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Abstract
In this paper, we introduce a new space that generalizes the φ-Hilfer space with the
ξ(·)-Laplacian operator, denoted (φ, ξ(·))-HFDS. We refer to this new space as the φ-
fractional space with anisotropic

−→
ξ (·)-Laplacian operator, abbreviated as (φ,

−→
ξ (·))-

HFDAS.We prove that (φ,
−→
ξ (·))-HFDAS is a separable, and reflexive Banach space.

Furthermore, we extend some well-known properties and embedding results of the
(φ, ξ(·))-HFDS space to (φ,

−→
ξ (·))-HFDAS. Moreover, we illustrate an application

of (φ,
−→
ξ (·))-HFDAS by solving a differential equation via variational methods.
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1 Introduction

Lately, there has been an increasing interest in the study of partial differential equations
[7, 10–12, 15, 16, 26, 28], particularly the ones that involves the φ-HFDS spaces, as
highlighted in [20] and its related literature. Naturally, there’s a notable focus on issues
pertaining to φ-HFD with the ξ(·)-Laplacian operator given by

L(·) := D
α,β;φ
T

(∣∣∣ Dα,β;φ
0+ (·)

∣∣∣ξ(x)−2
D

α,β;φ
0+ (·)

)
. (1.1)

Problems involving the above opertator have been a subject of recent few references
in the literarure. For instance, in [20] Srivastava and Sousa, focused on exploring
quasi-linear fractional-order problems with variable exponents of the form

⎧⎪⎪⎨
⎪⎪⎩
D

α,β;φ
T

(∣∣∣ Dα,β;φ
0+ u

∣∣∣ξ(x)−2
D

α,β;φ
0+ u

)
= p|u|β(x)−2u + A(x, u) in �

= [0, T ],×[0, T ] × [0, T ]
u = 0 on ∂�.

(1.2)

The authors of [20] employed the Genus theory in conjunction with the
Concentration-Compactness Principle and the Mountain Pass Theorem to prove the
existence and multiplicity of solutions for problem (1.2). Additionally, Sousa et al.
[22] utilized the fibering method in conjunction with the Nehari manifold to demon-
strate the existence of at least two weak solutions for the following fractional singular
double phase problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D
α,β;φ
T

(∣∣∣ Dα,β;φ
0+ u

∣∣∣ξ−2
D

α,β;φ
0+ u + μ(x)

∣∣∣Dα,β;φ
0+ u

∣∣∣ξ−2
D

α,β;φ
0+ u

)

= ξu−σ + pur−1 in � = [0, T ],×[0, T ]
u = 0 on ∂�,

(1.3)

in the case that ζ is sufficiently small. Again, Sousa et al. in [21] established the
existence and multiplicity results by utilizing the Nehari manifold technique to the
following curvature problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D
α,β;φ
T

⎛
⎜⎜⎝
⎛
⎜⎜⎝1 +

∣∣∣Dα,β;φ
0+ u

∣∣∣ξ(x)

√
1 +

∣∣∣Dα,β;φ
0+ u

∣∣∣2ξ(x)

⎞
⎟⎟⎠
∣∣∣Dα,β;φ

0+ u
∣∣∣ξ(x)−2

D
α,β;φ
0+ u

⎞
⎟⎟⎠

= |u|β(x)−2u + p(x)Au(x, u) in �,

u = 0 on ∂�.

Other interesting works, related to (1.2), can be consulted [6, 19, 21–24].



Basic results for fractional anisotropic spaces and applications Page 3 of 21    71 

Before presenting the problem to be addressed and the main results of this article,
it will be presented some preliminary aspects regarding fractional operators.

Let A := [c, d] (−∞ ≤ c < d ≤ ∞), n−1 < α < n, n ∈ N and g, φ ∈ Cn(A,R)

such that φ is increasing and φ′(x) �= 0, for all x ∈ A. Consider Q = A1×···×AN :=
[c1, d1]×··×[cN , dN ]where 0 < ci < di , for all i ∈ {1, ..., N }, and α = (α1, ..., αN )

where 0 < α1, ..., αN < 1.
The φ-Riemann-Liouville fractional partial integral (resp. derivative) of order α of

N-variables g = (g1, ..., gN ) are defined by

Iα;φ
c,xi g(x) = 1


(αi )

∫
A

φ′(yi )(φ(xi ) − φ(yi ))
αi−1g(yi )dyi

and

Dα,β;φ
c,xi g(x) = Iβ(n−α);φ

c,xi

(
1

φ′(xi )
∂N

∂xi

)
I(1−β)(n−α);φ
c,xi g(xi ),

where φ′(yi )(φ(xi ) − φ(yi ))αi−1 = φ′(y1)(φ(x1) − φ(y1))γ1−1 . . . φ′(yN )(φ(xN ) −
φ(yN ))γN−1 and 
(αi ) = 
(α1)
(α2) . . . 
(αN ), g(xi ) = g(x1)g(x2) . . . g(xN ) and
dyi = dy1dy2 . . . dyN , ∂xi = ∂x1, ∂x2, ..., ∂xN andφ′(xi ) = φ′(x1)φ′(x2) . . . φ′(xN )

for all i ∈ {1, 2, .., N }. Analogously, it is defined Iα;φ
c,xi g(x) resp.D

α,β;φ
d,xi

(·).
On the other hand, we point out that partial differential equations involving

anisotropic operators are highly relevant across various fields of technology and sci-
ence. For example, in reference [13], a mathematical model for image enhancement
and denoising was proposed, which effectively preserved key characteristics of the
images by considering anisotropic operators. Additionally, anisotropic equations are
applied in models that describe the spread of epidemic diseases in heterogeneous envi-
ronments. In Physics, these operators contribute to describing the dynamics of fluids
with varying conductivities in different directions. For more details regarding themen-
tioned applications, refer to [1–3, 13]. Regarding the interest frommathematical point
of view, we quote for example [25], where it was obtained existence andmultiplicity of
solutions, via sub-supersolutions and variational methods, for the anisotropic problem
with variable exponents given by

⎧⎪⎨
⎪⎩

−
N∑
i=1

∂

∂xi

(∣∣∣ ∂u
∂xi

∣∣∣pi (x)−2 ∂u

∂xi

)
= a(x)uα(x)−1 + λ f (x, u) in �,

u = 0 on ∂�,

where � is a bounded domain in RN (N ≥ 3) with smooth boundary, a, α, f , pi , i =
1, . . . , N are functions satisfying adequate conditions, and λ is parameter. For other
references that consider anisotropics problem we mention [4, 5, 8] and its references.

