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Abstract This paper presents an application of the DELTA
evaluation tool V3.2 to support the EU Air Quality Directive
(AQD 2008). This software, designed in the frame of the
FAIRMODE project (Forum for Air Quality Modelling in
Europe, http://fairmode.ew.eea.europa.eu/), is currently used
as support to working groups of modelers across Europe in the
diagnostics and assessment of air quality model performances
under the AQD (2008). The skills of the DELTA tool V3.2 are
tested by looking at the results of a 1-year (2005) simulation
performed using the transport chemical aerosol model
(Carnevale et al. 2008) at 6×6-km2 resolution over the Po
Valley. The modeled daily PM10 concentrations at surface
level are compared to observations provided by approximately
50 stations distributed across the domain. The main statistical
parameters (i.e., bias, root mean square error, correlation
coefficient, standard deviation) as well as different types of
diagrams (scatter plots, time series plots, Taylor and target
plots) have been produced. A representation of the observa-
tion uncertainty in the target plot, used to derive model per-
formance criteria for the main statistical indicators, is also
presented and discussed.
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Introduction

Present-day numerical air quality models are seen as impor-
tant tools for the assessment and forecast of air pollutant
concentrations and depositions, contributing to the develop-
ment of effective strategies for the control and reduction of air
pollutant emissions (Thunis et al. 2012a, b, c). These tools can
simulate concentrations and deposition fluxes of pollutants on
a wide range of spatial (global, regional, urban) and temporal
(hourly, daily, monthly, yearly) scales. They are used for
identifying critical polluted areas, integrating measurements
and achieving a deeper scientific understanding of the physi-
cal and chemical processes involving air pollutants in the
atmosphere (EPA 2005). The use of comprehensive air quality
models started in the late 1970s (Daly and Zannetti 2007), and
since then, their development has increased rapidly, together
with the fast increase in computational resources. Today, more
and more complex and computationally expensive numerical
models are developed by the scientific community, and their
results are made available to the environmental authorities
dealing with the development of air quality plans and regula-
tions. Actually, the AQD (2008) states that modeling tech-
niques must integrate fixed measurements in order to provide
suitable information about the spatial distribution of pollutant
concentrations, and model results have to be taken into ac-
count for the assessment of air quality with respect to the limit
values (AQD 2008). The role of air quality models in the
frame of the AQD (2008) is multifold. First, they must be
capable of assessing both the current air quality status (i.e.,
assessing the number of exceedances of the standard values,
calculating population exposure to pollution and health im-
pacts) as well as the future one (air quality forecasting) by
providing next day and near-real-time information to national,
regional, and local authorities warning the public about ex-
pected high pollution episodes. Furthermore, the use of air
quality models is required for long-term air quality planning:
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they must be designed in order to identify possible ways for
reducing emissions by optimizing the costs of control strategy
implementation. They must also be capable of predicting how
the reduction or control of emissions may affect pollutant
concentrations in the atmosphere (emission scenarios).
Considering these motivating factors, air quality models may
be considered as valid tools to support the AQD (2008), as
long as their performances satisfy some minimum levels of
efficiency. These performances are of course affected by mod-
el uncertainty. Uncertainties associatedwith air quality models
can have a significant impact on their predictions. In addition
to those related to the model input datasets (meteorology and
emissions), they may also arise from the model parameteriza-
tion schemes used to describe the physical and chemical
processes involving air pollutants in the atmosphere. Thus,
evaluation of model results plays a key role in air quality
planning and assessment, and it needs to be addressed
properly.

Air quality models are usually evaluated by comparing the
modeled pollutant concentrations versus ground measure-
ments, provided by monitoring networks, and by computing
statistical indicators, function of both the modeled and mea-
sured values, in order to quantify the model’s capability to
reproduce observations both spatially and temporally.
However, even if these statistics can give an estimate of the
model’s accuracy, they do not tell whether model results reach
a sufficient level of quality for a certain application. This is the
reason why model performance criteria (MPC) have been
introduced as an indicator of the minimum levels of quality
to be achieved by a model for policy use (Boylan and Russell
2006). A large number of studies suggested different sets of
MPC usually differing from each other, as they depend on the
type of application, the spatial scale, and/or the time period of
interest. Boylan and Russell (2006) recommended specific
values for the mean fractional bias and mean fractional error
indicators for particulate matter (PM). Chemel et al. (2010)
suggested using a similar approach for O3 concentration,
while Derwent et al. (2010) proposed a MPC based on the
bias and factor of 2 of observations (FAC2) indicators. Jolliff
et al. (2009) identified the root mean square error (RMSE)
normalized by the standard deviation of the observations (σO)
as the main statistical indicator and suggested a MPC equal to
unity. A “less or equal to 1” value for this parameter means
that the model is a better predictor of the monitoring data
compared to the mean of the monitoring data (Stow et al.
2009). Denby (2010) proposed the relative directive error
(RDE) as representative of a model’s uncertainty. Up to now,
this has also been the indicator officially recommended by the
AQD (2008), stating that a MPC for RDE of 50 % needs to be
fulfilled by models (AQD 2008) to be used. Some recent
studies (Thunis et al. 2012a, b, c; Pederzoli et al. 2012) have
pointed out some limitations of the RDE, strictly connected to
its own definition. In particular, they highlight the fact that this

