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Abstract Since the 1990 Clean Air Act Amendments, the
USA has seen dramatic decreases in air pollutant emis-
sions from a wide variety of source sectors, which have led
to changes in pollutant concentrations: both up and down.
Multiple stakeholders, including policy-makers, industry,
and public health professionals, seek to quantify the ben-
efits of regulations on air pollution and public health, a
major focus of air pollution accountability research. Two
methods, one empirical, the other based on a chemical trans-
port model (CTM), are used to calculate the sensitivities of
ozone (O3) and particulate matter with diameters less than
2.5μm (PM2.5) to electricity-generating unit (EGU) and
mobile source emissions. Both methods are applied to deter-
mine impacts of controls on daily concentrations (which
are important in assessing acute health responses to air
pollution), accounting for nonlinear, meteorologically, and
emission-dependent responses of pollutant concentrations.
The statistical method separates contributions of nearby
EGU, regional EGU, and mobile source emissions on ambi-
ent city-center concentrations. Counterfactual emissions, an
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estimate of emissions under a scenario where no new con-
trols were implemented on local EGU sources after 1995,
regional EGUs after 1997, and mobile sources after 1993,
are combined with these sensitivities to estimate counter-
factual concentrations that represent what daily air quality
in Atlanta, GA would have been had controls not been
implemented and other emissions-reducing actions not been
taken. Regulatory programs are linked with reduced peak
summertime O3, but have had little effect on annual median
concentrations at the city-center monitoring site, and led
to increases in pollutant levels under less photochemically-
active conditions. The empirical method and the CTM
method found similar relationships between ozone concen-
trations and ozone sensitivity to anthropogenic emissions.
Compared to the counterfactual between 2010 and 2013,
the number of days on which O3 (PM2.5) concentrations
exceeded 60ppb (12.0μg m−3) was reduced from 396 to
200 (1391 to 222). In 2013, average daily ambient O3

and PM2.5 concentrations were reduced by 1.0ppb (2 %)
and 9.9μg m−3 (48 %), respectively, and fourth highest
maximum daily average 8-h O3 was reduced by 14ppb.
Comparison of model-derived sensitivities to those derived
using empirical methods show coherence, but some impor-
tant differences, such as the O3 concentration where the
sensitivity to NOx emissions changes sign.

Keywords Air pollution modeling · Sensitivity ·
Accountability · Statistical modeling

Introduction

In response to the 1990 Clean Air Act Amendments and
other measures, the US Environmental Protection Agency
(US EPA), states, and local agencies have implemented a
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number of policies that are designed to decrease emissions
of pollutants linked with adverse health outcomes (e.g.,
USEPA 1999b, 2009, 2005, 2000a; Georgia EPD 2013).
Goals of the various programs include bringing areas into
compliance with the National Ambient Air Quality Stan-
dards (NAAQS) and reducing air toxics emissions (NAP
2004). Of the six criteria pollutants for which NAAQS are
promulgated, ozone (O3) and fine particulate matter have
proven the most difficult to reduce below the standards lev-
els. As of July 2016, 214 and 87 full or partial counties
were designated in non-attainment for O3 and particulate
matter (PM2.5 or PM10), respectively, compared to 26 and
47 counties for lead and sulfur dioxide (SO2), and none for
carbon monoxide or nitrogen dioxide (NO2) (http://www3.
epa.gov/airquality/greenbook/ancl.html, accessed 13 July,
2016). These designations are based on the previous O3

standard (0.75 ppb, which was changed to 0.70 ppb on
1 October, 2015) since the EPA will not update its non-
attainment designations for the new standard until late 2017
(U.S. EPA 2015b).

In assessing the effectiveness of regulatory programs, a
number of challenges arise (HEI 2003; van Erp et al. 2008).
First, multiple regulations may be implemented at or near
the same time across different sectors, making it difficult to
disentangle the effects of a specific regulation from others.
Second, controls may not have immediate effects, instead
yielding an increasing effect over time, e.g., cleaner cars
entering the vehicle fleet and replacing older, more pollut-
ing cars. Over those longer periods, other long-term changes
in weather, land use, and other source emissions may occur.
Third, compliance timelines and effectiveness may not be
uniform over all targets of a regulation. In regard to station-
ary sources, operators may take actions such as retrofitting
a plant to a new fuel, installing controls, or switching load
between different plants for a variety of reasons besides
current regulations, including anticipated future regula-
tions, changing demand, and fuel costs (Georgia Power
2007; van Erp et al. 2008). Further, chemical reactions
between certain atmospheric pollutants may result in differ-
ent impacts on ambient concentrations from the reduction
of multiple pollutants (NOx = NO + NO2 and VOCs—
volatile organic compounds—in the case of ozone) than to
reductions of a single pollutant (e.g., Cohan et al. 2005;
Seinfeld and Pandis 2006). Further still, variations in mete-
orological conditions lead to differences in reaction rates,
atmospheric transport, and deposition that affect pollutant
concentrations.

The present study uses ambient air pollution concentra-
tions, measured emissions from power plants (also called
electricity generating units—EGUs), and modeled mobile
source emissions in Atlanta, Georgia from 1999 to 2013
to develop counterfactual time series of ozone and PM2.5

that assume no additional policies were implemented after

1995 on local EGUs, 1997 on regional EGUs, and 1993 on
mobile sources. Important EGU regulatory programs imple-
mented during this period include (year the program began)
the Acid Rain Program (1995), the Clean Air Interstate
Rule (CAIR—2008), and the Georgia Multipollutant Rule
(2009). Mobile source programs include the Georgia Gaso-
line Marketing Rule (1999), the Tier 2 Vehicle and Gasoline
Sulfur Program (2004), and the Heavy-Duty Highway Rule
(2007), USEPA (1999a, 2000b, 2005, 2012a; EPD 2014).

Researchers have calculated ambient pollutants sensitiv-
ities to emissions using statistical methods (e.g., Blanchard
et al. 2010; Harrington et al. 2012) and using first-principles
chemical transport models (CTMs), both by brute force
(e.g., Digar and Cohan 2010 and Xie et al. 2011) and
direct methods (e.g., Dunker 1981, 1984; Cohan et al. 2005;
Liao et al. 2008; Hakami et al. 2004). The Community
Multiscale Air Quality Model with the Decoupled Direct
Method (CMAQ-DDM) and the Comprehensive Air Quality
Model with Extensions (CAMx, which includes DDM) are
examples of models that can calculate sensitivities directly.

CTMs such as CMAQ-DDM and CAMx offer the benefit
of incorporating detailed physics and chemistry parame-
terizations in the calculations of concentrations and sen-
sitivities. Studies have shown that results are sensitive to
uncertainties in meteorological inputs (Appel et al. 2007;
Byun et al. 2007; Gilliland et al. 2008), emissions inputs
(Byun et al. 2007; Gilliland et al. 2008; Zhang et al.
2015), and the combination of chemical and physical mech-
anisms employed in the model (Hanna et al. 2001; Appel
et al. 2007; Byun et al. 2007; Gilliland et al. 2008). In
spite of these uncertainties, CTMs have been demonstrated
to accurately simulate ambient concentrations and capture
observed trends under changing emissions in dynamic eval-
uations (Foley et al. 2015b; Foley et al. 2015a; Zhou et al.
2013).

