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Abstract In order to generate air-pollutant exposure fields for
health studies, a data fusion (DF) approach is developed that
combines observations from ambient monitors and simulated
data from the Community Multiscale Air Quality (CMAQ)
model. These resulting fields capture the spatiotemporal infor-
mation provided by the air quality model, as well as the finer
temporal scale variations from the pollutant observations and
decrease model biases. Here, the approach is applied to devel-
op daily concentration fields for PM2.5 total mass, five major
particulate species (OC, EC, SO4

2−, NO3
−, and NH4

+), and
three gaseous pollutants (CO, NOx, and NO2) from 2006 to
2008 over North Carolina (USA). Several data withholding
methods are then conducted to evaluate the data fusion meth-
od, and the results suggest that typical approaches may over-
estimate the ability of spatiotemporal estimation methods to
capture pollutant concentrations in areas with limited or no
monitors. The results show improvements in capturing spatial
and temporal variability compared with CMAQ results.
Evaluation tests for PM2.5 led to an R2 of 0.95 (no withhold-
ing) and 0.82 when using 10% random data withholding. If

spatially based data withholding is used, the R2 is 0.73.
Comparisons of DF-developed PM2.5 total mass concentration
with the spatiotemporal fields derived from two other methods
(both use satellite aerosol optical depth (AOD) data) find that,
in this case, the data fusion fields have slightly less overall
error, with an RMSE of 1.28 compared with 3.06 μg/m3 (two-
stage statistical model) and 2.74 (neural network-based hybrid
model). Applying the Integrated Mobile Source Indicator
(IMSI) method shows that the data fusion fields can be used
to estimate mobile source impacts. Overall, the growing avail-
ability of chemically detailed air quality model fields and the
accuracy of the DF field, suggest that this approach is better
able to provide spatiotemporal pollutant fields for gaseous and
speciated particulate pollutants for health and planning
studies.

Keywords Ambient air pollution . Spatiotemporal pollutant
fields . Data fusion . CMAQ

Introduction

Exposure to fine particulate air pollution (PM2.5) has been
associated with increased morbidity and premature mortality,
suggesting that sustained reductions in pollution exposure
could result in improved health and increased life expectancy
(Gilboa et al. 2005; Sarnat et al. 2005; Pope et al. 2009; Matte
et al. 2009; Solomon et al. 2012; Hubbell 2012). Estimating
population exposure to PM2.5 has traditionally been done by
assigning measurements of a central groundmonitor to people
living within the region (Kanaroglou et al. 2005; Sampson
et al. 2013). However, a number of studies have shown the
limitations of using central ground monitor data as the expo-
sure metric (Lefohn et al. 1987; Wade et al. 2006; Beelen et al.
2009; Kim et al. 2014; Dionisio et al. 2016). These limitations
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include monitoring sites in national regulatory networks that
are relatively sparse across broad regions of the country (Hu
et al. 2014a) and pollutant concentrations that can be impacted
by local emissions, leading to local variations (Hu et al.
2014b). Avariety of modeling approaches are now being used
to better estimate pollutant concentration variations not cap-
tured by monitors (Marmur et al. 2005; Johnson et al. 2010;
Liu et al. 2012).

One approach to develop air quality fields is using chemi-
cal transport models (CTMs) that account for local variations
affected by emissions and meteorology (Godowitch et al.
2015; Kim et al. 2015; Pleim et al. 2016). The Community
Multiscale Air Quality (CMAQ; Binkowski 2003; Byun and
Schere 2006) model is a state-of-the-science chemical trans-
port model (CTM) designed to follow the dynamics of air
pollutants from emissions. CMAQ captures spatial and tem-
poral variations (Friberg et al. 2016) but is subject to errors
due to limitations in insufficient characterization of meteoro-
logical (Yu et al. 2012) and emission inputs (Gilliland et al.
2008; Xiao et al. 2010; Ivey et al. 2015), as well as physical
and chemical processes (Carlton et al. 2008; Tang et al. 2011;
Ivey et al. 2016).

