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Abstract This study investigates the applicability of three
different soft computing methods, least square support vector
regression (LSSVR), multivariate adaptive regression splines
(MARS), and M5 Model Tree (M5-Tree), in forecasting SO2

concentration. These models were applied to monthly data
obtained from Janakpuri, Nizamuddin, and Shahzadabad, lo-
cated in Delhi, India. The models were compared with each
other using the cross validation method with respect to root
mean square error, mean absolute error, and correlation coef-
ficient. According to the comparison, LSSVR provided better
accuracy than the other models, while the MARS model was
found to be the second best model in forecasting monthly SO2

concentration. Results indicated that the applied models gave
better forecasting accuracy in Janakpuri station than the other
stations. The results were also compared with previous studies

and satisfactory results were obtained from three methods in
modeling SO2 concentrations.

Keywords Soft computing techniques .Regressionmethods .

Predictionmodeling . Environmental management

Introduction

Soft computing consists of different techniques, which are
helpful to solve uncertain and complex problems (Corchado
et al. 2011; Corchado and Herrero 2011; Vaidya et al. 2012,
Kisi and Parmar 2016). It is used to investigate, simulate, and
analyze complex issues and phenomenon in an attempt to
solve real-world problems. Soft computing is useful where
the precise scientific tools are incapable of giving analytic,
low cost, and complete solution. The problem of air pollution
is one of the most important problems among all, and it had
come into play since the beginning. Air pollution affects both
the developing and the developed countries alike. Air pollut-
ants consist of gaseous pollutants (SO2, NO2, CO, etc.), odors,
and suspended particulate matter (SPM) such as fumes, dust,
smoke, and mist. The high concentration of air pollutants in
and near the urban region causes severe pollution to the sur-
roundings. Sulfur dioxide is a pungent, toxic gas that is in the
atmosphere. Moreover, it harms the society, as it causes acid
rain which affects the environment (Rizwan et al. 2013).
Sulfur dioxide reacts in the atmosphere to form aerosol parti-
cles, which can create outbreaks of haze and other climate
problems. The main sources of SO2 are volcanic and anthro-
pogenic emissions from burning sulfur-contaminated fossil
fuels and the refinement of sulfide ores (Seinfeld and Pandis
2006). According to the new analysis of data from NASA’s
Aura satellite, the emissions of sulfur dioxide from power
plants in India increased by more than 60% between 2005
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and 2012 (Krotkov et al. 2016). In 2010, India surpassed the
USA as the world’s second largest emitter of SO2 after China
(EPA 2015a, b). The capital of India, Delhi, is considered
among the most polluted megacities of the world (Gurjar
et al. 2010). In the past, some studies were undertaken for
air quality assessment of Delhi (Aneja et al. 2001; Goyal
2003; Gurjar et al. 2004; Mohan and Kandya 2007; Soni
et al. 2014). Recently, Krotkov et al. (2016), studied ozone
layer and major atmospheric pollutant gases (nitrogen dioxide
(NO2) and sulfur dioxide (SO2)) by using the Ozone
Monitoring Instrument (OMI) onboard NASA’s Aura satellite
and examined changes in SO2 and NO2 over some of the
world’s most polluted industrialized regions during the first
decade of OMI observations and observed that in India, SO2

and NO2 levels from coal power plants and smelters are grow-
ing at a fast pace, increasing by more than 100 and 50%,
respectively, from years 2005 to 2015.

The advanced soft computing techniques such as artifi-
cial neural networks (ANNs), adaptive-network-based
fuzzy inference system (ANFIS), genetic algorithm (GL),
fuzzy inference system (FIS), decision trees, and support
vector machines have been successfully applied for model-
ing from the last decade (Kisi 2009a, b; Guven and Kisi
2011; Voukantsis et al. 2011; Kisi and Cengiz 2013;
Antanasijević et al. 2013; Kisi and Tombul 2013; Gennaro
et al. 2013; Goyal et al. 2014; Parmar and Bhardwaj 2014;
Wanga et al. 2015; Kisi et al. 2016). Etemad-Shahidi and

