
Seasonal and diurnal variations of BTEX and their potential
for ozone formation in the urban background atmosphere
of the coastal city Jeddah, Saudi Arabia

M. A. Alghamdi & M. Khoder & A. S. Abdelmaksoud & R. M. Harrison & T. Hussein &

H. Lihavainen & H. Al-Jeelani & M. H. Goknil & I. I. Shabbaj & F. M. Almehmadi &
A.-P. Hyvärinen & K. Hämeri

Received: 21 January 2014 /Accepted: 17 April 2014 /Published online: 15 June 2014
# Springer Science+Business Media Dordrecht 2014

Abstract Past measurements of volatile organic compound
(VOC) concentrations fromMiddle Eastern countries are very
few, and this study assesses the concentrations and processes
affecting benzene, toluene, ethylbenzene and xylenes (BTEX)
in the atmosphere of an urban background area of Jeddah, a
coastal city in Saudi Arabia, and their potential for ozone

formation. The measurements were carried out for a year
(from December 2011 to November 2012) and include hourly
BTEX and meteorological parameters. The annual average
concentrations of BTEX species were 0.41 ppb for benzene,
1.40 ppb for toluene, 0.49 ppb for ethylbenzene, 1.56 ppb for
m,p-xylene and 0.94 ppb for o-xylene. The annual mean
benzene level (0.41 ppb, ∼1.31 μg m−3) did not exceed the
annual threshold level (5 μg m−3) set by the European Union
but still represents a small risk to human health. BTEX
showed a seasonal variation, with higher concentrations dur-
ing the spring and lower concentrations during the autumn.
The diurnal variation of BTEX concentrations followed a
commonly observed pattern, with two peaks associated with
high traffic volumes. m,p-Xylene was the largest contributor
to ozone formation potential followed by o-xylene, toluene
and benzene. The significantly positive correlation between
BTEX compounds as well as the ratio of toluene/benzene
(average=4.03) suggested that vehicle emissions were the
major source of BTEX during the whole investigated period.
m,p-Xylene-to-ethylbenzene ratios showed an annual mean of
3.18 with little variability during the different seasons indicat-
ing that the photochemical age in the study area is relatively
young due to the continual fresh emissions experienced in
Jeddah city.
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Introduction

In recent years, with the increasing rate of urbanisation and
industrialization worldwide, especially in developing
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countries, large amounts of volatile organic compounds
(VOCs) are released into the atmosphere annually (Gee and
Sollars 1998; Tonooka et al. 2001; Khoder 2007). Hydrocar-
bons are the main group of VOCs in the atmosphere and can
originate from both natural and anthropogenic sources. Large
quantities of VOCs in urban areas are emitted from gasoline
and diesel-powered motor vehicles, fuel storage and fuel
combustion, biomass burning, residential heating, natural
gas, liquefied petroleum gas, solvent usage in industrial pro-
cesses, industrial emissions and biogenic sources (Lai et al.
2005; Latella et al. 2005; Guenther et al. 2006; Williams and
Koppmann 2007; Guo et al. 2007; Geng et al. 2007; Yokelson
et al. 2008; Lanz et al. 2008; Badol et al. 2008; Duan et al.
2008; Kansal 2009; Demir et al. 2011). In addition to com-
bustion emissions, VOC can be released into the atmosphere
through evaporation during storage and filling operations and
from gasoline stations, as many VOCs exist in the fuel for-
mulations (Schifter et al. 2002). No emissions data are avail-
able for Saudi Arabia, but in the UK, VOC emissions from
transport account for less than 9% of all VOC emissions to the
atmosphere in 2011, compared with 35 % in 1990 (NAEI
2012). Other major sources are solvent and product use
(44.5 %) and fossil fuel extraction/distribution (19.8 %) in
2011 (NAEI 2012). Li et al. (2011) evaluated the impacts
upon benzene, toluene, ethylbenzene and the xylenes
(BTEX) emissions of combustion (85 %), evaporation (small
contribution) and industrial sources (less than evaporation) in
New York State. Evaporative emissions occur from the use of
solvents, gasoline evaporation and gasoline spills (Na and
Kim 2001; Na et al. 2003).

The levels of VOCs in the ambient air are related to the
fuels used, vehicle types and ages, flow rates and speed of
traffic as well as road and environmental conditions in the city
(Paul 1997). Passenger cars moving at a speed below
50 km h−1 have emissions of organic pollutants markedly
greater than at higher speed (60–130 km h−1) (Heeb et al.
1999).