indicator is based on the difference between the modeled and
observed values around the limit fixed by the AQD (2008)
(50μg m−3 for daily average PM10, 200μg m−3 for NO2

hourly maximum, and 120μg m−3 for daily 8-h maximum
mean O3 concentration), without accounting for the timing of
the events. This means that the temporal correlation between
the modeled and observed data is not accounted for and a
model fulfilling the 50 % MPC may actually perform in an
uncorrelated way with respect to observations. As a conse-
quence, the information provided by the RDE can be mislead-
ing and does not assure that models provide good results for
the right reasons. Recently, Thunis et al. (2012b, 2013) sug-
gested normalizing the RMSE by the uncertainty of observa-
tions (U). In this way, the resulting MPC on RMSE is inde-
pendent of the pollutant, application, or time/spatial scale
considered. One of the main advantages of this new formula-
tion compared to the previous studies is that the MPC for the
different statistics are derived by considering the same input
(U). Furthermore, as RMSE can be expressed as a function of
the main statistical indicators (bias, correlation, and standard
deviation), this formulation provides an opportunity to identi-
fy which aspects of the model performance are the weakest
and need to be improved. This methodology has been pro-
posed in the frame of the FAIRMODE activities (Forum for
Air Quality Modelling in Europe, http://fairmode.ew.eea.
europa.eu/) and implemented inside the delta evaluation tool,
V3.2 (Thunis et al. 2012a, b).

More specifically, in Thunis et al. (2012b), the measure-
ment uncertainty U (i.e., the maximum uncertainty of instru-
ments used for measuring pollutant concentration) is consid-
ered, as a first step, as constant regardless of the pollutant
concentration level; it is set according to the data quality
objective value of the AQD, i.e., 15, 15, and 25 % for O3,
NO2, and PM10, respectively. Later studies (Thunis et al.
2013; Pernigotti et al. 2013a, b) overcome the assumption
aboutU’s independency from the concentration by identifying
the main sources of uncertainty in O3, NO2, and PM10 mea-
surements. A new formulation of U as a function of pollutant
concentration is presented and used to update the MPC pro-
posed in Thunis et al. (2012b).

In this work, the methodology presented in Thunis et al.
(2013) and Pernigotti et al. (2013a) has been applied for the
first time to a specific case: a 1-year simulation (2005) over
the Po Valley at 6×6-km2 resolution performed using the
transport chemical aerosol model (TCAM; Carnevale et al.
2008). The DELTA tool is used for analyzing the model
results. Furthermore, the study presents for the first time a
sensitivity analysis performed on the parameters used for the
computation of U (based on the analytical PM measurement
technique implemented by monitoring sites).

The main goal of the study was to show how the method-
ology proposed by Thunis et al. (2013) can be applied to a
“real” modeling case and how the DELTA tool can provide
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support to modelers for the evaluation of their models in the
frame of the AQD (2008).