Thus, based in the previous comments the main goal of this manuscript is to
introduce the opertaor general operator considered in (1.1), which will be referred
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as (φ,
−→
ξ (·))-HFDAS, given as

A(·) :=
N∑
i=1

D
α,β;φ
T ,xi

(∣∣∣ Dα,β;φ
0+,xi

(·)
∣∣∣ξi (x)−2

D
α,β;φ
0+,xi

(·)
)

, (1.4)

Furthermore, we introduce an adequate space to deal with the operator (1.4), that will
be called as the φ-HFD and denoted by H−→

ξ (x)
(Q), which is defined as

H−→
ξ (x)

(Q) =
{
ω ∈ L1

loc(Q) : ω ∈ L ξi (x)(Q) and D
α,β;φ
0+,xi

ω ∈ L ξi (x)(Q)

for all i ∈ {1, . . . , N }} ,

that can be equipped with the norm

‖ω‖H−→
ξ (x)

(Q) := ‖ω‖L ξM (x)(Q) +
N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥
L ξi (x)(Q)

for all ω ∈ H−→
ξ (x)

(Q),

where 0 < α < 1, 0 ≤ β ≤ 1, 1 < αξM (x) < N ,
−→
ξ : Q −→ R

N is a vector function
defined as

−→
ξ (x) = (ξ1(x), . . . , ξN (x)), such that ξi ∈ C+(Q) satisfying 1 < ξ−

i ≤
ξ+
i < N < ∞ for all i ∈ {1, . . . , N }with ξm(x) =min {ξ1(x), . . . , ξN (x)} , ξM (x) =
max {ξ1(x), . . . , ξN (x)} , ξ+

m = sup
x∈Q

ξm(x) and ξ+
M = sup

x∈Q
ξM (x). We denote that

ξ(x) = N∑N
i=1 1/ξi (x)

and ξ
∗
(x) =

{
Nξ

N−αξ
if αξ < N ,

+∞ if αξ ≥ N .

At this point, we can describe the obtained properties of the space H−→
ξ (x)

(Q).

Proposition 1.1 The space
(
H−→

ξ (x)
(Q), ‖ · ‖H−→

ξ (x)
(Q)

)
is a separable and reflexive

Banach space.

Remark 1.2 The (φ,
−→
ξ (·))-HFDASwith zero boundary valuesH−→

ξ (x),0
(Q) is defined

as the closure of C∞
0 (Q), with the norm

‖ω‖ := ‖ω‖H−→
ξ (x),0

(Q) =
N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥
L ξi (x)(Q)

.

Also,H−→
ξ (x)

(Q) satisfies the following embedding described below.

Theorem 1.3 Consider ξi ∈ C+(Q) for all i ∈ {1, . . . , N }, with ξm ∈ C+
log(Q) such

that ξ+
m α < N. Assume h ∈ C(Q) satisfies 1 ≤ h(x) ≤ max{ξ∗

(x), ξ+
m } for all

x ∈ Q. Under these conditions, there exists a continuous embedding H−→
ξ (x)

(Q) ↪→
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L h(x)(Q). Moreover, if we additionally assume 1 ≤ h(x) < max{ξ∗
(x), ξ+

m } for all
x ∈ Q, then this embedding is also compact.

Additionally, we have the following Poincaré inequality:

Proposition 1.4 Consider ξi ∈ C+(Q) for all i ∈ {1, . . . , N } such that ξM (x) <

ξ∗
m(x) for all x ∈ Q. For every ω ∈ H−→

ξ (x),0
(Q), the Poincaré-type inequality

‖ω‖L ξM (x)(Q) ≤ C
N∑
l=1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥
L ξi (x)(Q)

for all ω ∈ H−→
ξ (x),0

(Q), (1.5)

holds with C > 0 independent of ω.

As an application of the previous results, it will be established the existence of
a weak solution for the following fractional differential equation involving the new
(φ,

−→
ξ (·))-HFDAS

⎧⎪⎨
⎪⎩

N∑
i=1

D
α,β;φ
T ,xi

(∣∣∣Dα,β;φ
0+,xi

ω

∣∣∣ξi (x)−2
D

α,β;φ
0+,xi

ω

)
+ |ω|ξM (x)−2ω = g(x, ω), for x ∈ Q,

ω = 0 on ∂Q,

(1.6)

where Q ⊂ R
N (N ≥ 2) is a bounded domain with a Lipschitz boundary ∂Q and g:

Q × R −→ R is a continuous function with the potential G(x, ξ) = ∫ ξ

0 g(x, t)dt ,
that satisfies the hypotheses below.

(H1) There exist C > 0 and q ∈ C+(Q)with ξ+
M < q− ≤ q+ < ξ

∗
(x) for all x ∈ Q,

such that g verifies

|g(x, s)| ≤ C
(
1 + |s|q(x)−1

)
,

for all x ∈ Q and all s ∈ R and g(x, t) = g(x, 0) = 0 for all x ∈ Q, t ≤ 0.

(H2) lim
t→0

g(x, t)

|t |ξ+
M−1

= l1 < ∞, and lim
t→∞

g(x, t)t

|t |ξ+
M

= ∞, uniformly for x ∈ Q.

(H3) For a.e. x ∈ Q,
g(x, t)

tξ
+
M−1

is nondecreasing with respect to t ≥ 0.