Among VOC pollutants, the BTEX group is an impor-
tant component of ambient air (Hsieh et al. 2011a). They
constitute up to 60 % of nonmethane VOCs (Lee et al.
2002). Special attention has been paid to BTEX species,
especially to benzene, due to their adverse effects on hu-
man health. It is established that benzene is a human
carcinogen (US EPA 2012; WHO 2000). Exposure to aro-
matic hydrocarbons such as toluene and xylene may cause
sensory irritation symptoms or respiratory diseases (Otto
et al. 1990; Delfino et al. 2003). Many VOCs are reported
to be toxic, carcinogenic or mutagenic (Duce et al. 1983;
Edgerton et al. 1989; Sweet and Vermette 1992; Kostiainen
1995; Mukund et al. 1996). They can also cause harm to
ecosystems by changing the atmospheric chemistry via
photochemical reactions which increase the formation of
secondary air pollutants such as ozone (O3), peroxyacyl

nitrates (PANs), photochemical smog and organic aerosols
(Atkinson 2000; Cerqueira et al. 2003; Derwent et al. 2003;
Bernstein et al. 2008). Vehicle tailpipe emission and fuel
evaporation tend to be the dominant source of BTEX in
urban regions (Lan and Minh 2013). Motor vehicle exhaust
and motor vehicle refuelling operations typically account
for the highest benzene exposures especially in urban areas
(Cocheo et al. 2000; Suh et al. 2000).

The fate of VOCs is affected by a number of physical and
chemical processes leading to their transformation or their
removal from the atmosphere. Chemical processes leading to
degradation of VOCs are photolysis, reaction with the hydrox-
yl radical (OH) during daytime, reaction with NO3 radical at
night, reaction with O3 and the reaction with Cl atoms in
coastal and maritime areas (Atkinson and Arey 2003). As
VOCs with a high molecular weight can be adsorbed on
atmospheric particles, dry and wet deposition are also impor-
tant scavenging mechanisms for some VOC (Karl et al. 2010).
Mixing processes, which are closely related to meteorological
conditions, tend to redistribute pollutants through advective
and convective transport on both regional and long-range
scales (Borbon et al. 2004). Therefore, VOC concentrations
vary across time and space.

BTEX compounds take part in photochemical processes,
even in areas distant from primary emissions. They have a
high photochemical ozone creation potential in the atmo-
sphere. The main process of chemical removal of BTEX
from the atmosphere is through reaction with the OH
radical during daytime. Typical atmospheric lifetimes with
respect to reaction with OH radical are 225 h (benzene),
50 h (toluene), 40 h (ethylbenzene), 20 h (o-xylene), 12 h
(m-xylene) and 19 h (p-xylene) for a 24-h average OH
concentration of 1×106 cm−3. The xylenes (m,p-xylene plus
o-xylene) are reported to be the dominant contributors to
ozone formation among BTEX (Na et al. 2005; Yassaa
et al. 2006). BTEX ratios can be useful as a tool to
investigate photochemical processes (Yassaa et al. 2006).
The ratio between m,p-xylene and ethylbenzene (m,p-X/E)
is used to investigate the extent of atmospheric photochem-
ical reactivity and is a useful tool for estimating the pho-
tochemical age of an air mass (Nelson and Quigley 1984;
Monod et al. 2001; Hsieh and Tsai 2003; Hsieh et al.
2011b).

The recent rapid increase in urbanisation, industrialisation
and human activities has had important impacts on air quality
in Jeddah city. As a result, the emissions of BTEX are expect-
ed to have significantly increased. Data on atmospheric BTEX
concentration in Jeddah are scarce. Therefore, the objectives
of this study are to (1) assess the concentrations of BTEX
compounds in an urban background area of Jeddah, (2) study
the diurnal and seasonal variations of these pollutants, (3) use
BTEX ratios to characterise major sources and photochemical
age and (4) evaluate the ozone formation potential of BTEX
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species. This will help in establishing effective strategies on
air pollution mitigation.

Materials and methods

Study area

Jeddah is the second largest city in the country; it lies on the
coast of the Red Sea and is the major urban centre of western
Saudi Arabia. Currently, it has a population of 3.4 million
(CDSI 2009) (Fig. 1). However, it is likely that the true figure
would be much greater if the population census included
illegal unregistered immigrants. Jeddah’s rapid growth has
had a significant impact on its environment and resources,
mainly from pollution and degradation. Emissions in Jeddah
are most notably from stationary sources and road traffic. The
main stationary sources in the city include: an oil refinery, sea
port activities, desalination plant, a power-generation plant
and two industrial zones in the north and south of the city.
On a daily basis, more than 1.40 million vehicles are running
in the streets of Jeddah city using mainly unleaded gasoline
and diesel (Khodeir et al. 2012). In addition, massive demo-
lition and construction projects are taking place all over the
city. Construction of a new airport, central train station and
railway, new stadium and many bridges and tunnels are just
examples.

