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Abstract Ecological bias may result from interactions be-
tween variables that are characterized by different spatial
and temporal scales. Such an ecological bias, also known as
aggregation bias or cross-level-bias, may occur as a result of
using coarse environmental information about stressors to-
gether with fine (i.e., individual) information on health out-
comes. This study examines the assumption that distinct
within-area variability of spatial patterns of the risk metrics
and confounders may result from artifacts of the aggregation
of the underlying data layers, and that this may affect the
statistical relationships between them. In particular, we dem-
onstrate the importance of carefully linking information layers
with distinct spatial resolutions and show that environmental
epidemiology studies are prone to exposure misclassification
as a result of statistically linking distinctly averaged spatial
data (e.g., exposure metrics, confounders, health indices).
Since area-level confounders and exposure metrics, as any
other spatial phenomena, have characteristic spatiotemporal
scales, it is naively expected that the highest spatial variability
of both the SES ranking (confounder) and the NOx concen-
trations (risk metric) will be obtained when using the finest
spatial resolution. However, the highest statistical relationship
among the data layers was not obtained at the finest scale. In
general, our results suggest that assessments of air quality
impacts on health require data at comparable spatial resolu-
tions, since use of data layers of distinct spatial resolutions

may alter (mostly weaken) the estimated relationships be-
tween environmental stressors and health outcomes.
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Introduction

Spatial misclassification refers to potential errors that result
from overlaying spatial variables (e.g., exposure metrics,
socio-demographic status, and health outcomes) that are rep-
resented at different spatial scales, such as census tract, mu-
nicipal borders, and city neighborhoods. Spatial misclassifica-
tion has been recognized as a potentially severe limitation in
environmental epidemiology (Sheppard et al., 2012).
Oftentimes, health-related studies suffer from limited
individual-level data on historical exposures to environmental
risk factors, risk modifiers, and susceptibility (Stafford et al.,
2008; Goodman et al., 2011). For example, many studies look
for associations between individual or group-level health data
and exposure at either the geocoded residential address or the
neighborhood scale, and their results vary depending on the
selection of (or constraints in choosing) polygons to represent
the areal unit characteristics (Ryan et al., 2008; Diez Roux and
Mair 2010). Aggregation of risk metrics in order to combine
exposure matrices (e.g., air pollution index—API), or of po-
tential confounding factors that are presented at different spa-
tial scales, may augment the exposure estimation error and
lead to increased misclassification between the factors
(Sheppard et al., 2012). In particular, spatial associations
might be affected by the aggregation process rather than
reflect true patterns between the underlying data layers
(Jerrett et al., 2010).
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In particular, data used in environmental epidemiology
studies are often obtained by averaging of records over neigh-
borhood or the city-boundary polygonal representations,
resulting in uniform exposure over each polygon (Gryparis
et al., 2009). The assumption that associations observed at
the area level hold for individuals residing within this area
can lead to the so-called ecological fallacy (Wakefield, 2008;
Idrovo, 2011). Although many studies specify this problem as
a serious limitation, most of them do not account for the eco-
logical bias that may result from the spatial aggregation of
health outcome indices and environmental exposure metrics
(Wakefield and Shaddick, 2006). Such an ecological bias, also
known as aggregation bias or cross-level-bias, may occur as a
result of using coarse environmental information about
stressors together with fine (i.e., individual) information on
health outcomes (Shaddick et al., 2013).

Moreover, one of the challenges in such studies is how to
account for the fact that environmental processes occur at
varying spatial and temporal scales, and that for a reliable
statistics large datasets are needed and large regions normally
comprise the study areas. This is specifically true for air pol-
lution and was suggested as one of the reasons for the rela-
tively small contribution of air pollution to the overall burden
of disease (Sheppard et al., 2012; Hoskins et al., 2016).
Different spatial patterns may emerge as a result of Bmapping^
the pollutants at different spatial resolutions (Fekete et al.,
2010) over the study area, with different pollutants showing
different spatial patterns (Yuval and Broday, 2006) due, in
part, to their distinct emission height (Amster et al., 2014).