(H4) lim sup
|t |→+∞

ξM (x)

|t |ξM (x)
G(x, t) < ζ1, uniformly for a.e. x ∈ Q, with

ζ1:= inf
ω∈H−→

ξ (x),0
(Q)

∑N
i=1

∫
Q

1

ξi (x)

∣∣∣Dα,β;φ
0+,xi

ω

∣∣∣ξi (x) dx+
∫
Q

1

ξM (x)
|ω|ξM (x)dx

∫
Q

1

ξM (x)
|ω|ξM (x)dx

> 0.
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(H5) There exist a0 > 0 and δ > 0 such that

G(x, t) ≥ a0|t |q0 , for all x ∈ Q, |t | < δ,

where q0 ∈ C(Q) with q0 < ξ−
m .

In what follows we describe the application concerned problem (1.6).

Theorem 1.5 (i) Under hypotheses (H1)–(H3), problem (1.6) has at least one
nontrivial solution in H−→

ξ (x),0
(Q).

(ii) With hypotheses (H4)–(H5), problem (1.6) possesses at least one nontrivial
solution inH−→

ξ (x),0
(Q).

The remainder of the manuscript is organized as follows. In Sect. 2, we provide a
brief overview of the key features of variable exponent Lebesgue spaces. In Sect. 3,

we prove the properties of the
(
φ,

−→
ξ (·)

)
-HFDAS. Moving on to Sect. 4 we present

the application described in Theorem 1.5.

2 Mathematical background

In this paper, we assume that Q is a bounded Lipschitz domai inRN (N ≥ 2). For the
definitions and notation that we will present below, we use [9, 14] and the references
therein.

We define the set C+(Q) as

C+(Q) =
{
ξ : ξ ∈ C(Q), ξ(x) > 1 for a.e. x ∈ Q

}
.

Consider C+
log(Q) the set of functions ξ ∈ C+(Q) that satisfy the log-Holder

continuity condition

sup

{
|ξ(x) − ξ(y)| log 1

|x − y| : x, y ∈ Q, 0 < |x − y| <
1

2

}
< ∞.

For any ξ ∈ C+(Q), we define ξ+ = sup
x∈Q

ξ(x), ξ− = inf
x∈Q ξ(x) and the modular

�ξ : L ξ(x)(Q) −→ R as �ξ (ω) :=
∫
Q

|ω(x)|ξ(x)dx . Then, the variable exponent

Lebesgue space is defined as

L ξ(x)(Q) =
{
ω ∈ U(Q), �p(ω) < ∞

}
,

whereU(Q) is the set of all real-valued measurable functions defined in Q. We endow
the space L ξ(x)(Q) with the Luxemburg norm

‖ω‖L ξ(x)(Q) := inf

{
τ > 0 : �ξ

( |ω(x)|
τ

)
≤ 1

}
.
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Then, the variable exponent Lebesgue space
(
L ξ(x)(Q), ‖ · ‖L ξ(x)(Q)

)
becomes

a Banach space. Let us now revisit some fundamental properties associated with
Lebesgue spaces involving variable exponents.

Proposition 2.1 [14] Let q, h ∈ C+(Q) such that q ≤ h within the domain Q. Under
these conditions, the embedding L h(x)(Q) ↪→ L q(x)(Q) is continuous.

Furthermore, the following Hölder-type inequality holds for all ω ∈ L ξ(x)(Q) and
v ∈ L ξ ′(x)(Q)

∣∣∣∣
∫
Q

ω(x)v(x)dx

∣∣∣∣ ≤
(

1

ξ− + 1

(ξ ′)−
)

‖ω‖L ξ(x)(Q)‖v‖L ξ ′(x)(Q)

≤ 2‖ω‖L ξ(x)(Q)‖v‖L ξ ′(x)(Q)
. (2.1)

Moreover, if ω ∈ L ξ(x)(Q) and ξ < ∞, then from [9] we have

‖ω‖L ξ(x)(Q) < 1(= 1;> 1) if and only if �ξ (ω) < 1(= 1;> 1), (2.2)

if ‖ω‖L ξ(x)(Q) > 1 then ‖ω‖ξ−
L ξ(x)(Q)

≤ �ξ (ω) ≤ ‖ω‖ξ+
L ξ(x)(Q)

, (2.3)

and

if ‖ω‖L ξ(x)(Q) < 1 then ‖ω‖ξ+
L ξ(x)(Q)

≤ �ξ (ω) ≤ ‖ω‖ξ−
L ξ(x)(Q)

. (2.4)

As a result, we get

‖ω‖ξ−
L ξ(x)(Q)

− 1 ≤ �ξ (ω) ≤ ‖ω‖ξ+
L ξ(x)(Q)

+ 1, for all ω ∈ L ξ(x)(Q). (2.5)

This leads to an important result that norm convergence and modular convergence
are equivalent.

‖ω‖L ξ(x)(Q) −→ 0 (−→ ∞) if and only if �ξ (ω) −→ 0 (−→ ∞). (2.6)

Remark 2.2 The above properties of the modular and norm hold for all Lξ(x)
μ (Q) :=

{ω : ω isμ-measurable real-valued function and
∫
Q

|ω(x)|ξ(x)dμ < ∞
}
, where Q ⊂

R
N (N ≥ 2) is a bounded open subset, μ is a measure on Q, and ξ ∈ C+(Q).

Now,we recall the definition ofφ-HFDS, denoted byHξ(x)(Q), which is consists of

functions ω belonging toL ξ(x)(Q) whose derivativesDα,β;φ
0+ ω are also inL ξ(x)(Q),

i.e,

Hξ(x)(Q) =
{
ω ∈ L ξ(x)(Q) :

∣∣∣Dα,β;φ
0+ ω

∣∣∣ ∈ L ξ(x)(Q)
}
,
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endowed with the norm

‖ω‖Hξ(x)(Q) = ‖ω‖L ξ(x)(Q) +
∥∥∥Dα,β;φ

0+ ω

∥∥∥
L ξ(x)(Q)

for all ω ∈ Hξ(x)(Q).

