
Temporal change of PM10 and its mass fraction during a dust
storm in September 2009 in Australia

Rupak Aryal & Simon Beecham & Mohammad Kamruzzaman &

Samantha Conner & Byeong-Kyu Lee

Received: 21 July 2014 /Accepted: 19 September 2014 /Published online: 30 September 2014
# Springer Science+Business Media Dordrecht 2014

Abstract Frequent dust storms are a major concern in
Australia due to associated human health risks and potential
economic losses. From 23 to 24 September 2009, a dust storm
passed over many east coast regions of Australia. This
blanketed them with dust and reduced the visibility to a few
hundred meters for several hours. The respirable particulate
matter less than 10 μm (PM10) was monitored at 22 locations
across New South Wales (NSW) by the Environmental
Protection Agency. In addition, samples were collected in
Sydney using a nine-stage cascade impactor both during and
after the dust storm. The PM10 concentration over most of
NSW jumped from less than 50 μg/m3 to more than
10,000 μg/m3 within a couple of hours and then dropped
again tomore normal levels (<50μg/m3). The normal bimodal
particle size distribution was observed to change to a multi-
modal distribution during a dust storm event. Also, the ele-
mental ratio of Al to Si increased from 0.14 to 0.39 during the
storm. An Al/Si ratio >0.3 indicates that the dust originated
from inland desert areas and indeed was closely matched to
Lake Eyre Basin crustal element data indicating it had trav-
elled from central Australia to the eastern coasts.
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Introduction

Particulate matter in urban areas has become a major
concern due to the risks posed to both human and
ecosystem health (Ayala et al. 2012). Particulate matter
in urban areas can be partly derived from wind erosion
of soils, including both urban soils, as well as rural and
agricultural soils transported over long distances. They
can also, to a lesser extent, derive from mechanical
disturbance by vehicular, commercial, and industrial ac-
tivities in urban areas (Aryal et al. 2008; Lee and Lee
2008). Respirable particulate matter, which are those
particulates less than 10 μm in diameter (known as
PM10), are particularly important as a measure of air
pollution in a given area (Kuenzli et al. 2000; Lim
et al. 2010; Lu 2002; Ragosta et al. 2006). Several
studies have documented the relationship between par-
ticulate matter and diseases such as respiratory cardio-
vascular disease and lung diseases (Donaldson and
MacNee 2001; Goldberg et al. 2006; Kan and Chen
2003; Mehta et al. 2013). It has also been documented
that mortality rates increase by 1 % and incidents of
respirable diseases increase by 3–6 % when PM10 is
increased by only 10 μg/m3 (Ostro et al. 1999). PM10 is
a major concern for countries such as China, Japan,
Korea, Australia, and Spain that receive frequent dust
storms (Ekström et al. 2004; Kim et al. 2001; Lyamani
et al. 2005; Vanderstraeten et al. 2008; Watanabe et al.
2011; Xie et al. 2005). Overall dust storms are a natural
phenomena that can affect very large areas to such an
extent that both local and national economies can be
impacted (Stefanski and Sivakumar 2009; Tozer and
Leys 2013; Wang et al. 2006).

Over the last two decades, dust storms along the
Australian east coast have become a subject of interest
due to their adverse impacts on human health and the
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economy in many major cities such as Sydney,
Canberra, and Brisbane. It is reported that the Lake
Eyre Basin is one of the major active dust storm re-
gions in Australia (McTainsh et al. 1998; Middleton
1984) and the eighth most active dust source region in
the world (Washington et al. 2003). The Lake Eyre
Basin covers almost one sixth of the area of Australia
(Strong et al. 2011). According to previous studies, dust
activity is higher in the Lake Eyre Basin during late
spring (September–October) and early summer (November–
December) (Ekström et al. 2004). Figure 1a shows the dust
storm origin of Lake Eyre Basin and the storm pathways
across Australia.

On 23 September 2009, many towns and cities in the east
of Australia were affected by a dust storm generated the
previous afternoon in the vicinity of the Lake Eyre Basin.
The passage of a vigorous trough of low pressure generated
damaging winds had developed during 22 September in cen-
tral South Australia (Fig. 2). Mean winds of 60–70 km/h (16–
19 m/s) and gusts up to 80–90 km/h (22–25 m/s) were also
recorded in centers such as Coober Pedy, Marree, and
Oodnadatta.

