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Abstract The atmospheric chemistry and health implications
of pollutants are important scientific concerns in the rural at-
mosphere. The current study investigates the estimation of
seasonal and diurnal variability of VOCs, ozone, and NOx in
the rural area located in a tropical region of India during the
year 2013–2014. Results showed that most of the targeted
VOCswere higher in winter followed by summer and autumn.
The diurnal variability of aromatic hydrocarbons showed sim-
ilar pattern with different amplitudes as maxima and minima
during morning (07:00–10:00 h) or evening (16:00–19:00 h)
and daytime (10:00–16:00 h), respectively. The sum of aro-
matic VOCs are found to be in the range from 27.3 to 87.9 μg/
m3. In addition to this, O3 and NOx were observed as
45.04 ± 15.19 μg/m3 and 12.41 ± 3.49 μg/m3, respectively,
during the observation period. The estimated VOC/NOx ratios
(ranged from 3.4 to 3.7) indicated that the selected rural area
was VOC limited in terms of ozone sensitivity. The sources of
the VOCs have been explained by characteristic ratios, corre-
lation, and principal component analysis. Further, ozone-
forming potential (OFP) of the targeted aromatic VOCs has
been evaluated using maximum incremental reactivity which
suggested toluene (benzene) contributed the largest (lowest) in
the ozone formation. Exposure assessment in terms of lifetime
cancer and non-cancer risks lies within the acceptable range of
USEPA guidelines.
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Introduction

Volatile organic compounds (VOCs) are a diverse group of
species comprising of non-methane, oxygenated, and haloge-
nated hydrocarbons which are released from natural as well as
anthropogenic sources (Kuo et al. 2014). They play a critical
role in chemical and/or photochemical reactions, formation/
destruction of ozone (O3), secondary organic aerosols
(SOAs), and air-borne toxic chemical formation (Baudice
et al. 2016; Kim et al. 2008; Singh et al. 2016). O3 is consid-
ered as secondary pollutant which is formed through a series
of chemical reactions between VOCs and oxides of nitrogen
(NOx) in the presence of solar radiation (Kumar et al. 2014a,
2014b; Ras et al. 2009). The product of VOC concentrations
and the OH reaction coefficient is often called the reactivity of
VOC to determine the O3 formation (Ran et al. 2009). The
residence time of natural CH4 is increased by 15% due to
reactivity of VOCs with OH radicals. SOA is formed by the
reactions between VOCs with hydroxyl (OH) and/or nitrate
(NO3) radicals by nucleation and condensation processes; al-
though, the formation of SOA from VOCs are not clearly
understood (Hallquist et al. 2009; Ramanathan et al. 2007;
Sarkar et al. 2014).

The release of VOCs in the environment from biogenic
(e.g., terrestrial plants) and anthropogenic sources (industrial,
transport, evaporative emissions, waste water treatment
plants, and solvent usage) are largely dependent on source
strength and meteorological variable (Kansal 2009; Nguyen
et al. 2009; Pagans et al. 2006; Yang et al. 2016). Global
emissions of VOCs are estimated approximately in the range
of 1200 to 1600 TgC/year into the atmosphere (Bon et al.
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2011). However, the relative emission varies from region to
region depending upon the level of anthropogenic activities,
climate, and vegetation cover. Anthropogenic VOCs emis-
sions have significant role in the air pollution scenario of high
population density.

Exposure to VOCs has also a significant concern to human
beings besides the role in atmospheric chemistry and radiative
balance. VOCs can have detrimental impacts on public health
and welfare in terms of short-term and long-term exposure
(Oiamo et al. 2015; Ramírez et al. 2012; Sánchez et al.
2014). Adverse impact ranges from sensory irritation, respira-
tory illness, and impairment in liver-kidney to carcinogenic
effects such as lung, blood (leukemia and non-Hodgkin lym-
phoma), liver, kidney, and biliary tract cancer (Chang and
Chen 2008; Huang et al. 2011; Saral et al. 2009). Inhalation
is the major exposure route because of their relatively low
boiling points and high vapor pressures (Du et al. 2014). As
a matter of toxicity, the US Clean Air Act (1990) separates 97
compounds as VOCs among 188 hazardous air pollutants
where some of the VOCs are reported to be carcinogenic
(benzene, CHCl3, CCl4) and mutagenic (α-pinine) (Demir
et al. 2012; IARC 2006).