Remark 2.3 We can defineHξ(x),0(Q) as the closure of C∞
0 (RN ) inHξ(x)(Q) which

can be equipped with the equivalent norm

‖ω‖Hξ(x),0(Q) =
∥∥∥Dα,β;φ

0+ ω

∥∥∥
L ξ(x)(Q)

for all ω ∈ Hξ(x),0(Q).

Note that Hξ(x)(Q) and Hξ(x),0(Q) are separable and reflexive Banach spaces, as
established in [27].

Now, let us highlight the crucial embeddings of the spaceHξ(x)(Q).

Proposition 2.4 [27] Let Q be a Lipschitz bounded domain in RN , and ξ ∈ C0(Q). If
r : Q −→ (1,+∞) satisfy

1 ≤ r(x) < ξ∗(x) =
{

Nξ(x)
N−αξ(x) , if αξ(x) < N ,

∞, if αξ(x) ≥ N ,
for all x ∈ Q,

then, the embedding

Hξ(x)(Q) ↪→ L r(x)(Q) (2.7)

is compact and there is a constant c0 > 0, such that ‖ω‖L r(x) ≤ c0‖ω‖.

Proposition 2.5 [17] Consider a real Banach space Y and its dual Y ∗. Assume that
ψ ∈ C1(Y ,R) satisfies the condition

max
(
ψ(0), ψ (e)

)
≤ ν ≤ inf‖ω‖=ρ

ψ(ω),

for some ϑ < ν, ρ > 0, and e ∈ Y with ‖e‖ > ρ. Let c ≤ ν be such that

c = inf
γ∈


max
τ∈[0,1] ψ(γ (τ)),

where 
 =
{
γ ∈ C([0, 1],Y ) : γ (0) = γ (1) = e

}
is the set of continuous paths

joining 0 and e. Then, there exists a sequence {ωn}n∈N in Y such that

φ (ωn) −→ c ≥ ν and (1 + ‖ωn‖)
∥∥ψ ′ (ωn)

∥∥
Y ∗ −→ 0.
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3 Proof of the propert of the �-HFD space with anisotropic operator

This sectionwill be devoted to provide the proofs of propositions 1.1, 1.4, andTheorem
1.3.

Proof of Proposition 1.1 SinceL ξi (x)(Q) is a reflexive and separable space, it follows
that the space

∏N
i=1L

ξi (x)(Q) with respect to the norm

‖ω‖L ξi =
(

N∑
i=1

‖ωi‖ξi

L ξi

) 1
ξi

, (3.1)

where ω = (ω1, ω2, ..., ωN ) ∈ ∏N
i=1L

ξi (x)(Q) is also reflexive and separable space.

On the other hand, let us consider the space ϒ =
{(

ω,D
α,β;φ
0+,xi

ω
)

: ω ∈ H−→
ξ (x)

(Q)
}

,

which is a closed subset of
∏N

i=1L
ξi (x)(Q) as H−→

ξ (x)
(Q) is closed. Therefore, ϒ

is also reflexive and separable Banach space with respect to the norm (3.1) for ω =
(ω1, ω2, ..., ωN ) ∈ ϒ .

Define the operator A : H−→
ξ (x)

(Q) −→ ϒ given by

A(ω) =:
(
ω,D

α,β;φ
0+,xi

ω
)

, ω ∈ H−→
ξ (x)

(Q).

Therefore, it follows that ‖ω‖H−→
ξ (x)

(Q) =
N∑
i=1

‖Aω‖L ξi , which means that the

operator A : ω �→
(
ω,D

α,β;φ
0+,xi

ω
)
is a isometric isomorphic mapping, which implies

that the space H−→
ξ (x)

(Q) is isometric to the space ϒ . HenceH−→
ξ (x)

(Q) is a reflexive
and separable Banach space and this completes the proof. �

Proof of Theorem 1.3 Consider ω ∈ H−→
ξ (x)

(Q). From Proposition 2.1, we deduce that

ω ∈Hξm (x)(Q). As h(x) ≤ ξ∗
m(x) for all x ∈ Q, Proposition 2.4 ensures the existence

of a positive constant c > 0 such that

‖ω‖L h(x)(Q) ≤ c

(
‖ω‖L ξm (x)(Q) +

N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥
L ξm (x)(Q)

)
. (3.2)

As ξm ≤ ξi ≤ ξM holds for all i ∈ {1, . . . , N }, we can oncemore utilize Proposition
2.1 to obtain positive constants ci such that

‖ω‖L ξm (x)(Q) ≤ c0‖ω‖L ξi (x)(Q), and

‖Dα,β;φ
0+,xi

ω‖L ξm (x)(Q) ≤ ci‖Dα,β;φ
0+,xi

ω‖L ξi (x)(Q), (3.3)
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for all i ∈ {1, . . . , N }. Combining (3.2) with (3.3), yields ‖ω‖L h(x)(Q) ≤
c‖ω‖H−→

ξ (x)
(Q). Since Proposition 2.4 establishes that the embedding

Hξm (x)(Q) ↪→ L h(x)(Q),

is compact if 1 ≤ h(x) < ξ∗
m(x) for all x ∈ Q, we can conclude that the embedding

H−→
ξ (x)

(Q) ↪→ L h(x)(Q) is both continuous and compact. �
Proof of Proposition 1.4 Let us consider a contradiction case where (1.5) is not satis-
fied. This implies the existence of a sequence {ωn}n∈N ⊂ H−→

ξ (x),0
(Q), which we can

assume, without loss of generality, that ‖ωn‖L ξM (x)(Q) = 1,and

N∑
l=1

∥∥∥Dα,β;φ
0+,xi

ωn

∥∥∥
L ξi (x)(Q)

≤ 1

n
, for all n = 1, 2, . . . and {ωn}n∈N

is bounded inH−→
ξ (x),0

(Q).

Using Theorem 1.3, there exists a subsequence of {ωn}n∈N, denoted by {ωn}n∈N,
which converges in L ξM (x)(Q). Therefore, {ωn}n∈N is a Cauchy sequence in
H−→

ξ (x),0
(Q), and then there existsω0 ∈ H−→

ξ (x),0
(Q) such thatωn −→ ω as n −→ ∞.