The windy conditions combined with an unstable
atmosphere lifted the dust particles into the air. The
dust was then transported toward the east in winds
recorded as being between 80 and 105 km/h (22–
29 m/s) at heights between 1 and 1.8 km above ground
level. Major cities such as Sydney and Brisbane were
blanketed with dust for nearly 24 h before the storm
headed to the Tasman Sea (Aryal et al. 2012). Since the

dust storm travelled through the Lake Eyre Basin and
agricultural land, the dust was believed to contain large
amounts of desert sand as well as top soil from agri-
cultural land. Indeed, it was reported that this particular
event carried away over 75,000 t per hour of soil (Tozer
2012) while 71,015 t per hour of soil loss was also
reported by Leys et al. (2011). Numerous studies have
investigated the composition and have attempted to
model the possible source of Australian dust storms
using data on mineral loadings in the atmosphere, sur-
face material characteristics (Aryal et al. 2012), and
transport models (Knight et al. 1995; Radhi et al.
2010a, b). It has been said that the dust particles had
a density that was almost 70 times higher than normal
(Li et al. 2010). The PM10 dynamics and the particle
size distribution mass fraction recorded in Brisbane dur-
ing the event were compared with normal days by
Jayaratne et al. (2011). Brisbane is located almost
1,000 km north of Sydney. They observed that the
storm peaked at about mid-day on 22 September when
the hourly average PM2.5 and PM10 values reached 814
and 6,460 μg m−3 and added that the PM10 fraction
accounted for about 68 % of the total mass. Leys et al.
(2011) discussed mass transport of the PM10 in the New
South Wales (NSW) region; however, they did not re-
port either the particle size distribution within the PM10

or its elemental composition. This paper elaborates dis-
cussion on the transport of PM10 in the NSW region
during an event, the particle size distribution within
PM10 with a comparison of normal PM10 levels and

(a)

(b)

Fig. 1 a Location map showing Lake Eyre Basin and the dust transport corridor (shaded) proposed by Bowler (1976) and b PM10 sampling sites across
NSW (black circles show the PM10 fraction sampling sites in Sydney)
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the elemental composition in PM10 for source
identification.

This study investigates the PM10 concentrations, as well as
their dynamics during the dust storm at 22 locations across
NSW. It also compares the mass size distributions on the day
of the dust storm against what was considered a normal day
after the dust storm.

Materials and methods

PM10 monitoring data was recorded at 22 monitoring
stations across NSW before, during, and after the event.
This data was obtained from the NSW Environment
Protection Authority as an hourly average. PM10 sam-
ples were also collected near the central business district
(CBD) of Sydney, NSW, during the dust storm event
(23 September 2009) and 1 week after the event (29
September 2009) using a none-stage cascade impactor
(Environmental Tisc, USA). The cascade impactor was
placed on the second floor (terrace) of a University of
Technology, Sydney (UTS), building in Ultimo (latitude
33.897 and longitude 151.200). The impactor was 8 m
above ground level. The building was located 500 m
from the CBD and 50 m away from a busy traffic road
(>30,000 vehicles per day). The monitoring site represents a
typical urban environment which is dominated by vehicular
activities.

The dust samples were collected on the filters and
were placed in desiccators for 24 h at laboratory tem-
perature (25 °C) to eliminate any remnant moisture
on the filters. A gravimetric method (five-digit
microbalance, Mettler, Toledo) was used for mass cal-
culation in each fraction. Air flow rates (30 m3/h for
4 h on the dust storm day and for 24 h a day a week

after the event) in the impactor was calculated in the
field using a manometer which sensed the pressure drop
across the nine stages of the impactor. Quantification of
the dust particle fractions collected in the cascade im-
pactor were based on the theoretical impaction curve
diagrams provided by the manufacturer (Aryal et al.
2013).

Meteorological data such as temperature, wind speed
and direction, and humidity was collected from auto-
matic weather stations across NSW by the Bureau of
Meteorology, Australia.

The elemental ratio of PM10 collected at the UTS site was
studied by applying scanning electron microscopy (environ-
mental scanning electron microscope) equipped with electron
diffraction X-ray (Siemens D5000 X-ray Diffractometer)
(Aryal et al. 2012). Figure 1b shows the 22 monitoring sta-
tions for PM10 across NSW.

Statistical analysis

A cumulative sum (CUSUM) method (Kamruzzaman et al.
2011) was implemented to examine evidence of relative
changes under the mean. The CUSUM at time n was calcu-
lated as:

Ct ¼
X

i¼1

n

xi−x
� �

where xi represents a sample size, and x is the mean of the
sample of length n. Ctwill have a negative slope if consecutive
values tend to lie below the mean, and Ct will have a positive
slope if consecutive values tend to lie above the mean.