Methodology

TCAM configuration

The TCAM is a 3Dmultiphase air quality model developed at
the University of Brescia (Carnevale et al. 2008). It contains
specific parameterization schemes for simulating the main
atmospheric processes that affect the concentration and depo-
sition of atmospheric pollutants on a regional scale. It includes
parameterizations for both convection (Pepper et al. 1979) and
advection (Yamartino et al. 1992) of both gaseous and aerosol
species, diffusion (Holstag and Nieuwstadt 1986; Scire et al.
1990), and deposition processes. Dry deposition is described
by the full-resistance model (Yamartino et al. 1990), whereas
for wet deposition, the scavenging coefficient is computed
taking into account the rainfall rate, cloud water content, gas
solubility, diffusivity, and particle size. Gas-to-particle con-
version using a splitting operator technique (Marchuk 1975) is
also included. Gas chemistry is simulated using a modified
version of the SAPRC97 scheme (Carter 1990). The module
ISORROPIA-II (Nenes et al. 1998; Fountoukis et al. 2009;
http://nenes.eas.gatech.edu/ISORROPIA), for modeling the
thermodynamic equilibrium of inorganic species, is
integrated in the system. In ISORROPIA-II, the activity coef-
ficients are computed by applying the Bromley method
(Nenes et al. 1998), which takes into account the temperature
effect. The aerosol module adopts a sectional approach and
includes 21 chemical compounds: 12 inorganic species (H2O,
SO4=, NH

4+, Cl−, NO3−, Na+, H+, SO2(aq), H2O2(aq), O3(aq),
elemental carbon, and others) and 9 organic species (a primary
organic one and eight classes of secondary organic species).
Each chemical species is speciated into ten size bins. The
TCAM has been widely used in the frame of several
European projects (Cuvelier et al. 2007; Thunis et al. 2009).

DELTA tool

The DELTA evaluation tool (Thunis et al. 2012a) is an IDL-
based model evaluation software which has been designed in
the frame of the FAIRMODE project and is currently used for
supporting modeling groups across Europe in the diagnostics
and evaluation of their air quality models according to the
AQD (2008) guidelines. The tool makes use of paired data of
modeled and observed surface pollutant concentrations and
computes the main statistical indicators (i.e., bias, RMSE,
correlation coefficient), which can be summarized in appro-
priate statistic tables. It can also visualize them on a wide
range of plots (scatter, time series, Taylor and target dia-
grams), providing an overview of the quality of model results

with respect to observations. The tool, successfully tested on
both Linux and Windows environments, applies a graphic
user interface which guides the user through the main func-
tionalities of the software. The package can be downloaded
through the DELTA web site (http://aqm.jrc.ec.europa.eu/
DELTA). All computational details, including data formats
and installation procedure, are described in Thunis et al.
(2012a, c).

The latest version of DELTA (3.2), which includes the
normalization of all diagrams, MPC, and statistical indicators
by the observation uncertainty U, is used in this work. A
detailed description of this latest version of the software can
be found in Thunis et al. (2012c).

Standard statistical indexes

Four standard statistical indicators (Eqs. 1–4) have been se-
lected for this study: RMSE, correlation coefficient (R), nor-
malized mean bias (NMB), and normalized mean standard
deviation (NMSD). This set of parameters, similar to the one
recommended byBorrego et al. (2008), is representative of the
main aspects of model performances: amplitude (NMSD),
phase (R), and bias (NMB). RMSE can also be expressed as
a function of the random error (centered root mean square
error, CRMSE) and the systematic one (bias; Eq. 5). The
computation of these standard performance metrics is based
on the comparison between the modeled and measured values.
These standard indicators provide information about model
responses, such as the tendency to under/overpredict concen-
trations (bias) and the intensity of the model deviation with
respect to observations (e.g., standard deviation). However,
the simple computation of these parameters presents some
limitations. First of all, a model may perform well for some
aspects, but not others. Pederzoli et al. (2012) showed how the
analysis of a single indicator independently from others can be
deceptive and lead to partial conclusions; in any case, it cannot
be considered as exhaustive for evaluating the model’s per-
formance. Furthermore, it does not tell whether the overall
model response is actually acceptable for regulatory purposes
according to the AQD (2008). The approach suggested by
Thunis et al. (2012b), based on the use of the target diagram,
provides a more comprehensive indication of the model’s
response as all relevant information, including those coming
from traditional indicators, is included. Furthermore, the in-
troduction ofMPC values in the diagrams permits establishing
whether the model reaches the minimum level of efficiency in
order to be used for regulatory decisions, according to the
AQD (2008). The main aspects of this methodology are
briefly recalled in the next section.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i¼1

N

Mi −Oið Þ2
vuut ð1Þ
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R ¼
X
i¼1

N

Mi −M
� �

⋅ Oi −O
� �. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i¼1

N

Mi −M
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vuut ⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

N

Oi−O
� �2

vuut ð2Þ

NMSD ¼ σM−σO

σO
ð3Þ

NMB ¼ Bias

O
¼ M−O

O
ð4Þ

RMSE2 ¼ CRMSE2 þ Bias2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i¼1

N

Oi −Oi

� �
− Mi −M
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i

2

vuut þ M −O
� �2

ð5Þ

where Oi and Mi stand for observations and model results,
respectively; the subscript i indicates the time interval, the
overbars indicate the time average over N time intervals, and
the symbol s indicates the standard deviation.

