast of the next 5 PM2.5 concentrations.

Many researchers found that the meteorological conditions
input into the ANN model improved the results’ precision
(e.g., Thomas and Jacko 2007; Perez et al. 2000). In this study,
a 20–30% reduction was observed in the RMSE when mete-
orological data was added to ANN models. Furthermore,
RMSE results for ANN2 were 37% to 62% smaller than for
the HW model. This was possible because meteorological
variables introduce seasonal information, improving the gen-
eralization. According to Ospina and Zamprogno (2003), the
ANN model reports a better performance during long periods
of time, because it adjusts more quickly to structural changes
through time.

Studies using ANN to preview atmospheric particulate
matter concentrations found RMSE between 4 and
37 μg m−3 (Perez et al. 2000; Mckendry 2002; Ordieres
et al. 2005; Thomas and Jacko 2007; Voukantsis et al.
2011). Therefore, the verified results in these studies were
very similar to the smallest RMSE observed in previous
ones.

Predicted models assessment

In the rural area, the three models evaluated presented a
determination coefficient (R2) above 0.9 (Fig. 4), which
shows that both are good PM2.5 estimators for this type

of zone. When evaluated to determine whether the esti-
mates were influenced by sampling years or season
(Table 3), it was verified that all the models maintained
steady performance.

Artificial neural network models were more appropriate to
estimate PM2.5 concentration in urban areas, with an R

2 higher
than 0.95 (Fig. 5), regardless of sampling years or whether it
was wet or dry season (Table 3). The Holt–Winters model
proved ineffective for the prediction of this pollutant in this
zone, since its R2 did not reach 0.7.

It is possible to verify in Fig. 6 that the model that best
estimated PM2.5 concentrations in the industrial area was the
Holt–Winters (R2 = 0.83). The artificial neural network
models presented a low determination coefficient (R2 < 0.7).
When the prediction by sampling years was evaluated, the R2

was verified at 0.84 ± 0.05. However, it can be seen in Table 3
that the wet season, which is from November to March, hin-
ders the prediction of the HWmodel, since the concentrations
fluctuate more in their values, due to the concentration drops

Table 2 Root mean square error (RMSE) applied to PM2.5 concentra-
tions (μg m−3) using artificial neural networks and Holt–Winters models

Areas Holt–Winters ANN1 ANN2

Train 5 10 Train 5 10 Train 5 10

Rural 5.3 5.8 6.4 5.4 6.3 7.0 3.6 4.2 4.7

Urban 9.2 11.6 12.4 7.4 9.2 9.6 7.2 8.8 9.4

Industrial 11.1 14.2 14.9 10.6 11.4 11.9 7.9 8.7 9.3
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Fig. 4 PM2.5 concentration observed versus estimated to rural area from
HW (a), ANN1 (b), and ANN2 (c)
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on rainy days. This same behavior was also repeated in the
urban area.

It is noteworthy in Table 3 that the addition of daily mete-
orological information did not significantly improve (< 3%)

the artificial neural network model’s (ANN2) performance
when compared to the model without that information
(ANN1) in rural and urban areas, where ANN proved most
useful.
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Fig. 5 PM2.5 concentration observed versus estimated to urban area from
HW (a), ANN1 (b), and ANN2 (c)
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Fig. 6 PM2.5 concentration observed versus estimated to industrial area
from HW (a), ANN1 (b), and ANN2 (c)

Table 3 Coefficient of determination (R2) of PM2.5 concentrations (μg m−3) observed against estimated for each area by year and period

Industrial area Rural area Urban area

Period HW ANN1 ANN2 HW ANN1 ANN2 HW ANN1 ANN2

Wet (November–March) 0.5070 0.3888 0.6009 0.9753 0.9095 0.9129 0.4850 0.9682 0.9890

Dry (April–October) 0.8923 0.3344 0.5651 0.9769 0.9527 0.9574 0.6817 0.9730 0.9902

2011 0.7908 0.4084 0.4409 0.9717 0.9374 0.9523 0.5777 0.9682 0.9916

2012 0.7833 0.3277 0.6032 0.9818 0.9491 0.9495 0.623 0.9741 0.9865

2013 0.8883 0.3849 0.7131 0.9839 0.9537 0.9543 0.3517 0.9519 0.9809

2011–2013 0.8308 0.3755 0.5931 0.9784 0.9471 0.9515 0.6209 0.9717 0.9899
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Conclusion

The use of predictive models, such as Holt–Winters and artifi-
cial neural networks, constitutes powerful tools to help make
decisions about air quality management. The models aid in the
anticipation of air pollution critical episodes, e.g., with regard to
fine particulate matter (PM2.5). These models, when applied
using different observed data in Brazil, reported a good accura-
cy, with RMSE ranging from 4.2 to 14.9 μg m−3. Overall, both
models have enough precision to be considered useful tools in
air pollution management by environmental agencies, allowing
those agencies to warn the population about future adverse
conditions. Moreover, they will help to implant palliative con-
trol actions to avoid critical episodes previously predicted.

The Holt–Winters model, though not previously used for air
quality prediction, proved efficient at forecasting PM2.5 concen-
trations in industrial and rural areas where emissions are rela-
tively constant throughout the year. However, it has been shown
inadequate in areas with seasonal influences, such as wet pe-
riods, due to the fluctuation of concentrations on rainy days.

The artificial neural networks models achieved consistent
predictions of PM2.5 concentrations in urban and rural areas, as
their predictive power is not subject to cyclical influences.
However, the input of meteorological variables into the artifi-
cial neural network model was expected to improve the model-
ing result in estimating PM2.5 concentrations, but this was not
verified since the R2 did not increase by more than 5%.
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