Fig. 2 Mean sea level pressure charts associated with the cold front development in Eastern Australia on 22–24 September 2009
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Results and discussion

Early on 23 September 2009, Sydney was experiencing
warm and humid conditions. Northerly winds (bearing
of 360°) moving at 8.7 m/s kept the air temperature at
19 °C and the relative humidity was high at >75 % as a
result of thunderstorm activity the previous afternoon.
The PM10 concentration was below 50 μg/m3 which is
the Australian ambient air quality standard over 24 h.
As the morning progressed, the PM10 concentration
slowly increased until it was in excess of 10,000 μg/
m3 at more than 13 locations in the Sydney area within
a couple of hours. This corresponded with an increase
in the wind speed to 10–12 m/s. Figure 3 shows the
measured PM10 before, during, and after the dust storm
at various locations across NSW (see Appendix 1 for
PM10 data). This shows that before the event, the PM10

value was lower than the Australian guideline value of
50 μg/m3 in almost all areas except for a few cases
across NSW. The wind increased to 10–14 m/s and
shifted to a northwesterly direction (bearing of 309.6°)
ahead of an approaching cold front. The highest PM10

value recorded in Sydney was 11,800 μg/m3 at
Randwick at 7 a.m. Across NSW, the highest value
was 15,388 μg/m3 recorded at Bathurst, which is a
regional center located 200 km west of Sydney. From
Fig. 1, Bathurst is located in the middle of the dust
storm path corridor proposed by Bowler (1976). It has
been reported that this storm resulted in the loss of 2.54
million tons of soil off the coast and that the total
economic cost was between AUD $418–438 million
(Tozer and Leys 2013). This estimated economic loss
does not include a further AUD $8.8 million for

nutrient loss from agricultural soil, because it was as-
sumed that this would not be replaced by farmers.

Figure 4 shows the PM10 dynamics across NSW
during the dust storm period. The contour diagrams
show that the atmospheric concentrations of PM10 be-
fore the event (Fig. 4a) were at acceptable levels. Soon
after this, the sky was masked with red particles along
the south corridor at the beginning and then to the
north–south corridor of NSW (Fig. 4b). These diagrams
show that the concentrations started increasing on the
southern edge of the study area. This was due to
strengthening northerly winds transporting the dust from
the country’s interior. The plume then started to migrate
northward as southerly winds behind a cold front started
to bring in clearer maritime air from the south. The cold
front moved through Wagga Wagga at approximately 2
p.m. on the 22 September. Then, almost 24 h later, the
front moved through Sydney airport at around 1.30 p.m.
on 23 September. The front continued to move north-
ward to Bathurst by 3 p.m. and to Williamtown (near
Newcastle) by 11 p.m.

Once the northerly winds had increased, it was only a few
hours before the particle concentrations suddenly jumped to
more than 10,000 μg/m3. The maximum PM10 concentration
in Sydney was in the range 10,000–13,000 μg/m3. The other
two major east coast cities Wollongong and Newcastle, which
are both near Sydney, experienced levels around 10,000 μg/
m3. It was believed that local wind circulation in Sydney
might have affected dispersion of particles across a 100-km
belt (Fig. 4c, d). Almost 24 h later, the event had passed
through Sydney and atmospheric PM10 returned back to nor-
mal levels (Fig. 4e). Appendix 2 shows the PM10 concentra-
tions across NSWat 3-h intervals, before, during, and after the
dust storm.

A large variation in PM10 concentration along the
storm path showed that wind direction played an impor-
tant role in PM10 transport. Figure 2 illustrates the
synoptic situation which transported the dust toward
the east coast on the day of the event. Up until approx-
imately the midpoint between the dust source and the
east coast cities, the dust storm passed as a single
plume. However, as it reached the Blue Mountains
range, the plume dissipated toward the north east
(Queensland) and south east (Canberra region) as well
continuing straight ahead to the city of Sydney. This is
due to the stalling of the cold front on the higher
topography (see Fig. 2).