The bias associated with aggregation of multiple spatial
data sources (layers), each using distinct geographic units
(polygons), is also found in ecology and is termed the modi-
fiable areal unit problem (MAUP; Openshaw 1994; Maantay,
2007; Goodman et al., 2011). The problem emerges when
different spatial traits, such as resolution and extent (scale),
are used in the same model (Stafford et al., 2008; Flowerdew
et al., 2008; Parenteau and Sawada, 2011; Cyril et al. 2013).
One aspect of the MAUP is the selection of an optimal geo-
graphic unit over which the aggregation of multiple data
layers should be performed. Using non-optimal geographic
units may increase the spatial misclassification and enhance
the so-called boundaries effect. For example, tampering with
the size and shape of the geographical units while keeping the
total number of units constant can lead to inconsistent across-
layer analysis (Flowerdew et al., 2008; Stafford et al., 2008;
Poortinga et al., 2008; Parenteau and Sawada, 2011).

The spatial resolution of the data (i.e., the finest cell size or
the smallest polygon size) determines the maximum spatial
generalization of the information (Stafford et al., 2008;
Poortinga et al., 2008). Two opposing processes may occur
while aggregating multiple-scale data sources, such as expo-
sure metrics and health outcome indices, into one product
(e.g., a risk map). Namely, the associations between the

environmental stressors and the health outcomes may (a) im-
prove due to increasing the number of Bcases^ or due to geo-
graphic clustering of the data (e.g., demographic attributes
may be available only at the census tract level; Goodman
et al., 2011; Lovasi et al., 2008; Zou et al., 2009), or (b)
weaken due to loss of accuracy and reduced variability at the
coarser scales. Hence, selecting a particular aggregation meth-
od over the others may alter the sought associations. In fact,
the possibility that a risk factor will introduce ecological bias
without having any individual-level association to the studied
outcome variable has been noted (Jerrett et al., 2010;
Wakefield, 2008; Greenland and Morgenstern, 1989), sug-
gesting that studies in environmental epidemiology may be
affected by multi-scale interactions.

To further study this phenomenon, we applied in this study
different spatial aggregations to a common exposure metric
(ambient concentrations of nitrogen oxides, NOx) and to a
potential confounder (the socioeconomic status rank, SES)
and evaluated the effect of aggregation on the statistical inter-
action between them. As explained above, ecological bias
arises in environmental health studies from the inability of
ecological data to characterize the within-area variability in
exposures and confounders (Wakefield, 2008). Here, we dem-
onstrate that distinct within-area variability of spatial risk met-
ric patterns may result from artifacts of the aggregation of the
underlying data layers and suggest methods for reducing the
ecological bias that results from such aggregation processes.
To explore how a change in the spatial resolution and/or the
polygonal representation of the data layers affect the interac-
tion between these data layers, we examine possible con-
founding associations between nitrogen oxide concentra-
tions—a common traffic-related air pollutant—and the SES
of the exposed population. Specifically, we demonstrate for
the Tel Aviv metropolitan area, Israel, (ca. 3.7 million resi-
dents) how different SES polygonal representations and
NOx patterns at different spatial resolutions affect the statisti-
cal interaction between these two data layers.

Methods

Study area

The study area comprises the Tel Aviv metropolitan area,
Israel, extending from the city of Hadera in the north to the
city of Ashdod in the south (Fig. 1). The study area is located
along the Mediterranean coast, stretching to about 80 km from
south to north and 25 km from west to east. The area is char-
acterized by high density of roads and railways, two airports,
and one commercial seaport. The total population in this area
is about 3.7 million inhabitants that live in 57 municipalities
and 768 census blocks, defined by the Israel Central Bureau of
Statistics (CBS).
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Air pollution