The sampling site is located on King Abdulaziz University
campus, situated in an urban background area (Jamea district),
(21° 29′ 12.8″ N, 39° 15′ 6.0″ E), which is located in the
southeast part of Jeddah. Most of the local air pollutant emis-
sions arise from the surrounding traffic activities. The sam-
pling site is located in an area of intensively trafficked roads
with the ring road at about 1.7 km, and from one of the busiest
main roads in the area is only about 133 m distant (Fig. 1).

The general climate of Jeddah city is warm and moderate in
winter, with high temperature and high solar radiation in the
summer season. Rainfall is generally sparse. During the period
of the present study, the average temperatures were 25.26 °C
in winter, 31.60 °C in spring, 35.10 °C in summer, 31.33 °C in
autumn and 30.82 °C over the whole year. The average
relative humidity was 55.10, 46.70, 38.60, 53.50 and
48.46 % in winter, spring, summer, autumn and the whole
year, respectively. The average wind speeds were 2.88, 3.13,
3.12, 2.54 and 2.92 m s−1 in winter, spring, summer, autumn
and the whole year, respectively. Wind roses showing the
seasonal and annual variations in wind direction at the sam-
pling site are presented graphically in Fig. 2.

Monitoring of BTEX

Sampling was carried out at a height of 3.5 m from ground
level in the period from December 2011 to November 2012.

BTEX in ambient air were monitored in a semi-continuous
mode by means of a Syntech Spectras BTEX analyser GC
955, type 600 (Syntech Spectras, Groningen, the Netherlands)
equipped with a 13-m capillary column AT5, ID 0.32 mm,
film 1 μm and PID detector operating at 10.6 eV. The oven
temperature ramped from 40 to 120 °C. Carrier gas flow was
in the range 1.8–3.5 mL min−1. Pre-concentration is achieved
by flushing the sample tubing by drawing sample gas through
it with a pump. Then the pump is switched off, and with the
help of an indirect piston system, a volume of 35-mL sample
gas is pre-concentrated on a Tenax column. The sensitivity for
aromatic hydrocarbons is down to 150 ppt (0.4 μg m−3), and
the resolution time was 15 min. The instrument response was
corrected based on a regular calibration with a standard gas
mixture. The analyser is placed in a trailer at a height of 0.7 m
from ground level. The sampling line starts with a shielded
stainless steel probe of length 1.0 m and ID 25 mm joined
from the end with a glass header of length 0.4 m and ID
25 mm. A PTFE (Teflon) hose of length 3 m and ID 6 mm
is extended from the glass header to the sampling port. A
Teflon filter membrane of 5 μm is placed at the sampling port.
The flow rate on the header is 12 L min−1 and the sampling
flow rate is 1.5 L min−1. The captured data were filtered to
exclude anomalies and transformed to daily averages and
prepared for statistical treatment.

Meteorological parameters

Air temperature, relative humidity, wind speed and direction
and atmospheric pressure were measured continuously using
compact weather station model WS600-UMB (Lufft,
Fellbach, Germany), simultaneously with measurements of
atmospheric pollutant concentrations. The station sensor was
located at 6.5 m height above ground level, without interfer-
ence from local buildings.

Results and discussion

BTEX level in the study area

The annual average concentrations of BTEX during the period
of study are graphically presented in Fig. 3. From this figure, it
can be seen that m,p-xylene and toluene were the most abun-
dant BTEX compounds in the study area. The daily average
concentrations ranged from 0.09 to 1.10 ppb (with a mean
value of 0.41±0.21 ppb) for benzene, 0.18 to 4.46 ppb (with
a mean value of 1.40±0.75 ppb) for toluene, 0.12 to 1.62 ppb
(with a mean value of 0.49±0.26 ppb) for ethylbenzene, 0.25 to
1.90 ppb (with a mean value of 0.94±0.44 ppb) for o-xylene
and 0.38 to 2.98 ppb (with a mean value of 1.56±0.63 ppb) for
m,p-xylene during the period of study. The annual mean ben-
zene concentration (0.41 ppb∼1.31 μg m−3) did not exceed the
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annual threshold concentration (5 μg m−3) set by the European
Union (European Commission 2013). Benzene is a carcino-
genic compound causing leukaemia. The US EPA (2005),
through cancer risk analysis, estimates that an individual ex-
posed to benzene levels between 0.13 and 0.45 μg m−3 for
70 years has a cancer risk probability of 1/1,000,000. Exposure
levels between 1.3 and 4.5 μg m−3 raise the risk to 1/100,000
and between 13 and 45 μg m−3, the risk of getting cancer,

especially leukaemia, rises to 1/1,000. Using the unit risk factor
from the WHO (2000), for a city such as Jeddah with a
population of about 3.4 million and average benzene levels of
1.31 μg m−3, about 27 additional cases of leukaemia would be
expected in the city over a 70-year period.