The objective of this research is to use the data fusion (DF)
approach to develop spatiotemporal concentration fields for
PM2.5 mass, five PM species, and three gases for the state of
North Carolina to support the University of North Carolina at
Chapel Hill’s health analysis of coronary heart disease patients
in NC (McGuinn et al. 2017). The data fusion approach is
developed at a spatial resolution of 12 km that combines ob-
servations from ambient monitors and data from CMAQ to
better estimate ground-level air pollutant concentration fields
for improved exposure estimates (Friberg et al. 2016). Several
data withholding methods, which involve the use of monitor
observations, were used to evaluate the stability of the data
fusion method. A comparison of total PM2.5 mass concentra-
tion is made between the results using unadjusted CMAQ
pollutant fields, the data fusion application, ordinary kriging,
and two satellite aerosol optical depth (AOD) data-included
methods (Hu et al. 2014a; Di et al. 2016). These were com-
pared as a part of evaluating the performance of various PM2.5

exposure methods. Exposure fields of five PM species and
three gases were also compared between CMAQ results and
data fusion method results.

Methods

Four statistical methods were used to create the spatiotem-
poral fields, and the results were compared with each
other and evaluated against observations. The first statis-
tical method used was the data fusion method. The data
fusion method combines observations and modeled pol-
lutant fields and was used during 2006–2008 period over

North Carolina. (The data fusion method was actually
applied from 2002 to 2010; 2006–2008 is in the middle
part of that period and could be representative of the me-
teorological conditions experienced over that time.) The
second and third methods were a two-stage statistical
model and a neural network-based hybrid model, which
both use satellite aerosol optical depth (AOD) and other
data to develop PM2.5 fields separately. Reliance on AOD
data led to those methods being applied just to PM2.5

mass, not individual PM or gaseous species. The fourth
method uses ordinary kriging of observations at monitor-
ing sites and was applied to develop PM2.5 and CO fields.
Other pollutant species were monitored at very few loca-
tions, limiting the amount of information available to de-
velop spatiotemporal exposure fields as well as conduct a
more thorough evaluation.

Air quality data

The observations used for data fusion come from the State and
Local Air Monitoring Stations (SLAMS), Chemical
Speciation Network (CSN) (Chu 2004) and Interagency
Monitoring of Protected Visual Environments (IMPROVE)
(Malm et al. 1994) networks. Observations from all available
networks are utilized together. Pollutants include concentra-
tions of three gases (carbon monoxide (CO), nitrogen dioxide
(NO2), and nitrogen oxide (NOx)), PM2.5 mass, and five PM2.5

components (elemental carbon (EC), organic carbon (OC),
ammonium (NH4

+), nitrate (NO3
−), and sulfate (SO4

2−))
(Fig. 1). Because of the limited number of monitoring sites
for some species (e.g., CO, NO2, and NOx) in NC, we also
included monitoring sites in neighboring states.

Twenty-four-hour average PM2.5 concentrations for
years 2006 to 2008 were collected from the EPA’s Air
Quality System Technology Transfer Network for use in
the two-stage statistical model. The MODIS aerosol data
(collection 5) at 550 nm wavelength were obtained from
the NASA Earth Observing System Data Gateway at the
Goddard Space Flight Center.

Chemical transport model simulated concentrations

Pollutant concentration fields used in this paper are devel-
oped using CMAQ model version 4.5 at 12-km resolution
for the 2006–2008 period over North Carolina. A compre-
hensive model evaluation (Wyat Appel et al. 2008) of
CMAQ version 4.5 conducted by the USEPA showed that
simulated particulate nitrate and ammonium are biased
high in the fall due to an overestimation of seasonal am-
monia emissions (Qin et al. 2015). The EPA evaluation
also found that simulated carbonaceous aerosol concentra-
tions are biased low during the late spring and summer
due to the lack of some secondary organic aerosol (SOA)
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formation pathways in the model (Jathar et al. 2016;
Woody et al. 2016).

Data fusion

The approach used to combine the CMAQ-derived fields with
observed pollutant concentrations was described in detail in
Friberg et al. (2016). The method blends observations and
CMAQ results based on spatial correlation analysis between
observations and CMAQ simulations and generates a new
field that captures local observations, as well as spatial vari-
ability from CMAQ. A summary is provided in the Electronic
supplementary material.