A land use regression (LUR) model (Levy et al., 2015) was
used for calculating the annual average nitrogen oxide con-
centrations (NOx) for the year of 2008. The model was devel-
oped for the whole Israel, using 104 monitoring stations of the
national air quality monitoring network (AQMN). Briefly, the
model examines explanatory variables including the national
road network, traffic counts, population density, land use char-
acteristics (residential and industrial), and vegetation cover
(based on the normalized vegetation difference index,
NDVI, at 30 m grid cell resolution). In addition, geo-
location data (latitude, longitude, and elevation above the
street level) of the monitoring stations were also used. A mul-
tivariate generalized additive model (GAM; implemented
using the mgcv package in R version 2.15.1) was applied in
a supervised forward stepwise regression in order to predict
NOx levels. Independent model variables include the road
network, population density, elevation above ground, year of
measurement, and type of monitoring site (near-road or gen-
eral). The overall R2 of the GAM model was 0.74,
representing good performance. The LUR model was applied
on a 50-m grid and downscaled to obtain three coarser grid
resolutions of 200, 500, and 1000 m. The downscaling proce-
dure was based on the majority value of NOx concentrations at
the 50 m resolution in the larger (coarser) grid cell, thus
avoiding few local extreme values that were obtained since
the LURmodel was regressed also against data from transpor-
tation air quality monitoring stations. Data from such stations
are known to reflect local conditions that are expected to spa-
tially decay rather fast with the distance from the road. Using
the mode rather than the mean circumvent the effect of these
local high concentrations is at the coarser grid. This procedure

enabled us to study relationships between data layers that do
not stem from using distinct resolution (grid)-specific models
and model inputs but result only from the varying spatial
resolution of the data layers. Namely, the 50-m grid resolution
LURmodel estimates were used to obtain air quality estimates
at any of the coarser resolutions. This data-aggregation ap-
proach enabled us to examine the effect of air quality estimates
at different spatial resolutions while controlling for the effects
that could arise in case different models are used for producing
the estimates at the distinct spatial scales. It is noteworthy that
other downscaling approaches require using aggregated mod-
el inputs and new parameterization of the LURmodel (Beelen
et al., 2013); thus, spatial downscaling and model downscal-
ing will be mixed together.

Socioeconomic status

Three methods for mapping the SES polygonal boundaries
were used in this study (Fig. 2). (A) Administrative bound-
aries systems—we used two alternative systems that are in use
by the Israel CBS: (A1) the municipal polygonal representa-
tion (MPR), where the SES ranking is provided at 10 catego-
ries (1—low to 10—high). The boundaries of this polygonal
system represent physical and man-made features, such as
roads and railway lines (Maantay and Asthma and air
pollution in the Bronx 2007; Stafford et al., 2008). (A2) The
census tracts polygonal representation (CTPR), where the
SES ranking is provided at 20 categories (1—low to 20—
high). It is noteworthy that the definition of administrative
polygonal representation (MPR, CTPR) is mostly identical
across countries. In particular, census tracts are mostly as ho-
mogenous as possible in their land use, demographical attri-
butes, and socioeconomic characteristics (Padilla et al., 2013).

Fig. 1 Schematic spatial scales of
the different aggregation methods
used for SES (polygonal) and
NOx concentration (LUR grid)
representations. The four polygo-
nal SES representations are (a)
municipality borders (MPR), (b)
census tracts (CTPR), (c) ordered
grid (OGR), and (d) clusters of
grids with identical SES rank
(CGR)
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In general, the average population per census tract may vary
between countries, in line with the total population, but due to
its lower aggregation the CTPR averages information about
the population to a lesser degree than the MPR. For instance,
in Israel, census tracts represent areas with 3000–6000 inhab-
itants (Israel CBS) whereas in Canada and in the USA they
consist of 2500–8000 inhabitants (Parenteau and Sawada,
2011) and 1200–8000 inhabitants (Bell and Ebisu, 2012), re-
spectively. Furthermore, like theMPR boundaries, the borders
of the CTPR also usually follow physical features.
Consequently, the census tracts are not equal in their area or
shape, which may lead to errors when linking layers of distinct
spatial properties (Apparicio et al., 2008).