U formulation

As previously mentioned, recent studies (Thunis et al. 2012b,
c, 2013; Pernigotti et al. 2013a, b) suggested the use of RMSE
normalized by the measurement uncertainty U (also named
“expanded uncertainty,” RMSEU) as the main model quality
objective (MQO) for air quality model evaluation.

MQO ¼ RMSEU ¼ RMSE

2RMSU
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
Oi −Mið Þ2

r

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
U 2

i

r ≤1 ð6Þ

where RMSU is the root mean square error of the uncertainty.

RMSU ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
U 2

i

r
ð7Þ

The “less than 1” condition in Eq. 1 is derived by making
two main assumptions on the uncertainty of an individual
observation Oi and its corresponding modeled valueMi (each
one belonging to its confidence interval, [Oi±U(Oi)] and [Mi±
U(Mi)], respectively): (1) an overlap between the two intervals
exists and (2) the model uncertainty is less than or equal to the
observation one: U(Mi)<U(Oi). With these two assumptions,
the following condition is achieved:

Oi −Mij j≤2U Oið Þ ð8Þ

For a time series of N measurements, Eq. 6 can be gener-
alized to Eq. 8. U(Oi) in Eq. 6 is the maximum measurement
uncertainty, i.e., the one resulting from the maximum estimate

of all possible sources of errors arising from measurement
techniques.

In previous studies (Thunis et al. 2012b; Pederzoli et al.
2012), a simplified formulation for U was presented, consid-
ering U as pollutant-dependent only, i.e., independent of the
observed concentration. This approach is not reliable at high
and low concentrations where uncertainty is usually under-
and overestimated. A new formulation for U, depending on
the measured concentration, has been recently implemented in
version 3.2 of the DELTA tool for NO2, O3, and PM10 and
presented in Thunis et al. (2012c, 2013) and Pernigotti et al.
(2013a, b). In this new approach, U is defined as

U ¼ kuRVr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−αð Þ O

2
þ σ2

O

� �
þ α� RV2

s
ð9Þ

Equation 9 is derived assumingU as a sum of two fractions,
a proportional and a non-proportional one (i.e., independent of
the measurement concentration). The non-proportional part is
by definition independent of the concentration level; thus, it
can be estimated around a reference value, RV. In the context
of using the models to support air quality directive, Thunis
et al. (2013) and Pernigotti et al. (2013a, b) set RV=LV, where
LV is the daily/hourly limit values (LV) of the AQD for a
reference time average (daily average PM10 concentration). α
is the uncertainty fraction non-proportional to the concentra-
tion level around RV (between 0 and 1). ur

RV represents the
estimated relative measurement uncertainty around RV.
Finally, U is multiplied by a coverage factor k, which is the
level of confidence that the true value (i.e., the perfect mea-
surement) can lie within the interval [Oi±U]. In other words, it
provides an estimate (in percent) of the overlapping interval
between Oi and Mi.

U-normalized statistical indexes

Three different possible conditions have been identified: if
RMSEU≤0.5, the RMSE between the observed and modeled
values is less than U and the model results are, on average,
within the range of the observation uncertainty for that station.
This means that any attempt to improve the model perfor-
mance further is unhelpful. If 0.5<RMSEU≤1, the RMSE is,
on average, greater than the range of U, but the model might
still be closer to the “true value” (i.e., the perfect measure-
ment) than observations. Finally, if RMSEU>1, observations
are closer to the “true value” than the model results. Based on
Eq. 9, Thunis et al. (2012b) derive a consistent set of MPC for
three statistical indicators.

NMBj j < 2U

O
MPCNMBð Þ ð10Þ
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R > 1−2
U

σO

� �2

MPCRð Þ ð11Þ

NMSDj j < 2U

σO
MPCNMSDð Þ ð12Þ

Equations 10–12 represent necessary but not sufficient
conditions to fulfill the MQO in Eq. 9. MPCNMSD and
MPCR become dependent on σo (Eqs. 11 and 12), whereas
MPCNMB (Eq. 10) functions on the average of observationsŌ.
The condition on RMSEU in Eq. 9 is always 1 (MPCRMSE)
regardless of observations. This set of MPC has been intro-
duced in the Delta tool: in this way, each diagram visualized
by the software shows a colored green area where the values
of RMSE, NMB, R, and NMSD fulfill the corresponding
criteria.