Figure 5 shows the topography of the Bathurst and Sydney
areas and the mountain range (Blue Mountains) that lies
between them. The Sydney region also called Sydney Basin
is bounded in the west by the Great Dividing Range, called
Blue Mountains, which runs parallel to the eastern coast of
Australia (Cohen et al. 2011). The Blue Mountains range is
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Fig. 5 a Topography of three east coast cities, Sydney, Wollongong, and Newcastle, in NSW and b topographic profile in north–south, and NE/SW
diagonal slices, centered around Blue Mountains
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elevated from 600 to 1,030 m. There was a strong fall in PM10

concentration from Bathurst (∼15,300 μg/m3) to Sydney
(11,800 μg/m3). This sharp decrease in PM10 concentration
indicates that the Blue Mountains range played an important
role in reducing the dust storm’s concentration as it reached
the Sydney region. Higher particle density and a steeply
sloped mountain range appears to have helped to barricade
the dust storm and reduce the PM10 concentration by almost
2,000 μg/m3 (Li et al. 2010). This assumption is supported by
further reductions in the PM10 concentration in Wollongong
(9,600μg/m3) (60 km of Sydney) which is also surrounded by
a small mountain range.

The Sydney basin is the largest city in Australia with
4.5 million people inhabit the basin with nearly 3 mil-
lion motor vehicles, and this basin is a natural trap for
fine particles produced locally (Cohen et al. 2011). Air
pollution is always of great concern in the city due to
human-health-related issues caused by topography.
Figure 6 shows the particle size distribution of PM10

by (a) volume percentage and (b) concentration on
normal day (after the dust storm) collected at UTS
building. The PM10 fraction (graph) suggested that a

bimodal distribution (0.1–4.7 and 4.7–10 μm) existed
on a normal day (after the dust storm). The finer parti-
cle size mode corresponds to the accumulation phase,
and the coarser particle size mode corresponds to the
mechanical erosion and resuspension of dust particles
(Allen et al. 2001; Kulshrestha et al. 2009). Past studies
show that most of the aerosol in urban environment is
from vehicular emission and exhibit bimodal distribution
(Chan et al. 2000; Karanasiou et al. 2007; Lu 2002;
Santamaria et al. 1990; Spurny 1996). During the event,
particle size fractions appear to display a multimodal
distribution (0.1–1.1, 1.1–4.7, and 4.7–10 μm). The
multimodal peaks in Fig. 6 suggest that dust from other
sources also intruded into the urban aerosol. The
thousand-fold increase in finer particles (6–10 μm) in
the atmosphere suggests that the particles not only came
from external sources but also that they travelled hun-
dreds to thousands of kilometers before reaching
Sydney (Knight et al. 1995). Jayaratne et al. (2011)
also conducted study on aerosol during the event and
on-normal days in Brisbane, almost 1,000 km north of
the Sydney sampling station. They observed most of the
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mass in the size range below 10 μm lay between 2.5
and 10 μm, similar to our results.

Figure 7 shows the relative change in particle size after (a)
and during (b) the dust storm. This shows significant differ-
ences in the relative change in particle size distributions.
During a normal day (a), the particle sizes follow a normal
distribution whereas during the dust storm, the distribution is
not normal and instead displays a multimodal distribution.
This results in significant changes in the mass fraction ratio
during the dust storm.

The Al/Si ratio is considered a good indicator to distinguish
between desert- and anthropogenic-dominated samples with
high values in the former group and lower in the latter (Blanco
et al. 2003). According to Guerzoni et al. (1997), Al/Si ratios
higher than 0.3 are generally indicative of the desert origin of
the particles. The PM10 Al/Si ratio observed in sample col-
lected in UTS building during the dust storm was 0.39. The
higher ratio during the storm indicates that particles originated
from desert origins (Blanco et al. 2003; Guerzoni et al. 1997).
This high Al/Si ratio of 0.39 is very similar to the values
reported by Cohen et al. (2011) in their long-term study
(1998–2009) of fine particles in dust storms in the Sydney
Basin (median of 0.27, average of 0.30, and maximum of
0.35). The value of 0.14 (for fraction 6–10 μm) is found in
the week after the event. This low Al/Si ratio after the storm
represents typical urban atmospheric conditions. Marcazzan
et al. (2001) recorded 0.35 in PM10 in Milan, Italy. Limbeck
et al. (2009) observed this ratio 0.17–0.28 in Vienna, Austria.
Cohen et al. (2004) calculated Al/Si elemental ratio 0.30 in
Hong Kong. Further, our organic carbon analysis showed that

the total organic carbon content in the dust storm was 10.6 %
(Aryal et al. 2012) which was up to sixfold higher than in
urban aerosol organic carbon reported earlier (Didyk et al.
2000; Offenberg and Baker 2000; Viidanoja et al. 2002).