Data fusion results were integrated with the Integrated
Mobile Source Indicator (IMSI) method (Pachon et al. 2012)
to estimate the influence of mobile sources on PM2.5. The
IMSI method, which is developed for use in air quality and
epidemiologic analyses, uses EC and NOx as indicators of
diesel vehicle (DV) and CO and NOx as indicators of gasoline
vehicle (GV) impacts. Here, the IMSI method, along with
pollutant fields derived from the data fusion method, are used
to provide spatiotemporal fields of mobile source impacts for
use in source-specific, multipollutant, health analyses. The
method is described in detail in the Electronic supplementary
material.

Interpolation

Ordinary kriging (Cressie 1988) was applied to observed
PM2.5 and CO to develop air quality fields for comparison
with the more advanced methods. PM2.5 originates from mul-
tiple sources, both primary and secondary, whereas CO orig-
inates largely from mobile sources. PM2.5 and CO are moni-
tored at more sites than PM species and primarymobile source
gases.

Methods utilizing satellite aerosol optical depth for PM2.5

estimation

Two-stage statistical model

A two-stage statistical model (Hu et al. 2014a) employing
satellite-retrieved aerosol optical depth (AOD) at 10 km reso-
lution fromModerate Resolution Imaging SpectroRadiometer
(MODIS) was used to develop PM2.5 fields. The grids were
restructured for comparison at 12 km resolution. The model
includes a linear mixed effects module with day-specific ran-
dom intercepts and slopes for AOD and meteorological fields
as the first stage to account for the day-to-day variability in the
PM2.5-AOD relationship. The second stage is a geographical-
ly weighted regression model to capture spatial variation.
Details of the method are found elsewhere (Hu et al. 2014a).

Fig. 1 Ambient air quality monitor locations used in this analysis. (Not all monitor locations have all species)

Air Qual Atmos Health (2018) 11:11–22 13



Neural network-based hybrid model

Di et al. (2016) applied another method that uses a neural
network-based hybrid model that includes satellite-based
AOD data from MODIS, absorbing aerosol index (AAI),
chemical transport model (GEOS-Chem) output, land-use
terms, and meteorological variables. The method has been
used to estimate the national PM2.5 fields at 1 km × 1 km
resolution. Detailed description is found in a previous publi-
cation (Di et al. 2016). We extracted the results for North
Carolina for 2006 to 2008.

Model evaluation methods

The performance of the data fusion method was evaluated by
using three data withholding methods, as described in follow-
ing subsections.

Random data withholding

Ten groups of observational data were constructed, with each
group having 10% of the data randomly (not linked to specific
monitors) withheld. Each group was run independently.

Table 1 Annual average concentrations from data fusion and CMAQ over the NC domain

PM2.5 (μg/m
3) EC (μg/m3) OC (μg/m3) NH4

+ (μg/m3) NO3
− (μg/m3) SO4

2− (μg/m3) NO2 (ppb) NOx (ppb) CO (ppb)
Monitor no.

60 19 19 19 19 19 9 4 14

Data fusion

2006 11.12 ± 5.09 0.47 ± 0.44 2.03 ± 1.82 1.39 ± 0.75 2.16 ± 2.91 3.91 ± 2.40 9.00 ± 4.30 8.39 ± 14.26 302.14 ± 104.53

2007 10.78 ± 5.15 0.45 ± 0.36 2.18 ± 1.96 1.37 ± 0.76 0.75 ± 1.03 3.92 ± 2.39 8.80 ± 3.93 6.70 ± 11.64 231.87 ± 79.87

2008 9.70 ± 4.69 0.31 ± 0.24 1.87 ± 1.81 1.44 ± 0.78 0.47 ± 0.69 3.31 ± 1.85 8.25 ± 3.79 5.28 ± 7.50 279.83 ± 92.97

CMAQ

2006 8.97 ± 5.30 0.33 ± 0.39 1.20 ± 1.25 1.24 ± 0.77 0.86 ± 1.32 3.30 ± 2.07 2.61 ± 2.53 2.80 ± 2.83 163.33 ± 49.28

2007 9.09 ± 5.62 0.31 ± 0.27 1.51 ± 1.54 1.17 ± 0.73 0.96 ± 1.50 2.79 ± 1.71 3.16 ± 3.06 3.16 ± 3.54 165.48 ± 52.60

2008 6.90 ± 4.66 0.38 ± 0.33 1.19 ± 1.30 0.79 ± 0.49 0.60 ± 1.04 2.01 ± 1.14 2.81 ± 2.64 3.07 ± 3.09 153.64 ± 49.35

Fig. 2 Linear regression between observation (OBS) and simulations (PM2.5)
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Performance was assessed by comparing the simulated values
to the data that were withheld for that iteration.