Mahjoobi (2009) used M5 algorithm for prediction of wave
height, and the results of model trees were also compared
with those of artificial neural networks. In some applica-
tions, generalized regression neural networks (GRNN),
multilayer perceptron-neural networks (MLP), and support
vector machine (SVM) are used to calculate the predicted
value (Kim et al. (2012). In comparison to empirical and
MLR models, ANN models performed better. In order to
check the accuracy of the these models, Kisi (2015) applied
multivariate adaptive regression splines (MARS), least
square support vector regression (LSSVR), and M5 Model
Tree (M5Tree) in Pan evaporation at Antalya and Mersin
sample stations in Turkey. The LSSVR model performs
more accurately in the case of using local input and
output; in the second case, the MARS model is better. Kim
et al. (2015) reported daily pan evaporation prediction by
using soft computing models. Recently, Shafaei and Kisi
(2016) employed three WANFIS (wavelet-ANFIS),
WSVR (wavelet-SVR), and WARMA (wavelet-ARMA)
hybrid methods for estimating monthly lake-level changes
and found that three hybrid models forecasted more accu-
rate than the single models.

However, not many scientific literature discuss a number
of robust forecasting methods using soft computing tech-
niques for air pollution modeling. The present paper in-
cludes MARS, the LSSVR, and M5 Model Tree (M5Tree)
techniques. Each one of these algorithms is discussed

Fig. 1 The sample site area map
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separately and the results discussed. In addition, a compar-
ison of all methods is made to emphasize their advantages as
well as their disadvantages. To the best of the authors’
knowledge, it is the first time that such an analysis related
to the LSSVR, MARS, and M5Tree is being performed for
air pollutants of Delhi. This constitutes a real challenge as
the urban pollution gets mixed with the desert dust aerosols
during pre-monsoon and summer seasons over Delhi (Singh
et al. 2005; Prasad et al. 2007; Soni et al. 2015; Parmar et al.
2016), whereas the winters are extremely polluted with high
concentrations of black carbon aerosols from vehicular and
other anthropogenic pollution sources leading to the forma-
tion of foggy and haze conditions over Delhi (Ganguly et al.
2006; Singh et al. 2010).

Delhi is the second most populous urban agglomeration in
India and third largest urban area in the world. NASA’s report
creates the importance to investigate the pollutant levels at
different sites (residential and industrial) in Delhi. Air pollut-
ants directly affect the health of residents. This research has an
importance as 19 million people have to breathe in this air and
quality of air is directly related to health.

Data and methodology

In the Northern region, Delhi is located in central India and
715 ft. above the sea level (Fig. 1). The region has a semi-arid
or steppe climate, with extremely hot summers, heavy rain falls

Table 1 The monthly statistical
parameters of data set for
Janakpuri, Nizamuddin, and
Shahzadabad stations

Data set xmean
(ppm)

Sx
(ppm)

Csx
(ppm)

xmin

(ppm)
xmax

(ppm)
r1 r2 r3

Janakpuri 2006–2010 6.13 2.89 1.66 4 14.7 −0.217 −0.200 −0.097
2000–2005 13.3 3.80 0.37 6.4 21.1 0.106 0.003 −0.116
1996–1999 17.1 2.04 0.10 12.7 22.1 0.199 0.164 0.141

1987–1995 12.7 5.06 −0.20 3 24.6 0.644 0.580 0.502

Nizamuddin 2006–2010 6.07 2.87 1.77 4 14.2 0.933 0.881 0.796

2000–2005 12.9 3.94 0.05 2.1 20.9 0.796 0.720 0.654

1996–1999 17.0 1.81 −0.15 12.9 20.8 0.238 0.168 0.275

1987–1995 14.3 5.51 1.15 3.5 36.6 0.395 −0.069 −0.014
Shahzadabad 2006–2010 5.86 2.79 2.36 4 17 0.776 0.616 0.458

2000–2005 10.1 3.23 0.99 4.4 20.5 0.771 0.674 0.615

1996–1999 20.3 4.80 0.11 10.7 30.3 0.709 0.517 0.294

1987–1995 19.2 9.95 0.10 3.2 42.7 0.268 0.104 −0.011

Table 2 The parameters of the
optimal LSSVR models for each
combination Janakpuri,
Nizamuddin, and Shahzadabad
stations