Target diagram

The overall performance of a model can be represented in the
DELTA tool through the target diagram (Jolliff et al. 2009).
Figure 1 reports an example for this type of plot. The X-axis
(CRMSE) and the Y-axis (bias) are normalized by U: for each
dot reported on the plot, the radius between the point and the
origin is the RMSEU (Eq. 6) and the green area identifies the
fulfillment of MPCRMSE (Eq. 9). According to Thunis et al.
(2012b), the CRMSE can be rewritten as

CRMSE2 ¼ σ2
O þ σ2

M−2σOσMR ð13Þ

which leads to

CRMSE R ¼ 1ð Þ
CRMSE σO ¼ σMð Þ ¼ NMSDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1−Rð Þ
p ð14Þ

In the target diagram, the ratio between the two terms is used
to determine on which side of the X axis (negative or positive) a
given points is located. If the correlation error dominates, the
point is placed on the negative side of the diagram, whereas if
NMSD is dominant, the point lies on the positive side.

In this way, four main zones in the diagram are identified:
the lower and top zones identify systematic errors (positive
and negative bias), whereas the left and right areas identify
CRMSE (random) errors, with model performances dominat-
ed by R (red dot lying onto the left) or by NMSD (blue dot
lying onto the right). If a point (yellow dot) lies inside the
green area, it fulfills theMPCRMSE (“less than 1” condition); if
it lies in the green area but RMSEU≤0.5 (black dot inside the
dashed line circle), there is no chance for any model improve-
ment as the RMSE between the observed and modeled values
is less thanU. This graphical representation has the advantage
of providing, through RMSE, a general overview about the
model’s performance; moreover, it helps in identifying the
aspects (in terms of bias, correlation, and standard deviation)
which can potentially be improved.

Results

Model domain

The model domain used in this study is a 95×65-cell grid at
6×6-km2 resolution covering the Po Valley. This area, located
in northern Italy, has already been identified by the scientific
community as one of the most critical areas in Europe for air
pollution issues: by 2020, ozone and particulate matter con-
centrations are expected to reach harmful levels despite the
application, by national authorities, of the European legisla-
tion for emission control and reduction (Thunis et al. 2009).

The severe air pollution episodes affecting the area, espe-
cially during wintertime, are due to very unique conditions, a
combination of several factors: high anthropogenic emissions,
a complex topography, and frequent stagnant meteorological
conditions.

First of all, the valley hosts one of the most important
industrial and populated regions in Italy. High anthropogenic
emissions, associated with traffic, industrial and residential
heating, and combustion processes, lead to high concentra-
tions of ozone and particulate matter in the whole area.
Pollutant dispersion is strongly prevented by the complex
terrain orography. Actually, the valley is located at the foot-
steps of the Alps in the north and surrounded by the
Apennines in the south; these mountain ranges protect the
region from strong winds, which might favor air pollution
dispersion. Pollutants remain trapped inside the valley and
long-range transport outwards is prevented. Furthermore, dur-
ing wintertime, meteorological conditions are typically char-
acterized by low wind speeds and surface-based temperatureFig. 1 Example of the target plot normalized by RMSU
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inversions, associated with a very stable planetary boundary
layer (PBL). During nighttime, the PBL height is low, typi-
cally between 100 and 300 m (Rossa et al. 2012), favoring the
formation of fog and low clouds covering the valley for
several days. All these conditions facilitate the entrapment of
polluted plumes and contribute to the formation of smog haze.

Several intercomparison studies (Cuvelier et al. 2007;
Thunis et al. 2010) tried to describe the spatial and temporal
distribution of PM and O3 concentrations over Po Valley by
applying different models and comparing the results; howev-
er, these attempts highlight how state-of-the-art air quality
models are not capable of simulating pollutant concentrations
(PM10 in particular) properly, due to the complexity of the area
and the peculiar meteorological conditions. Thus, estimating
the model performances over this region area is important, as
well as identifying which aspects of the model’s performance
need to be improved for achieving better results.