The average concentrations of atmospheric BTEX com-
pounds in the present study in comparison with those reported
from other cities in the world are shown in Table 1. From this

Fig. 1 Map of Jeddah with the sampling site
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table, it can be concluded that the mean measured concentra-
tions were within the range of those detected in other cities of
the world. Generally, this variation in average concentrations
among the locations across the world can be attributed to the
difference in the traffic density, industrial activities, fuel com-
position and combustion, solvent usage in industrial processes,
intensity of human activities, land use patterns and chemical
removal of the BTEX from the atmosphere. In addition, the

profile of BTEX compounds at every location is influenced by
the local conditions such as differences in climate, geography,
industrial activity, vehicle age and fuels used.

Monthly and seasonal variations of BTEX concentrations

The seasonal cycle characteristics of BTEX are valuable for
understanding important processes in atmospheric transport

Fig. 2 Wind rose showing the
seasonal and annual variations in
wind direction at the sampling site
during the period of study.
Distances from the centre are
given as percentages
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and chemistry. In this study, winter is defined as December–
February, spring as March–May, summer as June–August and
autumn as September–November. The monthly and seasonal
variations of BTEX compound concentrations during the
period of study are graphically presented in Fig. 4. The max-
imum monthly 24-h average concentration of BTEX com-
pounds were found inMay for benzene, toluene and o-xylene,
February, March and May for ethylbenzene and April and
May for m,p-xylene, whereas the minimum concentration of
these pollutants was observed in January for benzene, August
for toluene and November for ethylbenzene, o-xylene and
m,p-xylene.Monthly 24-h average concentrations varied from
0.22 ppb (January) to 0.70 ppb (May) for benzene, 0.80 ppb

(August) to 2.20 ppb (May) for toluene, 0.20 ppb (November)
to 0.73 ppb (February) for ethylbenzene, 0.37 ppb
(November) to 1.54 ppb (May) for o-xylene and 0.80 ppb
(November) to 2.16 ppb (April and May) for m,p-xylene.
From Fig. 4, it can be seen that the highest concentrations of
benzene, toluene, ethylbenzene and m,p-xylene were found in
spring, whereas the lowest levels were detected in the autumn
season. For o-xylene, the highest level was found in summer,
whereas the lowest concentration was found in autumn. The
∑BTEX concentrations were 4.46, 6.17, 5.17 and 2.96 ppb
during winter, spring, summer and autumn, respectively. This
pattern is highly suggestive of evaporative processes as a
major source (see below).

Determinants of airborne concentrations include source
strength (i.e. emissions), dispersion processes and sink pro-
cesses. Exhaust released from the tailpipes of motor (especial-
ly gasoline powered) vehicles during combustion, liquid fuel
arising from spillage, leakage and vehicle operations, and
vapour emitted from headspace emissions at refuelling sta-
tions and bulk terminals and from vehicles are the pathways
for emission of BTEX in the atmosphere from gasoline vehi-
cle fuel (Watson et al. 2001; Choi and Ehrman 2004; Zhang
et al. 2013). Evaporative emissions (e.g. solvent usage, gaso-
line evaporation from the headspace of a fuel tank, and evap-
oration from gasoline spillage while filling a tank) are expect-
ed to be greater in the summer than in the winter because of
increased vapour pressure (Na et al. 2005). The distinguishing

Fig. 3 Annual mean concentrations of BTEX compounds during the
period of study, showing mean and 1 SD

Table 1 Concentration levels (ppb) of BTEX compounds in various cities of the world

Location BTEX Reference

Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene

Jeddah, Saudi Arabia 0.41 1.40 0.49 1.56 0.94 Present study

Kingdom of Bahrain 0.40 0.90 –a 0.70 –a Khamdan et al. (2009)

Cairo, Egypt 27.37 56.87 10.00 32.52 17.04 Khoder (2007)

Giza, Egypt 14.47 29.74 5.26 17.24 8.37 Khoder (2007)

Menofiya, Egypt 1.82 1.99 0.58 0.95 0.55 Khoder (2007)

Fujian, China 2.00 6.43 0.54 1.18 0.90 Tong et al. (2013)

Karachi, Pakistan 5.20 7.10 –a 2.10 1.10 Barletta et al. (2002)

Taiwan 1.30 7.30 1.20 1.50 1.10 Hsieh and Tsai (2003)

Izmir, Turkey 17.50 27.80 8.60 19.10 19.50 Muezzinoglu et al. (2001)

Delhi, India 3.92 10.88 1.29 3.99 1.62 CPCB (2002)

Yokohama, Japan 0.88 4.43 0.65 0.27 0.13 Yamamoto et al. (2000)

Munich, Germany 3.10 5.30 0.70 2.60 –a Rappengluck and Fabian (1999)

