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Abstract
The development of air quality management (AQM) strategies provides opportunities to improve public health and reduce health
inequalities. This study evaluates health and inequality impacts of alternate SO2 control strategies in Detroit, MI, a designated
non-attainment area. Control alternatives include uniform reductions across sources, ranking approaches based on total emissions
and health impacts per ton of pollutant emitted, and optimizations that meet concentration and health goals. Using dispersion
modeling and quantitative health impact assessment (HIA), these strategies are evaluated in terms of ambient concentrations,
health impacts, and the inequality in health risks. The health burden attributable to SO2 emissions in Detroit falls primarily among
children and includes 70 hospitalizations and 6000 asthma-related respiratory symptom days annually, equivalent to 7 disability-
adjusted life years (DALYs). The health burden disproportionately falls on Hispanic/Latino residents, residents with less than a
high school diploma, and foreign-born residents. Control strategies that target smaller facilities near exposed populations provide
the greatest benefit in terms of the overall health burden reductions and the inequality of attributable health risk; conventional
strategies that target the largest emission sources can increase inequality and provide onlymodest health benefits. The assessment
is novel in using spatial analyses that account for urban scale gradients in exposure, demographics, vulnerability, and population
health. We show that quantitative HIA methods can be used to develop AQM strategies that simultaneously meet environmental,
public health, and environmental justice goals, advancing AQM beyond its current compliance-oriented focus.
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Introduction

Background

Air quality management (AQM) is an iterative process that
involves setting standards for air quality, designing and
implementing control strategies to achieve these standards,
and then assessing air quality status and progress towards
these standards (NRC 2004). In the USA, states and the fed-
eral government use the National Ambient Air Quality
Standards (NAAQS), which are intended to be protective of

public health with an adequate margin of safety for sensitive
subpopulations (NRC 2004). Currently, AQM focuses on
compliance with these standards. However, this may not pro-
vide the desired level of public health protection for several
reasons. First, NAAQS compliance is based on concentrations
measured at a limited number of fixed monitoring stations,
which may not reflect the spatial variation in concentrations
and the true exposure of the population (Levy and Hanna
2011; Matte et al. 2013). Second, the NAAQS may fall short
of protecting individuals and groups who are susceptible, that
is, at increased risk of adverse health effects at a particular
concentration due to characteristics that increase their sensi-
tivity, e.g., respiratory disease, as well as vulnerable, that is, at
greater likelihood of higher exposure due to factors that reduce
the ability to avoid or mitigate high exposures, e.g., low so-
cioeconomic status (SES) and residence location (O’Neill
et al. 2012; Sacks et al. 2011). Vulnerability and susceptibility
vary spatially, and subpopulations having both high sensitivity
and high exposure are more likely to experience adverse
health impacts than the general population. Third, it is chal-
lenging or perhaps impossible to select a sufficiently
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protective regulatory standard when no effect threshold (i.e., a
level below which health effects do not occur) has been iden-
tified. Ambient air quality standards are informed by integrat-
ed science assessments (previously called Bcriteria
documents^) and staff papers which summarize and synthe-
size the exposure, toxicological, and epidemiological litera-
ture, but ultimately, the designation of the standard is a policy
decision made by the US EPA Administrator (NRC 2004).
Additional concerns for AQM strategies based on NAAQS
compliance include the single pollutant approach (i.e., the
exclusion of cumulative impacts), delays in attaining compli-
ance (in part due to the need for multiple years of monitoring
data), and the technical, administrative, and legal steps in-
volved in establishing and implementing policies to attain
the NAAQS.

Health impact assessment (HIA) uses a comprehensive ap-
proach to evaluate health impacts that arise from programs,
projects, or policies (Bhatia et al. 2014; Dannenberg 2016).
HIA is becoming an accepted approach for estimating health
impacts of air quality and the benefits of AQM options, and
HIA tools have been developed to facilitate HIA analyses
(Anenberg et al. 2015). HIAs for AQM can incorporate infor-
mation from air quality models, ambient air monitoring, pop-
ulation demographics, environmental epidemiology, and other
sources. In a Bfull^HIA, quantitative assessments estimate the
morbidity and mortality attributable to pollutant exposure (US
EPA 2010a), and complementary qualitative analyses evaluate
the benefits and adverse impacts that are not included in the
quantitative assessment. HIAs have been used to examine
potential impacts from power plants and other emission
sources at regional and national levels (e.g., Buonocore et al.
2014; Fann et al. 2009). Impacts of specific pollution sources
at local or urban levels can be examined given appropriate
input data, e.g., baseline health outcome incidence rates and
exposure estimates (Hubbell et al. 2009).

Inequality metrics quantify the distribution of health im-
pacts or benefits across space (e.g., census blocks) or groups
(e.g., minority populations). These metrics can indicate how
an AQM option affects the outcome distribution (Maguire and
Sheriff 2011), key information for environmental justice anal-
yses that evaluate whether certain groups experience dispro-
portionate adverse effects from environmental hazards (Brulle
and Pellow 2006). Preferred indicators or metrics for environ-
mental justice analyses have been identified (Levy et al.
2006). For example, the Atkinson index (AI), originally de-
veloped as an income inequality parameter, evaluates inequal-
ity across individuals or units (e.g., census blocks). It includes
a subjective Binequality aversion^ parameter, which accounts
for societal attitudes towards inequality, and it can be
decomposed to examine differences between groups, e.g., race
and ethnicity groups (Levy et al. 2006). Larger AI values
indicate greater inequality in the distribution of risk. Another
inequality metric, the concentration index (CI), examines the

distribution of health burdens across population subgroups
ranked by social status (O’Donnell et al. 2008). The CI plots
the cumulative distribution of health risks against the cumula-
tive ranking of census blocks ordered by the selected demo-
graphic or SES variable, and is calculated as the area under the
1:1 line minus the area under the concentration curve.
Negative CI values indicate that less socially advantaged
groups carry disproportionately heavier health burdens. This
metric has been used to evaluate a variety of environmental
hazards, e.g., PM2.5, ozone, traffic density, and proximity to
toxic release sites (Cushing et al. 2015; Sadd et al. 2011; Su
et al. 2009, 2012). Despite their usefulness in quantifying
environmental inequalities, inequality metrics are not routine-
ly used in regulatory or other analyses (Harper et al. 2013).