(B) Ordered grid representation (OGR)—we applied this
method to obtain polygonal SES representation that match the
shape and the size of the grid cells of the LURmodel. Namely,
this approach forces the size and shape of the grid to be con-
sistent for the two variables (NOx, SES) along the generaliza-
tion procedure (i.e., the increase/decrease in the grid size).
However, whereas the NOx values were directly calculated
by resampling the LUR model at the required resolution, the
SES values were assigned based on the underlying census
tract that covered the largest area fraction of the grid cell, using
zonal statistics in ArcGIS 10.1.

(C) Clusters of grids cells with identical SES ranking
(CGR)—to delineate homogenous polygons in terms of their
SES, we used a semi-automated approach. First, based on the
OGR approach, we obtained SES at four different grid cell
sizes (50, 200, 500, and 1000m) that matched the LURmodel
output, as described above. Next, a semi-automatic clustering
process was used for grouping grid cells together using the
Getis-Ord Gi* cluster analysis (hotspots in ArcGIS 10.1;
Parenteau and Sawada, 2011). Namely, the grid cells at the
SES layer were combined into clusters according to their z-
score and p value as follows: (1) grid cells with p value >0.1
were excluded due to lack of statistically significant evidence
for a cluster, assuming they represent a random spatial pattern.
(2) A cluster of low SES ranking was assigned when the p
value was <0.05 and the z-score was < -1.96. (3) A cluster of
mid SES ranking was assigned when the p value was between
0.05 and 0.1 and the z-score was between −1.96 and −1.65 or
between 1.96 and 1.65, and (4) a cluster of high SES ranking
was assigned when the p value was <0.05 and the z-score was
>1.96. Inherently, this algorithm gives more weight to the tails
of the SES distribution (i.e., the very high or the very low
SES). It is noteworthy that after the clusters were formed via
aggregation, their polygonal shape and size vary. It is note-
worthy that the aggregation of SES patterns, like the

Fig. 2 Aggregation of spatial data. Top: LUR model results at different
spatial grid resolutions (50, 200, 500, and 1000 m). The spatial
heterogeneity decreases with the increase in the size of the grid cells.
Bottom: different polygonal representations of the underlying

population SES ranking based on the 2008 Israeli census (details of
each representation are provided in the text). Right: study area overlaid
on a schematic map of Israel
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aggregation of the NOx patterns, did not require new data but
rather involved warping the existing data in different ways that
result in spatial aggregation.

Linking data layers

The level of ecological bias was examined in response to the
varying spatial aggregation of the underlying NOx and SES
polygonal representations. The relationships between the dif-
ferent data layers were assessed as follows. First, we defined
the three polygonal SES representations as described above.
Next, the socioeconomic ranking of the underlying population
was assigned to each representation based on the 2008 Israeli
census. Finally, NOx concentrations were assigned to each
SES polygonal representation according to the rules detailed
below, which reflect the spatial relationships between the
LUR model grid size and the SES polygonal representation.
It is important to note that the last two steps involved some-
times further downscaling, to obtain a Bjoint^ spatial resolu-
tion of the two variable layers. Specifically, the latter step was
performed only when different data layer structures were ex-
amined, representing real cases of distinct sampling strategy,
model output, or data aggregation as a result of, e.g., privacy
concerns. Figure 1 summarizes the different data representa-
tions of the exposure metric (LUR estimates) and the con-
founder variable (SES polygonal representation), illustrating
schematically how the change in SES polygonal and LUR
(NOx) grid cell sizes can lead to downscaling of the spatial
information. When the size and shape of the SES polygons
and the LUR grid cell coincide, each SES polygon was
assigned the NOx concentration of the LUR grid cell that is
exactly underneath it. However, when the LUR grid cells are
larger than the SES polygons (dark gray area in Fig. 1) each
grid cell with a LUR estimated NOx concentration is assigned
the weighted average SES ranking of the SES polygons that
lie under it. On the other hand, when the SES polygons are
larger than the LUR grid cells (light gray area in Fig. 1) each
SES polygon is assigned the weighted average NOx concen-
tration of the LUR grid cells that lie under it.