Statistical models do not explicitly utilize information
on the detailed physics and chemistry that influence ambi-
ent air pollution concentrations. Instead, prior knowledge
and empirical information are used to select an initial set
of variables that may be associated with the outcome—in
this case, ozone and PM2.5 concentrations. Physical and
chemical processes are captured through empirical relation-
ships between the response variable and model inputs. Care
must be taken in the implementation and interpretation of
these models, however, as the models require a number of
assumptions to be met for the models to be appropriate and
their outputs reliable. For instance, collinearity in statistical
model inputs can lead to regression coefficients that may not
reflect physical reality and confound in the results. If care is
taken to account for such issues, statistical models serve as
a valuable tool for investigating the relationships between
multiple variables. In general, they are less computation-
ally and time-intensive to utilize than CTMs and are driven
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directly by observations, as opposed to air quality mod-
els with uncertain inputs and parameters. A further benefit
of not explicitly including physical and chemical parame-
terizations is that the model may be able to approximate
relationships that are not accurately captured in chemical
transport models.

Statistical models of ozone have been used to exam-
ine how certain meteorological conditions contribute to
ozone formation (Bloomfield et al. 1996; Camalier et al.
2007; Henneman et al. 2015; Kuebler et al. 2001), model
ozone levels in future climate conditions (Chang et al.
2014), investigate geographic differences in relationships
between meteorology and ozone concentrations (Davies and
Kelly 1992), and to adjust air quality model outputs to
better match observations (e.g., Hu et al. 2014; Porter et
al. 2015). Harrington et al. (2012) used monthly-averaged
PM2.5 concentrations and power plant emissions in a lin-
ear regression model to investigate the effects of regulations
imposed under the 1990 Clean Air Act Amendments on
PM2.5 concentrations in the USA.

This work develops detailed statistical models for assess-
ing daily impacts of controls on both ozone and PM2.5, and
produces counterfactual time series of pollutant concentra-
tions from 1999-2013. The work is unique in relation to
others discussed in the introduction in its use of daily emis-
sions and meteorology in statistical models over such a long
period of detailed measurements. Daily results are impor-
tant both for health analyses and for capturing sub-seasonal
responses to emissions controls. We apply and compare
results from statistical and CTM-derived approaches.

Data and method

Meteorological and ambient air quality measurements

Air quality and meteorological observation datasets used
here are described in detail in Henneman et al. (2015),
though for the present work the data time span was
expanded by 1 year at the beginning and the end to a
range of 1999–2013. Ambient concentrations and meteoro-
logical data were obtained from the SouthEastern Aerosol
Research and Characterization (SEARCH) network’s Jeffer-
son Street (JST) monitoring station (33.777 ◦N, 84.416 ◦W)
in Atlanta, Georgia (Hansen et al. 2003). Hourly data were
converted to daily metrics using metric-driven averaging

times (Table 1). Maximum daily 8-h average O3 (MDA8h
O3) and 24-h average PM2.5 are used because they are
the standard metrics used for regulatory purposes in the
USA, and have been widely used in health impact stud-
ies (e.g., Pope et al. 2009; Rich et al. 2012; Garcia et
al. 2011). JST is located near downtown Atlanta (Fig. 1),
and represents urban conditions, which may differ slightly
from other locations in the broader Atlanta area. In cases
of missing data, meteorological observations from JST were
supplemented with measurements from Hartsfield-Jackson
International Airport (ATL), which is southwest of the city
center. Rainfall data came from the airport monitor.

Emissions from mobile sources and EGUs

Mobile source emissions were modeled using the EPA’s
MOVES2010b software (USEPA 2012c) for the Atlanta 20-
County PM2.5 Non-Attainment Area (ANAA—Fig. 1). The
ANAA is designated by the US EPA as the area surrounding
the city of Atlanta that is in non-attainment of the NAAQS.
This area is subject to emissions limits that are more strict
than those in the surrounding counties (EPD 2009, 2012).
For a discussion of MOVES model setup and inputs, see the
supplemental.

MOVES estimates mobile emissions using inputs and
internal parameterizations that change month-to-month
(e.g., temperature and fuel formulation) and year-to-year
(e.g., vehicle population, inspection and maintenance, and
vehicle miles traveled). As a consequence, estimated daily
emissions often exhibit unrealistic step functions, e.g.,
between months and years, that should be more grad-
ual. These were corrected using a linear smoothing model
that includes linear, squared, and cubed calendar date,
weekday/weekend indicators, sine and cosine terms with
period of one year, and a time-cosine interaction term (see
supplemental).

Total daily NOx and SO2 emissions (tons) and load
(MWh) from EGUs in the Southeast region (states included:
Alabama, Georgia, Mississippi, North Carolina, South Car-
olina, and Tennessee) were retrieved from the EPA’s Air
Markets Program Database (USEPA 2013). Under the Acid
Rain Program (ARP) beginning in 1995, EPA has required
large emitters to report Continuous Emissions Monitor-
ing (CEM) data. This data was separated into two groups:
those within the ANAA (Fig. 1) and those outside. Daily
emissions from all EGUs in each group were summed to

Table 1 Daily pollutant
species used in detrending
analysis (2000-2012). Hourly
measurements from JST are
converted to daily metrics (#
days = 4749)

Metric Averaging description Period # Days % Missing days

MA8hO3 Max of 8h 12am-12am 4681 1.43 %

PM2.5 Daily 12am-12am 4015 9.41 %



698 Air Qual Atmos Health (2017) 10:695–711

Fig. 1 The 20 county Atlanta PM2.5 Non-Attainment Area (shaded).
JST is denoted by the star. Power plants are Atkinson (ATK), Bowen
(BOW), Chattahoochee Energy Facility (CHA), Doyle Generating
Facility (DOY), Harllee Branch (HAR), Hawk Road Energy Facility

(HAW), McDonough (MCD), MPC Generating, LLC (MPC), Tenaska
Georgi Generating Station (TEN), Walton County Power, LLC (WAL),
Wansley (WAN), and Yates (YAT)

represent total EGU emissions. Not all EGUs shown in
Fig. 1 were online during the entirety of the study period.
The load for the ANAA plants represents the demand on the
suite of plants in Fig. 1, and not the demand of the greater
Atlanta area, which may be met by importing electricity

from other counties or across state lines. Further, electricity
may be exported from the area to meet demand elsewhere.

Emissions from different locations within the ANAA
have different effects on the measured O3 and PM2.5 con-
centrations at JST, and these effects vary across days due

Fig. 2 PS∗ (bottom) and its
two components—seasonal
fluctuation (S) and short-term
meteorological variation (STM)
as calculated by Henneman et al.
(2015). Units are ppb
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to meteorology (e.g., changing wind direction). Sources
inside of the ANAA may have different effects on pollu-
tant concentrations in Atlanta than sources that are farther
away (Muller et al. 2009) and including regional emissions
separately accounts for this.