Cross validation Training data set Test data set Input combination

(i) (ii) (iii)

Janakpuri

M1 1987–1999 2006–2010 (100, 5) (97, 5) (100, 5)

M2 1987–1995 and 2006–2010 2000–2005 (100, 1) (100, 1) (100, 1)

M3 1987–1995 and 2000–2010 1996–1999 (37, 1) (100, 1) (77, 1)

M4 1996–2010 1987–1995 (1, 2) (1, 2) (100, 3)

Nizamuddin

M1 1987–1999 2006–2010 (100, 59) (100, 98) (85, 100)

M2 1987–1995 and 2006–2010 2000–2005 (1, 4) (24, 100) (1, 9)

M3 1987–1995 and 2000–2010 1996–1999 (63, 100) (100, 18) (12, 99)

M4 1996–2010 1987–1995 (1, 100) (1, 1) (29, 8)

Shahzadabad

M1 1987–1999 2006–2010 (100, 59) (100, 96) (90, 100)

M2 1987–1995 and 2006–2010 2000–2005 (1, 4) (1, 8) (1, 9)

M3 1987–1995 and 2000–2010 1996–1999 (100, 52) (100, 97) (80, 100)

M4 1996–2010 1987–1995 (65, 1) (2, 25) (3, 34)
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in the monsoon months, and cold winters. There are dust
storms in summer and foggy mornings in winter.
Temperatures gradually rise to 46 °C in the summer and falls
to 4 °C in winter. In winter months, temperature inversion
and low wind speed are the main cause of accumulation
of airborne pollutants in Delhi. In Delhi, industries, ve-
hicular activities, power plants, and frequent dust storms
are majorly contributing in the high concentration of the
pollutants. The Central Pollution Control Board (CPCB)
SO2 data over four sites, in which two are residential,
Janakpuri and Nizamuddin, and one industr ia l ,
Shahazada Bagh, are utilized for the present study. The
ambient air quality and long-term data used in the present
study covers the period 1993–2012 which is obtained
from the CPCB. The monthly statistical parameters of
the used data set for Janakpuri, Nizamuddin, and
Shahzadabad stations are given in Table 1.

Least square support vector regression

Vladimir Vapnik and his co-workers developed this least
square support vector machine models at AT&T Bell
Laboratories in 1995, which are applied to calculate the non-
linear relationship between input variables and output vari-
ables with least error (Cortes and Vapnik 1995; Suykens
2001; Smola 2004). LSSVR generated from SVR (support
vector regression), which is a great technique to solve the
real-life problems by a combination of regression, function
estimation, and classification. This SVR is developed on the
ground of structural risk minimization (SRM), which provides
the least error in forecasting problems. It is mostly suitable for
signal processing, pattern recognition, and nonlinear regres-
sion estimation.

Firstly, the LSSVR model was projected by Suykens and
Vandewalle in 1999 (Suykens and Vandewalle 1999), which is
applied on chaotic time series forecasting. Themain difference
between LSSVR and SVR is consideration of the equations;
during the training phase, LSSVR uses linear equations while
SVR uses quadratic optimization. The other conventional
models like back propagation neural networks (BPNN), partial
least square regression (PLS), and multivariate linear regres-
sion (MLR) are computationally more extensive than LSSVR.
So it is easy to apply this model as compared to others.

Consider a given training set pk ; qkf gNk¼1 with input data
pk ∈ Rn and output data qk ∈ R with class labels qk ∈ {−1, +1}
and linear classifier

q pð Þ ¼ sign wTpþ b
� � ð1Þ

When the data of the two classes are separable, one can say

wTpk þ b≥ þ 1; if qk ¼ þ1
wTpk þ b≤−1; if qk ¼ −1

� �
ð2Þ

These two sets of inequalities can be combined into one
single set as follows

qk wTpk þ b
� �

≥1; k ¼ 1; 2; 3; ::::;N ð3Þ

The convex optimization theory is used to formulate SVR.
In this methodology, firstly, it starts formulating the problem
as a constrained optimization problem. In the second step, it