Statistical methods

To examine to what extent the spatial representation of the two
data layers (risk factor and confounder) affects the statistical
relationship between them, we calculated the Spearman cor-
relation coefficient (r) for all the combinations of NOx and
SES spatial generalizations. For simplicity, the SES ranking
was divided into three categories: high, medium, and low.
When using the MPR, CTPR, and OGR representations, the
SES categories were divided according to the natural breaks
method, which provides optimal grouping of similar values
while maximizing the differences between groups (ArcGIS
10.1). For the CGR representation, SES categories were

divided into three classes according to their z-scores and p-
values, which were obtained as part of the cluster analysis test
(see above).

The confounding relationships between SES and NOx

across the whole study area were studied using logistic regres-
sion and one-way ANOVA, to determine if spatial variation of
NOx concentrations among different SES groups and polygo-
nal representations is evident. High F-statistics indicate high
spatial variability of exposure to NOx among the SES groups,
which reduces the potential for ecological bias. Differences
among SES groups were further examined using Duncan’s
multiple range post hoc test (Duncan 1995; STATISTICA 8
package with the General Linear Model (GLM) procedure,
using the Mean option).

Results

Figure 3 depicts the Spearman correlation coefficient of all the
SES–NOx representation pairs. The correlations between NOx

concentrations and the MPR or CTPR SES representations
were insignificant (p value >0.05). In contrast, significant (p
value <0.05) although low correlations were obtained between
the OGR and CGR SES representations and NOx despite the
fact that these representations involved up/downscaling of the
SES ward structure, as opposed to the MPR and CTPR repre-
sentations. The relatively small grid size, especially of the
OGR polygonal SES representation, required a large number
of grid cells to map the study area and, therefore, implicates a
small number of degrees of freedom. This may decrease the
robustness of the results, since a low signal-to-noise ratio
(SNR) may mask the NOx–SES interaction due to artificially
increased variability. Small unit area may also increase the
probability of spatial autocorrelation. Namely, as the number
of polygons increases their size decreases, and pairs of poly-
gons which are adjacent to each other are more probable to
show similar values (Dormann et al., 2007). It is noteworthy
that in this case the autocorrelation does not represent a real
spatial pattern of the SES groups but rather only the experi-
mental design. Indeed, Fig. 3 reveals that changes in the spa-
tial resolution of both the LUR model and the SES polygonal
representation alter the statistical correlation.

The Spearman correlation coefficient (r) increased with the
increase in size of the grid cells that underlie the CGR and
OGRSES representations. For example, r increased from 0.03
to 0.09 for the OGR SES representation when LUR50 was
used for exposure estimation (Fig. 3). Likewise, r increased
dramatically from 0.04 to 0.26 for the CGR SES representa-
tion when LUR50 was used for exposure estimation. These
results demonstrate possible ecological bias that could result
when using data layers with different spatial resolutions as a
result of distinct re-scaling procedures (down/upscaling) or
aggregation schemes.
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An alternative scheme for studying the effect of spatial
resolution on inter data-layer relationships is by ordinal logis-
tic regressions between any of the commonly used SES cate-
gories (low, medium, high) of the different SES representa-
tions and the spatial resolution of the LUR-based exposure
metric. Figure 4 shows the results of such logistic regression
models, with SES being the categorical dependent variable
and NOx concentrations the continuous predictor. The results
imply that in some cases significant associations between the
NOx levels and the SES groups were obtained (OR >1, where
OR is the odds ratio), in particular when the polygonal repre-
sentations (mainly OGR) involved up/downscaling proce-
dures, and when the spatial resolution of the SES data was
high. However, in general no clear pattern or a particular ad-
vantage was revealed for any of the polygonal SES represen-
tations. It should be further noted that using the administrative
polygonal representations did not reveal any significant rela-
tionships with the ambient NOx levels.