Determining whether an AQM strategy will attain ambient
standards, minimize health impacts, and reduce inequalities
requires combining health impact metrics with inequality met-
rics and possibly other information. For example, a study ex-
amining power plant emissions in the USA found that control-
ling sources with the largest health impacts per unit emissions
conferred the greatest health benefits and inequality reduc-
tions (Levy et al. 2007). A study investigating controls for
PM2.5 and ozone precursors in Detroit, MI, showed that a
multipollutant approach achieved better health and inequality
benefits compared to single pollutant strategies (Fann et al.
2011; Wesson et al. 2010). These examples combined quanti-
tative health impact and inequality metrics either using large
study areas with coarsely resolved exposure and health data
(Levy et al. 2007) or pollutants with low spatial variability,
e.g., ozone and PM2.5 (Fann et al. 2011; Wesson et al. 2010).
AQM strategies evaluating health impacts and inequalities
have not been applied to pollutants that have significant spa-
tial variability at the intra-urban scale, despite their consider-
able promise to benefit populations and their relevance to
many environmental justice applications.

Objectives

This study investigates emission control strategies aimed at
reducing the burden of disease and health burden inequalities.
Alternative strategies are formulated and evaluated in terms of
ambient concentrations, total health benefits, and the distribu-
tion of health impacts across an urban population.We quantify
the potential trade-offs between emission reductions, health
impacts, and inequality and demonstrate how health burden
and inequality metrics might be used at an urban scale and in a
regulatory context.

Methods

HIA methods are used to estimate the burden of disease at-
tributable to SO2 exposures in southeast Michigan. Two sets
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of emission control strategies are considered. The first reduces
current (ongoing) emissions at major sources in the area, and
thus represents actual or typical exposure to SO2 in the study
area. The second examines alternatives to a proposed state
implementation plan (SIP) that follows EPA guidance, which
starts with the maximum allowable emissions based on
existing and revised permits (US EPA 2005); this analysis
highlights issues related to using the maximum allowable
emissions in SIP development. The study area includes
Detroit and Bdownriver^ cities and includes the portion of
Wayne County designated as non-attainment for the 2010
SO2 ambient air quality standard (MDEQ 2016). The control
strategy options, evaluative metrics, and study area are de-
scribed below. Additional information regarding the HIA
methods and data sources is provided in the Supplemental
Materials.

SO2 emission inventory and estimates of population
exposures

SO2 emission estimates are derived from 2010 to 2014 stack-
level data retrieved from the Michigan Air Emissions
Reporting System (MAERS; MDEQ 2001). For major
sources in the region (i.e., sources emitting more than 100 t
of SO2 per year), emissions are modeled at the stack level; for
other sources, facility-level emissions are used. Eight major
SO2 sources fall within the SO2 non-attainment area (Fig. 1):
three coal-powered electrical generating facilities (DTE
Trenton Channel, DTE River Rouge, Dearborn Industrial
Generation), two large steel facilities (US Steel at Zug Island
and Ecorse, Severstal/AK Steel), two lime and coke facilities
(EES Coke, Carmeuse Lime), and an oil refinery (Marathon).
None of these facilities use add-on control technologies for
SO2 (MDEQ 2016). The analysis also includes 126 other
point source facilities in the area, including the DTE Monroe
power plant. This facility, located approximately 60 km south
of Detroit, is the state’s largest coal-fired power plant
(3300 MW) and recently installed scrubbers to significantly
reduce SO2 emissions. The nine largest sources account for
92% of SO2 point source emissions in southeast Michigan.
Because reported emissions fluctuate annually, we averaged
emissions for the 2010 to 2014 period. In cases, only the more
recent data were used to account for known changes over
time. These represent current or Bbase case^ emissions.

Population-level exposures are estimated using the
Framework for Rapid Emissions Scenario and Health
Impact Estimation (FRESH-EST), a software package that
allows rapid assessment of exposures and health impacts due
to point source emissions for a given areal unit, e.g., census
blocks (Milando et al. 2016). Briefly, ambient SO2 concen-
trations attributable to point source emissions are estimated
at a set of discrete locations (Breceptors^) using a source
receptor or Btransfer coefficient^ matrix developed using

the AERMOD dispersion model (Cimorelli et al. 2005), lo-
cal meteorology, and an adaptive receptor grid (200-m spac-
ing near major sources and 1-km spacing elsewhere). We
interpolate from the receptor grid to a 25-m raster using
inverse-distance weighting and use the average of raster cells
overlapping census block polygons to estimate exposure
concentrations. FRESH-EST includes an optimization mod-
ule to minimize point source emissions to attain specified
receptor concentrations or maximize health benefits, subject
to other constraints.

Census blocks are used as the spatial unit of analysis,
balancing the need for accurate exposure assessment with
the available population and baseline health data (Batterman
et al. 2014). Time-activity patterns that account for working
and living in areas with different pollutant levels are not con-
sidered. Although this may lead to exposure measurement
errors and possible biases in health impact estimates, the epi-
demiological studies underlying the concentration-response
coefficients mostly rely on area monitors and residence loca-
tions to assign exposures.

SO2 emission control alternatives

Strategies to reduce emissions of SO2

Baseline emissions from point sources are used to represent
Bcurrent^ exposures and health impacts attributable to these
sources under current operating conditions; this is the base
case strategy designated BS0.^ Five types of strategies are
considered (Table 1). Each is evaluated at six levels that rep-
resent 15, 30, 45, 60, 75, and 90% reductions in aggregate SO2

emissions from baseline levels. Individual major sources can
reduce emissions by up to 90%, the maximum control attain-
able with add-on technologies, e.g., flue gas desulfurization
(Srivastava and Jozewicz 2001). We focus on reducing emis-
sions at the eight major sources located within the non-
attainment area.