Table 3 Comparison of LSSVR models

Statistics Cross validation Test data set Input combination

(i) (ii) (iii) Mean

Janakpuri
RMSE M1 2006–2010 2.18 1.35 1.35 1.63

M2 2000–2005 3.62 2.36 1.89 2.62
M3 1996–1999 3.03 2.29 2.11 2.48
M4 1987–1995 3.10 2.87 2.74 2.90

Mean 2.98 2.22 2.02 2.41
MAE M1 2006–2010 1.96 0.90 0.83 1.23

M2 2000–2005 2.49 1.71 1.27 1.82
M3 1996–1999 2.19 1.74 1.51 1.81
M4 1987–1995 2.19 2.05 1.96 2.07

Mean 2.21 1.60 1.39 1.73
R M1 2006–2010 0.924 0.912 0.927 0.921

M2 2000–2005 0.705 0.883 0.927 0.839
M3 1996–1999 0.718 0.846 0.873 0.812
M4 1987–1995 0.707 0.746 0.774 0.742

Mean 0.764 0.847 0.875 0.829
Nizamuddin
RMSE M1 2006–2010 2.91 1.88 1.90 2.23

M2 2000–2005 2.36 2.30 2.32 2.33
M3 1996–1999 2.04 1.90 1.84 1.93
M4 1987–1995 5.21 5.46 5.41 5.36

Mean 3.13 2.89 2.87 2.96
MAE M1 2006–2010 2.73 1.56 1.59 1.96

M2 2000–2005 1.73 1.69 1.69 1.70
M3 1996–1999 1.59 1.48 1.44 1.50
M4 1987–1995 3.45 3.30 3.48 3.41

Mean 2.38 2.01 2.05 2.14
R M1 2006–2010 0.933 0.929 0.928 0.930

M2 2000–2005 0.803 0.814 0.813 0.810
M3 1996–1999 0.241 0.263 0.292 0.265
M4 1987–1995 0.397 0.324 0.405 0.375

Mean 0.594 0.582 0.609 0.595
Shahzadabad
RMSE M1 2006–2010 3.21 2.39 2.41 2.67

M2 2000–2005 2.11 2.07 2.06 2.08
M3 1996–1999 3.42 3.51 3.53 3.49
M4 1987–1995 6.73 6.48 6.50 6.57

Mean 3.87 3.61 3.63 3.70
MAE M1 2006–2010 2.97 1.91 1.94 2.27

M2 2000–2005 1.59 1.59 1.59 1.59
M3 1996–1999 2.59 2.70 2.74 2.68
M4 1987–1995 4.96 5.02 5.00 4.99

Mean 3.03 2.81 2.82 2.88
R M1 2006–2010 0.780 0.760 0.758 0.766

M2 2000–2005 0.767 0.773 0.773 0.771
M3 1996–1999 0.706 0.679 0.673 0.686
M4 1987–1995 0.748 0.764 0.764 0.758

Mean 0.750 0.744 0.742 0.745
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formulates the Lagrangian and then takes the conditions for
optimality and finally solves the problem in the dual space of
Lagrange multipliers. With the resulting classifier

q pð Þ ¼ sign ∑
N

k¼1
αkqkp

t
kpþ b

� �
ð4Þ

Cortes and Vapnik (1995) extended this linear SVR classi-
fier to a non-separable case by using an additional slack var-
iable in the problem formulation. Now, after applying addi-
tional slack variable, the set of inequalities is as

qk wTpk þ b
� �

≥1−ξk ; k ¼ 1; 2; 3; ::::;N ð5Þ

In classic SVR, inequality type constraints are considered,
but in LSSVR equality type of constraints are used. This
equality type of constraints simplifies the problem as the so-
lution of LSSVR, received directly after solving a set of linear
equations instead of solving a convex quadratic program. In
this LSSVR classifier, in the primal space is as follow,

q pð Þ ¼ sign wTpþ b
� � ð6Þ

where b is a real constant. In the nonlinear classification, the
LSSVR classifier in the dual space is like below