The understanding of VOCs in the ambient atmosphere is
still complex because of its ubiquitous nature, formation,
transformation processes, and emission pattern. In the last
few decades, the qualitative and quantitative assessment of
VOCs have been focused in the urban areas across the globe
(Alghamdi et al. 2014; Filella and Peñuelas 2006; Kos et al.
2014; Strandberg et al. 2014; Tang et al. 2009; Toro et al.
2015; Yang et al. 2016). In Indian context, no studies pertain
to the estimation of VOCs along with O3 and NOx in the rural
atmosphere till date. The present study mainly focused with
the following objectives: (1) seasonal and diurnal variability
of VOCs, O3, and NOx in the rural atmosphere of tropical
India; (2) identification of emission sources using various sta-
tistical tools; and (3) estimation of ozone-forming potential
and theoretical health risk assessment.

Study site and sampling

Ambient measurements of VOCs, O3, and NOx were per-
formed in the rural area (28.81°N, 77.00°E) located in the west
of the capital city Delhi, India (shown in Fig. 1). The location
is characterized by subtropical climate with hot and humid
summer and short and intense winter. Sampling was conduct-
ed for three seasons, i.e., summer, autumn, and winter, during
the year 2013–2014. There are small shops serving the daily
needs of village population, houses, and one or two lane roads
having very low to moderate traffic of vehicles. The village is
located approximately 35 km from the main commercial area
of the Delhi city. From the economic activity point, around
60–70% of the area is under crop cultivation. The village is
connected to the nearby small towns and Delhi city connected

by bituminous roads. The sampling area was free from the
influence of any emission source in its immediate vicinity
and any other kinds of obstacles (e.g., high building and trees)
in the surrounding areas.

Volatile organic compounds

Air samples of VOCs were collected and analyzed using
National Institute of Occupational Safety and Health
(NIOSH) methods 1003 and 1501. Twelve VOCs, namely,
benzene (B), toluene (T), ethylbenzene (EtB), m/p-xylene
(m/p -X) , o -xy l ene (o -X) , s tyea r ene (S ) , 12 ,4 -
trimethylbenzene (1,2,4-TMB), 1,3,5-trimethylbenzene
(1,3,5-TMB), chloroform (CHL), carbon tetrachloride
(CTC), trichloroethylene (TCE), and tetrachloroethene
(PERC) have been examined. Their role in atmospheric chem-
istry and toxicity were the main selection criteria of these
VOCs (Ramírez et al. 2012; Zhou et al. 2011). The VOCs
were sampled from the atmosphere by drawing air (indige-
nous portable sampler) with flow rate of 100 ml/min through
Orbo™-32 charcoal sampling tubes. The dimension of
Orbo™-32 charcoal tube comprises 7 cm in length × 6 mm
o.d. which was acquired from Supelco. Three-hour averaged
samples were measured at four time periods between 07:00 to
19:00 h. The samples were collected in the four time intervals,
i.e., morning period (07:00 to 10:00 h), daytime (10:00 to
13:00 h and 13:00 to 16:00 h), and evening (16:00 to
19:00 h). Then, the Orbo™-32 charcoal tubes were rapidly
sealed with Teflon tape to prevent any further contamination.
Afterwards, the tubes were labeled, wrapped with aluminum
foil, and kept at <4 °C until analysis.

Analytical procedure is initiated by transferring the activat-
ed charcoal to 2-ml amber-colored glass vial, mixed with 1 ml
of low-benzene CS2 as an extraction solvent (99% purity with
less than 0.001% benzene, purchased from Supelco), and
ultrasonicated bath for 30 min. The extracted samples were
analyzed with gas chromatograph (GC-450, Bruker) coupled
with capillary column Equity-1 (60 m, 0.25 mm ID, and
1.0 μm film thickness) and FID detector. The oven tempera-
ture was set for 40 °C (hold time 6min), which was then raised
to 200 °C at a rate of 6 °C/min (hold time 6 min).The identi-
fication and quantification of targeted compounds were
achieved by their retention time and peak area in relation to
calibration VOC standards (JMHW VOC mix, 1000 mg/ml
each in methanol, procured from Supelco) under the specified
chromatographic conditions.