Since

N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ωn

∥∥∥
L ξi (x)(Q)

≤ 1

n
, and D

α,β;φ
0+,xi

ωn −→ D
α,β;φ
0+,xi

ω0, inL ξi (x)(Q),

for all i ∈ {1, 2, . . . , N }, yields that
N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ω0

∥∥∥
L ξi (x)(Q)

= lim
n→∞

N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ωn

∥∥∥
L ξi (x)Q

= 0,

and consequently D
α,β;φ
0+ ω0 = 0. Since ω0 ∈ H−→

ξ (x),0
(Q), we have ω0 = 0, which

contradicts the fact that ‖ω0‖L ξi (x)(Q) = limn→∞ ‖ωn‖L ξi (x)(Q) = 1. �

4 Application

In what follows we provide the definition of weak solution that will be considered for
(1.6).

Definition 4.1 We say that ω ∈ H−→
ξ (x),0

(Q) is a weak solution of (1.6), if for every
v ∈ H−→

ξ (x),0
(Q) the following holds
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N∑
i=1

∫
Q

|Dα,β;φ
0+,xi

ω|ξi (x)−2D
α,β;φ
0+,xi

ω D
α,β;φ
0+,xi

v dx +
∫
Q

|ω|ξM (x)−2ωv dx

−
∫
Q
g(x, ω)v dx = 0.

Now, let us introduce the energy functional E : H−→
ξ (x),0

(Q) −→ R associated to
problem (1.6), which is defined as

E(ω) =
N∑
i=1

∫
Q

1

ξi (x)

∣∣∣Dα,β;φ
0+,xi

ω

∣∣∣ξi (x) dx +
∫
Q

1

ξM (x)
|ω|ξM (x)dx −

∫
Q
G(x, ω)dx .

(4.1)

We have E ∈ C1
(
H−→

ξ (x),0
(Q),R

)
and it is noteworthy that the critical points of

E correspond to weak solutions of (1.6) and its Gateaux derivative is

〈E′(ω), ω〉 =
N∑
i=1

∫
Q

∣∣∣Dα,β;φ
0+,xi

ω

∣∣∣ξi (x) dx +
∫
Q

|ω|ξM (x) dx −
∫
Q
g(x, ω)ω dx .

Mountain-pass geometry

Next, we prove that the energy functional (4.1) satisfy the mountain pass geometry.

Lemma 4.2 If conditions (H1)–(H3) are satisfied, then the following assertions hold:

(i): There exists v ∈ H−→
ξ (x),0

(Q) with v > 0 such that E(tv) −→ −∞ as t −→ ∞.

(ii): There exist ϑ, ν > 0 such that E(ω) ≥ ν for all ω ∈ H−→
ξ (x),0

(Q) with ‖ω‖ = ϑ .

Proof (i) Using the condition (H2), it can be inferred that for all K > 0, there exist
CK > 0, such that

G(x, s) > K |s|ξ+
M for all x ∈ Q, and |s| > CK . (4.2)

Let t > 1 large enough and v ∈ H−→
ξ (x),0

(Q) with v > 0. From (4.2), one has

E(tv) =
N∑
i=1

∫
Q

1

ξi (x)
|Dα,β;φ

0+,xi
tv|ξi (x)dx +

∫
Q

1

ξM (x)
|tv|ξM (x)dx −

∫
Q
G(x, tv)dx

≤ tξ
+
M

N∑
i=1

∫
Q

1

ξi (x)
|Dα,β;φ

0+,xi
v|ξi (x)dx + tξ

+
M

∫
Q

1

ξM (x)
|v|ξM (x)dx

−
∫

|tv|>CK

G(x, tv)dx −
∫

|tv|≤CK

G(x, tv)dx
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≤ tξ
+
M

ξ−
m

N∑
i=1

∫
Q

|Dα,β;φ
0+,xi

v|ξi (x)dx + tξ
+
M

ξ−
M

∫
Q

|v|ξM (x)dx

− Ktξ
+
M

∫
Q

|v|ξ+
M dx −

∫
|tv|≤CK

G(x, tv)dx

≤ tξ
+
M

ξ−
m

N∑
i=1

∫
Q

|Dα,β;φ
0+,xi

v|ξi (x)dx + tξ
+
M

ξ−
M

∫
Q

|v|ξM (x)dx−Ktξ
+
M

∫
Q

|v|ξ+
M dx+C1,

whereC1 > 0 is a constant. Choosing K to be sufficiently large to guarantee a specific
condition

1

ξ−
m

N∑
i=1

∫
Q

∣∣∣Dα,β;φ
0+,xi

v

∣∣∣ξi (x) dx + 1

ξ−
M

∫
Q

|v|ξM (x)dx − K
∫
Q

|v|ξ+
M dx < 0,

we have that

E(tv) −→ −∞ as t −→ +∞,

which concludes the proof of (i).
(ii) It follows from (H1) and (H2) that for a given ε > 0, there exists Cε > 0 such

that

|g(x, ω)| ≤ ε|ω|ξ+
M−1 + Cε|ω|q(x)−1, for all (x, ω) ∈ Q × R.