Empirical estimates of pollutant sensitivities to source
emissions

The empirical sensitivity method developed for the present
study has two goals: (1) determine the sensitivity of air pol-
lutant concentrations to emissions changes and (2) use these
sensitivities to calculate daily air pollutant concentrations
for a counterfactual scenario that assumes no new con-
trols were installed after 1993 in mobile sources and 1995
in EGU sources. Sensitivities were calculated using itera-
tively weighted least squares regression analysis between
observed concentrations and estimated emissions for both
ozone and PM2.5. Statistical analyses in this work were per-
formed using version 3.2.0 of the statistical software R; the
regressions were fit with the ‘glm’ command (R Core Team
2015).

Empirical ozone sensitivities

Covariates for the empirical ozone model were selected
based on results from published literature of pollutant sen-
sitivity analyses (e.g., Cohan et al. 2005; Liao et al. 2008;
Seinfeld and Pandis 2006; Xing et al. 2011; Blanchard and
Hidy 2005). The original list of covariates included NOx
emissions from EGUs (both within the ANAA and regional,
denoted reg), and NOx and V OC emissions from mobile
sources, as well as an interaction between these two. Other
covariates included NOx concentration, mean daily wind-
speed (WS), temperature (T emp), and relative humidity
(RH ), and daily rainfall (RF ) as a factor (0−1) variable. All
four meteorological variables were centered by subtracting
their mean to ease the interpretation of model parameters.
The sensitivity of the ozone concentrations to emissions is
dependent on the level of photochemical activity, which is
often characterized by the ozone level in the atmosphere
(indeed, the EPA uses the ozone standard as an indicator for
atmospheric photochemical oxidants US EPA 2015a). O3

serves as a proxy for how much OH is available to oxidize
a variety of atmospheric constituents, including those that
eventually condense to form secondary PM (such as VOCs
for secondary organic aerosols and NO2 for nitrates). Since
ozone is the response in the model, however, raw ozone
observations cannot be used as a covariate in the model. To
account for this, a measure of emissions-independent atmo-
spheric photochemical oxidative state (PS∗) was applied as
an effect modifier with multiple emissions covariates.

PS∗ was estimated using components from a meteoro-
logical detrending method developed to investigate daily

impacts of meteorological fluctuations on pollutant concen-
trations and described in detail in Henneman et al. (2015).
In brief, filtering and linear regressions were used to sep-
arate different time scales of fluctuations, including long
term (period > 1 year), seasonal (period = 1 year), weekly,
and short-term meteorological (period < 3 months) con-
tributions. To calculate PS∗, we summed the seasonal (S,
which does not vary between years and is synonymous with
annual fluctuation) and short-term meteorological (ST M)
O3 trends. S was estimated using a Kolmogorov-Zurbenko
filter, a low-pass moving average filter, and averaging the
output by date-of-year. ST M , an estimate of the impact of
daily variability in meteorological variables on ozone, was
estimated with a regression of daily fluctuations in multiple
metrics: solar radiation (total and daily max) temperature
(mean and daily maximum), wind speed (morning and daily
means), relative humidity, rainfall, and 1- and 2-day lags of
each of these. The sum of S and ST M yields a daily metric
for the photo-oxidative potential in the atmosphere (Fig. 2).
The resulting metric, PS∗, is higher in the summer than the
winter, on warmer days, on drier days, and on days with
higher wind speed (likely because surface-level NO, which
titrates O3, is carried away from the city on these days).
PS∗ was centered by subtracting the mean, so that the aver-
age contribution to ozone levels is zero, and was used as an
interaction between EGU NOx, mobile NOx and V OC, and
the interaction between mobile NOx and V OC emissions.

To reduce over-fitting, covariates were removed one at
a time from the original list in order of decreasing signifi-
cance, as measured by the p-values of the parameter error
statistics. In general, only regression coefficients significant
at the 0.05 level were retained. One exception is the coef-
ficient associated with ANAA EGU NOx emissions (p =
0.20), which was included in the final model because of
its known chemical relevance. Modeled mobile emissions
exhibit high co-linearity between emitted species (VOC,
CO, NOx) across the time series. Including multiple species
in a statistical model, therefore, presents a problem. Mobile
CO emissions contribute to ozone formation (Seinfeld and
Pandis 2006), but were excluded from the analysis because
of co-linearity with modeled NOx and V OC emissions, and
the chemical action of CO on O3 formation is similar to that
of V OCs. The mobile V OC emissions term was removed
because of the co-linearity between modeled mobile NOx

and V OC emissions; however, V OC emissions appear in
the model in interaction terms. Model iterations used in the
model selection process are provided in the supplemental.
The following is the final model:

[O3] = β0 + (β1)E
NOx
EGU + (β3 + β2PS∗)ENOx

EGU,reg

+(β4 + β5PS∗ + β6E
V OC
MOB)E

NOx
MOB + β7WS

+β8T emp + β9RH + β10RF + εO3 (1)
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where [O3] is MD8hO3, Ek
j is daily emissions, and εO3 are

the model residuals.

Empirical PM2.5 sensitivities

The model of PM2.5 sensitivities to EGU and mobile emis-
sions is similar to that of ozone. The variable list originally
included ANAA and regional EGU NOx and SO2 emis-
sions, mobile NOx, PM2.5, SO2, and V OC emissions,
and interaction terms. Each of these emissions terms was
included in an interaction with the PS∗ as well. Tem-
perature, relative humidity, and the daily temperature and
relative humidity-dependent dissociation constant for nitrate
(Mozurkewich 1993) were also included. Model selection
proceeded for the PM2.5 model in a way similar to that
for the O3 model, i.e., covariates were removed one-by-one
in order of decreasing significance. The final formulation
is:

[PM2.5] = β0 + (β1PS∗)ENOx
EGU + (β2PS∗)ENOx

EGU,reg

+(β3PS∗)ESO2
EGU + (β4 + β5PS∗)ESO2

EGU,reg

+(β6)E
PM2.5
MOB + (β7PS∗)EV OC

MOB + β8WS

+β9T emp + β10RH + β11RF + εPM2.5 (2)

The statistical models (1 and 2) were used to address the
two goals stated previously (to determine the sensitivity of
air pollutant concentrations to emissions changes and to use
these sensitivities to calculate daily counterfactual concen-
trations). The models relate observations to emissions on
the same day. Multi-day impacts are captured to an extent
using the meteorology variables and PS∗, but are difficult
to estimate directly because of the correlation between con-
secutive days in emissions. Sensitivities of pollutants are
represented by the βs in each equation. These, when multi-
plied by their respective covariate, yield the contribution to
the concentration by each model input.