Randomly based monitor data withholding

Even though the random data withholding method is com-
monly used, it may overestimate the performance of the
data fusion method. Monitor-based cross-validation may
better reflect performance of the data fusion method be-
cause it is representative of areas where no monitor is
located as opposed to a situation where a measurement
is missing. In this case, the entire set of 60 PM2.5 moni-
tors were randomly split into ten subsets with six moni-
tors in each subset. For each of ten cross-validation itera-
tions, one subset (10% of monitors) was selected as the
testing sample and the remaining nine subsets (90% of the
monitors) were used to reapply the method. Estimates of
the withheld monitor values were compared with the ac-
tual monitor values. This randomly based monitor data
withholding was repeated twice to check the stability of
this evaluation to the random choice of monitor grouping.
For NO2 and CO, leave one monitor out (LOO) was ap-
plied (i.e., in each test only one monitor data has been
removed) due to the limited number of monitors available
in the domain.

Spatially based monitor data withholding

Monitors may be clustered such that when one is removed
there are nearby monitors that lead to the various methods
being able to accurately estimate the pollutant levels for the
removed monitor. This can result in an overestimation of a
model’s ability to provide accurate concentration estimates
in a region with no monitors. Here, the entire set of monitors
was spatially split into ten subsets (Fig. S1) according to their
locations, and withholding was performed with the spatially
based removed subsets.

Results and discussion

CMAQ

As a baseline, the unadjusted CMAQ results are evaluated over
the NC domain. Annual average PM2.5 shows that concentra-
tions from CMAQ results (Table 1) are higher in 2007 for most
species than in 2006 and 2008. For PM2.5, the R2 between
pollutant observations and CMAQ simulations over the 3-
year period is 0.32 and a root mean square error (RMSE) is
5.16 μg/m3. Linear regression (Fig. 2; Table 2) between pollut-
ant observations and CMAQ has a slope of 0.51. Evaluation
results for other species tend to be have lower correlations
(Table 2).

Data fusion

There are decreasing trends in the annual average concentra-
tion for all species from 2006 to 2008 in the data fusion results
(Table 1). The annual average concentrations for each species
from the DF method are higher than those from the CMAQ
results. The probability density distributions of all species
concentrations are log-normally distributed (Fig. S2).

Spatial plots of the annual averages for each of the nine
pollutants show high concentrations in major urban centers
(Fig. 3; Figs. S3a and S3b). Emission impacts are evident near
the major interstates in the NO2, NOx, and CO fields.
Concentrations at the western and eastern boundaries are
much lower than the other areas because these are forest and
coastal areas, respectively.

Monthly trends in North Carolina averaged over 3 years
(Fig. S4) show that the concentrations of PM2.5 and SO4

2− are
higher in the summer and lower in the winter in North
Carolina, while NO3

−, EC and OC are lower in the summer
and higher in the winter. Concentrations of CO, NOx, and NO2

are higher in the winter and lower in the summer. These trends
are expected based on the atmospheric formation chemistry of
the secondary components (i.e., sulfate formed in summer and
nitrate in winter) and the mixing height (lower in winter) due
to meteorological conditions.

Mobile source impacts are estimated using the IMSI meth-
od applied to the DF fields. IMSI impacts decrease in the
summer and increase in the fall (Fig. 4). The reduction of
gasoline vehicle impacts is larger than the reduction of diesel
vehicle impacts during the summer months. Emission-based
IMSI value for gasoline (IMSIGV) and emission-based IMSI
value for diesel vehicles (IMSIDV) are higher in 2007 than
2006 and 2008 (Fig. S5). The elevated impact areas near high-
ways indicate that the method captures a mobile source activ-
ity and the data fusion fields are trustable (Fig. S6).