Furthermore, according to the continuous embeddingsH−→
ξ (x),0

(Q) ↪→ L q(x)(Q)

and H−→
ξ (x),0

(Q) ↪→ L ξ+
M (Q), it follows that there exist constants C1,C2 > 0 such

that

‖ω‖
L ξ

+
M (Q)

≤ C1‖ω‖ and ‖ω‖L q(x)(Q) ≤ C2‖ω‖, (4.3)

for all ω ∈ H−→
ξ (x),0

(Q). Therefore,

∫
Q
G(x, ω)dx ≤

∫
Q

ε

ξ+
M

|ω|ξ+
M dx +

∫
Q

Cε

q(x)
|ω|q(x)dx

≤ ε
C

ξ+
M

1

ξ+
M

‖ω‖ξ+
M + Cε

Cq−
2

q− ‖ω‖q−
, (4.4)

for all x ∈ Q and all ω ∈ H−→
ξ (x),0

(Q). Thus, for ‖ω‖ < 1, we have from (4.3) and
(4.4) that
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E(ω) =
N∑
i=1

∫
Q

1

ξi (x)

∣∣∣Dα,β;φ
0+,xi

ω

∣∣∣ξi (x) dx +
∫
Q

1

ξM (x)
|ω|ξM (x)dx −

∫
Q
G(x, ω)dx

≥ 1

ξ+
M

N∑
i=1

∫
Q

∣∣∣Dα,β;φ
0+,xi

ω

∣∣∣ξi (x) dx + 1

ξ+
M

∫
Q

|ω|ξM (x)dx −
∫
Q
G(x, ω)dx

≥ 1

ξ+
M

N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥ξ+
M

L ξi (·)(Q)
+ 1

ξ+
M

‖ω‖ξ+
M

L ξM (·)(Q)
−
∫
Q
G(x, ω)dx

≥ 1

ξ+
M

‖ω‖ξ+
M −

∫
Q
G(x, ω)dx

≥
⎛
⎝ 1

2(N + 1)ξ
+
m ξ+

M

− ε
C

ξ+
M

1

ξ+
M

+ Cε

Cq−
2

q− ‖ω‖q−−ξ+
M

⎞
⎠ ‖ω‖ξ+

M .

Since 1 < ξ+
M < q−, for sufficiently small values of ϑ , we choose ν > 0 such that

E(ω) ≥ ν, for all ω ∈ H−→
ξ (x),0

(Q) with ‖ω‖ = ϑ.

�

Lemma 4.3 Given the hypotheses (H1) and (H3), and a sequence {ωn}n∈N ⊂
H−→

ξ (x),0
(Q) such that

〈E′ (ωn) , ωn〉 −→ 0 as n −→ ∞, (4.5)

then there is a subsequence, still denoted by {ωn}n∈N, such that for all t > 0, it holds

E (tωn) ≤ tξ
−
m

ξ−
m

[
1

n
+
∫
Q

1

ξ−
m
g (x, ωn) ωndx

]
−
∫
Q
G (x, ωn) dx .

Proof Let ϕ be a function such that

ϕ(t) = tξ
−
m

ξ−
m
g (x, ωn) ωn − G (x, tωn) .

Thus,

ϕ′(t) = tξ
−
m −1g (x, ωn) ωn − g (x, tωn) ωn

= tξ
−
m −1ωn

(
g (x, ωn) − g (x, tωn)

tξ
−
m −1

)
,
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which implies that ϕ′(t) ≥ 0 for t ∈] 0, 1] , and ϕ′(t) ≤ 0 when t ≥ 1, which leads
to

ϕ(t) ≤ ϕ(1), for all t > 0. (4.6)

According to (4.5), one has

∣∣〈E′ (ωn) , ωn
〉∣∣ <

1

n
.

Hence,

− 1

n

〈
E′ (ωn) , ωn

〉 =
N∑
i=1

∫
Q

∣∣∣Dα,β;φ
0+,xi

ωn

∣∣∣ξi (x) dx +
∫
Q

|ωn|PM (x) dx

−
∫
Q
g (x, ωn) ωndx <

1

n
. (4.7)

By utilizing (4.6) and (4.7), we derive

E (tωn) =
N∑
i=1

∫
Q

1

ξi (x)

∣∣∣Dα,β;φ
0+,xi

tωn

∣∣∣ξi (x) dx +
∫
Q

1

ξM (x)
|tωn|PM (x) dx

−
∫
Q
G (x, tωn) dx ≤ tξ

−
m

ξ−
m

[
1

n
+
∫
Q

1

ξ−
m
g (x, ωn) ωndx

]

−
∫
Q
G (x, ωn) dx,

(4.8)

which completes the proof. �
Proof of 1.5 (i) If {ωn}n∈N ⊂ H−→

ξ (x),0
(Q) satisfy Proposition 2.5, then

E (ωn) =
N∑
i=1

∫
Q

1

ξi (x)

∣∣∣Dα,β;φ
0+,xi

ωn

∣∣∣ξi (x) +
∫
Q

1

ξM (x)
|ω|ξM (x)dx

−
∫
Q
G (x, ωn) dx = c + o(1),

and
(
1 + ‖ωn‖

) ∥∥φ′ (ωn)
∥∥ −→ 0.

Hence,

‖ωn‖ −
∫
Q
g (x, ωn) ωndx = o(1).
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Moreover,

N∑
i=1

∫
Q

∣∣∣Dα,β;φ
0+,xi

ωn

∣∣∣ξi (x)−2
D

α,β;φ
0+,xi

ωn D
α,β;φ
0+,xi

v +
∫
Q

|ω|ξM (x)−2vdx

−
∫
Q
g (x, ωn) v = o(1), for all v ∈ H−→

ξ (x),0
(Q).

�
Claim 1: The sequence {ωn}n∈N is bounded inH−→

ξ (x),0
(Q). Indeed, let us define

tn =
(
2ξ+

Mc
)1/ξ+

M

‖ωn‖ > 0 and vn = tnωn .

Since ‖vn‖ = (
2ξ+

Mc
)1/ξ+

M , then vn is bounded in H−→
ξ (x),0

(Q). Hence, up to a
subsequence still denoted by {vn}n∈N, we have

⎧⎪⎨
⎪⎩
vn⇀v inH−→

ξ (x),0
(Q),

vn −→ v inL q(x)(Q), for q(x) ∈
(
1,max

{
ξ

∗
(x), ξM (x)

})
,

vn −→ v a.e. in Q.

If ‖ωn‖ −→ ∞, we obtain v ≡ 0. In fact, let

Q1 = {
x ∈ Q : v(x) = 0

}
and Q2 = {

x ∈ Q : v(x) �= 0
}
.