q pð Þ ¼ sign ∑
N

k¼1
αkqkK p; pkð Þ þ b

� �
ð7Þ

In Eq. (7),αk is the +ve real constants and b a real constant,
in general, K(pk, p) = 〈ϕ(pk), ϕ(p)〉 , 〈•, •〉 is the inner product,
and ϕ(p) the nonlinear map from the original space to a high
dimensional space. In the function inference, the LSSVR
model is in the below form

q pð Þ ¼ ∑
N

k¼1
αkK p; pkð Þ þ b ð8Þ

In radial basis function (RBF), kernels are in use, two al-
teration parameters (γ,α) are inserting. Where γ is the regu-
larization constant and α the width of the radial basis function
kernel.

In this current research work, LSSVR is used for modeling
of air pollutants level in Delhi. By using the LSSVR model,
the output prediction error is least. As compared to
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Fig. 2 The observed and
forecasted SO2 by the LSSVR
model
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conventional models, the LSSVR model is best to remove
noises and reduces the computational labor. So, because of
these benefits, the conventional models can be replaced with
LSSVR. This will be more useful in application of forecast
modeling in different areas of research.

Multivariate adaptive regression splines

Multivariate adaptive regression splines model is a non-
parametric regression model, which is applied to predict
continuous numeric outcomes. MARS was developed by
Friedman (1991), which is a flexible procedure to orga-
nize relationships that are nearly additive or involve
interactions with other variables. MARS makes no as-
sumptions about the underlying functional relationship
between dependent and independent variables in order
to estimate the general functions of high dimensional
arguments given sparse data, which is the main beauty
of this model (Friedman 1991). The MARS model ex-
plains the complex nonlinear relation between predictor
and response variables; this is the major beauty of this
model. Apart from other conventional models, it can
work by both backward and forward stepwise proce-
dures. By using the backward stepwise procedure, it is
helpful to remove preventable variables from the earlier
selected set and this elimination improves prediction ac-
curacy (Andres et al. 2010). The forward stepwise pro-
cedure helps to choose the appropriate input variables.

The value of other variables can be defined by using two
basis functions or by inflection point along the range of inputs;
then, we will have the new variable Y, which is mapped from
variable X as below:

Y ¼ max 0;X−cð Þ ð9Þ
Y ¼ max 0; c−Xð Þ ð10Þ
where c represents the threshold value. There are two adjacent
splines, which are intersecting at knot to maintain the conti-
nuity of the basis functions (Sephton 2001; Bera et al. 2006).
The MARS model has differently many applications in re-
search, like prediction modeling, financial management, time
series analysis, etc. Here, the MARS model is applied to cal-
culate the level of air pollution at different sites in Delhi, India.

M5 model tree

Quinlan (1992) developed the model for continuous class
learning, which is named as an M5 model tree. The main
strength of this model is a binary decision tree. To find
the relation between independent and dependent variables,
linear regression function is applied to terminal leaf nodes
(Mitchell 1997).

The M5 model tree is commonly used for categorical data;
this is better than other conventional decision tree models. The
main advantage of this model is to handle quantitative data,
which makes it different from other tree models. It has two
steps; in the first step, the data is divided into subsets to gen-
erate a decision tree (Solomatine and Xue 2004). In the second
step, the standard deviation of the class value reached at a