Conclusion

PM10 particle size distributions and elemental ratio data were
collected from 22 locations across NSW during and after a
significant dust storm event in Sydney on 23 September 2009.
PM10 concentrations were less than 50 μg/m

3 before the dust
storm arrived. The concentration quickly jumped to more than
10,000 μg/m3 within a couple of hours of the storm’s arrival
and then dropped to more normal levels (<50 μg/m3). The
PM10 concentration distribution across NSW showed local-
ized influences on the dust storm. The PM10 distribution
measured by the cascade impactor showed a bimodal distri-
bution (0.1–4.7 and 4.7–10 μm) on normal days whereas
during the dust storm, a multimodal PM10 distribution (0.1–
1.1, 1.1–4.7, and 4.7–10 μm) was evident. The bimodal
distribution showed largely urban sources for PM10

whereas the multimodal distribution showed other
sources of particulate matter. In particular, approximate-
ly 60 % of the dust particles were less than 10 μm and
this indicated a long-range transport of dust. The Al/Si
ratio during the storm reached 0.39 and then dropped to
0.14 after a week. The high Al/Si ratios (>0.3) indicate
that the dust particles originated from inner desert areas
of Australia.

Appendix 1

Liverpool Prospect Macarthur Bringelly Chullora Randwick Rozelle Richmond Lindfield St Marys Vineyard Albion Park
Latitude 33.93 33.79 34.07 33.90 33.89 33.93 33.87 33.62 33.78 33.80 33.66 34.58
Longitude 150.91 150.91 150.78 150.76 151.05 151.24 151.16 150.75 151.15 150.77 150.85 150.79
22/09 1:00 17.2 15.2 16.5 17.4 17.7 17.9 18.9 19.1 16.9 13.7 17 22.3
2:00 15.9 14.5 17.6 24.3 18.2 17.2 19.8 8.3 17.7 7.4 15.4 18.1
3:00 14.6 13.9 15 25 14 19.5 17 11.3 12.8 6.5 12.9 20.6
4:00 14.7 14.4 14.1 20.4 14.7 22.1 18.8 18.9 14 13.6 14.4 20.8
5:00 14.9 11.1 18 10.1 18.3 24.5 18.9 14.2 10.6 16.6 12.6 17.8
6:00 14.2 9.1 18.5 7.6 48.1 5.5 6.4 8.9 9.9 7.8 9.1 17.6
7:00 33.3 12.1 22.1 22.3 91.3 12.8 8.2 13.3 9.6 13.8 9 19
8:00 17.5 14.5 21.1 29 35.2 11.6 11.5 15 13 23.4 14.6 20.7
9:00 25.6 22.1 27.8 22 21.2 20.4 19.9 17.9 15.8 14.2 37.8
10:00 28.8 51 42.9 43.9 31 28.6 22.4 21.7 18.6 16.9 305.7
11:00 27.8 50.9 55 35.9 30.8 30.7 41.2 22.2 30.9 30.5 342.1
12:00 51.7 49.5 38.4 62.2 61.4 36.2 29.3 80.4 33.2 44.5 46.9 186.3
13:00 60.5 46.4 41.7 63.7 97 39.8 43.1 38.4 36 46.4 41.7 75.7
14:00 40.7 40.5 59.7 44.3 69.1 45.3 39.8 35.9 44.5 39 44.5 59.4
15:00 48.1 44.7 69.7 53 78.3 43.5 50.3 39 47.6 45.5 42.3 69.5
16:00 48.7 38.4 66.3 53.4 54.1 41.8 42 34.7 40 43.8 35 93
17:00 50.7 40.9 61.9 62.5 52 42.1 38.7 27.8 30.6 48.1 32.4 119.6
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18:00 40.2 38.2 56.7 48.6 38 36.2 35.5 32 26.7 39 36.9 121.5
19:00 46 50 28.9 44.3 62.4 48.6 53 45.3 34.7 43.4 44.8 16.1
20:00 4.9 4.7 5.7 4.5 7 12.2 23.4 10 19.3 0.7 11 10.7
21:00 11.2 12.3 6.4 15.2 15.7 13.3 15.6 14 14.7 12.2 10.8 11.8
22:00 6 8.6 9.9 11 11.2 11.5 8.8 17.4 15.8 8.3 14.4 9.6
23:00 13.4 11.1 13.8 15.6 11.3 12.6 8.8 13.6 9.7 14.3 16.8 13.7
23/09 0:00 13.4 17.5 15.1 16.1 16.2 14.5 13.4 20.6 14.8 15.7 17.5 17.6