Temporal correlations between IMSI impacts and PM2.5

concentrations indicate that highly populated and busy traffic
areas have lower temporal correlations than other areas (Fig.
S7). The correlations between PM2.5 and EC, CO, and NOx

are low in rural areas (Fig. S8). The low temporal correlation
between PM2.5 and the primary pollutants is because much of
the PM2.5 in the area is secondary (Gertler et al. 2000; Gertler
2005). The annual average spatial correlations between IMSI
impacts and PM2.5 concentrations are 0.72 (2006), 0.71
(2007), and 0.78 (2008).

Ten percent random data withholding (Fig. S9) led to a R2

of 0.82 (Fig. 2) for PM2.5, 0.24 (Fig. S10) for CO and 0.78
(Fig. S11) for NO2. Reapplying the method led to very sim-
ilar correlations (e.g., for PM2.5, the R2 was 0.81). Spatial
10% monitor withholding cross-validation (only applied to
PM2.5 due to the lack of monitors) led to a lower R2 of 0.73
(Fig. 2). The LOO results for CO and NO2 also have lower
R2 values than the random data withholding, with a decrease
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from 0.24 to 0.10 for CO and from 0.78 to 0.52 for NO2.
Although there is a small difference in PM2.5 RMSE results
of approximately 1.20 μg/m3 between the 10% random data
withholding results and the original DF data sets (Fig. S12;
Tables 3, 4, and 5), both of these values are much smaller
than the CMAQ RMSE results of 5.16 μg/m3. Spatial dis-
tributions of the maximum root-mean-squared deviation
(mRMSD: The maximum daily root-mean-squared devia-
tion value throughout the whole year.) for PM2.5 show that
the largest mRMSD are lower than 2, except in northeastern
NC in 2008 (Fig. S13a and S13b). The RMSD of spatially
removed groupings (Fig. S14) is similar to randomly re-
moved groupings (Fig. S13a and S13b) for PM2.5, except
for the northeast area of North Carolina in 2008 because of
the limited monitors in this area (Fig. 1). NO2 results are
similar, with RMSE decreasing from 7.1 ppb (CMAQ) to
2.4 ppb (data fusion) (Table 5). For CO, RMSE decreases
from 269 ppb (CMAQ) to 231 ppb (data fusion) (Table 4).

RMSEs of LOO results for NO2 and CO also show larger
increases compared with 10% random data withholding re-
sults (Tables 4 and 5). All monitor-based withholding cross-
validation for PM2.5, CO, and NO2 have larger RMSE and
smaller R2 than 10% random data withholding results.

The spatial 10% monitor withholding leads to a lower
R2 and higher RMSE for PM2.5 as compared with random
10% monitor withholding (Table 3) with RMSE increases
from 2.48 μg/m3 (random) to 2.81 μg/m3 (spatial). When
removing values in spatially similar groupings, kriging
results are minimally impacted by distant observations.
As a result, the CMAQ simulations are more heavily
weighted and the performance of the withheld data fusion
results worsens. The LOO test for NO2 and CO shows the
influence of the distribution and quantity of the monitor-
ing sites. CO monitors are located mainly in urban areas,
while NO2 monitors are distributed more widely. There
are fewer monitors for both NO2 and CO than for PM2.5.

Fig. 3 Annual average spatial distribution fields from data fusion, 2008

Fig. 4 Monthly trends of IMSIEB, IMSIEB, GV, and IMSIEB, DV from 2006 to 2008 (unitless)
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Ordinary kriging interpolation

Annual average PM2.5 and CO spatial plots from kriging are
shown in the Electronic supplementary material (Fig. S15).
Linear regression (Figs. S16a and S16b) between ordinary
kriging and observations has the highest R2 and slope
among all the methods. RMSEs are also very small, which
are 0.67 μg/m3 and 24 ppb, separately. Such performance is
expected when using the same data in the application be-
cause of the ordinary kriging method’s mechanism, so
monitor-based data withholding was performed for
evaluation.

The performance using monitor-based withholding for
ordinary kriging is similar to data fusion results. R2 for
monitor-based withholding is larger than 0.70. Results for
CO are worse than the total data interpolation; R2 decreases
from 0.99 (ordinary kriging) to 0.13 (ordinary kriging LOO)
(Fig. S16b).