Setup

Observations from approximately 50 monitoring sites located
in the Po Valley have been used in this study (Fig. 2). For the
purposes of this work, the sites have been classified in
terms of station type (suburban, urban, and rural). The
orography (hilly, plane, valley) is also specified.
Monitoring data are the same as those used in the
model intercomparison exercise (POMI) performed for
year 2005. Details about the POMI exercise can be found

at the POMI web site http://aqm.jrc.it/POMI/index.html as
well as in Thunis et al. (2009) and Pernigotti et al. (2013b).

Daily PM10 surface concentrations simulated by TCAM
over this domain for the meteorological year 2005 are extract-
ed at single-grid cells and compared to the measured data
provided by the monitoring sites distributed across the area.

PM10 uncertainty sources

Pernigotti et al. (2013a) provide estimates of α, k, and ur
RV for

PM10 measurement uncertainties. The method suggested in
the Guide for the Demonstration of Equivalence (ECWG
2010) is used for computing uncertainty budgets. This ap-
proach takes into account the fact that monitoring stations
usually collect PM data by using different onboard instru-
ments. For field gravimetric and TEOM techniques, data for
computing the budgets come from specific monitoring cam-
paigns carried out in the European PM QA/QC program. For
beta-ray instruments, data from 30 airbase stations for
year 2009 in Austria and Germany are used. The ECVG
method for U budgets is based on the computation of the
residual sum of square between a measurement value and a
reference value, RV. U(Oi) values are derived for each daily
measured concentration. These values are then linearly fitted
and ur

RVand α are derived from the intercept and slope of the
regression. Values of k, α, and ur

RV for maximum uncer-
tainties (Pernigotti et al. 2013a) are reported in Table 1.

A value of k=2 for PM10 is set, which assures an interval
confidence (overlapping interval between Oi andMi) of 95 %.

Fig. 2 Monitoring sites measuring PM10 concentrations for year 2005 across the Po Valley
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As already mentioned, the reference value RV is set equal to
the AQD (2008) Limit value is LV=50 μg m−3. α and ur

RVare
derived from the linear fittings. Equation 9 is then applied
inside the DELTA tool with these parameters, providing U
estimates as a function of the measured concentration.

Diagrams

The DELTA tool V3.2 is used to visualize TCAM results onto
different types of diagrams.

Figure 3 reports the target plot for PM10 TCAM concen-
trations, which provides an immediate overview about the
overall model performance. Of the points,43 % are outside
the green circle, so MPCRMSE is not fulfilled by the model at
these sites. Furthermore, dots lie both in the CRMSE zone and
in the bias zone. Thus, the model’s uncertainty is related to
both the random component (CRMSE) and the systematic one
(bias). Inside CRMSE, the correlation between the modeled
and observed data is the main source of error (almost all points
lie in the R zone). Only seven sites lie in the NMSD area. The
bias is always negative, indicating a general underestimation
of the PM10 concentration by the model. All dots are also

outside the dashed circle, which represents the observation
uncertainty U: in this case, 0.5<RMSEU<1.

The MPC diagrams (Fig. 4a, b) help in understanding the
model behavior by plotting R and NMSD as functions of U/
σo. The fulfillment of MPCR and MPCNMSD is identified by
the green area. The correlation MPC plot (Fig. 4a) confirms
the weakness of the model in terms of the correlation coeffi-
cient for PM10 concentration. R is between 0.2 and 0.7; MPCR

is respected by 70 % of sites (six dots are outside the green
area, corresponding to 14 % of the total). For NMSD, all
stations respect the criterion; NMSD is always negative (in
the range from −10 to −60 %), apart from one site (Monte
Cuccolino), with a NMSD of +25 %. For a significant number
of stations in Fig. 4b, NMSD is, on average, within the range
of the observation uncertainty; thus, there is no margin for any
model improvement at these sites. Concerning NMB, Fig. 5
reports the scatter plot of the modeled versus observed PM10

averaged concentrations at each site. Dashed and solid lines
indicate RMSE/2RMSU ratios of 0.5 and 1, respectively. The
NMB is always negative (up to −30 %), indicating a general
underestimation of PM10 concentration by TCAM. The
MPCNMB (function of Ō) is respected by 75 % of sites.