Estimated emissions were replaced with counterfactual
emissions—described below—to estimate counterfactual
concentrations. All other model inputs, including PS∗ and
ε remain unchanged, since these are independent of emis-
sions. The supplemental includes an assessment of the rela-
tionships between model residuals and inputs. Both the O3

and PM2.5 models capture the variability at the middle-and
lower quantiles, but the models have some difficulty fully
capturing very high observations. These very polluted days
are due to factors that are difficult to control for in a statisti-
cal model, such as specific combinations of meteorological
factors or impacts of wildfire plumes.

Chemical transport model quantification of ozone
sensitivities with CMAQ

It is of interest to compare empirical sensitivities based
on measured ambient concentrations to alternative source
apportionment techniques. The CMAQ model (Byun and
Schere 2006) provides a detailed characterization of physics
and chemistry governing the transport, removal and forma-
tion of air pollutants in the ambient air. In this study, results
from a previous study (Liao et al. 2008) and newer results
using CMAQ runs with updated parameters and smaller grid
size were compared to the results obtained from the statis-
tical O3 model. CMAQ-DDM version 4.3 with SAPRC-99
chemical mechanism was applied in 2001 on a 36 km grid,
and version 5.0.2 with CB05 chemical mechanism was
applied on a 12 -km grid. Such models have previously
been used to simulate responses (or sensitivities) of ambient
O3 concentrations to changes in emissions of their precur-
sors (Cohan et al. 2005; Dunker 1981; Yang et al. 1997).
The 36 km CMAQ run was driven using results from the
Fifth-Generation NCAR/Penn State Mesoscale Meteorolog-
ical Model (MM5) (Grell et al. 1994; Seaman 2000), and the
12 km CMAQ used the Weather Research Forecast (WRF)
model version 3.6.1. Values for the 36 km run were mod-
eled for a 2001 climatological year (the meteorology was
developed by down-scaling from a climate model), and the
12 km results and empirical values that are plotted are also
from this year. Both processed precursor emissions using
the Sparse Matrix Operator Kernel Emissions (SMOKE)
(Houyoux et al. 2000).

We chose 2001 for the modeling episode both because
it came before many of the large changes in emissions and
because the we have modeling results for both 36 and 12 km
resolutions. Detrending results showed that meteorological
variability had a slight negative effect (3.2ppb) on summer-
time ozone concentrations, and little impact in the winter
(Henneman et al. 2015).

CMAQ-DDM directly calculates the semi-normalized
first-order (or linear) sensitivities of both gas- and
condensed-phase pollutants to precursor emissions (Cohan
et al. 2005; Napelenok et al. 2006), i.e., the semi-normalized
first-order sensitivity (Si,j ) of pollutant concentration i (Ci)
to source emissions j (Ej ) is determined, effectively, as
Yang et al. (1997):

Si,j = δCi

δαj

(3)

where αj is the relative level of the emissions from source j

base calculation, and has a nominal value of 1 (Cohan et al.
2005; Hakami et al. 2004). The sensitivities, as presented
here, have the same units as the corresponding pollutant
concentrations. These sensitivities are local and represent
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how pollutant concentrations respond to precursor emission
changes if the systems were linear. It is recognized that
the system is not linear, but numerous studies suggest the
first-order (linear) response is accurate up to domain-wide
emission changes of the order of 30–50 % (depending on
species) (Cohan et al. 2005; Hakami et al. 2003, 2004). The
modeled concentrations and sensitivities for the 36 km run
were first published in Liao et al. (2008).

Estimating emissions changes

Estimates of changes in emissions due to regulatory pro-
grams must take into account a number of factors that
depend on the emission source. For EGUs, population
growth, plant efficiency improvements, control installa-
tion dates, economic growth and decline, fuel type, etc.
must be considered. On the other hand, vehicle fleet age
and turnover, fuel type, and population are the important
variables to consider for mobile source emissions.

Counterfactual emissions were calculated using a method
similar to that used by Gégo et al. (2007). Their method
takes into account all controls over the time period while
correcting for changes in demand due to population growth
or decline, economic trends, etc. An annual emissions rate
was calculated for the base year (BY ) as the average ratio of
daily emissions (tons (US)) to daily load (kilowatt hours—
kWh).

ERBY =
〈
E(d)

L(d)

〉
BY

(4)

where L denotes load and d indexes day. ERBY was
assumed to remain constant for the counterfactual sce-
nario of no controls. Annual counterfactual emissions were
calculated by multiplying each day’s load by ERBY :

Ecount (d) = ERBY ∗ L(d, y) (5)

where y is each year between BY and 2013. Complete CEM
data was available for the ANAA starting in 1995, but data
from multiple plants in the region were missing in 1995 and
1996, so 1997 is used as the BY for regional emissions.

This approach takes into account factors that cause
changes in the emissions rate, e.g., controls, improvements
in transmission efficiency, changing fuel costs that incen-
tivize switching fuel type, etc. The model assumes that
the application of controls did not differentially change
plant dispatch. Another way to think about this is that the
electricity demand in Atlanta is represented by the load
carried by all of the plants in the area combined, which
may not be the case if electricity is imported from or
exported to plants in surrounding regions. This assumption
is addressed by including regional emissions as a separate
term in each regression equation, however, the limitation

means that all deviations from observed concentrations cal-
culated in the counterfactual concentrations below cannot
be linked exclusively to specific controls. Comparison of
counterfactual concentrations and dates when specific con-
trols were installed allow for interpretation of emissions
changes as attributable to specific regulatory actions and
controls (details are discussed in Section “Counterfactual
emissions”).

Counterfactual mobile emissions were estimated using
the “Rate of Progress” option in MOVES2010b, which
models a scenario with no Clean Air Act Amendments by
applying 1993 emission rates to all vehicles after this year
(1993 is the default option for this scenario in MOVES)
(USEPA 2012b). “Rate of Progress” still uses the same
changes in vehicle fleet composition, vehicle miles traveled,
and fuel formulations, but assumes 1993 emissions factors
for new vehicles.

Results

Counterfactual emissions estimates

Differences between actual and counterfactual EGU NOx

emissions (Fig. 3) show the largest reductions occur in
2002 and 2009, aligning with the beginning of summertime-
specific NOx controls (early 2000s) and a shift to year-round
controls (late 2000s). The largest SO2 emissions reduc-
tions occurred in 2009—when two large coal plants in the
region had completed the installation of their flu gas desul-
phurization (FGD) technologies—and 2012—when much
of the electricity load in Atlanta switched from coal to
natural gas.

Both mobile NOx and PM2.5 emissions (Fig. 3) show
decreases between 2000 and 2012, corroborating the find-
ings of Vijayaraghavan et al. (2014). Mobile source SO2

emissions decrease dramatically (by 80 % between 2004
and 2006) after fuels with reduced sulfur content were
required year-round beginning in 2004. Other emitted
species (e.g., VOCs, primary PM species) used in this study
besides those plotted in Fig. 3 generally follow the trend
of NOx emissions. Counterfactual estimates show slightly
increasing NOx and PM2.5 emissions that do not vary much
between years and follow the estimated VMT.