The simplest approaches apply uniform reductions across
all sources (strategy S1) or controls at the largest facilities first
(S2) to meet reduction goals. The Bhealth impact ranking^
strategy (S3) ranks sources by the health impacts per ton of
SO2 emitted, and imposes reductions on the highest ranked
sources first until the emissions target is met (Levy et al.
2007). Strategies S4 and S5 minimize receptor concentrations
and maximize health benefits (i.e., minimizing disability-
adjusted life years (DALYs)), respectively, using the
FRESH-EST optimization module with constraints that limit
emissions at each source (allowing between 10 and 100% of
baseline emissions) and that attain the emission target
(summed across major sources). For all of these strategies,
emissions at DTEMonroe and the 125 minor facilities remain
at baseline.
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SIP base case, control strategy, and optimized alternatives

The SIP strategy proposed by Michigan Department of
Environmental Quality (MDEQ) started with the maximum
allowable SO2 emissions and considered SO2 monitoring da-
ta, dispersion modeling, and Reasonably Achievable Control
Technology (RACT) analyses (MDEQ 2016). It identified
five culpable sources after conducting a hotspot analysis
(DTE River Rouge, DTE Trenton Channel, US Steel, EES
Coke, Carmeuse Lime), and called for emission reductions
at the DTE plants and US Steel, the shutdown of specific

boilers at the DTE plants, and the construction of a taller stack
at Carmeuse Lime; no changes were required at EES Coke
(MDEQ 2016). In the BSIP maximum allowable case^ (strat-
egy S6), we use the existing maximum allowable emissions at
major sources (MDEQ 2016, pp. 15–16) and current emis-
sions at other sources (as described in BSO2 emission inven-
tory and estimates of population exposures^ section). The
BSIP control strategy^ (S7) implements the MDEQ SIP strat-
egy (MDEQ 2016) with other emissions unchanged from S6.

Two additional alternatives that attain the overall SO2 re-
duction specified in the SIP (26,418 t per year) are evaluated.

Fig. 1 Study area, boundaries of the SO2 non-attainment area, and locations of major point sources of SO2

412 Air Qual Atmos Health (2018) 11:409–422



Strategy S8 minimizes the maximum receptor concentration,
and strategy S9 maximizes health benefit. Both allow emis-
sion reductions at only the five culpable sources identified by
MDEQ; stack heights are unchanged. For strategies S7–S9,
the SIP maximum allowable case (S6) serves as the compar-
ison (base case) strategy.

Health impact assessment

Outcomes associated with SO2 exposure include hospitalizations
for respiratory diseases, asthma-related emergency department
visits, and asthma symptom days among children. FRESH-
EST uses health impact functions to estimate the numbers of
these outcomes attributable to SO2, similar to those in other
HIA tools (e.g., US EPA 2015). Only health outcomes for which
a causal relationship with SO2 exposure has been established are
considered, as determined by US EPA (US EPA 2008, 2016a),
which may under-predict the true health burden. We assume a
no-threshold concentration-response (CR) relationship between
SO2 exposures and health effects, consistent with US EPA con-
clusions regarding the lack of evidence of a population-level
exposure threshold (US EPA 2008, 2016a). Health impacts are
calculated using 24-h average SO2 concentrations, which is con-
sistent with the epidemiological studies from which CR coeffi-
cients are drawn. Uncertainty in the health impact estimates,
represented as a 95% confidence interval, is estimated using the
uncertainty around the CR coefficient, which has been shown to

account for substantial portion of the total uncertainty in quanti-
tative health impact estimates (Chart-asa and Gibson 2015).

Evaluative metrics

Control strategies are evaluated using concentration, health im-
pact, and inequality metrics. For the concentration metric, we
use the fourth highest 1-h daily maximum SO2 concentration at
non-fenceline receptors. This is similar but not identical to the
form of the SO2 NAAQS definition, which uses the 3-year
average of the annual fourth highest 1-h daily maximum con-
centrations (US EPA 2010b). Health impacts are reported as the
number of attributable cases and DALYs, which aggregate the
health outcomes into a single summary metric based on time
lost to poor health (Murray 1994). DALYs provide a measure of
the total health burden, including hospitalizations and asthma
exacerbations in older adults and children, respectively, bymore
heavily weighting more severe but less frequent outcomes, e.g.,
hospitalizations, than more frequent but less severe outcomes,
e.g., days with asthma symptoms. Disability weights and dura-
tions for DALYs are drawn from existing studies (CDC 2012;
de Hollander et al. 1999; Murray 1994; Ostro 1987).
Attributable cases are monetized using values (in 2010$ adjust-
ed to a 2020 income level) reported by the US EPA in the most
recent Regulatory Impact Assessment for fine particulate matter
(US EPA 2012).

Table 1 Descriptions of the SO2

reduction strategies ID Name Emphasis Description

S0 Base case Base case of actual emissions based on averaged emissions
reported in MAERS, 2010 to 2014

S1 Uniform percentage Emissions Applies uniform reductions across all major source facilities
to meet tonnage reduction goals

S2 Largest emissions
first

Emissions First ranks facilities by total tons emitted and then applies
controls to largest facilities first

S3 Health impact
ranking

Health Applies controls to facilities that have the largest health
impacts per ton of SO2 emitted first

S4 Receptor
concentration
optimization

Concentrations Optimizes emissions at each facility to minimize receptor
concentrations across the study domain

S5 Health impact
optimization

Health Optimizes emissions at each facility to minimize total health
impacts across the study area

S6 SIP Bmaximum
allowable^ case

Base case of maximum allowable emissions used to develop
the SIP control strategy. Used as comparison case for
S7–S9.

S7 SIP control strategy Emissions Emission reductions specified by the MDEQ SIP for SO2

non-attainment. Includes the elevated stack at Carmeuse
Lime.