1:00 10.8 16.9 11.7 12.4 11.9 6 7.4 10.6 12.2 8.3 7.7 12.1
2:00 16.3 14.8 15.2 16.3 17.3 16.9 15.7 10.6 14.7 10.7 12.4 21.1
3:00 14.3 27.1 13.1 21.9 46.6 39.3 73.6 20 71.3 10.7 28.3 15.4
4:00 47.4 98.6 38.8 36.9 92 79.4 96.2 331.7 77.3 77.1 180 340.1
5:00 2,559.9 2,151.5 1,983.4 5,238.9 1,155.3 518.2 627.4 5,039 690.6 4,758.8 4,216.2 5,470.7
6:00 13,516 11,682.3 10,282.1 15,366.1 10,220 7,714.1 7,333 11,160 7,570.7 13,888 11,174.4 10,995.3
7:00 9,650.5 10,871.2 8,127.6 9,477.3 9,758.2 11,799 10,083 8,422.1 9,538.8 10,009.2 9,656.6 11,376.8
8:00 5,574.4 5,193.4 3,045.3 4,888.2 5,459 8,530.1 7,283.2 3,575.8 6,989.5 3,607.9 3,569.1 1,849.8
9:00 2,446.6 3,518.3 1,643.8 1,703.7 3,210.1 4,699.1 4,147.2 3,624.8 4,534.2 2,472.7 4,366.5 894.8
10:00 1,223.3 2,024.8 724.9 1,026.6 1,776.8 2,964 2,824 2,499.1 3,001.3 1,710.6 2,697.8 439.2
11:00 1,297.4 2,163.9 396.1 1,052.9 1,706.2 2,277.6 2,415.3 2,104.5 2,632.6 1,701.8 2,485.7 297.3
12:00 773 1,535.2 231.1 665.6 1,079.8 1,621.7 1,444.4 1,161.7 1,739.2 833.9 1,117.3 313.1
13:00 195.2 358 416 170.3 284 566.7 445.6 699.2 587.5 237.1 562 134.2
14:00 113.5 213.4 213.5 226.5 123.1 183.3 219.3 283.1 379.7 159.8 319.8 105.4
15:00 103.7 99.7 64.7 71.6 86.6 195.8 105.3 124 144.5 69.5 119.5 58.7
16:00 68.1 53.6 50.3 76.7 42.4 98 51.7 38 66 42.5 49.2 22.3
17:00 77.5 21 40.1 93.6 109 80.8 35.4 39 42.2 1 36.6 66.1
18:00 32.9 50.2 34.7 61.1 56.3 34.5 70.9 33.8 23.1 47.9 23.8 51.1
19:00 27.4 67.5 43.4 41.8 22.5 28.5 44.6 22.1 45.8 43.6 26.5 44.2
20:00 41.8 2.7 34.6 35.9 27.8 57.9 33.6 15.3 21.1 51.6 22.5 57
21:00 43.4 58.1 40.9 41.9 34.4 44.8 51.5 18.9 35.3 23.3 22.1 44.2
22:00 41.9 43.3 23.9 41.2 36.2 43.1 48.2 31.2 43 35 41.7 12.1
23:00 20.7 40.8 19.6 24.9 22.3 31.9 28 12.9 29.4 17.8 17.9 2.1
24/09 0:00 18.7 20.1 15.2 21.5 15.6 24.3 23.8 18 20.6 47.7 19.1 7.9
1:00 16.1 31.6 2.7 16.7 18.9 15.3 19.9 14.5 21.2 25.7 7.5
2:00 3.3 13.5 4.9 11.6 20 13.5 7.8 3
3:00 15.4 2.1 6 13.2 10.3 2.6 6.2 2.7 13.4
4:00 5.6 24.5 4.3 9.9 5.4 5.6 12.7 8.6 15.3 18.1
5:00 14.8 9.7 5 3.1 2.9 8.8 16.5 24 25.5 16.4 11.3
6:00 13.2 18.3 18.1 14.3 17.8 3.8 11 2.2 10 25.3 19.1 10.5
7:00 21.7 40.9 17.8 21.3 26.1 26.8 22.6 71.5 23.4 40.2 30.6 20.8
8:00 13.1 7 8.3 18.6 20.6 23.2 22.7 18.9 12.9 6.3
9:00 10.8 7.9 11.1 1.8 13.7 10.6 9.1 18 6.4 12.8 12
10:00 2.9 11.6 5.2 14.5 15.6 18.3 14.7 12.8 6.9 6.3
11:00 12.3 10.6 6.2 6.8 8.9 9.2
12:00 6.7 11 11.5 8.5 21.6 10.8 14.9 2
13:00 18.7 23.9 11.1 29.7 16.7 15.3 32.3 30.8 43.5 25.9 47.5
14:00 29.3 33.5 11.5 33 24.4 31.9 20.8 19.8 40.3
15:00 13.6 9.1 106 22.8 6.7 23.6 11.1 29.5
16:00 18.7 47.5 29.2 33.9 15.7 11.7 14.2 19.5 27.1 27.3
17:00 4.2 13.1 37.9 26.9 39.5 13.6 28.8 18.4 25.6 24.5
18:00 58 10.2 11.9 30.4 25 27.1 15.3 13 23.3 10.8 3.8 23.4
19:00 39.5 12.2 8.6 26.1 23.6 12 26 14.1 19.8 3.7 4.9 18.9
20:00 30.9 10.2 10.6 20 6.9 4.9 7.7 10.2 11.2 11.1 5.3 16.7
21:00 24.4 8.4 7.1 18.8 14.2 12.1 11 10.7 16.5 7.6 15.7 16.8
22:00 21.1 10.7 7.1 17.7 12.2 12.5 19.1 11.7 13.3 17.2 21.7 14.5
23:00 23 11 6.7 20.7 25.9 13.4 24.2 12 15.5 31.4 15.3 14