Empirical model evaluations

The regression analysis led to a statistical model for O3

(Table 3) with an R2 and root mean square error (RMSE)
of 0.67 and 11ppb, respectively. The related values for
the PM2.5 model (Table 4) are 0.42 and 5.7μg m−3. Mean
observed O3 and PM2.5 over this time period were 41 ppb
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Fig. 3 Left, actual (black) and
counterfactual (red) emissions
from EGUs. Right, actual and
counterfactual emissions from
mobile sources (MOB). The top
graph in each column (load for
EGUs and VMT (Vehicle Miles
Traveled) for MOB) are the
measure used for demand for
each source category

and 14 μg m−3, respectively. While the RMSE values are
somewhat large, it is more revealing to compare the regres-
sion parameter magnitudes to their standard errors. Standard
errors are generally small compared to their coefficients in
both the O3 and PM2.5 models, which suggests that the
model covariates are predictive of changes in the response.

Average contributions (Tables 3 and 4), calculated by
multiplying each regression coefficient by the average of
the corresponding covariate, are a measure of the relative
importance of each term in the regression. Plots of the daily
contribution summed by source category (Fig. 4) show that
each source contribution varies by seasons. The intercepts
for O3 (42ppb) and PM2.5 (5.0μg m−3) are estimates of
the average background concentrations in Atlanta over the
study period that would occur without local and regional
emissions from mobile and EGU sources, but would include
long-range transport and the impact of other sources, though
do not include all nonlinear responses to emissions.

CMAQ-DDM model evaluation

CMAQ-modeled ozone concentrations from each model
are from single grid cells that cover downtown Atlanta
(including JST). Concentrations from both models exhibit
similar annual and daily variability as observed concen-
trations (Fig. S-6). Evaluation statistics for all days and
days with observed O3 over 60 ppb (Table 2) are somewhat
higher than typical statistics reported in the meta-analysis
of CTM results published by Simon et al. (2012). However,
the current evaluation (i.e., at a single monitor) is stringent
in comparison to others, which typically use many monitors
at multiple locations. Between the two model runs, the 36-
km model was biased higher than the 12 km, and correlation
was higher for the 12 km. The overall high bias of the 36-
km model improves the results for days over 60 ppb, though
the correlation on these days is lower than for the 12 km
model.

Fig. 4 Sensitivities of daily O3
(1) and PM2.5 (2) concentrations
to mobile (MOB), local EGU,
and regional EGU (REG)
emissions
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Table 2 Evaluation statistics
for 2 versions of CMAQ,
including the number of
comparisons (N), normalized
mean bias (NMB), normalized
mean error (NME), mean bias
(MB), and correlation (r)

CMAQ model N NMB NME MB r

36-km 356 38.24 48.78 16.18 0.54

12-km 361 −0.82 27.28 −0.35 0.70

36-km (>60) 80 6.60 23.76 4.79 0.14

12-km (>60) 80 −16.83 19.71 −12.23 0.43

The evaluation is for 2001 for both all available days and days with observed O3 greater than 60 ppb

Sensitivities of O3 to EGU and mobile emissions in 2001
peak in the summertime and are negative in the winter and
fall (Fig. S-6). In the winter and spring, sensitivities pro-
duced by the CMAQ models agree more with each other
than the empirical, and, in the summer the 12 -km model
results agree more with the empirical results. 36- km sensi-
tivities are biased high compared to the other models in the
summertime.

While a direct comparison between observed and mea-
sured concentrations and sensitivities is important for
putting results in perspective with other studies, this study
focuses attention in the discussion on the comparison
between sensitivities relative to O3 levels. The goal of this
analysis is to assess model intermediates and, relating to
model outputs, somewhat reduces the impact of bias and
differences in model inputs between model setups.

Counterfactual concentration estimates

Year-specific box plots of the actual and counterfactual
ozone time series (Fig. 5) show that median ozone values
are relatively insensitive to emissions changes in EGUs and
mobile sources (the observed median is 39.5ppb and coun-
terfactual median is 38.8ppb). The bulk of the difference
between actual and counterfactual appears in the highest and
lowest ozone concentrations. As emissions have decreased,
variability in annual ozone distributions has shrunk. Coun-
terfactual emissions would have led to both more low-ozone
days (days with MA8hO3 below 30ppb) and high ozone

days. For example, 99 days were observed with MA8hO3

below 30ppb at JST in 2013, and the counterfactual esti-
mates it would have been 134 days without controls. Four
days were observed above 70 ppb (the recently promulgated
O3 NAAQS), whereas the counterfactual predicts 27. For
75ppb, the similar values are one and 16 days, respec-
tively. Differences between observed and counterfactuals
are small at the beginning of the time series, and increase as
the differences between actual and counterfactual emissions
grow.

Discussion

Counterfactual emissions

Differences between actual and counterfactual emissions
(Fig. 3) align well with known regulations and the resulting
controls. Mobile emissions decrease in a near-linear fash-
ion as old vehicles are replaced with new, cleaner ones,
while VMT in the region has grown slowly. EGU emis-
sions change more abruptly as controls are installed, plants
change fuel types, and load is shifted between facilities.
Information on when controls were installed and new plants
were brought online were used to analyze changes in emis-
sions. The information in this section has been taken from
information available through EPA’s Air Markets Database
(USEPA 2013). The discussion focuses on sources within
the ANAA (Fig. 1).

Fig. 5 Annual box plot of the
actual and counterfactual ozone
and PM2.5. Center lines are the
median, the boxes are the first
and third quartiles, and whiskers
extend to values within 1.5
times the interquartile range
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Of the 12 EGUs in the ANAA (Fig. 1), some are larger
base load plants and others are smaller peaking plants.
One plant near downtown Atlanta, McDonough, was con-
verted from coal to natural gas between 2011 and 2012,
and another, Wansley, began operation of 10 natural gas
units between 2002 and 2012 while still keeping its coal
units available. Similarly, all six of the smaller plants that
have gone online since 1999 (Chattahoochee Energy Facil-
ity, Doyle Generating Facility, Hawk Road Energy Facility,
MPC Generating Facility, Tenaska Georgia Generating Sta-
tion, and Walton County Power Facility) use natural gas.
Plant Atkinson, a small plant near downtown, was run on
natural gas between 1995 and 2006, when it was retired.
The remaining plants (Bowen, Harllee Branch, and Yates)
ran primarily on coal between 1995 and 2012. In the ANAA
plants, 3 % of the total load was generated by units with nat-
ural gas as the primary fuel in 2008 compared with 21 %
in 2012 (USEPA 2013), a change that is attributable to both
regulations and reduced natural gas prices, and was planned
many years in advance (Georgia Power 2007).

The load on the plants increased by 4 % between 1995
and 2012, with a peak in 2007 (Fig. 3). Most plants have
added low NOx burners, and some (Bowen, Chattahoochee
Energy Facility, and Wansley) have installed selective cat-
alytic reduction (SCR) NOx controls. Annual NOx emis-
sions by the 12 local plants fell by 85 % between 1995 and
2012. At first, regulations led to the SCRs being operated
only during the summer months (May-September). Begin-
ning in 2009, NOx controls on the largest plants in the region
were operated year-round.