S8 SIP receptor
concentration
optimization

Concentrations Optimizes maximum allowable emissions at each facility to
minimize receptor concentrations across the study domain

S9 SIP health impact
optimization

Health Optimizes maximum allowable emissions at each facility to
minimize total health impacts across the study area
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Inequality of the health burden is examined using the AI
and the CI. For the AI, the inequality parameter is set to 0.75
following prior AQM work (Fann et al. 2011). For the CI, the
required spatially resolved demographic and SES data to rank
the vulnerability of census blocks uses seven (block group
level) variables from the 2014 5-year American Community
Survey (Supplemental Fig. 2): percentage of the population
that is non-white, Hispanic or Latino, persons of color, foreign
born, or with less than a high school diploma; median house-
hold income (inflation-adjusted 2014 dollars); and percentage
of households with past year income below the poverty level
(US Census Bureau 2014).

The inequality of the health burden is based on the risk of
SO2-attributable DALYs. The use of attributable (rather than
total) DALYs helps assess whether the SO2 reduction strate-
gies result in Bfair treatment^ of all population subgroups, i.e.,
that each subgroup receives a benefit as a result of AQM
actions (US EPA 2016b). The mean estimate of DALYs gen-
erated by the health impact functions is used to assess health
impact and inequality metrics.

Description of the study area and population

The study area includes much of Detroit andWayne County in
southeast Michigan, including the designated SO2 non-
attainment area (MDEQ 2016) (Fig. 1). A total of 1,136,696
people lives in the study area (US Census Bureau 2014). Air
pollution has been and remains an important environmental
health concern for southeast Michigan residents. Due to its
industrial legacy, Detroit contains many large SO2 sources.
Detroit has experienced substantial outmigration, and

residents remaining may be vulnerable to adverse health ef-
fects of air pollutant exposures. The population is mostly mi-
nority (83% non-Hispanic Black, 7% Latino or Hispanic), and
39% live below the poverty line (US Census Bureau 2015).
Access to health care is an important challenge, e.g., 25% of
Detroit adults report not having seen a doctor at least once in
the last year for cost reasons, a rate significantly higher than
the state average of 15% (MDHHS 2015). Health disparities
are significant, particularly for diseases associated with air
pollution, e.g., rates of asthma hospitalizations and deaths in
Detroit exceed state averages by 3.5 and 2.4 times, respective-
ly (DeGuire et al. 2016).

Results

Exposures and burden of disease

SO2 exposures across the study area vary considerably.
Figure 2a maps annual mean concentrations for the base case
(S0). Levels are highest in southwest Detroit where several
major sources are clustered (Fig. 1). The fourth highest 1-h
daily maximum concentration occurs in this area, but areas to
the north also experience high concentrations (Fig. 2b). (The
fourth highest 1-h daily max concentrations shown are not
necessarily contemporaneous.) Table 2 summarizes the distri-
bution of hourly SO2 concentrations at receptors, daily mean
SO2 concentrations at the census block level, and daily 1-h
maximum SO2 concentrations at the Southwest High School
(SWHS) monitoring site. Comparisons of predicted and ob-
served daily mean SO2 concentrations at SWHS, which

Fig. 2 Annual mean (a) and fourth highest 1-h dailymaximum (b) SO2 concentrations (ppb) for the base case (S0). Based on 5-year average emissions of
SO2, 2012 meteorology, and all point sources. The solid blue line shows the HIA study area; the dashed green line shows the SO2 non-attainment area
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recorded the highest SO2 levels in the area, showed no signif-
icant differences (K-S test, p > 0.05, Supplemental Fig. 3),
suggesting that point source emissions account for SO2 con-
centrations in the area and that the dispersion model replicates
the observed distribution.

The burden of disease from SO2 falls mostly among chil-
dren. For the base case, health impacts include 7 hospitali-
zations for asthma, 95 ED visits for asthma, and over 6000
days with asthma-related respiratory symptoms (i.e.,
exacerbations; Supplemental Table 3). This is equivalent to
7 DALYs and $2.7 million in monetized impacts each year,
most (> 90%) of which is from asthma-related respiratory
symptom days. Asthma exacerbations increase fourfold
using a Detroit-specific CR coefficient (Batterman et al.,
manuscript in preparation), reflecting the potentially higher
vulnerability of Detroit children to SO2 exposures. These
estimates only reflect health impacts from SO2 exposures
and do not include health impacts that would result from
the formation of secondary aerosols (e.g., PM2.5) from
SO2, which may substantially exceed the impacts from SO2

alone (US EPA 2010a).

Health impacts by sources

Table 3 lists SO2 emissions, attributable health impacts as
DALYs per year, and annual health impacts per 100 t of
SO2 emitted by the major sources, information which guides
the emissions and health-oriented ranking strategies (S2 and
S3). (For comparison, the table includes DTE Monroe,
which was excluded from the control strategies as its loca-
tion is outside the non-attainment area.) The 125 minor
sources emit 8% of the SO2 in the inventory and cause
11% of the health burden. Importantly, rankings of major
sources by emissions, DALYs, and health impacts differ,
e.g., the highest ranked source for total emissions (excluding
DTE Monroe) is DTE Trenton Channel; the top source for
DALYs is US Steel, and the top source for DALYs per 100 t
SO2 is Carmeuse Lime. Although SO2 emissions from
Carmeuse Lime, Detroit Industrial Generation, and
Severstal/AK Steel are relatively small (< 800 t per year
each), their proximity to residential neighborhoods and low
stack heights increase SO2 exposure per ton of emissions,
thus increasing the burden attributable to these facilities.

Table 2 Statistics of hourly SO2 concentrations (ppb) at non-fenceline receptors, daily mean SO2 concentrations (ppb) across all census blocks (used in
health impact functions), and daily 1-h maximum concentrations recorded at the SWHS monitor (2011–2015). Concentrations at receptors and blocks
consider emissions from all point sources in the base case

Metric Min. 25th 50th Mean 75th 95th 99th Max.