Table 4 Comparison of MARS models

Statistics Cross validation Test data set Input combination

(i) (ii) (iii) Mean

Janakpuri
RMSE M1 2006–2010 2.65 1.65 1.72 2.01

M2 2000–2005 3.69 3.26 3.33 3.43
M3 1996–1999 3.04 2.81 2.86 2.90
M4 1987–1995 3.16 2.94 2.92 3.01

Mean 3.14 2.67 2.71 2.84
MAE M1 2006–2010 2.45 1.33 1.42 1.73

M2 2000–2005 2.65 2.50 2.44 2.53
M3 1996–1999 2.18 2.02 2.06 2.09
M4 1987–1995 2.19 2.07 2.04 2.10

Mean 2.37 1.98 1.99 2.11
R M1 2006–2010 0.902 0.909 0.916 0.909

M2 2000–2005 0.686 0.760 0.750 0.732
M3 1996–1999 0.718 0.760 0.747 0.742
M4 1987–1995 0.703 0.738 0.744 0.728

Mean 0.752 0.792 0.789 0.778
Nizamuddin
RMSE M1 2006–2010 2.78 2.94 1.63 2.45

M2 2000–2005 2.58 2.72 2.71 2.67
M3 1996–1999 2.44 2.32 2.23 2.33
M4 1987–1995 5.52 5.64 5.57 5.58

Mean 3.33 3.41 3.04 3.26
MAE M1 2006–2010 2.59 2.75 1.27 2.20

M2 2000–2005 1.94 1.95 1.94 1.94
M3 1996–1999 1.97 1.79 1.77 1.84
M4 1987–1995 3.46 3.52 3.68 3.55

Mean 2.49 2.50 2.17 2.39
R M1 2006–2010 0.933 0.933 0.927 0.931

M2 2000–2005 0.807 0.804 0.803 0.805
M3 1996–1999 0.249 0.251 0.226 0.242
M4 1987–1995 0.401 0.351 0.387 0.380

Mean 0.598 0.585 0.586 0.589
Shahzadabad
RMSE M1 2006–2010 3.11 3.25 2.24 2.87

M2 2000–2005 2.31 2.38 2.38 2.36
M3 1996–1999 3.46 4.37 4.43 4.09
M4 1987–1995 7.49 7.07 7.30 7.29

Mean 4.09 4.27 4.09 4.15
MAE M1 2006–2010 2.85 3.05 1.59 2.50

M2 2000–2005 1.73 1.91 1.91 1.85
M3 1996–1999 2.70 3.41 3.49 3.20
M4 1987–1995 5.54 5.25 5.48 5.42

Mean 3.21 3.41 3.12 3.24
R M1 2006–2010 0.777 0.772 0.752 0.767

M2 2000–2005 0.760 0.775 0.775 0.770
M3 1996–1999 0.691 0.646 0.608 0.648
M4 1987–1995 0.681 0.711 0.696 0.696

Mean 0.727 0.726 0.708 0.720
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node is used for splitting criterion. Here, expected reduction is
measured, in order to check the error of testing each attribute
at node. Then compute the SDR (standard deviation reduc-
tion) (Pal and Deswal 2009) as below:

SDR ¼ sd Tð Þ−∑ T ij j
Tj j sd T ið Þ ð11Þ

where sd expressed as standard deviation, T represents a set of
examples which reaches at the node, and Ti is the i

th outcome
of the possible set. The data’s standard deviation (SD) are less
than parent nodes. In this phase, large tree-like design have
poor generalization and result in around appropriate. Quinlan
(1992) suggests a solution for this circumstance, in the real
dense sapling is actually clipped and then clipped subtrees are
usually changed by using linear regression functions. By this
process, accuracy and reliability of the design tree are very
much improved. The M5model tree is applied in this research
work for decision making for the air quality level in Delhi,
India.

Application and results

Monthly SO2 of three different regions, Janakpuri,
Nizamuddin, and Shahzadabad, located in India were
modeled using three different heuristic methods, LSSVR,
MARS, and M5Tree. Three previous lags were used as inputs
to the models to forecast 1-month ahead SO2 parameter. The
cross validation method was used for each model by dividing
data into four subsets. Table 2 reports the training and test data
sets of each model. In this, table M1 indicates model 1 and
vice versa. Evaluation criteria used in the applications are root
mean square errors (RMSE), mean absolute errors (MAE),
and correlation coefficient (R). The RMSE andMAE statistics
can be given as