One possible reason for the observed decrease in the
strength of the associations is the limited spatial variability
of NOx concentrations, whichmay result from the LURmodel
grid resolution. Namely, when there is no spatial variability of
the NOx concentrations no differential exposure is expected at
the individual-level analysis and no interaction could be ex-
pected between any of the SES representations and the NOX

concentrations. To explore this, we ran a one-way ANOVA
and determined the extent of the spatial variability of NOx

concentrations for different SES groups (low, medium, high)
and SES representations (Table 1). A low F-statistics implies
low variability of the NOx concentrations among the different
SES polygonal representations, indicating a potential for ef-
fect measure errors due to aggregation of spatial data. Table 1
reveals no spatial variability of the NOx concentrations when
the traditional SES polygonal representation (MPR and
CTPR) were used. In contrast, when the spatial resolution of

both the LUR and the SES maps was high (i.e., small grid
cells), the spatial variability (heterogeneity) of the NOx con-
centrations was large among the SES categories (e.g., a SES
grid size of 50 m and a LUR grid between 50 and 500 m,
Table 1). Moreover, Table 1 reveals large a variation in the
NOx concentrations among the CGR SES representations,
which decreases from ∼700 to about zero with the increase
in the SES grid size from 50 to 1000 m. This represents the
common notion that the spatial resolution of the risk factor
(here NOx concentration estimates) may significantly bias the
associations in environmental epidemiology studies.

Discussion

Usually, epidemiological studies on air pollution and its relat-
ed health effects do no account for uncertainties in the esti-
mated exposure (Sheppard et al., 2012). As shown in this
work, some of this uncertainty may be attributed to spatial
aggregation of the environmental risk factors and the con-
founding parameters (Jerrett et al., 2010; Greenland and
Morgenstern, 1989). Since nowadays, environmental risks
are mostly investigated using individual-level information
(Idrovo, 2011), the aggregation process may lead to an eco-
logical bias. To date, ecological bias in epidemiological stud-
ies has been mostly related to the ignored variability among
individuals that consist a group for which identical exposure
and confounders are assigned. For example, individuals that
reside within a given area (e.g., census tract) that are assigned
the same exposure or risk factors. Similarly, individuals that
belong to the same SES group are assumed to be affected to
the same degree by an identical confounder. However, in prac-
tice, the exposure of these individuals may be highly variable
(Wakefield, 2008). This study demonstrates how different ag-
gregation schemes of the underlying risk factors and

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

OGR 50 m CGR 50 m OGR  200 m CGR 200 m OGR 500 m CGR 500 m OGR 1000 m CGR 1000 m CTPR MPR

Sp
ea

rm
an

's
  C

or
re

la
�

on
 C

oe
ffi

ci
en

t

LUR 50 m LUR 200 m LUR 500 m LUR 1000 m

Fig. 3 Effect of the polygonal representation and of the LUR grid
resolution on Spearman’s correlation between the underlying population
SES ranking (the confounder) and the NOx concentrations (the risk

factor). Solid fill—significant correlation coefficients (p value <0.01),
dotted fill (CTPR and MPR)—non-statistically significant correlations

416 Air Qual Atmos Health (2017) 10:411–420



confounders can modulate the associations and statistical in-
ference (both its magnitude and direction) between exposure
metrics and confounders within an environmental health
study. In particular, we show that merging of environmental
information that is obtained at different spatial resolutions and
polygonal representation can lead to erroneous results in terms
of either over-prediction or under-prediction relative risks.

Furthermore, this study explores various mechanisms by
which up/downscaling of spatial information sources can in-
troduce bias. Specifically, we showed that up/downscaling
may reduce the variability of the exposure metric (here, NOx

concentrations) among equal confounder-level groups (here,
the SES ranking) and eliminates (or drastically reduces) the
statistical association between them (Fig. 3). For example, we
found that in most cases the traditional wards for which SES is
available, CTPR and MPR, involve downscaling of the envi-
ronmental information, which leads to non-significant statis-
tical associations with the exposure metrics. For example, the
extent of the polygonal CTPR and MPR representation of the

SES leads to averaging of the NOx concentrations over large
areas and results in low exposure variability among the SES
groups.