Years with the greatest increase in the difference between
actual and counterfactual EGU NOx emissions (Fig. 3) are
2002–2003 and 2008–2009. Between 2002 and 2003, plants
Bowen and Wansley completed installation of SCR NOx

controls, the Chattahoochee Energy Facility, which was
built with SCR technology, went online, and Harllee Branch
installed low NOx burners.

Plants Bowen and Wansley installed FGD technologies
on their coal units in 2008 and 2009. These controls, along
with the switch to natural gas, have contributed to a decrease
in SO2 emissions by EGUs in Atlanta of 81 % between
1995 and 2012. The years between 2008 and 2010 saw the
greatest decrease in SO2 emissions compared to the coun-
terfactual. Nearly all of this decrease can be traced to the
installation of FGD controls at plant Bowen and Wansley.
Further reductions were achieved by relying less on coal-
fired plants, including the conversion of Plant McDonough
from coal to natural gas in 2012.

In Georgia, because the cost of controls cannot be recov-
ered by raising electricity rates unless the control is deemed
necessary under existing law, it is assumed that all con-
trols can be attributed to regulatory actions, and these

could potentially be future anticipated regulations (Geor-
gia Power 2007). Fuel switches, plant commissioning and
retirement schedules, and electricity trading between util-
ities are governed by complex relationships that include
current/projected fuel prices, varying costs of producing
electricity at different plants, projected demand, and antic-
ipated future regulatory actions. Therefore, while the esti-
mated emissions reductions are tied to controls, not all
emissions changes calculated can be attributed exclusively
to regulatory actions.

Magnitudes of EGU and mobile sensitivities

Parameters from the models in Eqs. 1 and 2 (Tables 3 and 4)
provide the relative importance of each source-pollutant
contribution to concentrations. It is important to recognize
that modeled mobile emissions are highly correlated across
species. Therefore, it is difficult to separate the effects of all
species of interest in a statistical model. For the O3 model,
VOC emissions were included, but only in interactions
terms because of this cross-species co-linearity. Mobile
source carbon monoxide (CO) emissions, which contribute
to O3 formulation along with VOCs and NOx, are highly
correlated with VOC emissions, so the sensitivity to VOC
emissions includes the impacts from CO. Contributions of
mobile emissions to total O3 and PM2.5 concentrations
are best interpreted as a sum of the component emissions
(Fig. 4).

Modeled mobile contributions to ozone concentrations
are dominated by the interactions between NOx emissions
and PS∗ and NOx and V OC emissions and PS∗. Average
contributions of both of these is zero because the terms are
normalized to zero, but the magnitudes of the maxima and
minima are large compared to the other terms, i.e., NOx

emissions lead to high ozone on photochemically-active
days, but reductions when the meteorology is not conducive
to O3 formation. The negative coefficient on the interac-
tion term that includes V OC emissions and PS∗ shows
the importance of V OC-limited conditions when increased
V OC emissions lead to increases in otherwise low ozone
concentrations, i.e., during radical-limited periods there is
a positive sensitivity to V OC emissions and negative sen-
sitivity to NOx emissions. This happens during most of the
non-summer season as well as on lower O3 days during the
summer.

For 13 monitors within 74 km of JST, correlations (Pear-
son R) were at least 0.77 for MDA8h O3 from 2002-2010,
and measurements show consistent annual trends at urban,
suburban and rural sites (Fig. S-1). NOx concentrations,
however, show greater spatial variability; therefore, concen-
tration sensitivities to emissions estimated at JST may differ
across the region.
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Table 3 Regression coefficients summary for Eq. 1 for O3. Values on the left hand side of the table represent values from the regression, andvalues
on the right hand ride summarize the total empirical sensitivities of ozone to emissions. The regression was performed on 4030 observations

Covariate Coefficient Unit Estimate Std. Error Average contri-
bution [ppb]

Minimum con-
tribution [ppb]

Maximum con-
tribution [ppb]

Intercept β0 ppb 42 5x10−1 42 − −
E

NOx
EGU β1 ppb ton−1 −4.1x10−3 3x10−3 −0.74 −2 0.02

E
NOx
EGU,reg β2 ppb ton−1 1.7x10−3 8x10−4 2.1 0.46 5.3

E
NOx
EGU,reg ∗ PS∗ β3 ton−1 1.1x10−4 4x10−5 0.0 −9.7 19

E
NOx
MOB β4 ppb ton−1 −4.2x10−3 3x10−3 −1.3 −2.3 −0.41

E
NOx
MOB ∗ PS∗ β5 ton−1 3.4x10−3 2x10−4 0.0 −58 110

E
NOx
MOB ∗ EMOB

V OC ∗ PS∗ β6 ton−2 −8.3x10−6 1x10−6 0.0 −66 33

WS β7
1ppb ‖m s−1‖−1 −3.3x10−1 2x10−1 0.0 −1.8 0.44

T emp β8
1ppb ‖◦C‖−1 3.5x100 3x10−1 0.0 −11 7.5

RH β9
1ppb ‖%‖−1 −1.7x100 2x10−1 0.0 −3.9 4.0

RF β10
1,2ppb ‖Y‖−1 8.6x10−2 2x10−1 0.0 −0.06 0.13

1‖unit‖ denotes scaled and normalized by subtracting the mean and dividing by standard deviation
2Y denotes Rainfall is a factor (1-0) variable

The sensitivities of ozone to emissions (Fig. 4) suggest
that mobile emissions have a greater effect on ozone levels
at JST than EGU emissions. As annual ozone distributions
have shrunk since 2000, the sensitivities have also decreased
in magnitude. Tong et al. (2006), Muller et al. (2009) and
others have found ground-level NOx emissions have a much

greater impact on ozone concentrations than stack emissions
from outside of the city.

All EGU SO2 emissions terms are of particular inter-
est in the PM2.5 model due to the importance of sulfate in
Atlanta. The sum of the mean contributions of these terms
is 5.2μg m−3, which corresponds to 36 % of the aver-

Table 4 Regression coefficients summary for Eq. 2 for PM2.5. Values on the left hand side of the table represent values from the regression, and
values on the right hand side summarize the total empirical sensitivities of PM2.5 to emissions. The regression was performed on 3616 observations

Covariate Coefficient Unit Estimate Std. Error Average Contri-
bution [μg m−3]

Minimum
Contribution
[μg m−3]

Maximum
Contribution
[μg m−3]