Lille, France 2.43 5.12 0.81 2.56 0.99 Borban et al. (2002)

UC, London 1.87 3.62 0.73 2.14 0.80 Derwent et al. (2000)

Athens, Greece 5.00 14.30 2.70 12.10 3.70 Moschonas and Glavas (1996)

Mažeikiai, Lithuania 2.30 1.95 0.41 1.19 0.56 Baltrėnas et al. (2011)
New York, USA 0.80 1.73 0.29 1.03 0.35 Kinney et al. (2002)

Minnesota, USA 0.57 1.01 0.17 0.49 0.18 Pratt et al. (2000)

a Not measured
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difference between benzene and TEX in terms of usage is that
TEX is used in solvents, while benzene is not (Na et al. 2004).

The advection of air pollutants from highly polluted areas
could increase the BTEX mixing ratios in the study area. In
north Jeddah, there are vehicular service stations and many
small workshops for maintenance and repair of cars. These
workshops make extensive use of solvents. They are the
primary components of coatings, adhesives, paints and
cleaning agents. This leads to increased emissions of toluene,
ethylbenzene and the xylenes (TEX), which are the primary
constituents of many solvent formulations (Guo et al. 2004a;
Choi et al. 2011; Borban et al. 2002; Chan et al. 2006). In the
present study, the wind rose derived from hourly meteorolog-
ical data from our Met station in the study area (Fig. 2),
indicates that the dominant wind direction during the period
of highest BTEX concentration (spring) was from a northerly
direction. The wind rose for the winter is, however, similar
suggesting that this is not a major factor.

Air temperatures are high throughout the year in Jed-
dah, with the highest temperatures in May to September
(Alghamdi et al. 2014). Concentrations of NOx were no-
tably higher in May 2012 than in other months in the
period March 2012 to February 2013, reflecting an excep-
tionally high volume of traffic or poor dispersion condi-
tions (Alghamdi et al. 2014). The combination of high
temperatures and high vehicle exhaust emissions explains
the observed maximum in BTEX in May and is consistent
with the overall seasonal pattern.

In the present study, the average concentrations of
BTEX compounds in daytime and nighttime were similar,
except in summer where the nighttime average concentra-
tions of these pollutants were higher than the daytime. The
daytime/nighttime concentration ratios were 0.67, 0.61.
0.72, 0.93 and 0.73 for BTEX, respectively, during the
summer season. Considering the high temperatures in day-
time during the summer season in Jeddah city and the
official days off for schools and colleges, most of the
people stay home, and consequently the density of traffic
during daytime is greatly decreased. Therefore, low con-
centrations of BTEX are observed in daytime. Conversely,
after sunset the weather becomes more suitable for going
out for shopping and travelling, and the traffic continues to
flow until about midnight on weekdays. The traffic con-
tinues after midnight on Fridays and even longer until early
morning during Ramadan (20th July to 18th August). This
leads to a decrease in daytime/nighttime ratio in the con-
centrations of traffic-generated pollutants. It is also reflected
in the lower summer concentrations.

Diurnal variation of BTEX concentrations

The study of diurnal variations of air pollutants can provide
valuable information about the sources, transport and chem-
ical formation/destruction of such pollutants. The diurnal
variations in the concentrations of BTEX compounds dur-
ing the period of study are graphically presented in Fig. 5.
From this figure, concentrations of BTEX compounds were
typically low at midday and high during rush hour periods
(morning and evening), and they were higher in the morn-
ing than in the evening, indicating the local elevated ve-
hicular emissions during the morning rush hour during a
period of relatively high atmospheric stability. This trend is
very similar to the diurnal trends found in other urban areas
(Ho et al. 2004; Yang et al. 2005; Filella and Peñuelas
2006; Tang et al. 2007). In the present study, the hourly
concentrations of BTEX compounds increased from 0600
to 0900 hours in spring, autumn and winter and from 0000
to 0300 hours in summer (Fig. 5), and then decreased due
to the reduction of traffic volume and enhanced atmospher-
ic mixing. Moreover, the high temperature and solar radi-
ation intensity during the midday period will lead to in-
creasing photochemical reactions and consequently in-
creased chemical loss of BTEX compounds. During mid-
day, VOC concentrations decrease, which may be due to
photochemical reactions or to an increase in the mixing
depth (Yang et al. 2005) or a reduction in emissions. In
the present study, the diurnal variations in the concen-
trations of all BTEX compounds in each individual
season showed a similar pattern, indicating that these
compounds in the atmosphere of the study area have a
similar sources and dispersion mechanisms. Even at a

Fig. 4 a Monthly and b seasonal variations in BTEX concentrations
during the period of study
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relatively high midday hydroxyl radical concentration of
5×106 cm−3, the lifetimes of BTEX range from around
24 h (benzene) to 3 h (m-xylene), and hence only a
modest impact of photochemical decay would be
anticipated.