Ozone and oxides of nitrogen (NOx)

Surface ozone was monitored with automatic ozone an-
alyzer (Model EC 9810 series O3) which employs pho-
tometric detection of the specific absorption of UV light
by ozone. It is a microprocessor-controlled analyzer that
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uses the Beer-Lambert law for measuring the concentra-
tions of O3 in ambient air. However, NOx (NO + NO2)
was monitored continuously using an ambient analyzer
(Model EcotechSernious 40). The analyzer works on the
principle that nitric oxide (NO) and ozone (O3) react to
produce a characteristic luminescence with intensity lin-
early proportional to the NO concentration. The O3 and
NOx levels were monitored continuously for 24 h dur-
ing the sampling campaign. Hourly averaged data were
derived from the original 1-min average interval data.

Instrument maintenance (monthly and annually) was car-
ried out as per manufacturer guidelines, and calibration
was performed just before the sampling campaign.
Particulate filter was used to prevent particles entering
into the instruments from the ambient air and replaced
once at the interval of 2 weeks. Further, an inverted
Teflon funnel was fitted at the tube entrance to avoid
dust and rainwater from entering the tube and measur-
ing instruments. The instrument meets the technical
specifications given by USEPA.

Fig. 1 Geographical location of the rural sampling site
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Exposure assessment

Using the Integrated Risk Information Systems of USEPA
1997, the exposure assessment parameters such as lifetime
cancer risk (LCR) and hazard quotient (HQ) have been calcu-
lated using the following equations:

LCR ¼ CDI� SF ð1Þ
HQ ¼ CDI=RfD ð2Þ
where CDI, SF, and RfD represent the chronic daily intake (mg/
kg/day), slope factor (mg/kg/day)−1, and reference dose (mg/kg/
day)of thechemical.HQdenotes thenon-cancerhealthhazardby
individual chemical while hazard index (HI) represents the total
non-cancer health hazard by all targeted chemicals. Equation (3)
has been used to evaluate the CDI of each compound:

CDI ¼ CA x IR x ET x EF x ED

BW x AT x 1000
ð3Þ

where CA is the VOC concentration (μg/m3), IR is an inhalation
rate (m3/h), ET is the exposure time (h/day), EF is exposure
frequency (day/year), ED is the exposure duration (year), BW
is a body weight (kg), AT is averaging time (year), and 1000 is
the conversion factor (μg/mg). For CDI calculation, Inhalation
rates of 0.83 and 0.87 m3/h while body weights of 70 and 36 kg
for adults and children were used, respectively. Other parame-
ters such as ET, EF, ED, and ATwere assumed to be 24 h/day,
350 d/year, 30 years and 70 years, respectively. The slope fac-
tors (SFs) and reference dose (RfD) are documented in Table 1.

Statistical analyses

In addition to descriptive statistics, various other statistical
tools have been conducted using SPSS (version 16.0.; SPSS

Inc., Chicago, IL, USA) and MATLAB (R2011b;
MathWorks, Natick, MA, USA) software. In order to see the
seasonal differences of VOCs, O3, and NOx, paired-sample t
test, Wilcoxan rank sum test, Friedman test, and Mann-
Whitney test have been carried out. Further, Pearson correla-
tion and principal component analysis were also used to ex-
amine the sources of VOCs. A significance value of 0.05 was
used in all statistical testing.

Results and discussion

Seasonal and diurnal variability of VOCs

A total number of 84 samples were collected during the entire
monitoring period which means 28 samples in each season
(sampling begins in May, 2013 and ends in January, 2014).
Eight species of aromatics and four halogenated hydrocarbons
were measured. The highest mean concentration of ∑VOCs
was identified in winter (65.9 ± 28.6 μg/m3) followed by
summer (57.2 ± 19.6 μg/m3) and autumn (43.3 ± 16.6 μg/
m3). An analysis of variance (ANOVA) test indicated that
the observed levels of ∑VOCs were significantly (p < 0.05)
different during the three seasons. The distinctive feature of
the seasonal variations could be an account of factors such as
distribution and strength of emission sources, seasonal vari-
ability of hydroxyl (OH) radicals, and the prevailing meteoro-
logical conditions. Higher temperature and solar radiation in
the summer is associated with high losses of VOCs by photo-
chemical degradation which leads to formation of simpler
molecules such as CO, CO2, and other intermediates (Lai
et al. 2013). The other reasons for the lower levels in summer
could be attributed to well dispersive dilution and mixing of
the pollutants (Monod et al. 2001). The higher mixing depth
results increased convection phenomenon correspondingly
decreases the levels of VOCs during the summer (Filella and
Peñuelas 2006). However, the highest VOCs concentration in
winter could be due to calm conditions and high atmospheric
stability that is commonly encountered during the winter
months in the area, restricting the dilution of pollutants
(Dumanoglu et al. 2014).