Intercept β0 μg m−3 5.5 3x10−1 5.5 − −
E

NOx
EGU ∗ PS∗ β1 μg m−3 ppb−1 ton−1 −1.9x10−4 1x10−4 0.0 −4.7 2.7

E
NOx
EGU,reg ∗ PS∗ β2 μg m−3 ppb−1 ton−1 −5.3x10−5 4x10−5 0.0 −9.4 4.9

E
SO2
EGU ∗ PS∗ β3 μg m−3 ppb−1 ton−1 1.1x10−4 3x10−5 0.0 −6.8 9.3

E
SO2
EGU,reg β4 μg m−3 ton−1 1.5x10−3 1x10−4 5.2 0.69 11

E
SO2
EGU,reg ∗ PS∗ β5 μg m−3 ppb−1 ton−1 4.3x10−5 2x10−5 0.0 −10 17

E
PM2.5
MOB β5 μg m−3 ton−1 2.1x10−1 3x10−2 3.7 0.81 5.8

EV OC
MOB ∗ PS∗ β6 μg m−3 ppb−1 ton−1 4.3x10−4 1x10−4 0.0 −6.4 3.7

WS β7
1ppb ‖m s−1‖−1 −1.7x100 1x10−1 0.0 −9.1 3.6

T emp β8
1ppb ‖◦C‖−1 1.3x100 2x10−1 0.0 −3.8 2.7

RH β9
1ppb ‖%‖−1 −2.0x101 1x10−1 0.0 −0.45 0.28

RF β10
1,2ppb ‖Y‖−1 −6.5x101 1x10−1 0.0 −1.0 1.4

1‖unit‖ denotes scaled and normalized by subtracting the mean and dividing by standard deviation
2Y denotes Rainfall is a factor (1-0) variable
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age total PM2.5 across all days (14.2μg m−3). Over the
same time period, sulfate, a secondary particulate species
mainly attributable to atmospheric processing of EGU SO2

emissions, made up 27% of measured PM2.5 at JST. Ammo-
nium particulate matter is strongly associated with sulfate
(sulfuric acid will react with ammonia gas), and recent
results find that sulfate can enhance biogenic secondary
organic aerosol formation (Marais et al. 2016; Weber et al.
2016), explaining when the sensitivity to SO2 emissions is
greater than the measured sulfate.

Mobile sources are estimated to have contributed an aver-
age of 3.7μg m−3 (26 %). The measured species important
to the total over this time period are organic carbon (28 %),
elemental carbon (11 %), ammonium (11 %), and nitrate
(6 %). Each of these remaining species is associated with
mobile emissions, and may be a portion of the 26 % they
contribute. As in the ozone model, it is most appropriate
to interpret the contributions from mobile emissions as the
sum of their parts instead of by individual species. While
major contributors (primary PM2.5 and NOx) are included
in the model, their co-linearity with other species emissions
means that the total captured is likely the joint effect of all
mobile emissions emissions. For example, primary PM2.5

emissions are highly co-linear with V OC emissions (V OC

emissions are still included in the model in an interaction
with PS∗).

Two terms of interest in the PM2.5 model are the inter-
actions between EGU and REG NOx emissions and PS∗.
These terms are negative, meaning that increasing emissions
correspond with increasing PM2.5 levels in the winter-
time, and a negative contribution in the summer. Posi-
tive contributions in the winter correspond with increased
nitrate levels, a secondary species that forms when NOx

is oxidized to HNO3, which then reacts with NH3 to
form ammonium nitrate. Brock et al. (2002) showed that
young NOx plumes decrease the conversion of SO2 to
sulfate because of decreased radicals due to NOx titra-
tion, but cautioned that this effect is generally assumed
small and uncertain. The current study finds evidence of
this phenomenon, and attributes a mean daily reduction
of 1μg m−3 in summers (May-September) across the time
period, though ins importance has decreased over time as
both NOx and SO2 emissions have been reduced. Total
PM2.5 sensitivities to EGU emissions are highest in the sum-
mer, which corresponds with both increased SO2 emissions
and increased photochemical activity that contributes to
elevated sulfate concentrations. Mobile sens itivities exhibit
much less annual variability than EGUs, and contributions
from both source categories have decreased over time as
emissions have decreased.

Counterfactual concentrations

The largest changes between observed and counterfactual
concentrations occur after 2009, when control programs had
at or near their greatest impact on emissions. Between 2010
and 2013, Atlanta experienced many fewer high-O3 and
PM2.5 days than it would have without regulations (Table 5).
Values for comparison in Table 5 were chosen based on
standards of regulatory importance. For example, 12.0 and
15.0μg m−3 are the primary and secondary annual mean
NAAQS for PM2.5, and 35μg m−3 is the primary and
secondary 24-hr NAAQS. The O3 NAAQS was recently
changed from 75ppb to 70ppb, though the lower end of
the proposed range was 60ppb (U.S. EPA 2014). Results
here show that regulatory programs have had important
influence on the concentrations of regulatory importance in
Atlanta.

The Georgia Department of Natural Resources reports
46 exceedances of the (http://www.air.dnr.state.ga.us/). The
highest reported MDA8hr in that year in the ANAA was
139 ppb, which is 20 ppb higher than the highest value
measured at JST that year. The maximum MDA8hr value
observed at JST is 131 ppb (in the summer of 1998—the
year that the station began recording ozone data). There
are 4 days in which the counterfactual ozone exceeds
130 ppb, all of which occur in 2007 and later (Fig. 5).
The shapes of the annual distributions of counterfactual
ozone in the later years resemble those of observed ozone
early in the time period. Decreased emissions have had
the effect of decreasing median concentrations and distri-
bution widths for PM2.5. In 2013, the observed median
PM2.5 is 8.9μg m−3, compared with a counterfactual of
18.9μg m−3. The largest reductions occurred in 2009 and
onwards, coinciding with the years of greatest reductions in
SO2 emissions from EGUs.

Table 5 The number of days on which observed and counterfactual
O3 and PM2.5 were greater than concentrations of regulatory impor-
tance from 2010 to 2013, when regulatory policies were at or near their
greatest impact

Observed Counterfactual

O3 > 60ppb 200 396

O3 > 70ppb 75 223

O3 > 75ppb 42 164

PM2.5 > 12.0μg m−3 456 1391

PM2.5 > 15.0μg m−3 222 1164

PM2.5 > 35μg m−3 2 7

http://www.air.dnr.state.ga.us/
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For both O3 and PM2.5, EGU and REG NOx sensitivities
are positive in the summertime and negative in the win-
tertime. Therefore, summertime emissions reductions—for
instance, NOx emissions reductions occurring in the mid-
2000s—typically reduced concentrations of both pollutants.
Winter sensitivities, however, are negative, meaning winter-
time NOx controls, in wider use in the late 2000s, likely
increased concentrations. For PM2.5, this effect is small
compared to the effect of reduced SO2 emissions.

Comparison to CMAQ-calculated sensitivities

As reported here, CMAQ-modeled ozone sensitivities rep-
resent the first order change in ozone expected from a
100 % reduction in anthropogenic emissions. Sensitivities
show the contribution of the sources to the measured con-
centration calculated in the modeled grid cell of interest,
which, for this work, is the grid cell that corresponds to JST.
CMAQ-modeled sensitivities provide a point of compari-
son for empirical sensitivities calculated using a different,
independent method.