Hourly at receptors 0 0.1 0.2 1.6 0.9 8.8 19.8 229.8

Daily mean across blocks 0 0.1 0.5 1.2 1.7 4.2 6.5 20.9

Daily 1-h max at SWHS 0 1.7 4.6 12.4 16.0 52.0 71.8 111.6

Table 3 Base case (S0) average
SO2 emissions (2010 to 2014),
attributable health impacts per
year among the total population,
and attributable health impacts
per 100 t of SO2 emitted per year
for 9 major sources and 125
(aggregated) minor sources in the
Detroit area

Average emissions Attributable DALYs Health impacts per 100 t
SO2 emitted per year

Facility Tons per year
(%)

Rank DALYs per
year (%)

Rank DALYs per 100
t per year

Rank

Carmeuse Lime 640 (0.7) 8 0.40 (5.7) 7 0.062 1

Dearborn Industrial
Generation

768 (0.8) 6 0.43 (6.2) 6 0.056 2

Severstal/AK Steel 733 (0.8) 7 0.38 (5.5) 8 0.052 3

Marathon Petroleum 268 (0.3) 9 0.13 (1.8) 9 0.047 4

US Steel Great Lakes Works 2,885 (3.1) 4 1.32 (18.9) 2 0.046 5

EES Coke 2,049 (2.2) 5 0.55 (7.9) 5 0.027 6

DTE River Rouge 10,442 (11.1) 3 0.80 (11.5) 4 0.008 7

DTE Trenton Channel 20,824 (22.2) 2 0.89 (12.7) 3 0.004 8

DTE Monroe 47,409 (50.6) 1 1.33 (19.1) 1 0.003 9

Minor point sources (n= 125) 7,713 (8.2) NR 0.75 (10.7) NR 0.010 NR

All point sources 93,731 (100) NR 6.95 (100) NR 0.007 NR

Total health impact is estimated as DALYs. When several concentration response (CR) coefficients are available
for an outcome, the more nationally representative CR is used

DALYs disability-adjusted life years, NR not ranked
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Comparison of SO2 control strategies

Fourth highest 1-h daily maximum SO2 concentration

The Bpeak^ (fourth highest 1-h daily maximum) SO2 concen-
trations for six control strategies are shown in Table 4. For the
base case (0% reduction), the peak (79.5 ppb) exceeds the
NAAQS concentration (75 ppb). At each SO2 reduction tar-
get, the Blargest emissions first^ (S2) approach gives the
highest peak concentration; the Breceptor-concentration
optimization^ (S4) gives the lowest. With full (90%) reduc-
tions, the peak concentration falls to 56.2 ppb. Despite the
high level of SO2 emission reductions, peak concentrations
do not drop further because emissions from excluded facilities
(DTE Monroe and the minor facilities), which emit nearly
60% of the total SO2 emissions in the area combined, remain
unchanged from baseline.

Total attributable health burden

Trade-offs between health improvements (DALYs per year)
and inequality (AI) are depicted in Fig. 3 for each control
strategy type. (Comparable figures showing the trade-offs
between health impacts and the CI are provided in the
Supplemental Materials). The health burden decreases
from 7.0 DALYs per year for the base case to 2.6 DALYs
per year for 90% emission reductions (Table 5). The health
burden falls less than 90% since emissions at DTE Monroe
and the minor point sources do not change. While any emis-
sion reduction lowers the health burden, some strategies are
more effective. The uniform reduction strategy (S1) pro-
vides nearly linear improvements, as expected. For low to
moderate emission reductions (15–45%), reducing emis-
sions at sources with the highest impacts per ton of emis-
sions (S3) yields greater health benefits than the uniform
percentage (S1) and the minimal concentration (S4) strate-
gies. Although advantages diminish beyond 60% reduc-
tions, strategy S3 still outperforms S1 and S2 due to its

emphasis on reducing emissions at sources near large pop-
ulations, i.e., sources with the highest health impact per unit
emissions (Table 3). The concentration optimization strat-
egy (S4) outperforms the uniform reduction approach for
smaller reduction targets (15–45%), but benefits diminish
at higher reduction goals. Results for health ranking (S3)
and health optimization (S5) strategies are nearly identical
for 30, 45, and 60% reduction goals, and the simpler health-
based ranking approach (S3) achieves near-optimal results.

Inequality of health impacts

Both inequality metrics suggest an unfair distribution in SO2-
related health impacts (AI for the base case = 0.136). The CI
indicates that the SO2-related health burden tends to dispro-
portionately affect areas with high proportions of residents

Table 4 Fourth highest 1-h daily
maximum SO2 concentration
(ppb) at non-fenceline receptors
for each emission control strategy
and tonnage reduction goal

Fourth highest 1-h daily maximum SO2 concentration (ppb)

Aggregate
reduction

Uniform
percentage
(S1)

Largest
emissions first
(S2)

Health impact
ranking (S3)

Receptor
concentration
optimization (S4)

Health impact
optimization
(S5)

0% 79.5 79.5 79.5 79.5 79.5

15% 70.2 77.6 69.5 68.7 69.5

30% 60.7 75.7 69.4 62.3 69.4

45% 56.4 73.8 66.9 56.4 66.5

60% 56.3 61.9 56.3 56.3 56.3

75% 56.2 61.6 56.2 56.2 56.2

90% 56.2 56.2 56.2 56.2 56.2

Fig. 3 Attributable health burden (DALYs per year) versus Atkinson
inequality index for each emission control alternative. Lines connect
alternatives with the same SO2 emission reduction target (15 to 90%).
AI inequality aversion parameter set to 0.75

416 Air Qual Atmos Health (2018) 11:409–422



who are Hispanic or Latino, have less than a high school
diploma, or are foreign-born (Table 5 shows CI metrics for
selected reduction targets and blocks ranked by the percent-
age of Hispanic/Latino residents, persons of color, and me-
dian income; Supplemental Table 4 provides metrics for the
full set of reduction targets and vulnerability characteristics).
In the study area, these variables are moderately correlated
(Pearson R 0.35–0.47), and census blocks with the highest
proportions of Hispanic or Latino residents coincide with the
highest SO2 exposures (southwest Detroit, Fig. 2a,
Supplemental Fig. 2).