Wollongong Kembla Grange Wallsend Newcastle Beresfield Tamworth Albury Wagga Wagga Bathurst Monash, ACT

Latitude 34.42 34.48 32.90 32.93 32.80 31.11 36.05 35.10 33.40 35.43

Longitude 150.89 150.82 151.67 151.76 151.66 150.91 146.97 147.36 149.57 149.10

22/09 1:00 18.3 17.7 28.5 20.3 3.6 14.4 9.1 8.7 11.5

2:00 18.3 19.7 29.2 21.9 6.2 12.8 8.5 4.5 12.0

3:00 30.4 19.5 8.7 21.7 20.5 6.4 25.7 14.4 4.5 4.5

4:00 40.5 22.2 8.2 17.4 22.9 5.8 36.7 28.5 4.5 14.0

5:00 25.3 18.8 5.9 24.1 19.3 9.9 65.2 52.7 6.9 9.0
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6:00 16.3 16.9 15.2 25.3 17.9 9.2 55.1 114 9.3 5.5

7:00 17 18.4 31.4 26 19.4 16.4 19.2 89.7 13.7 3.5

8:00 21.4 28.1 20.1 20.3 20.7 13.5 23.7 61.1 15.2 29.5

9:00 39.7 93.5 22.1 21.4 16.9 17.6 17.6 67.3 18.7 148.5

10:00 80.7 266.2 36.4 36.1 29.9 20.1 10.3 24 19.4 209.5

11:00 144.3 289.9 46.8 39.1 37.4 34.7 4.5 39.6 31.1 166.0

12:00 132.4 175.4 54.4 48.2 57.7 31.5 6.2 52.1 19.9 132.5

13:00 63.1 90 110.2 113.8 44.7 20.4 5 56.4 22 100.5

14:00 52.4 76.5 47.4 43.9 17.5 24.4 6 53.3 23.1 262.5

15:00 55.3 69.9 29.3 28.3 10.5 19 7.6 81.9 23.6 630.5

16:00 67.2 128.6 25.9 23.6 15.6 19.8 6.7 138.9 22.9 851.0

17:00 74.6 125.1 27.5 25.1 19.4 19.3 5.8 196.5 26.8 681.0

18:00 86.1 73.7 25.9 18.7 17.1 21.3 13 213.1 25.8 586.5

19:00 13.2 13.6 23.6 22.2 19 17.9 10.3 210.1 4.4 497.0

20:00 11.1 11.8 15.8 17.1 17.1 15.4 12.3 243.2 10.8 418.5

21:00 8.4 16.7 22.4 22.5 10.6 8.8 210.4 11.5 123.5

22:00 10 34.5 25.1 32.2 28.9 11.8 5.5 154.3 18.1 46.5

23:00 16.7 17.1 15.2 17.8 17.8 14.2 6.8 105.7 17.1 33.5

23/09 0:00 21 20.7 11.2 14.2 12.2 26.2 5.6 105.4 18.6 35.5

1:00 16 14.7 6.6 6.6 7.6 18 21.1 679.7 28.7 33.5

2:00 20.9 24.2 11.8 11.8 6.8 10.9 50 178.6 424.6 32.5

3:00 19.6 20 30.9 18.1 22.5 41.1 51.3 87.4 4,268.2 36.5

4:00 20.5 141.4 63.2 59 27.6 1,631.4 53 40.8 15,388.2

5:00 3,193.9 4,503.9 34.4 26.3 25.3 3,128.5 45 24 11,512.1 1,475.0

6:00 7,406.4 8,408.1 2,590.4 2,253 3,987.7 5,216.9 53 23.9 6,186.6 710.0

7:00 9,576.9 9,481.8 7,962.1 8,967.3 8,362.4 6,804.6 49.3 13.7 4,238.5 179.5

8:00 3,801.9 1,939.7 8,997.4 10,651.2 9,209.8 4,576.8 18.2 11.4 1,667.9 75.0