CMAQ-modeled and empirically-calculated sensitivities
to all anthropogenic NOx emissions have a positive relation-
ship with O3 concentrations (Fig. 6). Empirical sensitivities
show more variability and a greater magnitude across the
same range than CMAQ-modeled sensitivities from both
grid resolutions. From a regulatory perspective, the ozone

concentration that corresponds to a sensitivity of zero is
of interest—at ozone concentrations above this point, NOx

controls reduce ozone; at concentrations below this point,
controls increase ozone. The three models estimate a range
of 16.8ppb for this value (42.9 (95 % CI 41.3–44.5),
57.9 (56.5–59.3), and 59.7 (57.2–62.6)ppb for empirical,
36 km CMAQ, and 12 km CMAQ, respectively). The slope
of the empirical sensitivities (0.63 ppb ppb−1) is slightly
greater than that for CMAQ (0.48 ppb ppb−1), leading to a
closer agreement of the two models at higher O3 concentra-
tions. The use of a climatologic year will also influence the
cross-over points.

Fewer modeled O3 high (concentration greater than
80ppb) days leads to a closer agreement between the empir-
ical model and the 12 km CMAQ results than the 36 km
CMAQ results. Recent evidence has shown that models may
overestimate mobile NOx emissions by as much as 50 %
(Anderson et al. 2014; Goldberg et al. 2016; Souri et al.
2016; Travis et al. 2016), which would generally decrease
modeled ozone concentrations and sensitivities in the city
center. This phenomenon may help explain the general
underestimate of sensitivities in the CMAQ results.

Differences between empirical and CMAQ-modeled sen-
sitivities are due, in part, to differences in emissions inputs
used in the models. Although the empirical sensitivities
are estimated using emissions only in the Atlanta area,
long-term regional emissions trends are similar due to

Fig. 6 2001 ozone sensitivities to anthropogenic NOx emissions cal-
culated by the empirical (1) method and CMAQ (3) for both the 36 km
and 12 km runs. Sensitivities greater than zero occur in conditions
where NOx emissions increase ozone, and sensitivities less than zero
indicate conditions where NOx emissions reduce ozone. The x-axis

intercepts of the lines are 42.9 (95 % CI 41.3–44.5) for the empiri-
cal model, 57.9 (56.5–59.3) for 36 km CMAQ, and 59.7 (57.2–62.6)
for 12 km CMAQ. Numbers in parentheses in the equations are the
standard error of the regression coefficients
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national regulatory actions impacting nearby states during
similar timeframes. Besides local contributions, empirical
sensitivities are impacted by regional emissions, and cor-
relations between the two may impact the results. CMAQ
sensitivities are estimated for emissions within the entire
modeling domain.

Cohan et al. (2005) investigated the magnitudes of first-
and second-order CMAQ-DDM sensitivities of ozone in
Atlanta to NOx and V OC emissions. They found that
second-order sensitivities are of similar magnitude to first
order sensitivities on high-ozone days, which may fur-
ther explain the difference between empirical and CMAQ-
estimated sensitivities in the present study—CMAQ is used
to calculate only first-order sensitivities, while the statisti-
cal model captures higher order sensitivities because of the
PS∗ and nonlinear term.

Method limitations

While this work shows benefits of statistical and numerical
air quality modeling, both approaches have limitations. Sta-
tistical modeling is subject to bias as a result of correlated
input variables, confounding, model selection, and data
errors, including estimated emissions. The current study, in
particular, is limited by modeled mobile emissions; each of
the species is highly correlated with the others, and daily
variability is dominated by the approximation of typical
weekday/weekend differences. The high level of correlation
between species limits the interpretation of ambient sen-
sitivities to mobile emissions—the combined effects from
a specific source are more relatable to known physical
processes than individual source-species terms in the model.

The use of PS∗, an approximation for emissions-
independent photochemical oxidative state, allows for the
estimation of emissions-meteorology relationships. How-
ever, some meteorological conditions, such as days with
wind from specific sources, are not fully captured by this
method. Attempts to split daily emissions inputs by wind
direction did not improve the predictive ability, and pro-
duced results inconsistent with established atmospheric
relationships.

Counterfactual emissions assume that changes in electricity
production by ANAA EGUs are independent of regula-
tions, and that deviations from the historical emissions-load
relationship can be attributed to regulatory actions. Both
assumptions are limitations on the method, but compar-
isons of observed changes in this relationship and regulatory
implementation dates provide evidence that the assumptions
are reasonable.

Daily counterfactual concentrations, which maintain the
autocorrelation of observed ambient concentrations, are
limited by the variability in measurements, particularly in

the PM2.5 model. At the beginning of the time series,
observations showed high scatter around the annual mean,
which the statistical model is proficient at estimating. The
scatter is smaller towards the end of the time series, there-
fore, counterfactual estimates in the later years lack the very
high days observed in the early part of the time series (Fig. 5).
Further, in Atlanta, high PM2.5 days can be associated with
wild land fires, which are not studies here.

Conclusion

We presented a detailed accountability assessment of
regulatory impacts on O3 and PM2.5 concentrations in
Atlanta, GA between 1999 and 2013. The atypical approach
addressed challenges typical in accountability programs.
Applying emissions factors to create counterfactual concen-
tration and relating these to a detailed regulatory assessment
increased confidence in the changes attributed to regula-
tions, even as regulations were implemented incrementally
over time.

The empirical method that employs statistical model-
ing to develop daily sensitivities and counterfactuals of
measured pollutants to changes in emissions. Empirical
relationships in the model are reliant on PS∗, a daily met-
ric for the photochemical state of the atmosphere that varies
with temperature, relative humidity, wind speed, and rain-
fall. The model was applied to a central monitoring site in
Atlanta, GA using estimated EGU and mobile emissions
from the entire metro Atlanta area. Empirical sensitivities
agree with sensitivities estimated using CMAQ-DDM, a
CTM that explicitly accounts for atmospheric chemistry
and physics. The comparison between model intermediates
across platforms provides evidence that the empirical rela-
tionships appropriately capture emissions relationships with
observed ambient concentrations.

For this monitoring location, sensitivities of ozone to
mobile NOx and V OC emissions dominate those of EGU
NOx emissions in magnitude, a result that may be different
in locations outside of the city center. Minimum and max-
imum annual contributions of both mobile and EGU emis-
sions have decreased over time with the implementation of
controls.

Mobile emissions dominate the contribution to PM2.5

concentrations in the winter, and EGU SO2 emissions dom-
inate in the summer. EGU contributions to measured PM2.5

concentrations show a large seasonal pattern, show a large
seasonal pattern, which has decreased significantly with the
implementation of SO2 emissions controls. Average EGU
contributions are similar to average sulfate concentrations
in Atlanta, and regional and local EGU’s contribute similar
amounts to sulfate on average.
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Statistical models of this type are relatively straightfor-
ward to apply, and daily counterfactuals estimated using
these models are appropriate for use in accountability stud-
ies investigating public health responses to air quality reg-
ulations. This approach could give policy-makers a ready
estimate of impacts of past or proposed controls. Then, in
areas with the greatest interest (or to investigate specific
effects or certain controls), policy-makers could employ
more sophisticated CTMs to model changes.
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