The comparative variability of individual VOC has been
displayed in Fig. 2 for the three seasons. It is clearly observed
that the levels of aromatics were higher in contrast of haloge-
nated hydrocarbons during the entire studied period. Most of
the targeted VOCs were noticed higher in winter with few
exceptions whereas lower levels were observed during either
autumn or summer (Table 2). Toluene was found to be highest
among aromatics as 34.1/19.3/22.8 μg/m3 during summer/au-
tumn/winter, respectively. Next to toluene, the aromatics
followed the order as m/p-xylene > benzene > ethylbenzene
> styrene > o-xylene >1,3,5-TMB > 1,2,4-TMB. The levels of
m/p-xylene, benzene, ethylbenzene, and styrene were

Table 1 Reference dose and carcinogenic slope factors

Organic compounds Reference dose (RfD)
(mg/kg/day)

Carcinogenic slope factors
(SF) (mg/kg/day)−1

Benzene 8.57 × 10−3 2.73 × 10−2

Toluene 1.43

Ethylbenzene 2.86 × 10−1 3.85 × 10−3

m/p-xylene 2.80 × 10−2

o-xylene 2.80 × 10−2

Styearene 2.86 × 10−1 5.7 × 10−4

1,2,4-TMB 2.00 × 10−3

1,3,5-TMB 1.71 × 10−3

CHCl3 5.7 × 10−2 8.05 × 10−2

CCl4 5.7 × 10−3 5.25 × 10−3

TCE 1.14 × 10−2 4.0 × 10−1

PERC 1.71 × 10−1 0.00203

USEPA (1998)
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observed to be 3.1/5.6/10.2, 3.8/6.0/8.4, 3.0/1.9/5.7, and 3.7/
2.4/3.9 μg/m3 during summer/autumn/winter, respectively.
The emitted aromatic VOCs could be emitted from vehicular
emissions, solvent usage, and other human activities
(Alghamdi et al. 2014; Yan et al. 2017). Specifically, toluene
is noticed higher during summer which could be due to trans-
port of pollutants from nearby commercial and industrial ac-
tivities to rural sampling site. Toluene levels were also report-
ed higher during summer time by Yang et al. (2016), Miller
et al. (2012), and Nguyen et al. (2009). On the other hand, the
halogenated VOCs showed lower values in the range of nd to
4.11 μg/m3, nd to 5.24 μg/m3, nd to 3.15 μg/m3, and nd to
5.14 μg/m3 for chloroform, carbon tetrachloride, trichloro-
ethene, and tetrachloroethene, respectively, during the moni-
toring period. The possible sources of halogenated VOCs are
from rural area’s own sources like building materials or

products such as chlorine bleach household products, paints
and adhesives used in home, industrial solvents, pesticidal
fumigants, and chlorinated tap water. Apart from this, the
other sources of VOCs could be transported pollutant from
the nearby region. Similar results have been also reported by
Cai et al. (2010), de Blas et al. (2013), and Zhu et al. (2016).
Table 3 compares the observation of the present study with the
previous research across the world.

In order to understand the sources, transport, and chemical
formation/destruction of the air pollutants, the study of diurnal
variability of the pollutants are necessary. Factors such as
human activities, nearby local traffic volume, and flow
throughout the day and meteorological parameters explain
the diurnal variability of the air pollutants. Olumayede and
Okuo (2012) stated that it is imperative to know the variability
of VOCs at the different times of the day. The average diurnal
variation of aromatic and halogenated VOCs at the rural area
is depicted in Fig. 3.

The diurnal variability for the aromatic compounds
showed similar variation trends with minimal values that
appeared in daytime period and higher concentrations in
the morning/evening during all seasons. Apart from their
primary source strength, their variations mainly corres-
ponded to the diurnal course of meteorological conditions.
The accumulation of air pollutants in the morning could be
explained by the presence of calm meteorological condi-
tions. However, the elevation of planetary boundary layer
(PBL) during daytime enhanced the dispersion and dilution
of the pollutants (Zhang et al. 2012). Along with it, photo-
chemical destruction could also be the reason for the lower
levels ofVOCs in daytime (Tan et al. 2012;Tang et al. 2007).
The highest and lowest concentration of OH radicals exhib-
ited duringmorning/evening anddaytimewheremajor sinks
ofVOCs are its reactionswithOH radical. Subsequently, the
levels of VOCs generally showed maximum values in
morning/evening and minimum in daytime. The higher
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Fig. 2 Seasonal variability of individual VOC shown in box-whisker plot. Boxes show 25th–75th percentile values. The upper and lower whiskers show
maxima and minima values. Lines inside the box represent median