All of the strategies with one exception reduce the inequal-
ity of adverse health impact risks associated with SO2 (Fig. 3,
Table 5, Supplemental Table 4). While reducing the overall
health burden, the largest emissions-first approach (S2) strat-
egy increases inequality, a result of increasing the relative
importance of SO2 Bhotspots^ produced by smaller facilities.
The lowest inequality occurs for the health impact optimiza-
tion (S5) with a 75% reduction in total emissions (AI = 0.116,
DALYs per year = 2.58). Increasing removals to 90% slightly
lowers impacts (DALYs per year = 2.57) though inequality
slightly increases (AI = 0.117) since reductions at all sources
tends to increase inequality (as discussed above). Possibly the
most striking result in Fig. 3, however, is the very large im-
provement in inequality and DALYs yielded by a very modest
(15%) reduction of SO2 emissions with the health impact

optimization (S5) strategy due to the high benefits per ton
removed for targeted sources (Table 3); this strategy reduces
emissions by 90% at AK Steel, Marathon, Dearborn Industrial
Generation, Carmeuse Lime, and US Steel, and by 60% at
EES Coke, while emissions at DTE Trenton Channel and
DTE River Rouge are unchanged.

The distribution of benefits from SO2 reductions across
social groups is strategy-dependent. The largest changes in
the CI at intermediate SO2 reduction targets occur for the
largest health impacts-first (S3) and the health optimization
(S5) strategies. These strategies benefit Hispanic/Latino, low
educational attainment, and foreign-born populations; this is
important because these groups bear heavier burdens in the
base case (Table 5, Supplemental Table 4, Supplemental
Fig. 4). The Bpercentage of the population of persons of color^
variable does not indicate a disproportionately high health
burden from SO2 because most (> 90%) individuals in the
study area identify as non-Hispanic Black or Hispanic/
Latino (US Census Bureau 2015); aggregating these groups
using a single variable ignores important demographic pat-
terns across the city.

SIP versus optimized strategies

Since maximum allowable emissions are approximately twice
that of the actual emissions, the SIP maximum allowable case

Table 5 Total health burden (DALYs), Atkinson index, and concentration index values (×100) for annual health impact risk (measured as risk of a
DALYper year) due to point source SO2 emissions for each reduction strategy. Percent difference between the strategy and the base case in parentheses.
Negative percent differences indicate an increase relative to base case

Strategy Aggregate Reduction DALYs per year Atkinson index Concentration index (×100)

Percent Hispanic
or Latino

Median income
(2014$)

Percent of the population
that is persons of color

S0 0% 7.0 (a) 0.136 (a) − 11.2 (a) − 1.7 (a) 6.1 (a)

S1 15% 6.2 (10.5) 0.134 (1.3) − 10.9 (2.3) − 1.5 (9.6) 6.1 (0.4)

S1 45% 4.8 (31.5) 0.129 (4.8) − 10.2 (9.2) − 1.0 (37.7) 6.0 (1.4)

S1 75% 3.3 (52.5) 0.122 (10.3) − 8.7 (22.3) − 0.2 (90.6) 5.9 (3.6)

S1 90% 2.6 (63.1) 0.117 (14) − 7.3 (34.4) 0.7 (139.6) 5.7 (5.6)

S2 15% 6.7 (3.5) 0.136 (− 0.7) − 11.3 (− 0.8) − 2.0 (− 19.6) 5.8 (3.9)

S2 45% 6.2 (10.6) 0.139 (− 2.5) − 11.5 (− 2.6) − 2.7 (− 63.5) 5.3 (12.5)

S2 75% 5.4 (22.7) 0.142 (− 4.9) − 12.0 (− 7.3) − 2.6 (− 57.3) 5.7 (6.2)

S3 15% 4.3 (38.2) 0.119 (12.0) − 8.2 (27.0) 0.8 (145.8) 6.4 (− 4.7)
S3 45% 3.3 (52.5) 0.119 (12.3) − 7.7 (31.6) 2.1 (228.3) 7.2 (− 19.3)
S3 75% 2.8 (59.5) 0.117 (13.4) − 7.5 (33.3) 1.2 (174.4) 6.3 (− 4.2)
S4 15% 5.4 (22.1) 0.128 (5.7) − 9.8 (12.5) − 0.7 (58.9) 6.2 (− 2.0)
S4 45% 4.5 (35.6) 0.127 (6.6) − 9.5 (14.7) − 0.7 (60.1) 6.0 (0.4)

S4 75% 3.4 (51.6) 0.122 (9.9) − 8.5 (23.7) − 0.3 (83.1) 5.8 (4.7)

S5 15% 4.2 (39.7) 0.118 (12.7) − 7.8 (29.9) 0.9 (156.2) 6.3 (− 4.4)
S5 45% 3.3 (52.5) 0.119 (12.3) − 7.6 (31.7) 2.1 (227.9) 7.2 (− 19.2)
S5 75% 2.6 (62.8) 0.116 (14.7) − 6.7 (40.5) 2.0 (219.4) 6.5 (− 7.0)

a Percent difference is relative to the base case (S0)
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(S6), SIP (S7), and optimized (S8 and S9) strategies give
considerably higher concentrations and exposures
(Supplemental Table 5) than those using actual emissions
(Tables 2 and 4). The peak concentration (111 ppb for strategy
S7) differs from the SIP (74 ppb; MDEQ 2016, p. 34) due to
differences in receptor grids, years modeled, and the treatment
of background. (A more detailed hotspot analysis, as per-
formed by MDEQ, would be needed to ensure that the alter-
native strategies achieve the NAAQS and comply with US
EPA criteria.) Like strategies based on actual emissions, re-
ducing the maximum allowable emissions yields health ben-
efits, and all strategies based on maximum allowable emis-
sions reduce inequalities (Fig. 4). The SIP control (S7) and
the concentration optimization (S8) strategies perform similar-
ly; the health optimization alternative (S9) outperforms both
of these strategies with respect to exposures, health benefits,
and inequality. Note that strategies S7, S8, and S9 reduce
emissions by the same amount (26,418 t per year). Based on
the CI, the health-based approach is particularly beneficial for
disproportionately impacted populations, e.g., areas with high
proportions of Hispanic or Latino residents (Supplemental
Table 6, Supplemental Fig. 5).