BTEX correlations and ratios

The correlation coefficients between BTEX species during the
period of study are presented in Table 2. Significant positive
correlation coefficients (p<0.01) were found between the

Fig. 5 Diurnal variations in
BTEX concentrations during the
different seasons
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concentrations of all BTEX species. This is consistent with
previous studies that have observed strong correlations
amongst BTEX in the United States, Greater Cairo, India
and Canada (Pankow et al. 2003; Khoder 2007; Hoque et al.
2008; Miller et al. 2010; Miller et al. 2012). In the present
study, correlations between benzene, toluene, ethylbenzene
and m,p-xylene species were highest (r>0.68). These high
correlations suggest that the species were originating from
common sources. The lower but significant correlations (r<
0.59) were mainly seen between o-xylene and the other BTEX
species, suggesting an additional source of o-xylene within the
study area.

The inter-species BTEX concentration ratios and their sea-
sonal and diurnal variations are used as indicators of BTEX
sources and photochemical processing occurring between
their emission and sampling reflecting ageing in the tropo-
sphere due to their reaction with the OH radical (Parrish et al.
2007; Zalel et al. 2008). These ratios depend on sources,
composition, climatic conditions as well as the age of air
parcels. BTEX compounds in urban areas are emitted mainly
from road vehicles. Benzene is a marker of vehicle exhaust
(Hong et al. 2006) and evaporative emissions. It originates
predominantly from this source, whereas TEX species, espe-
cially toluene which is also emitted from motor vehicles has
other sources, particularly from evaporation of solvents used
in inks, paint etc. (Yuan et al. 2010). Therefore, the toluene to
benzene (T/B) ratio has been commonly used as an indicator
of sources. These, and other ratios are expressed on a mass
ratio (μg m−3/μg m−3) basis. T/B values of 1.5–4.3 are con-
sidered an indicator of traffic emissions (Hoque et al. 2008;
Liu et al. 2009), withmany studies reporting T/B values below
3 as characteristic of traffic emissions worldwide (Perry and
Gee 1995; Brocco et al. 1997; Heeb et al. 2000; Monod et al.
2001; Chan et al. 2002; Hsieh et al. 2006; Kumar and Tyagi
2006; Khoder 2007; Truc and Oanh 2007; Hoque et al. 2008;
Liu et al. 2009; Matysik et al. 2010). In the present study, the
average T/B ratios were higher than most of those found to be
characteristic of traffic emissions worldwide and vary little
with season. T/B ratios were 4.26, 3.99, 4.22, 3.58 and 4.03
during winter, spring, summer, autumn and the full period of
study, respectively, (Fig. 6). The (T/B) ratios found in the
present study were similar to those found in many cities such
as in Sydney (4.04), Ankara (4.3), China (3.85),Windsor (4.3)
and within Belgium (3.8–4.4) (Nelson and Quigley 1982;

Buczynska et al. 2009; Miller et al. 2010; Tong et al. 2013;
Yurdakul et al. 2013) and higher than those found in some
other cities including Bari (2.0), Beijing (1.5–2.2), Rome
(2.80), Izmir (1.87–2) and Santiago (2.01) (Brocco et al.
1997; Hartmann et al. 1997; Muezzinoglu et al. 2001; Liu
et al. 2009; Caselli et al. 2010). Conversely, our results are
lower than those found in Bangkok (10.22), Hong Kong
(7.74), and Osaka (7.19) (Tsujino and Kuwata 1993; Gee
and Sollars 1998; Lee et al. 2002). The differences of (T/B)
ratios among these cities may reflect a difference between
their vehicle types, fuel composition and industrial activities.

The m,p-xylene-to-ethylbenzene ratio (m,p-X/E ratio) has
been used to evaluate the age of air parcels and as indicator for
the age of the VOCs in the atmosphere (Guo et al. 2004a,b;
Elbir et al. 2007; Hsieh et al. 2011b). Bothm- and p-xylene are
more reactive towards the OH radical than ethylbenzene and a
low m,p-X/E ratio suggests an aged air parcel. Ratios of 3.8,
3.8 and 4.4 in fresh emissions at a gasoline station, in a tunnel
and in an underground garage, respectively were reported by
Kuntasal (2005). Relatively constant ratios ranging from 2.8
to 4.6 with a mean value of 3.5 due to traffic exhaust emis-
sions have been reported by Monod et al. (2001). The varia-
tion of them,p-X/E ratio in the course of this study is depicted
in Fig. 6. From this figure, it can be seen that the average m,p-
X/E ratios show a relatively small difference between the
different seasons, ranging from 2.74 in winter to 3.92 in
autumn with an average of 3.18 during the period of study,
suggesting rather little photochemical ageing. The m,p-X/E
ratios in the present study were very similar to those found in
other major urban areas such as Munich with a ratio of 3.4
(Rappenglueck and Fabian 1999), Sydney with a ratio of 3.0