Since |ωn| = |vn| ‖ωn‖
(
2ξ+

Mc
)−1/ξ+

M , it follows that |ωn(x)| −→ ∞ a.e. in Q2.
Based on hypothesis (H2) and for a sufficiently large n, we deduce that

g (x, ωn) ωn

|ωn|ξ
+
M
M

> k uniformly x ∈ Q2,

for a large enough k. Then,

2ξ+
Mc = lim

n→∞ ‖vn‖ξ+
M

= lim
n→∞ |tn|ξ+

M ‖ωn‖ξ+
M

= lim
n→∞ |tn|ξ+

M

∫
Q

|g (x, ωn) ωn|ξ+
M

|ωn|ξ+
M

|ωn|ξ+
M dx

> k lim
n→∞

∫
Q2

|vn|ξ+
M dx = k

∫
Q2

|v|ξ+
M dx . (4.9)
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Given the constant of 2ξ+
Mc and the sufficiently large value of k, we can conclude

that |Q2| = 0, implying v ≡ 0 in Q. Moreover, with v = 0 and considering the
continuity of the Nemitskii operator, we obtain

G (·, vn) −→ 0 in L 1(Q),

which implies that

lim
n−→∞G (x, vn) = 0.

Therefore,

E (vn) ≥ t
ξ+
M

n

ξ+
M

[
N∑
i=1

∫
Q

∣∣∣Dα,β;φ
0+,xi

ω

∣∣∣ξi (x) dx +
∫
Q

|ω|ξM (x)dx

]
− o(1)

≥ 2ξ+
Mc

ξ+
M

− o(1) = 2c − o(1) > c. (4.10)

Similarly to (4.7), for some n > 1, we find

−1

n
<

ξ−
m

ξ+
M

〈
E′ (ωn) , ωn

〉
<

1

n
.

Hence,

E (ωn) =
N∑
i=1

∫
Q

∣∣∣Dα,β;φ
0+,xi

ωn

∣∣∣ξi (x) dx +
∫
Q

1

ξM (x)
|tnωn|ξM (x) dx −

∫
Q
G (x, ωn) dx

≥ 1

ξ+
M

ξ+
M

ξ−
m

(−1

n
+
∫
Q
g (x, ωn) ωndx

)
−
∫
Q
G (x, ωn) dx, (4.11)

that is,

E (ωn) + 1

nξ−
m

≥
∫
Q

(
1

ξ−
m
g (x, ωn) ωn − G (x, ωn)

)
dx . (4.12)

Furthermore, according to Lemma 4.3, one has

E (tωn) ≤ tξ
−
m

nξ−
m

+
∫
Q

(
1

ξ−
m
g (x, ωn) ωn − G (x, ωn)

)
dx . (4.13)

Due to (4.12) and (4.13), we obtain

E (vn) ≤ tξ
−
m + 1

nξ−
m

+ φ (ωn) −→ c,
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that contradicts (4.10). Hence, {ωn}n∈N is bounded inH−→
ξ (x),0

(Q).
Claim 2: The sequence {ωn}n∈N converges strongly to ω in H−→

ξ (x),0
(Q). In fact,

given the boundedness of {ωn}n∈N inH−→
ξ (x),0

(Q) and the reflexivity ofH−→
ξ (x),0

(Q),
there exists ω ∈ H−→

ξ (x),0
(Q) such that ωn⇀ω. Since, the space H−→

ξ (x),0
(Q) is com-

pactly embedded in L ξM (Q), we obtain, for a subsequence still denoted by ωn , that
ωn −→ ω inL ξM (Q). Then, employing Holder’s inequality, we conclude

lim
n→∞

∫
Q

|ωn|ξM (x)−2 ωn (ωn − ω) dx = 0.

On the other hand, utilizing (4.5), yields

lim
n→∞

〈
E′ (ωn) , ωn − ω

〉 = 0.

Therefore, employing the aforementioned equations, we obtain

lim
n→∞

N∑
i=1

∫
Q

∣∣∣Dα,β;φ
0+,xi

ωn

∣∣∣ξi (x)−2
D

α,β;φ
0+,xi

ωn

(
D

α,β;φ
0+,xi

ωn − D
α,β;φ
0+,xi

ω
)
dx = 0.(4.14)

Moreover, (4.14) combined with the weak convergence of {ωn}n∈N to ω in
H−→

ξ (x),0
(Q) implies

limn→∞
∑N

i=1

∫
Q

(∣∣∣Dα,β;φ
0+,xi

ωn

∣∣∣ξi (x)−2
D

α,β;φ
0+,xi

ωn −
∣∣∣Dα,β;φ

0+,xi
ω

∣∣∣ξi (x)−2
D

α,β;φ
0+,xi

ω

)

×
(
D

α,β;φ
0+,xi

ωn − D
α,β;φ
0+,xi

ω
)
dx = 0. (4.15)

Thus, by using Simon Inequality [18], we obtain

lim
n→∞

N∑
i=1

∫
Q

∣∣∣Dα,β;φ
0+,xi

ωn − D
α,β;φ
0+,xi

ω

∣∣∣ξi (x) dx = 0.

Hence, {ωn}n∈N converges strongly to ω in H−→
ξ (x),0

(Q). Then, from Lemma 4.2,
4.3, Claim 1 and Claim 2, it follows that E satisfies Mountain-pass geometry.

(ii) Remember that by utilizing Jensen’s inequality with the convex function t �→
tξ

−
m , one has

N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥ξ−
m

L ξi (·)Q
≥ 1

N ξ−
m − 1

[
N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥
L ξi (·)(Q)

]ξ−
m

.
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Let introduce the following notation

A1 =
{∥∥∥Dα,β;φ

0+,xi
ωn

∥∥∥
L ξi (·)(Q)

≤ 1, i ∈ {1, . . . , N }
}

,

A2 =
{∥∥∥Dα,β;φ

0+,xi
ωn

∥∥∥
L ξi (·)(Q)

> 1, i ∈ {1, . . . , N }
}

.