Discussion

Health-based AQM strategies can yield large decreases in
health burdens and the inequality of health risks, performing
better than current strategies that prioritize compliance with

the NAAQS. In Detroit, reducing emissions at sources with
the largest health impacts (S3, S5) achieved the greatest ben-
efits in attributable health burden and inequality. These
sources tend to be smaller and closer to densely populated
areas. In contrast, strategies focusing on the largest sources
(S2) only modestly reduced health burdens and increased in-
equality. These sources mostly have tall stacks and are far
from populated areas, and their resulting concentrations tend
to be low and well dispersed. While emission reductions at
these large sources lessen the health burden across broad
areas, it increases the relative importance of smaller sources,
thus increasing inequality. The inefficiency of the largest
emissions-first strategy in terms of health benefits and its ten-
dency to increase inequality is an important result that has not
been emphasized elsewhere, in part because earlier studies
primarily focused on total health risks rather than pollutant-
attributable risks (e.g., Levy et al. 2007).

Benefits of using quantitative HIA analyses in the air
quality management process

The development of a control strategy presents a prime oppor-
tunity for reducing health burdens and disparities, which is not
taken advantage of in the current compliance-oriented ap-
proach. For example, the Detroit SO2 SIP submission spec-
ifies emission reductions at three facilities and stack height
increases at another (MDEQ 2016), an approach derived fol-
lowing US EPA guidelines, negotiations with affected facili-
ties, and RACT analyses. Unfortunately, this plan targets
sources that have relatively low health impacts per ton of
SO2 emitted (Table 3), and it will not alleviate disparities
associated with SO2 exposures. This is supported by the
Bactual emissions^ strategies (S1–S5), which better reflect
current exposures than the SIP maximum allowable case
(S6).While results in Figs. 3 and 4 are not directly comparable
(these figures are based on Bactual^ and Bmaximum allowable
emissions,^ respectively), they each show that health-based
strategies can yield bigger improvements in public health
and health inequalities.

The use of the maximum allowable emissions is currently
required for air quality modeling demonstrations of NAAQS
attainment (US EPA 2005). For the nine major SO2 sources
in Detroit, these maxima were up to four times higher than
actual emissions, depending on the source. Thus, the use of
maximum emissions greatly over-estimates health burdens
and might not target the sources that actually cause the
highest concentration, health, or inequality impacts. The
NAAQSmust be attained under all circumstance, so this rule
is justifiable; however, a second analysis using actual emis-
sions would improve the realism of exposure and health
analyses and potentially result in healthier and fairer out-
comes. Alternatively, the difference between actual and
maximum allowable emissions could be reduced, perhaps

Fig. 4 Attributable health burden (DALYs per year) versus Atkinson
inequality index (inequality aversion parameter = 0.75) for the SIP
maximum allowable (S6), the SIP control (S7), and two optimized (S8
and S9) strategies
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to no more than a factor of 1.5, and then, a single analysis
could simultaneously demonstrate that a proposed SIP strat-
egy attains the NAAQS, maximizes health benefits, and min-
imizes inequality.

Multipollutant AQM approaches also can increase health
and inequality benefits. An integrated and least-cost approach
for PM2.5 and ozone in Detroit using Bpopulation-oriented
reductions^ was predicted to attain standards, lower total
health impacts, and reduce inequality compared to strategies
that addressed pollutants separately (Fann et al. 2011; Wesson
et al. 2010). While we focused on a single pollutant, analyses
of other pollutants could inform the evaluation and develop-
ment of control alternatives.

Evolving towards more comprehensive and equitable
air quality management

Reorienting AQM from standards compliance to consider-
ation of site-specific health and inequality concerns is, in part,
motivated by environmental justice and cumulative impact
concerns. US EPA is becoming increasingly concerned with
the Bfair treatment^ of all social groups when implementing
environmental policies, and this extends to the distribution of
health benefits as a result of policy actions (US EPA 2016b).
The agency has expressed a preference for quantitative EJ
analyses that complement other analyses in the rule making
process (US EPA 2016c). Several state and local regulators are
also formalizing EJ activities, including permitting, compli-
ance, enforcement, and monitoring (e.g., MPCA 2015). These
goals can be supported using the CI and other metrics. Our use
of the SO2-attributable burden in inequality assessments helps
identify whether the benefits of emission control strategies are
fairly distributed, and it highlights how some population
groups (Hispanic and Latino populations) receive fewer ben-
efits under some of the strategies. Potentially, HIA tools and
inequality metrics can show the rate of progress towards elim-
inating inequality, a potentially important EJ metric.

Quantitative HIA methods can enhance cumulative im-
pact analyses, few of which have quantified health risks
or impacts attributable to individual environmental haz-
ards (Cushing et al. 2015). Most of these analyses have
focused on assessing exposures to environmental hazards
and identifying where minority or low-income popula-
tions are affected (e.g., Sadd et al. 2011; Su et al. 2009,
2012). As shown here and elsewhere, health burdens de-
pend on many factors, e.g., exposures from an industrial
facility are spatially varying, depending on distance, emis-
sions, meteorology, population size, and vulnerability.
Variation at the intra-urban scale can be large, e.g., risks
in a small fenceline community near an industrial com-
plex in Texas were lower than in the rest of the city due to
prevailing winds (Prochaska et al. 2014). Thus, hazard
scores considering only the presence or proximity of

hazards may inadequately represent the exposure potential
and likely impacts.