Table 2 Mean concentration of individual VOC (μg/m3) during the
three seasons

Summer Autumn Winter

Benzene 3.8 ± 1.6 6.0 ± 3.0 8.4 ± 3.6

Toluene 34.1 ± 10.4 19.3 ± 7.6 22.8 ± 13.5

m/p-xylene 3.1 ± 2.3 5.6 ± 3.1 10.2 ± 6.7

o-xylene 2.7 ± 2.3 1.1 ± 0.5 4.2 ± 2.6

Ethylbenzene 3.0 ± 1.9 1.9 ± 1.0 5.7 ± 3.9

Styearene 3.7 ± 1.9 2.4 ± 1.3 3.9 ± 2.0

1,2,4-TMB 1.0 ± 0.4 0.8 ± 0.3 2.1 ± 0.7

1,3,5-TMB 0.8 ± 0.4 0.9 ± 0.5 2.4 ± 1.0

CHCl3 1.3 ± 0.6 1.7 ± 0.9 1.9 ± 0.9

CCl4 1.8 ± 1.0 2.4 ± 1.3 1.6 ± 0.9

TCE 1.7 ± 0.6 1.1 ± 0.5 1.0 ± 0.5

PERC 1.5 ± 0.5 1.0 ± 0.4 2.7 ± 1.1
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vehicular emissions from the traffic nearby urban areas dur-
ing the morning/evening rush hours and agricultural vehi-
cles used in agricultural field explain the higher levels of
VOCs. On the other hand, the variability of halogenated
VOCs does not follow as that of aromatic VOCs.

Seasonal variability of O3 and NOx

Figure 4 represents the seasonal and diurnal variability of O3 and
NOx at the rural site using hourly concentrations averaged over
the sampling duration. The meteorological variables, boundary
layer processes, and human activities principally influence the
variability in the levels of O3 and NOx (Reddy et al. 2012). The
mean concentration of O3 was found to be highest in summer
(56.41 ± 14.21 μg/m3) followed by winter (43.62 ± 10.83 μg/
m3) and autumn (35.10 ± 12.40 μg/m3) for averaging time of
24h.Highersolarradiationandtemperatureduringsummercould
be the causeofmorephotochemical ozoneproduction.LowerO3

levels were recorded in winter which could be attributed to the
shorter daylight hours and larger solar zenith angle (Wang et al.
2013). On the other hand, the levels of NOx experienced highest
levels in winter (15.85 ± 2.57 μg/m3) and lowest during autumn
(9.25 ± 1.56μg/m3). The suitablemeteorological conditions and
more use of fossil fuels could be the cause of higher NOx emis-
sions in winter. However, lower levels of NOx during summer/
autumnmight bedue tomorephoto-oxidation reactionand stron-
ger vertical turbulence. Taking into account the adverse health
effects, the World Health Organization (WHO) and Central
Pollution Control Boards (CPCB), India, have established air

quality guidelines for both O3 and NO2. The permissible limit of
O3 (100μg/m

3 8-h average) andNO2 (40μg/m
3 annual average)

is prescribedbyWHOandCPCB, India.Theobservedvalues for
O3 and NO2 during all seasons are lower as compared to the
recommended guidelines.

The diurnal variations of O3 and NOx during the three seasons
weremore or less similarwith different amplitudes (Fig. 4). It indi-
cates thatO3 concentrationswere observedmaximum (minimum)
during the afternoon (evening or early morning) hours. It is noted
that O3 levels start increasing after the sunrise coinciding with the
increasingsolarradiation,anditreachesitspeakvaluearound14:00
to15:00h.Thereafter, it decreasesgraduallyandreachesminimum
values in the night due to absence of solar radiation.This pattern of
O3 andNOx is universally accepted andalso reported in rural areas
of previous studies in Indian context (Debaje and Kakade 2009;
Hassan et al. 2013;Naja andLal 2002;Reddy et al. 2012).Duenas
etal. (2004) reported that the lower levelsofO3couldalsobedue to
its reaction with NO (sink) present in the atmosphere. However,
NOx showed a more or less opposite diurnal trend to that of O3

which is characterizedby low (high) concentrations during theday
(night or earlymorning).