9:00 1,297.1 1,085.8 7,620.3 9,282.1 7,023.6 4,685.5 15 14.2 2,371.5 15.0

10:00 482.2 486.5 6,255.6 7,322.4 6,437.4 4,650.2 16.5 18 2,314.5

11:00 333.8 492.1 4,875.9 5,811.7 4,472.6 3,173.8 14.9 14.3 837.4 1.5

12:00 420.8 870.3 2,985.8 3,894.3 2,757.6 10.8 8.6 905.3

13:00 356.3 219.7 2,490.2 2,940.1 2,451.7 13.7 9.1 345.4 0.5

14:00 130.9 123.1 1,759 1,764.4 1,090.3 12.6 13.2 115.7 2.5

15:00 98.6 119.6 976.8 980.7 840.1 10.1 11.1 13.4 10.0

16:00 30 55.2 838 671.3 566.8 13.9 15.8 15.2 7.5

17:00 49.4 46 564.6 401.1 461 9.5 13.1 12.1 3.0

18:00 48.9 46 303.2 331 266.8 321 8.3 17.1 19 9.5

19:00 21.8 12.4 149.7 178.9 115.5 144.3 7.5 13.2 22.1 5.5

20:00 28.2 19.9 72.6 87.3 65.7 104.3 9.1 11.9 23.1 7.5

21:00 84.7 29.1 44.3 54.5 42.1 104.3 4.9 9.2 20.7 2.0

22:00 19.6 14.4 31.4 37.9 34.1 76.7 4.3 10.8 5.3 4.0

23:00 8.2 7.7 25.7 32.1 30.9 80.2 4.6 7.9 0.1 2.5

24/09 0:00 22 15 19.1 22.1 22.7 58.5 4.2 6.1 9.4 4.0

1:00 13.8 13.6 13.4 19.1 26 42.7 5 3.4 0.5

2:00 10.3 1.2 17.1 18.6 28.9 32.8 4.2 5.3 3.2 2.0

3:00 8 16.7 23.3 26.8 21.4 5.8 5.9 0.5

4:00 0.7 18.6 23.5 27.3 20.9 5.6 5.6 6.7

5:00 15.5 17 18.1 21.7 23.8 16.1 6.6 7.2 9.4 3.5

6:00 17 10.3 16.2 21.6 22 10.4 5.7 9.1 0.1 0.5

7:00 16.3 16.5 19.3 21.4 25.4 19.3 9.1 7.8 13.5

8:00 8.7 11.7 19.1 23.2 23.7 48.1 10.6 9

9:00 13.2 18.8 17.4 23 20.3 12.7 13.5 3.0
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Appendix 2. PM10 concentration before, during,
and after the dust storm across NSW every 3 h

10:00 13.3 16.8 23.5 22.8 23.3 14 8.1

11:00 2.9 17.3 22.9 24 20 10.9 4.7 7.0

12:00 15.2 21.6 17.7 18.1 17.3 9.5 13.7 8 4.4 2.5

13:00 9.5 40.9 22.9 22.9 9.6 11.3 27.2

14:00 23.2 32.5 38.7 33.9 9.1 4.9 11.2

15:00 7.6 14.7 38 42.1 31.5 39.8 12.8 16.3 6.5

16:00 13.7 26.6 34.6 38.4 28.2 32.7 12.1 10.1 15.3

17:00 17.7 23.4 26 52.1 25.8 35.2 13.5 12.2 1.8 6.0

18:00 11 20.4 52.4 26.3 44.1 13.8 14.6 0.4 2.5

19:00 11 10.3 22.7 79.6 27.2 21 16.8 18.1 29.9 9.0

20:00 30.5 10.6 29.8 67.1 35.1 31.6 14 22.8 38 0.0

21:00 16.5 8.6 25 22.1 32 22.7 16.8 31.1 27.8 6.0

22:00 6.2 7.8 19.2 19.7 29.8 26.5 17.8 24.2 1.5 7.5

23:00 8.9 8.7 12.4 6.3 19.9 25.6 6 23.9 4.8 8.0
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