RMSE ¼
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Fig. 3 The observed and
forecasted SO2 by the MARS
model
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where N is the number of data, SO2i,o is the observed SO2

values, and SO2i,e is the model’s estimate.
For each LSSVRmodel in each data set, various parameters

were tried and the best ones that gave the minimum RMSE
error in the test period were obtained. The parameters of the
optimal LSSVR models for each combination of Janakpuri,
Nizamuddin, and Shahzadabad stations are provided in
Table 2. In this table, (100, 5) indicates the regularization con-
stant and RBF kernel values of the LSSVRmodel, respectively.
Test results of the optimal LSSVR models for each station and
for each data set are given in Table 3. This table obviously
shows that all the LSSVR models give different accuracies
for different data sets. In Janakpuri, average accuracies reveal
that the best results were generally obtained for the third input
combination. It is clear from Table 3 that the LSSVR model
provides the worst results in forecasting SO2 of three stations
for the M4 data set (1987–1995). The basic reason for this
might be the fact that the data range of this test data set is very
different from those of the M1, M2, and M3 (see Table 1). The
maximum values (xmax = 24.6, 36.6, and 42.7) of the M4 test
data set are higher than those of the other test data sets for the
Janakpuri, Nizamuddin, and Shahzadabad stations, respective-
ly. Training with M1, M2, and M3 data sets causes some ex-
trapolation difficulties for the applied LSSVRmodels. Standard
deviation of the M4 data set is also higher than those of the
others. In Janakpuri, the LSSVR model provides the best accu-
racy for the M1 data set and second and third input combina-
tions while the M3 and M2 data sets with third input combina-
tions give the best results for the Nizamuddin and Shahzadabad
stations, respectively. Figure 2 illustrates the observed and pre-
dicted SO2 values using the LSSVR model for each data set.
Themodels’ accuracies seem to be better in forecasting the SO2

of Janakpuri station than those of the other stations. This is also
confirmed by the comparison statistics reported in Table 3. This
may be due to the difference of SO2 data range of each station.
Janakpuri has a lower data range (xmin = 3 and xmax = 24.6) than
those of the Nizamuddin (xmin = 2.1 and xmax = 36.6) and
Shahzadabad (xmin = 3.2 and xmax = 42.7) stations, respectively.

Table 4 compares the accuracy of different MARS models
for different test data sets. Unlike the previous application
models generally yield better results in combination ii of
Janakpuri. The best MARS model was obtained from M1
and second inputs in Janakpuri while the M1 with third inputs
provided the best results in Nizamuddin and Shahzadabad
stations, respectively. The observed and forecasted SO2 by
the MARS models is demonstrated in Fig. 3 in the form of
scatter plot. Similar to the LSSVR, here, also less scattered
forecasts were obtained for the Janakpuri in relative to the
other two stations. SO2 modeling accuracy of the optimal
M5-Tree models is provided in Table 5. Different from the
LSSVR andMARSmodels, theM5-Tree model gives the best
accuracy for M2 and third inputs in Janakpuri while the M3
andM2with first input provide the best results in Nizamuddin

and Shahzadabad stations, respectively. The scatter plots giv-
en in Fig. 4 clearly show that the M5-Tree model forecasts
SO2 of Janakpuri better than those of the other stations.
Comparison with Figs. 2 and 3 obviously indicates that the
M5-Tree model gives more scattered forecasts than the
LSSVR and MARS models. The reason of this may be the
fact that the linear structure of the M5-Tree model prevents it
from accurately predicting highly nonlinear SO2. Comparison