Table 2 Correlation coefficients
(r) between BTEX compounds

*p<0.01, level of significance

Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene

Benzene 1

Toluene 0.85* 1

Ethylbenzene 0.83* 0.86* 1

m,p-Xylene 0.68* 0.75* 0.89* 1

o-Xylene 0.49* 0.52* 0.57* 0.59 1

Fig. 6 Seasonal and annual variations in the inter-BTEX species ratios
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(Nelson et al. 1983), the centre of Algiers with a ratio of 2.9
(Kerbachi et al. 2006), Bari with a ratio of 3.9 (Caselli et al.
2010) and in various cities of the UK with a ratio of 2.9
(Derwent et al. 2000). It is consistent with the source in local
emissions and quite long atmospheric lifetimes of the VOCs.

Ranking of BTEX compounds with respect to ozone
formation potential and reactivity with OH

The individual BTEX compounds play differing roles in pho-
tochemical smog formation (Carter 1990) including produc-
tion of ozone (Carter 1994). Ozone formation potential (OFP)
is a widely used metric for describing the maximum ozone
formation capacity in cities where ozone formation is VOC
sensitive. It can be evaluated using the maximum incremental
reactivity (MIR) developed by Carter (1994). MIR is popular
in the assessment of OFP of various VOC compounds (Hung-
Lung et al. 2007). Carter's MIR is the amount of ozone formed
when 1 g of VOC is added to an initial VOC–NOx mixture
under relatively high NOx conditions, indicating how much a
compound may contribute to the ozone formation in the air
mass (Carter 1994). The reactivity of VOC with OH radical
determines the ability of the hydrocarbon to form higher
oxidised products such as ketones, acids, aldehydes, organic
peroxy radicals etc. The MIR coefficients were taken from
Atkinson (1997) and Carter (1990, 1994) and rate constants of
BTEX-OH reactions from Jenkin et al. (2003). The ranking of
the BTEX species according to their concentrations, OFP and
reaction with OH during the different seasons is given in
Table 3. Based on the MIR scale, m,p-xylenes were the
biggest contributors to ozone formation followed by o-xylene
and toluene, whereas benzene was the lowest contributor
during the different seasons and period of study. This is an
agreement with Na et al. (2005) and Grosjean et al. (1998),
who found that m,p-xylene and o-xylene were the dominant
contributor to ozone formation among BTEX at Seoul and
Porto Alegre, respectively. In the present study, the highest
m,p-xylene contribution was found in spring, followed by
summer and the lowest in autumn. Reaction of BTEX with
OH radical, which leads to the formation of oxidised products,
followed a similar pattern to that found in the contribution of
BTEX to ozone formation during the different seasons and
period of study. The pattern was m,p-xylenes>o-xylene>tol-
uene>ethylbenzene>benzene. In addition, the highest m,p-
xylene contribution was also found in spring, followed by
summer and the lowest in autumn. Derwent et al. (1998) have
also produced a scale for VOC contribution to ozone produc-
tion referred to as Photochemical Ozone Creation Potential
(POCP). Individual values are benzene (21.8), toluene (63.7),
ethylbenzene (73.0), o-xylene (105.3), m-xylene (110.8) and
p-xylene (101.0). Although showing less large ratios between
compounds than the MIR values (Table 3), they rank in the
same order and also lead to the conclusion that the xylenesT