The question to what extent the choice of specific polygo-
nal boundaries affects the averaging and uniformity of the
exposure estimates is case specific.While some studies report-
ed bias due to specific choices of the polygons’ boundaries
(Flowerdew et al., 2008; Poortinga et al., 2008), other found
no such influence across different polygonal representations
(Stafford et al., 2008; Lovasi et al., 2008; Eitan et al., 2010).
To avoid the problem of inconsistent shape and size of the
polygons’ borders, some studies suggested that the finest po-
lygonal unit should be used for the analysis, unless prior ev-
idence indicates that larger units are essential for investigating
the research question (Jerrett et al., 2010). Thus, naively, one
could expect that the highest spatial variability of both the SES
ranking and the NOx concentrations will be obtained when
using the finest spatial resolution. If generally true, this should
have been revealed when the LUR model results (NOx) and
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the OGR or CGR polygons (SES) at the 50 m grid spatial
resolution were used. However, our results show that the
highest spatial heterogeneity over the whole study area was
obtained when the NOx concentrations were presented on a
500-m grid and the SES OGR categories were presented on a
50-m grid (Table 1). Hardly any spatial heterogeneity of the

exposure (in terms of NOx concentrations) was seen when
using the traditional SES polygonal representations (MPR,
CTPR). Hence, the spatial variability of both the risk factors
and the confounders is clearly affected by the subjective
choices of the user regarding their spatial representation.
Area-level confounders and exposures, as any other spatial

Table 1 F-statistic values of the
one-way ANOVA test between
the SES polygonal representation
and the LUR grid resolution.
Higher F-statistics represent
higher spatial variation of the
NOx concentrations among the
SES categories

Polygonal SES representation LUR 50 m LUR 200 m LUR 500 m LUR 1000 m

CTPR 2.56 2.11 1.95* 11.14

MPR 0.70 1.15 0.62 0.56

OGR 50 m 590.6* 1559.0* 2576.3* 6.14*

OGR 200 m 101.9* 103.2* 103.81* 6.35*

OGR 500 m 16.67* 16.68* 17.17* 6.44*

OGR 1000 m 1467.83 93.03* 16.16 5.28*

CGR 50 m 716.5* 695.1* 672.0* 717.4

CGR 200 m 95.5* 99.87* 105.23* 105.0*

CGR 500 m 7.67* 8.36* 9.69* 41.0*

CGR 1000 m 3.36* 3.25* 3.14* 2.85*

Statistically significant values are marked by *
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phenomena, have characteristic scales and resolutions (Fekete
et al., 2010). In this work, we show that user decisions regard-
ing the polygonal/grid representation of the various data layers
should account for the spatial distribution of the phenomena
studied. These decisions can substantially affect the statistical
relationships between the model variables (stressors and con-
founders) and modify the correlation with the dependent var-
iable, as well as their specific contributions to its explained
variability.

As clearly demonstrated in this work and as known from
the literature, there is always an unavoidable tension between
two opposing strategies: data aggregation (to enhance the sta-
tistical significance) and generalization of ecological informa-
tion (Jerrett et al., 2010). Since spatially aggregated informa-
tion displays a higher level of uncertainty than individual-
level data, observed patterns may contain artifacts of the ag-
gregation process (Greenland and Morgenstern, 1989). For
example, in Tel Aviv (the largest city in our study area),
Israel, none of the SES polygonal representations studied in
this work led to a consistent confounding association with the
NOx concentrations. This result is in contradiction with previ-
ous findings, which suggested that in the Tel Aviv area there is
a geographic overlap between areas that are character-
ized by higher NOx concentrations and the higher SES
ranking statistical wards (Myers et al. 2013). In general,
both epidemiological and environmental data are avail-
able at relatively crude spatial resolutions, and their ag-
gregation may lead to considerable generalization of the
individual-level risks and to ecological bias. We demon-
strated here that one source of this ecological bias can
be easily quantified, as opposed to ecological bias that
results from unaccounted for individual-level risk factors
and confounders (Sheppard et al., 2012; Goodman
et al., 2011). In general, our results suggest that using
broader scales that generalize spatial information may
alter (mostly weaken) the relationships between environ-
mental stressors and health outcomes. It should be noted
that while our findings may be context-specific, they
demonstrate an important universal principle, namely
that the spatial representation of the geocoded data has
an impact on the derived relationships between different
layers of spatial information.
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