O3 photochemical sensitivity

The ratios of mean values of ambient VOCs (μg/m3) to NOx
(μg/m3) have been used to examine the O3 photochemical
sensitivity in the rural environment (Cerón-Bretón et al.
2015). The levels of O3 in the afternoon are dependent on
the absolute concentrations and ratios of VOCs and NOx.

Table 3 Comparison of observed BTEX concentrations (μg/m3) in the present work with the other studies across the world

Location Benzene Toluene Ethylbenzene m/p-xylene o-xylene Reference

Dariyapur, Delhi 6.06 25.93 3.55 6.27 2.65 Present study

Yucheng, Northern China 1.78 3.44 0.41 0.34 0.29 Zhu et al. (2016)

Quzhou, China 0.81 0.48 – – – Li et al. (2015)

Pearl River Delta, China 3.48 3.43 0.88 0.44 0.22 Zhang et al. (2013)

Tardie` re, France 0.47 1.01 0.17 0.56 0.217 Sauvage et al. (2009)

Dinghu, China 3.73 11.64 2.08 2.86 1.17 Tang et al. (2007)

Navarre, Northern Spain 2.39 5.21 1.17 2.38 1.30 Parra et al. (2006)

Linan, China 2.71 5.76 0.86 1.28 0.84 Wang et al. (2004)

Fig. 3 Diurnal variability of targeted VOCs during the three seasons at rural area
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Therefore, the estimation of VOCs to NOx ratios in the morn-
ing was used in order to achieve better understanding of ef-
fective control strategies of precursors of ozone. The levels of
O3, VOCs, and NOx are compared during the observation
period (Fig. 5). In the present study, VOCs to NOx ratios were
noticed as 3.6, 3.7, and 3.4 for summer, autumn, and winter,
respectively. It indicates that the O3 formation regime in rural
areas was VOC-limited during all the three seasons. Since the
measurement of all potential VOCs present in the ambient
environment has not been carried, the observed VOCs to
NOx ratios can be underestimated. Although, the results indi-
cated that in order to reduce the ozone contamination would
result after the control of VOCs emissions (Avery 2006;
Cerón-Bretón et al. 2015; Kang et al. 2004).

OFP of VOCs

To estimate the contribution of individual VOC to photochem-
ical O3 formation, the ozone-forming potential (OFP) has
been calculated using maximum incremental reactivity
(MIR) values reported by Carter (1994). The OFP is evaluated
as the product of the concentration of VOC and the MIR

coefficient (dimensionless, gram of O3 produced per gram of
VOC). Apart from the reactivity of VOC, the other factors viz.
levels of NOx, solar intensity, and meteorological parameters
also play a decisive role in the photochemical formation of O3.
Figure 6 illustrates the OFP of aromatic compounds for the
rural area during the three seasons. In general, most of the
compounds have higher contribution in O3 formation during
winter in contrast to other seasons. Toluene (benzene) contrib-
uted the highest (lowest) among the targeted VOCs as 91.9
(1.6), 52.2 (2.5), and 61.5 g O3 g VOC

−1 (3.5) during summer,
autumn, and winter, respectively. In addition to this, m/p-
xylene and o-xylene have also significant roles in total ozone
formation. Many studies reported that BTEX has a significant
role for tropospheric ozone formation in ambient atmosphere
of Foshan, Yokohama, Beijing, Barcelona, and Jeddah
(Alghamdi et al. 2014; Duan et al. 2008; Filella and
Peñuelas 2006; Tan et al. 2012; Tiwari et al. 2010).

Sources of VOCs

To estimate the emission sources, two different characteristic
ratios of toluene to benzene (T/B) and xylene to benzene
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(X/B) are used in the present study. The levels of highly reac-
tive organic compounds are decreased due to photochemical
degradation during the daytime period while less reactive
compounds are accumulated. Benzene and toluene are the
stable compounds because of its low reactivity which have
12.5 and 2.0 days of atmospheric lifetime (Prinn et al.
1987). In contrast, xylene has a lifetime of 7.8 h which means
they get converted very fast into other atmospheric compo-
nents. If the ratio of T/B fall in the range of 1.5–4.3, it could be
reflected as indicator of vehicular emissions while higher
values indicate some additional sources nearby (Alghamdi
et al. 2014; Liu et al. 2008, Niu et al. 2012). However, X/B
ratio implies the age of air mass and indicates the evidence of
transport. The higher values indicate the fresh air mass, local
sources, and the low photochemical reactivity of VOCs while
lower values signify the old/aged air mass.