Table 5 Comparison of M5-Tree models

Statistics Cross validation Test data set Input combination

(i) (ii) (iii) Mean

Janakpuri
RMSE M1 2006–2010 2.95 2.88 2.89 2.91

M2 2000–2005 3.47 3.13 2.71 3.10
M3 1996–1999 2.93 2.79 2.79 2.84
M4 1987–1995 3.16 3.16 3.07 3.13

Mean 3.13 2.99 2.87 2.99
MAE M1 2006–2010 2.81 2.75 2.76 2.77

M2 2000–2005 2.53 2.25 1.88 2.22
M3 1996–1999 2.23 2.09 2.03 2.12
M4 1987–1995 2.26 2.14 2.06 2.15

Mean 2.46 2.31 2.18 2.32
R M1 2006–2010 0.862 0.876 0.877 0.872

M2 2000–2005 0.722 0.782 0.841 0.782
M3 1996–1999 0.736 0.766 0.772 0.758
M4 1987–1995 0.696 0.711 0.729 0.712

Mean 0.754 0.784 0.805 0.781
Nizamuddin
RMSE M1 2006–2010 3.84 3.65 3.65 3.71

M2 2000–2005 3.80 5.29 4.65 4.58
M3 1996–1999 2.96 4.51 3.44 3.64
M4 1987–1995 5.46 6.03 5.60 5.70

Mean 4.02 4.87 4.34 4.41
MAE M1 2006–2010 3.68 3.51 3.51 3.57

M2 2000–2005 3.10 4.23 3.79 3.71
M3 1996–1999 2.14 3.41 2.34 2.63
M4 1987–1995 3.52 3.98 3.64 3.71

Mean 3.11 3.78 3.32 3.40
R M1 2006–2010 0.844 0.846 0.846 0.845

M2 2000–2005 0.694 0.675 0.724 0.697
M3 1996–1999 0.179 0.114 0.084 0.126
M4 1987–1995 0.396 0.327 0.369 0.364

Mean 0.528 0.490 0.505 0.508
Shahzadabad
RMSE M1 2006–2010 3.83 3.69 3.69 3.74

M2 2000–2005 3.13 4.10 3.85 3.69
M3 1996–1999 3.70 4.86 5.36 4.64
M4 1987–1995 7.42 7.14 7.14 7.23

Mean 4.52 4.95 5.01 4.83
MAE M1 2006–2010 3.54 3.46 3.45 3.49

M2 2000–2005 2.39 3.08 2.86 2.78
M3 1996–1999 2.74 3.87 4.29 3.63
M4 1987–1995 5.55 5.34 5.33 5.41

Mean 3.56 3.94 3.99 3.83
R M1 2006–2010 0.617 0.640 0.641 0.633

M2 2000–2005 0.703 0.523 0.581 0.602
M3 1996–1999 0.696 0.484 0.447 0.542
M4 1987–1995 0.686 0.705 0.706 0.699

Mean 0.676 0.588 0.594 0.619
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of average statistics provided in Tables 3, 4, 5 says that the
LSSVRmodels are generally more successful than theMARS
and M5-Tree models in forecasting SO2.

Sahin et al. (2005) modeled SO2 distribution in Istanbul using
artificial neural networks (ANNs) and non-linear regression
(NLR), and they found that the optimal ANNs and NLR provid-
edRMSE= 23.13μg/m3 and 22.35μg/m3,MAE= 14.97μg/m3

and 18.41 μg/m3, and R = 0.528 and 0.638, respectively.
Akkoyunlu et al. (2010) used the ANN-based approach for the
prediction of urban SO2 concentrations and found correlation
coefficients of about 0.770, 0.744, and 0.751 for the winter,
summer, and overall data, respectively. Sahin et al. (2011) used
cellular neural network (CNN) and the statistical persistence
method (PER) tomodel SO2 concentrations of Istanbul, and they
found RMSE = 14.2 and 13.9, MAE = 9.9 and 7.8, and R = 0.85
and 0.83 for the CNN and PER models, respectively. It is clear
from Tables 3, 4, and 5 that the applied LSSVR, MARS, and
M5-Tree models in this study generally provide satisfactory re-
sults in modeling SO2 concentrations.

Conclusions

The ability of three different soft computing methods,
LSSVR, MARS, and M5-Tree, in forecasting SO2 con-
centration is evaluated. Data from three stations,
Janakpuri, Nizamuddin, and Shahzadabad, located in
Delhi, India, were used in the applications. The cross val-
idation method was employed for presenting generality of
the applied models. LSSVR performed superior to the
other models in forecasting monthly SO2 concentration.
MARS was found to be the second best method.
Because of its linear nature, M5-Tree provided worse re-
sults than the nonlinear LSSVR and MARS models. All
the models provided better accuracy in forecasting SO2 of
Janakpuri station than those of the other stations because
of its lower data range. Comparison with previous studies
showed that soft computing models applied in this study
generally provided satisfactory results in modeling SO2

concentrations.
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Fig. 4 The observed and
forecasted SO2 by the M5-Tree
model
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