Subsequently, we obtain

N∑
i=1

∫
Q

∣∣∣Dα,β;φ
0+,xi

ωn

∣∣∣ξi (x) dx= ∑
i∈A1

∫
Q

∣∣∣Dα,β;φ
0+,xi

ωn

∣∣∣ξi (·) dx+ ∑
i∈A2

∫
Q

∣∣∣Dα,β;φ
0+,xi

ωn

∣∣∣ξi (.) dx

≥
∑
i∈A1

∥∥∥Dα,β;φ
0+,xi

ωn

∥∥∥ξM

L ξi (·)(Q)
+
∑
i∈A2

∥∥∥Dα,β;φ
0+,xi

ωn

∥∥∥ξ−
m

L ξi (.)(Q)

≥
N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ωn

∥∥∥ξ−
m

L ξi (·)(Q)
−
∑
i∈A1

∥∥∥Dα,β;φ
0+,xi

ωn

∥∥∥ξ−−
L ξi (·)(Q)

.

Therefore,

N∑
i=1

∫
Q

∣∣∣Dα,β;φ
0+,xi

ωn

∣∣∣ξi (x) dx ≥
N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ωn

∥∥∥ξ−
m

L ξi (·)(Q)
− N , (4.16)

and

N∑
i=1

1

ξi (x)

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥
L ξi (·)(Q)

≥ 1

ξ+
M

∑
i∈A1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥ξ+
i

L ξi (·)(Q)

+ 1

ξ+
M

∑
i∈A2

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥ξ−
i

L ξi (·)(Q)

≥ 1

ξ+
M

(
1

ξ+
M

N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥ξ−
m

L ξi (·)(Q)
− N

)

≥ 1

ξ+
M

⎡
⎢⎣ 1

N ξ−
m − 1

⎛
⎝∑

i=1N

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥
L ξi (·)(Q)

⎞
⎠

ξ−
m

−N

⎤
⎥⎦ .

(4.17)

• If ‖ω‖L ξM (·)(Q) ≥ 1, one has
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N∑
i=1

∫
Q

1

ξi (x)
|Dα,β;φ

0+,xi
ω|ξi (x)dx ≥ 1

ξ+
M

⎡
⎣ 1

N ξ−
m − 1

(
N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥
L ξi (·)(Q)

)ξ−
m

−N + 1

ξ+
M

‖ω‖ξ−
m

L ξM (·)(Q)

]

≥ 1

ξ+
M

⎡
⎣ 1

N ξ−
m − 1

(
N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥
L ξi (·)(Q)

)ξ−
m

+‖ω‖ξ−
m

L ξM (·)(Q)

]
− N

ξ+
M

≥ 1

2ξ−
m −1ξ+

M

inf

{
1,

1

N ξ−
m − 1

}[ N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥
L ξi (·)(Q)

+‖ω‖L ξM (·)(Q)

]ξ−
m − N

ξ+
M

≥ 1

2ξ−
m −1ξ+

M

inf

{
1,

1

N ξ−
m − 1

}
‖ω‖ξ−

m − N

ξ+
M

.

(4.18)

• If ‖ω‖L ξM (·)(Q) < 1, we have

N∑
i=1

∫
Q

1

ξi (x)
|Dα,β;φ

0+,xi
ω|ξi (x)dx ≥ 1

ξ+
M

⎡
⎣ 1

N ξ−
m −1

(
N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥
L ξi (·)(Q)

)ξ−
m

+‖ω‖ξ−
m

L ξM (·)(Q)
− 1 − N

]

≥ 1

ξ+
M

⎡
⎣ 1

N ξ−
m −1

(
N∑
i=1

∥∥∥Dα,β;φ
0+,xi

ω

∥∥∥
L ξi (·)(Q)

)ξ−
m

+‖ω‖ξ−
m

L ξM (·)(Q)

]
− N − 1

ξ+
M

≥ 1

2ξ−
m −1ξ+

M

inf

{
1,

1

N ξ−
m −1

}
‖ω‖ξ−

m − N − 1

ξ+
M

.

(4.19)

Next, we will prove that E is coercive. In fact, for ‖ω‖ > 1, by considering (H4),
in both cases (4.18) or (4.19), we have
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E(ω) =
N∑
i=1

∫
Q

1

ξi (x)

∣∣∣Dα,β;φ
0+,xi

ω

∣∣∣ξi (x) dx +
∫
Q

|ω|ξM (x)

ξM (x)
dx −

∫
Q
G(x, u)dx

≥
N∑
i=1

∫
Q

1

ξi (x)

∣∣∣Dα,β;φ
0+,xi

ω

∣∣∣ξi (x) dx +
∫
Q

|ω|ξM (x)

ξM (x)
dx − (ζ1 − ε)

∫
Q

|ω|ξM (x)

ξM (x)
dx

≥
N∑
i=1

∫
Q

1

ξi (x)

∣∣∣Dα,β;φ
0+,xi

ω

∣∣∣ξi (x) +
∫
Q

|ω|ξM (x)

ξM (x)
dx

− (ζ1 − ε)

ζ1

N∑
i=1

∫
Q

1

ξi (x)

∣∣∣Dα,β;φ
0+,xi

ω

∣∣∣ξi (x) dx +
∫
Q

1

ξM (x)
|ω|ξM (x)dx

≥ 1

2ξ−
m −1ξ+

M

inf

{
1,

1

N ξ−
m −1

}(
1 − (ζ1 − ε)

ζ1

)
‖ω‖ξ−

m − c. (4.20)

Hence, E is coercive and possesses a global minimizer ω, which implies that
〈E′ (ω) , ω〉 = 0, which is nontrivial. Thus, by considering v0 ∈ H−→

ξ (x),0
(Q), t > 0

small enough small, and using the inequality q0 < ξ−
m , we obtain from (H5) that

E (tv0) ≤ C2

(∫
Q

tξi (x)

ξi (x)
|v0|ξi (x) dx +

∫
Q

tξM (x)

ξM (x)
|v0|ξM (x) dx

)
−
∫
Q
G (x, tv0) dx

≤ C3t
ξ−
m − C4t

q0

< 0,

which completes completes the proof.
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