Figure 7 illustrates the characteristic ratios of T/B and X/B
during the studied seasons. It indicates that the mean T/B ratio
during summer is considerably highest at 9.5 which could
have some additional sources in contrast to that during autumn
(3.4) and winter (2.8). Apart from vehicular emissions, addi-
tional sources could be evaporative emissions and painting

and cooking processes. The seasonal variability in values of
T/B could be attributed to differences in the emissions, pho-
tochemistry, and meteorology. The observed T/B ratios in the
current study were nearly similar to those found in several
previous studies (Ho et al. 2004; Niu et al. 2012). In addition
to this, the mean values of X/B showed lower as 1.4, 1.1, and
1.7 for summer, autumn, and winter, respectively. It reveals
the high photochemical reactivity, diffusion, and dispersion of
the pollutants to the rural area from nearby sources.

Pearson correlation analysis has also been performed to the
targeted compounds in order to identify the possible emission
sources (Table 4). Correlation coefficients (r) explain that the
majority of aromatic VOCs showed good positive moderate to
strong correlation with one other. Except toluene, benzene is
significantly positively correlated with other aromatics
(r > 0.60). In addition to this, the correlation of ethylbenzene
with benzene (0.64), m/p-xylene (0.61), o-xylene (0.75), and
styrene (0.78) was found to be significantly higher. The other
halogenated hydrocarbons did not show any significant corre-
lation with each other and aromatics also. The variability in
the correlation among the aromatics could be due to the dif-
ference in composition of emission sources (vehicular and
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solvent usages) and meteorological variables. Further, the dif-
ferential decay rates of the organic compounds with oxidants
such as OH and NO3 also have a role in correlation variability.
This result is highly consistent with the studies performed
previously worldwide which stated strong correlation among
aromatic hydrocarbons (Choi et al. 2009; Parra et al. 2006;
Singh et al. 2015).

PCA, a multivariate statistical tool, has also been per-
formed using varimax rotation to identify the emission sources
in the present work. The analysis categorized the huge
scattered dataset into clustered groups as principal compo-
nents (PCs) based on the similarities of the variation of the
different VOCs (Lü et al. 2009). Eigenvalues of more than 1.0
are selected for the interpretation. Table 5 documents the

loading of the factors, fractions of the variance explained by
each factor, total variance, and communalities. Three PCs are
extracted to explain 70.12% of the total variance where PC-1,
PC-2, and PC-3 account for 37.28, 19.74, and 12.99%, respec-
tively. PC-1 comprises with benzene, m/p-xylene, o-xylene,
ethylbenzene, 1,2,4-TMB, 1,3,5-TMB, and PERC. However,
PC-2 accounted for toluene, o-xylene, ethylbenzene, and sty-
rene while PC-3 is only associated with chloroform and car-
bon tetrachloride. It may be inferred that vehicle exhaust, sol-
vent usage and degreasing solvents, and industrial sources act
as indicators for PC-1, PC-2, and PC-3, respectively.

Exposure assessment

Exposure assessment via inhalation pathway has been evalu-
ated for the two population groups (adults and children) using
the USEPA guidelines. The three calculations, namely, chron-
ic daily intake (CDI), hazard quotient (HQ), and lifetime can-
cer risk (LCR) for each component are documented in Table 6.
The order of estimated CDI (mg/kg/day) to observed dataset
was found to be in the range from 1.0 × 10−05 to 1.0 × 10−03.
The estimated HQs ranged from 11.76 × 10−04 to 9.36 × 10−02

and from 2.40 × 10−03 to 19.06 × 10−02 for adults and children,
respectively, which inferred that none of them exceed the
threshold value. Further, hazard indices (HI = ∑HQs) also
did not exceed the permissible value (1.0) for both population
groups. Although, many researchers have reported that values
of HQ greater than 0.1 can be considered as potential concern
(Kumar et al. 2013). However, the range of estimated LCR is
observed to be from 2.24 × 10−07 to 5.98 × 10−05 and from
4.56 × 10−07 to 12.18 × 10−05 for adults and children, respec-
tively. The sum of individual LCR for both population groups
were noticed to be higher than the recommended guideline
values (1.0 × 10−05) of WHO; however, it lies in the accept-
able range (1.0 × 10−04 to 1.0 × 10−06) of USEPA (Kumar et al.