Methods using satellite-retrieved AOD for PM2.5

Two-stage statistical model

The R2 between observation and two-stage statistical model
results is 0.81 (Table 3) lower than data fusion results (0.95,
Table 2). The RMSE of two-stage statistical model (3.06 μg/
m3) is better than CMAQ data RMSE of 5.16 μg/m3 when
comparing simulated results with observations. A tenfold
cross-validation (random data withholding) shows that the 3-
year averaged R2 is 0.78 and the averaged RMSE is 3.06 from
2006 to 2008.

Neural network-based hybrid model

The linear regression between neural network-based hybrid
model results and pollutant observations has an R2 of 0.82
(Fig. S17). The annual average spatial distribution fields

Table 3 Performance evaluation
for observation (OBS) and simu-
lations (PM2.5) using data with-
holding approaches, 24-h average
values

Mean (μg/m3) Median (μg/m3) RMSE NME R2

Observations 12.7 11.5 0 0 1

CMAQ 10.9 9.6 5.16 0.38 0.32

Data fusion 11.8 10.8 1.28 0.10 0.95

DF-10% random data withholding 11.8 10.8 2.48 0.16 0.82

DF-random 10% monitors withholding
(first test)

12.0 11.2 2.37 0.16 0.82

DF-random 10% monitors withholding
(second test)

12.3 11.4 2.49 0.17 0.81

DF-spatial 10% monitors withholding 12.3 11.5 2.81 0.19 0.73

Interpolation (ordinary kriging) 12.7 11.5 0.67 0.02 0.99

Ordinary kriging: random 10% monitors
withholding (first test)

12.8 11.6 2.64 0.13 0.83

Ordinary kriging: random 10% monitors
withholding (second test)

12.7 11.6 2.74 0.14 0.81

Ordinary kriging: spatial 10% monitors
withholding

12.6 11.5 3.23 0.19 0.71

Two-stage statistical model (no withholding) 12.8 11.7 3.06 0.15 0.81

Neural network-based hybrid model (no
withholding)

12.2 11.0 2.74 0.15 0.82

NME normalized mean error

Table 4 Performance evaluation
for observation (OBS) and simu-
lations (CO), 24-h average values

Mean (ppb) Median (ppb) RMSE NME R2

OBS 388 342 0 0 1

CMAQ 242 221 269 0.52 0.08

Data fusion 461 421 231 0.38 0.26

DF-10% random data withholding 464 431 178 0.47 0.24

DF-leave 1-monitor out 461 426 260 0.48 0.10

Interpolation (ordinary kriging) 391 346 24 0.05 0.99

Ordinary kriging: leave 1-monitor out 394 355 164 0.45 0.13

NME normalized mean error
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(Fig. S18) show a decreasing trend for PM2.5 concentration
from 2006 to 2008. The fields show that the method is also
good at capturing the spatial information that urban areas have
a high PM2.5 concentration and rural areas have a lower
concentration.

Comparison between CMAQ and data fusion for all
species

Correlations between 10% random data withholding results
and observations are higher than CMAQ and observations
(Figs. S9 and S12; Table 2). R2 values for PM2.5, EC, OC,
NH4

+, NO3
−, SO4

2−, NO2, NOx, and CO between observa-
tions and data fusion simulations increase compared with the
correlations between observations and CMAQ simulations.
RMSEs decrease and R2 increases for all the species except
NO3

− and NOx. The R
2 between observation and 10% random

data withholding for PM2.5 is 0.82. SO4
2− also performs very

well with a R2 value of 0.82. R2 value between daily CMAQ
and data fusion results for each grid over the whole year for
2008 show that the highest values correspond to the grids that
are nearest to monitors for all pollutants (Fig. 5). R2 values
decrease as the distance to monitors increase, which indicates
that the accuracy of this method increases with the number of
monitors used because of the high dependency on the number
and locations of monitors to perform the kriging step in the
data fusion method.