Comparison to RDE

The target analysis helps identify potential model weaknesses
which may not be revealed by the computation of the RDE
only. For example, Fig. 4a shows that a certain number of sites
(14 %) do not reach the criterion set for PM10 correlation
coefficient: R looks “responsible” for the points outside the
green circle. Whereas the identification of this weakness is
straightforward by looking at the target and MPC plots, the
computation of RDE alone is not helpful and, in some cases,
misleading. Actually, for each of these outlying stations (six in
total), the RDE is computed and reported in a bar plot (Fig. 6).
According to this, the 50 % criterion for RDE set by the AQD
(2008) (green area) is actually fulfilled at three sites
(Alessandria Nuova Orti, Rovigo Borsea, Alba). This means
that at these locations (already identified as weak spots, with a
R approximately 0.4, as shown in Fig. 4a), the RDE wrongly
suggests an acceptable performance of the model.

The reason for this deceptive behavior is attributable to the
RDE definition itself Denby (2010).

RDE ¼ OLV −MLVj j
LV

ð14Þ

where OLV is the closest observed concentration to the limit
value concentration (LV) and MLV is the correspondingly
ranked modeled concentration. This definition is mainly relat-
ed to the exceedances of the limit values and does not consider
the timing of events (Pederzoli et al. 2012). In general, the use
of the target methodology is a step forward compared to the

Table 1 Parameters for the computation of maximum source contribu-
tion uncertainties

K RV=LV α ur
RV

PM10 2.00 50 0.027 0.138

Source: Adapted from Pernigotti et al. (2013a, b)

Fig. 3 Target diagrams for daily average PM10 concentrations. Model:
TCAM. Po Valley dataset, year 2005
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RDE approach, and it provides a more comprehensive over-
view about a model’s strengths and weaknesses.

Seasonal analysis

In order to identify the reasons for the weaknesses shown in
Fig. 3 in terms of bias and correlation, a seasonal analysis has
been performed; two time periods representing winter

(December–January–February) and summer (June–July–
August), respectively, have been considered. The target plots
(Fig. 7a, b) highlight the good model response during summer
as well as a significant underestimation in wintertime for
PM10. Whereas in summer 93 % of sites fulfill the
MPCRMSE, about 50 % dots are outside the green area in the
winter season. This is a well-known behavior: the POMI

Fig. 4 MPC plots of R (a) and NMSD (b) for PM10 concentration. TCAM, year 2005

Fig. 5 Scatter plot of the modeled versus observed PM10 concentrations.
TCAM, year 2005

Fig. 6 Bar plot of the RDE for the modeled PM10 concentration at eight
sites: Druento (DRUE), Aleesandria Nuova Orti (ALNU), Alba (ALBA),
Bormio (BORM), Borgo Val Sugana (VALS), and Rovigo Borsea (ROVI).
TCAM, year 2005
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intercomparison over the Po Valley (Thunis et al. 2013)
showed that the tendency to underestimate PM concentration
during wintertime is common to most air quality models.
According to Thunis et al. (2009), this underestimation typi-
cally ranges between 25 and 30μg m−3. This is due to several
factors, including the under-prediction of primary organic
compound emissions, the difficulties in modeling the second-
ary organic aerosol (SOA) formation (Carnevale et al. 2012),
and the sensitivity of air quality models to the meteorological
input data. In particular, concerning organic compounds, more
efforts are required in the treatment of traffic and residential
heating emissions inside models for achieving a more detailed
speciation between organic and elemental carbon (Thunis
et al. 2009). A recent study (Pernigotti et al. 2013b) shows
the analysis of speciated PM25 for year 2005. Aerosol mass
and organic matter (OM) concentrations have been collected
at the Ispra backgroundmonitoring station (45.82° N, 8.62° E)
and compared to results from six air quality models including
TCAM. The comparison reveals that all models underestimate
OM by 76 % up to 95 %. During the cold season, the primary
OM fraction related to biomass burning is 63 % (Gilardoni
et al. 2011). A poor characterization, mainly due to lack of
knowledge, of wood burning emissions from domestic
heating is identified by Pernigotti et al. (2013b) as one of the
possible reasons for the OM underestimation. In summer,
54 % of the OM measured at the Ispra site has a secondary
origin. In this case, the same study suggests that the OM
under-prediction may be related to the lack of information
on SOA sources from biogenic emissions.

Another study (Pernigotti et al. 2012) highlights how me-
teorological models tend to overestimate the wind intensity in

areas of complex orography such the Po Valley (bias between
0.6 and 1.4 ms−1): as they are not able to simulate severe wind
stagnation events, this significantly contributes to the PM10

underestimation in air quality models; the use of observation’s
nudging techniques can help to better simulate modeled sur-
face wind fields, improving PM10 model predictions.