Health and inequality metrics could strengthen account-
ability research, which examines the outcomes of regulatory
and other policy decisions (Bell et al. 2011). For example,
changes in air pollutant levels improved lung function among
children living in Los Angeles, California (Gilliland et al.
2017); health and inequalitymetrics could showwhether these
benefits are equitably and effectively distributed.

Considerations for quantitative HIAs

Burden of disease and inequality results can be affected by
the location of air pollution sources, dispersion characteris-
tics, the location of vulnerable and susceptible populations,
administrative boundaries, and the spatial resolution of the
analysis. As examples, estimating the base case health im-
pacts for SO2 emissions at the ZIP code level in Detroit
tremendously smooths gradients in exposure and lowers AI
values; including areas with a high degree of social advan-
tage (e.g., non-Hispanic white populations) or excluding po-
tentially vulnerable populations can change CI values and
possibly the groups identified as disproportionately harmed
(Supplemental Table 7). Sensitivity analyses that vary spatial
scales and study boundaries can help evaluate the robustness
of HIA findings.

Importantly, no standards or thresholds have been
established for inequality assessments, and small changes
in inequality metrics may not be meaningful. In general,
alternatives that decrease inequality relative to the base case
will be favored provided that conditions are not worsened for
the better-off groups. In Detroit, changes in inequality result-
ed from decreases in health burdens since emissions were not
allowed to increase. In other applications, health burdens
may increase, and thus, improvements in inequality must
be coupled with an analysis showing how benefits are gen-
erated to ensure that no population subgroup is adversely
impacted.

We did not consider costs or practicalities of pollution
abatement. Costs will vary by source type, size, and other
facility-specific factors. Typically, smaller facilities incur
greater costs per ton removed due to unavoidable fixed costs,
e.g., capital and operational costs (Becker 2005), and mar-
ginal costs usually increase at higher removal rates (Hartman
et al. 2010). Based on abatement costs expressed as dollars
per ton of pollutant removed, controls at large facilities may
appear as more cost-effective, while reductions at smaller
facilities may seem less economical. However, this account-
ing is incomplete: the lower per ton control costs at large
facilities might yield lower health benefits, while the higher
per ton costs at smaller facilities might be offset by greater
health benefits. Many practical issues affect such assess-
ments, e.g., the availability and ease of installing SO2
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controls. As noted in the SIP, installing end-of-pipe controls
at some sources could require substantial retrofitting because
these facilities predate the requirement for SO2 removal
technologies (MDEQ 2016).

Limitations

The HIA applications have important limitations. First,
incidence rates in Detroit were available at county to
ZIP code scales, which limits the ability to capture spatial
variability. Second, information on individual-level expo-
sures was not used, which can bias health impact esti-
mates when people live in one area and work or attend
school in other areas (Baccini et al. 2015; Tchepel and
Dias 2011). Third, health impacts from secondary pollut-
ants (e.g., sulfate particles formed from SO2) were not
considered. Impacts (especially mortality) from secondary
PM2.5 can far exceed those of SO2 (US EPA 2010a);
however, secondary pollutant formation at the urban
scale, which typically occurs at a regional scale and re-
sults in relatively homogeneous PM2.5 concentrations at
the intra-urban scale (Turner and Allen 2008), may be
modest. Fourth, sensitivity and uncertainty analyses were
limited. Potentially important uncertainties include base-
line incidence rates, dispersion modeling results, and the
CRs (Mesa-Frias et al. 2013; O’Connell and Hurley
2009). Uncertainty in the CR will likely have the largest
influence on health impact estimates (Chart-asa and
Gibson 2015).

The inequality assessment is limited by the ability to iden-
tify all vulnerable or susceptible populations in the area. The
American Community Survey (ACS) data allows some anal-
ysis by race or Hispanic/Latino ethnicity. In Detroit, 90% of
the population identifies as Hispanic/Latino or non-Hispanic
Black (US Census Bureau 2015). However, our study area
also included the city of Dearborn, which is approximately
30% Arab or Arab-American (de la Cruz and Brittingham
2003), ethnicity data not yet routinely collected by the US
Census Bureau. Many Arab and Arab American residents
experience high exposures to social stressors, e.g., discrimina-
tion (Padela and Heisler 2010; Samari 2016), and therefore
would be an important subpopulation to include in EJ and CI
analyses.

Another limitation of this and other urban-scale assess-
ments is their site-specific nature. The trade-offs between
emission reduction, health burden, and inequality demonstrat-
ed for Detroit are site- and scenario-specific, driven by the
unique combination of high degrees of population vulnerabil-
ity and susceptibility, the proximity of several large sources,
the spatially-variable pollutant concentrations, and other fac-
tors. We expect that results would differ for urban areas where
sources are more distant or for analyses of regional pollutant
such as ozone. Still, our findings appear broadly applicable.

For example, a national assessment of power plants showed
that reducing emissions at sources with the highest health
impacts per ton of pollutant emitted maximizes improvements
in health and inequality (Levy et al. 2007). Trends similar to
those determined for Detroit are expected in other urban areas
that have high concentrations of spatially varying pollutants,
e.g., SO2, and industry and residential areas interspersed.

Conclusions

Air quality management (AQM) and control strategies can be
improved by incorporating health and inequality metrics. The
combination of spatially-variable exposures and known in-
equalities in susceptibility and vulnerability motivates the
use of spatially resolved HIAs to assess health inequality as
well as the health burden. In Detroit, MI, a designated SO2

non-attainment area, SO2 continues to have a substantial im-
pact on the health of the population, particularly among chil-
dren and Hispanic or Latino populations. AQM strategies that
focused on emission sources with the highest health impacts
per ton of pollutant emitted provided the greatest health ben-
efit per ton of pollutant reduced; these strategies also reduced
the inequality of health risks. In contrast, strategies targeting
the larger emitters increased inequalities and sometimes pro-
vided minimal health benefits. Assessments that incorporate
HIA techniques and inequality metrics are feasible and allow
AQM to move beyond compliance with ambient standards
towards strategies that promote health and equity.
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