Comparison between data fusion and two-stage statistical
model

The relationship between data fusion and two-stage statistical
model results for PM2.5 simulations during 2006 to 2008 are
calculated using Deming regression (Deming 1943) to equally

Table 5 Performance evaluation
for observation (OBS) and simu-
lations (NO2), 24-h average
values

Mean (ppb) Median (ppb) RMSE NME R2

OBS 11.0 10.1 0.0 0 1

CMAQ 7.4 6.0 7.1 0.51 0.18

Data fusion 10.3 9.2 2.4 0.15 0.81

DF-10% random data withholding 10.1 9.3 3.2 0.27 0.78

DF-leave 1-monitor out 10.3 9.3 3.8 0.27 0.52

NME normalized mean error

Fig. 5 R2 values of each grid for 2008
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weight the two inputs because both data are estimated values
from models (Fig. 6a). The grid-by-grid correlations over
most of the domain have a value close to 1; however, the
correlations in boundary areas are lower. Both the data fusion
and two-stage statistical model capture the urban area PM2.5

concentrations. Fewer monitors are located in the forested
areas of NC, so the results from the two methods are not as
strongly correlated. CMAQ secondary organic carbon forma-
tion is typical biased low in forested areas (Van Donkelaar
et al. 2007; Zhang et al. 2007; Baek et al. 2011), which may
contribute to low correlations with the two-stage statistical
model. The two-stage statistical model can overestimate con-
centrations in the coastal areas of eastern NC (Fig. S19) be-
cause of the high relative humidity in the area, which leads to a
bias in estimated PM2.5 from satellite-retrieved AOD (Liu
et al. 2005; Hu et al. 2013). The retrieval quality of the
MODIS product is sensitive to vegetation cover and has dif-
ficulty distinguishing between the mixed land and water
pixels, a limitation that might also contribute to the overesti-
mation of the two-stage model along the coast. Lacking AOD
data could be another limitation of these AOD data-included
methods because of the satellite pattern and cloud cover days.

Comparison between data fusion and hybrid model

Another comparison is made between the data fusion and Di
et al.’s (2016) method. Temporal Deming regression (Fig. 6b)
shows the higher correlation in urban areas and lower corre-
lation in the eastern and western boundaries and mid-south
areas. This is similar to the comparison of data fusion and
the two-stage statistical model results except in the mid-
south area, which is a national forest. The difference in annual
average concentration in coastal areas (Figs. S18, S19, and

S20) illustrates that the neural network-based hybrid model
could provide a more accurate spatial information because of
the use of AAI and CTM outputs to improve accuracy.

Conclusion

Application of the data fusion method for primary and sec-
ondary pollutants over North Carolina demonstrates that the
method provides accurate concentration fields, especially for
PM2.5 total mass, OC, SO4

2−, NH4
+, and NO2, capturing the

spatial and temporal variations in both gaseous and speciated
particulate matter concentrations. Capturing these variations is
critical for improved estimation of exposures for health stud-
ies. Cross-validation with 10% random data withholding indi-
cates that the DF results have little bias. CMAQ-modeled,
non-data fused concentration fields were subject to higher
temporally and spatially varying bias and error and lower cor-
relations. These results demonstrate that the data fusion ap-
proach, as opposed to using CTM fields directly, should be
used to provide spatiotemporal exposure fields for health stud-
ies that use daily air quality metrics. Using the DF method-
derived fields to estimate mobile source impacts using the
IMSI method also found that the results could be used in
health studies.

This study also investigated the use of random data with-
holding versus withholding monitors randomly and based up-
on spatial clustering. Findings show that the data fusion meth-
od does provide accurate fields, but random data withholding
may overestimate the ability of such methods to provide ac-
curate concentration estimates in areas lacking monitors. The
number and the distribution of monitoring sites affect the ac-
curacy of the data fusion method. The more widely the

Fig. 6 a Temporal correlations (R) between data fusion and two-stage statistical model from 2006 to 2008. b Temporal correlations (R) between data
fusion and Harvard’s hybrid method from 2006 to 2008
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monitors are distributed, the more stable the data fusion meth-
od results. Observation availability is an important factor in
the application and evaluation of the method according to
some pollutants’ performances such as CO, NO2, and NOx

have very few monitors. Moreover, CO monitors are mainly
located in urban areas. However, this research and previous
studies demonstrate the benefits of the method versus the use
of air quality model fields directly.

Spatiotemporal PM2.5 fields derived using the CTM-based
data fusion method are compared well with similar fields de-
rived using AOD and another chemical transport model.
These and prior results suggest that the data fusion method
provides a promising approach to develop exposure fields for
health analysis across both urban and regional scales. A major
advantage of CTM-based data fusion methods (which could
potentially include the hybrid approach) over methods relying
mostly on AOD to provide spatial variations is that it provides
speciated PM2.5 and gaseous pollutant fields.
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