Table 4 Pearson correlation coefficients (r) among studied VOCs at rural site

1 2 3 4 5 6 7 8 9 10 11 12

1 Benzene 1.00

2 Toluene 0.22 1.00

3 m/p-xylene 0.81** 0.24 1.00

4 o-xylene 0.60** 0.33 0.49** 1.00

5 Ethylbenzene 0.64** 0.48 0.61** 0.75** 1.00

6 Styearene 0.60** 0.69** 0.51** 0.70** 0.78** 1.00

7 1,2,4-TMB 0.71* 0.23 0.73** 0.66** 0.71** 0.52* 1.00

8 1,3,5-TMB 0.71** 0.20 0.72** 0.54** 0.59* 0.43 0.75** 1.00

9 CHCl3 0.18 0.16 0.17 0.02 0.21 0.27 0.21 0.03 1.00

10 CCl4 0.23 0.05 0.17 0.02 0.01 0.05 0.11 0.01 0.33* 1.00

11 TCE −0.16 0.27* −0.07 −0.09 −0.09 0.07 −0.24 −0.18 0.05 0.22 1.00

12 PERC 0.31* 0.04 0.34** 0.27* 0.25 0.20 0.51** 0.56* 0.27* 0.13 0.06 1.00

*p < 0.05; **p < 0.01 (correlation coefficient and significance test)

Table 5 Principal component analysis (PCA) of studied VOCs at rural
site

PC-1 PC-2 PC-3 Communality

Benzene 0.82 0.75

Toluene 0.87 0.77

m/p-xylene 0.80 0.71

o-xylene 0.64 0.51 0.70

Ethylbenzene 0.66 0.61 0.81

Styearene 0.81 0.87

1,2,4-TMB 0.89 0.83

1,3,5-TMB 0.87 0.77

CHCl3 0.69 0.50

CCl4 0.78 0.61

TCE 0.53

PERC 0.51

Eigenvalues 4.47 2.36 1.55

%age variance 37.28 19.74 12.99

Cumulative variance 37.28 57.03 70.02
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2014a, 2014b; Ramírez et al. 2012). Results showed that the
all estimated risk parameters were higher for children as com-
pared to adults.

Conclusions

Measurement of VOCs, O3, and NOx were carried out exten-
sively to see the seasonal and diurnal variability in the rural
area of tropical India during 2013–2014. The sum of total
targeted VOCs (∑VOCs) were observed to be 65.9 ± 28.6/
57.2 ± 19.6/43.3 ± 16.6 μg/m3 during winter/summer/au-
tumn, respectively, in which variation could be due to distri-
bution of emission sources, seasonal change of OH radicals,
and meteorological variability. Toluene had the highest level
among the selected VOCs. After examining the diurnal vari-
ability, morning/evening and daytime showed the maximum
and minimum levels, respectively, for most of the VOCs. In
addition to this, O3 was highest during summer (56.41 μg/m3)
followed by winter (43.62 μg/m3) and autumn (35.10 μg/m3)
while NOx followed the order as winter > summer > autumn.
The observed ratios of VOC to NOx clearly indicated the rural
area is VOC limited. Toluene to benzene ratios showed an
average value of 5.23, concluding that sources are mainly
vehicular exhaust, while low xylene-to-benzene ratios explain
the old/aged air masses. Significant association has been no-
ticed among aromatic compounds after performing Pearson
correlation analysis. Principal component analysis explained
the major sources could be vehicle exhaust, solvent usage, and
degreasing solvents. Further, toluene and xylene had the
highest and lowest contribution in ozone formation. In the
concern of lifetime cancer risk and non-cancer risks, the both

population groups (adult and children) lie within the accept-
able range of USEPA guidelines.

The present study highlights the seasonal and diurnal var-
iability of VOCs, O3, and NOx in the rural ambient air of
subtropical India. The observed results for origin of VOCs,
its photochemistry and theoretical health risk assessment, are
useful in improving the efficiencies and efficacies of future
policies to maintain air quality. In order to effectively control
measures of VOCs and O3, some important steps need to be
taken which includes minimizing the release of the pollutants
at the source itself by using effective and efficient technolog-
ical measures. In addition to this, the number air quality mon-
itoring networks should be increased to identify the possible
sources present in nearby areas as well as implementation of
proper land use planning. Indeed, our study is limited to few
VOCs; therefore, year-round continuous measurements of
more VOCs are required to improve better understanding for
atmospheric chemistry in rural areas. Further research is also
warranted to gain mutual interaction among trace gases along
with various statistical and modeling studies.
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