ab
le
3

M
IR

co
ef
fi
ci
en
t,
B
T
E
X
-O

H
ra
te
co
ns
ta
nt

an
d
ra
nk
in
g
of

B
T
E
X
co
m
po
un
d
co
nc
en
tr
at
io
ns
,o
zo
ne

fo
rm

at
io
n
po
te
nt
ia
la
nd

re
ac
tiv

ity
w
ith

O
H
du
ri
ng

th
e
di
ff
er
en
ts
ea
so
ns

H
yd
ro
ca
rb
on

M
IR

co
ef
fi
ci
en
t

O
H
d

W
in
te
r

Sp
ri
ng

Su
m
m
er

A
ut
um

n
A
nn
ua
l

μ
g
m

−3
pp
b

O
FP

a
R
ea
ct
io
n

w
ith

O
H
b

μ
g
m

−3
pp
b

O
FP

R
ea
ct
io
n

w
ith

O
H

μ
g
m

−3
pp
b

O
FP

R
ea
ct
io
n

w
ith

O
H

μ
g
m

−3
pp
b

O
FP

R
ea
ct
io
n

w
ith

O
H

μ
g
m

−3
pp
b

O
FP

R
ea
ct
io
n

w
ith

O
H

B
en
ze
ne

0.
50

1.
23

1.
15

0.
36

0.
48

0.
44

1.
76

0.
55

0.
74

0.
68

1.
21

0.
38

0.
51

0.
47

0.
99

0.
31

0.
42

0.
38

1.
31

0.
41

0.
55

0.
50

To
lu
en
e

7.
7

5.
5

4.
90

1.
3

13
.2
3

7.
2

7.
01

1.
86

18
.9
3

10
.2

5.
13

1.
36

13
.8
4

7.
5

3.
54

0.
94

9.
56

5.
2

5.
28

1.
4

14
.2
4

7.
7

E
th
yl
be
nz
en
e

3.
4

7.
0

2.
30

0.
53

6.
21

3.
7

3.
00

0.
69

8.
09

4.
8

1.
87

0.
43

5.
04

3.
0

1.
04

0.
24

2.
81

1.
7

2.
13

0.
49

5.
74

3.
4

m
,p
-X

yl
en
ec

29
.2

18
.7
0

6.
30

1.
45

46
.5
9

27
.1

9.
21

2.
12

68
.1
2

39
.6

7.
16

1.
65

53
.0
2

30
.9

4.
08

0.
94

30
.2
1

17
.6

6.
77

1.
56

50
.1
3

29
.2

o-
X
yl
en
e

12
.8

13
.6

3.
56

0.
82

23
.1
4

11
.1

4.
13

0.
95

26
.8
1

12
.9

5.
86

1.
35

38
.1
0

18
.4

2.
30

0.
53

14
.9
6

7.
2

4.
08

0.
94

26
.5
3

12
.8

476 Air Qual Atmos Health (2014) 7:467–480

a
O
zo
ne

fo
rm

at
io
n
po
te
nt
ia
l(
O
FP

)
=
B
T
E
X
x
M
IR

b
B
T
E
X
in

pp
b
x
B
T
E
X
-O

H
ra
te
(1
0−

1
2
cm

3
/m

ol
ec
ul
e/
s)
m
ul
tip

lie
d
by

×
10

1
2

c
A
ve
ra
ge

of
va
lu
es

fo
r
m
-x
yl
en
e
an
d
p-
xy
le
ne

d
R
at
e
co
ef
fi
ci
en
tf
or

co
m
po
un
d-
O
H
re
ac
tio

n
×
10

1
2
cm

3
/m

ol
ec
ul
e/
s



contribute most from the BTEX compounds to ozone
formation.

An analysis of ozone data from the same location in Jeddah
(Alghamdi et al. 2014) has found that Jeddah has a “NOx-
saturated” atmosphere in which ozone concentrations are sup-
pressed relative to rural concentrations. In such an atmo-
sphere, VOC such as BTEX make a minor contribution to
ozone destruction, but net ozone formation does not occur.
The contribution to ozone creation will be in the downwind
urban plume, as the urban emissions are diluted and NO2/NOx

ratios increase allowing ozone formation to exceed ozone
destruction.

Summary

BTEX compounds were measured from December 2011 to
November 2012. Seasonal and diurnal variation of BTEX
concentrations and their potential for ozone formation have
been evaluated and discussed. It was found that m,p-xylene
was most abundant amongst the BTEX compounds, followed
by toluene, o-xylene, ethylbenzene and benzene during the
period of study. ∑BTEX showed a seasonal variation, with
higher concentrations during the spring, followed by summer,
winter and autumn. Diurnal variations in the concentrations of
BTEX compounds during different seasons were found to
follow a similar pattern and had two daily peaks linked to
traffic density. A different diurnal profile in the summer sea-
son is reflective of a different pattern of road traffic activity at
this time of year. The average toluene / benzene concentration
ratio suggested that vehicle emissions are the major source of
BTEX in Jeddah city. This is confirmed by the significant
positive correlation between the concentrations of BTEX
compounds in the study area. m,p-Xylene-to-ethylbenzene
ratios showed little variability between the different seasons
and indicate that the photochemical age in the study area is
relatively young due to the continual fresh emissions experi-
enced in Jeddah city. Ozone formation potentials for BTEX
species were estimated using MIR. Xylenes were the domi-
nant contributor to ozone formation. Benzene had the lowest
potential for the formation of ozone. Finally, the annual aver-
age benzene level in the study did not exceed the annual
limit value set by the European Union but still represents
a risk to human health. For a city such as Jeddah with a
population of about 3.4 million and average benzene
levels of 1.31 μg m−3, about 27 additional cases of
leukaemia would be expected in the city over a 70-year
period, using the unit risk factor of 6×10−6 (μg m−3)−1

recommended by the WHO (2000).
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