Sensitivity analysis

A sensitivity analysis has been carried out by considering
different values of ur

RV and α in the computation of U.
TCAM performances for PM10 daily mean concentrations
are discussed in this section. The sites have been classified
into three subgroups based on the analytical measurement
technique they implement for measuring PM: B (for beta-ray
instruments), T (TEOM instruments), and G (gravimetric
instruments). The values for ur

RV and α currently used in the
DELTA tool are those derived from the gravimetric data of the
European PMQA/QC program (Table 1), and they are applied
to all stations independently of their type of instrument.
Different values of ur

RV and α specific for TEOM and beta-
ray systems, as provided by Pernigotti et al. (2013a), have

Fig. 7 Target plots of PM10 concentrations for winter (a) and summer (b) seasons. TCAM, year 2005

Table 2 ur
RV and α values for U computation, specific for monitoring

sites implementing TEOM (T) and beta-ray (B) instruments

T B

α 0.027 0.009

ur
RV 0.192 0.192

Adapted from Pernigotti et al. (2013a)
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been used for groups T and B (Table 2). Figure 8 shows the
improvement for both groups by using the new values: 100 %
of sites are inside the green area for T and B compared to
respectively 66 and 68 % of the “default” case. U values have
also been computed (by applying Eq. 9) around LV for two
sites of group T (Biella Sturzo and Cossato) and two sites of
group B (Bormio, Alessandria Libertà). Performances at these
monitoring stations are outside the green area for the default
case (Fig. 8a, c). U values are reported in Table 3.

Fig. 8 Target plots of PM10 daily mean concentrations for station groups T (top) and B (bottom). Targets on the left (a, c) are computed using default
(gravimetric) values for ur

RV and α, whereas targets on the right (b, d) make use of beta-ray and TEOM ur
RV and α parameters. TCAM, year 2005

Table 3 U values around LV for Biella Sturzo, Cossato (T), Bormio, and
Alessandira Libertà (B) computed using default parameters (Table 2) and
new parameters (Table 2)

Group D Default New

T Biella Sturzo 11.40 15.89

T Cossato 10.92 15.51

B Bormio 7.53 10.20

B Aless. Libertà 16.76 23.38
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Conclusions

This study presents an application of the method of
Thunis et al. (2012b) which makes use of the observa-
tion uncertainty (U) for normalizing the main statistical
indicators (RMSE, NMB, NMSD, and R) used in model
evaluation and computing the correspondent model per-
formance criteria (MPC). In this way, MPC for the
different statistics are derived by considering the same
input (U).

Furthermore, the same margin of uncertainty (“less
than 1” condition) is used for both model results and
measurements.

Model results provided by the TCAM (Carnevale
et al. 2008) for PM10 concentrations have been com-
pared to measured data provided by 50 monitoring
sites distributed across the Po Valley for year 2005.
The target plot analysis reveals that TCAM generally
performs better during the summer than winter; during
the summer season, the model fulfills all criteria for
correlation, systematic error, and standard deviation. In
winter, the model uncertainty is associated with both the
random (CRMSE) and the systematic components (NMB)
of the error. The model shows a poor correlation with
observations (between 0.2 and 0.7). The criterion is not
fulfilled by 14 % of stations. Furthermore, the model tends
to underestimate PM10 concentration with a bias (up to
−30 %); NMSD is always negative (in the range from −10
to −60 %). In particular, the under-prediction of PM10

concentration in winter is attributable to the well-known
difficulties of air quality models performing over the Po
Valley, such as the sensitivity to the meteorological condi-
tions and complex topography, the underestimation of pri-
mary organic compound emissions, and the modeling of
SOA formation and growth.

A sensitivity analysis has also been performed by consid-
ering different values of ur

RV and α in U computation.
Parameters specific to the measurement instrument imple-
mented at each station (gravimetric, TEOM, and beta-ray
systems) have been introduced. TCAM performances for
PM10 daily mean concentrations improve significantly
(100 % of sites respect the MQO) with respect to the default
case (gravimetric parameters for all sites). The use of more
specific U parameters, based on the measurement instrument
implemented at each monitoring station, is therefore
recommended.

The study shows for the first time a real application of the
methodology by Thunis et al. (2012a, b, c) as implemented
inside the DELTA tool; it highlights how this approach helps
identify potential model weaknesses which may not be re-
vealed by the computation of the RDE only, providing a useful
way for classifying air quality model performances with re-
spect to the AQD (2008).
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