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Abstract
In this paper, we consider the semilinear pseudo-parabolic equation with cone degen-
erate viscoelastic term
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with initial and boundary conditions, where f (u) = |u|p−2u− 1
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∫
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We construct several conditions for initial data which leads to global existence of the
solutions or the solutions blowing up in finite time.Moreover, the asymptotic behavior
and the bounds of blow-up time for the solutions are given.
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1 Introduction

In this paper, we consider the existence and blow-up of solutions for the following
semilinear pseudo-parabolic equation with cone degenerate viscoelastic term

⎧⎪⎪⎨
⎪⎪⎩
ut + �2

B
ut + �2

B
u −

∫ t

0
g(t − s)�2

B
u(s)ds = f (u), (x, t) ∈ intB × (0, T ),

u(x, t) = �Bu(x, t) = 0, (x, t) ∈ ∂B × (0, T ),

u(x, 0) = u0(x), x ∈ intB,

(1.1)
where T ∈ (0,+∞],

f (u) = |u|p−2u − 1

|B|
∫
B

|u|p−2u
dx1
x1

dx ′,

u0 ∈ H1, n2
2,0 (B) ∩ H2, n2

2 (B)(n ≥ 2) with spaces H1, n2
2,0 (B) and H2, n2

2 (B) defined in
Sect. 2. Here B = [0, 1) × X , X is an (n-1)-dimensional closed compact manifold,
which is regarded as the local model near the conical points, and ∂B = {0} × X .
Moreover, the operator �B in (1.1) is defined by (x1∂x1)

2 + ∂2x2 + · · · + ∂2xn , which is
an elliptic operator with conical degeneration on the boundary x1 = 0, and �2

B
u :=

�B(�Bu). Near ∂B we will often use coordinates (x1, x ′) = (x1, x2, . . . , xn) for
0 ≤ x1 < 1, x ′ ∈ X . We assume that

(I) g(x) : R+ → R
+ is a C1 function satisfying

g(x) ≥ 0, g′(s) ≤ 0, 1 −
∫ ∞

0
g(s)ds = l > 0. (1.2)

(II) p satisfies

2 < p < ∞ if n = 2; 2 < p <
2n − 2

n − 2
if n ≥ 3. (1.3)

In this paper, wewill study the behavior of solutions for pseudo-parabolic equations
with conical singularity points. The theory of existence for such solutions plays an
important role in fluid dynamics, aerodynamics and fracture mechanics [1]. Many
scholars gave a lot of important results in operator algebra of quasi differential operator
operations, singularity propagation of non-elliptic operators, spectral theories and so
on. Here let us review the background related to singularity [2]. Space-time singularity,
referred to as singularity, is a location in space-time where the gravitational field of a
celestial body is predicted to become infinite by general relativity in away that does not
depend on the coordinate system. The laws of normal space-time cannot hold because
such quantities become infinite within the singularity. Many kinds of mathematical
singularities appear widely in physics theories. The ball of mass of some quantity
becomes infinite or increases without limit is predicted by equations to these physical
theories [3]. There are different types of singularities, each with different physical
features, such as the different shape of the singularities, conical and curved. It has also
been hypothesized that they occur without an event horizon, a structure that separates
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one part of space-time from another, in which the effects of events cannot exceed the
horizon; these are called naked. Conial singularities occur when there exists a point
where the limit of each heteromorphic invariant is finite, in which case space-time
is not smooth at the limit point itself. Therefore, around this point, space-time looks
like a cone, where the singularity is located at the tip of the cone. The metric can
be finite everywhere and coordinate system is used. An example of such a conical
singularity is a cosmic string and a Schwarzschild black hole [4]. In 2012, Chen et
al. [5, 6] established the basic theories of weighted Sobolev spaces on manifolds with
cone singularity, such as cone Sobolev inequality and Poincaré inequality. Based on
these theories, they studied the following initial boundary value problem for a class
of degenerate parabolic type equations

∂t u − �Bu = |u|p−1u, x ∈ intB, t > 0. (1.4)

By using a family of potential wells, they obtained existence theorem of global solu-
tions with exponential decay and showed the blow-up in finite time of solutions [7].
Especially, the relation between the above two phenomena was derived by them as a
sharp condition. In 2017, Li et al. [8] studied the existence of solutions for

ut − �But − �Bu = |u|p−1u, x ∈ intB, t > 0, (1.5)

with initial and boundary conditions. They established the blow-up criterion for prob-
lem (1.5) by differential inequality.

As far as the present is concerned, there are few studies on the pseudo-parabolic
equations with cone degenerate viscoelastic term and nonlocal source |u|p−2u −
1

|B|
∫
B

|u|p−2u
dx1
x1

dx ′. Thereupon, we will study the influence of viscoelastic term

g on solutions, where Di and Shang [9] considered the case when g = 0 and the
operator is −�B.

To state our main results, we define the following “modified” energy functional and
Nehari functional

J (u) = 1

2

∫ t

0
g(t − s)‖�Bu(t) − �Bu(s)‖22ds

+1

2

(
1 −

∫ t

0
g(s)ds

)
‖�Bu(t)‖22 − 1

p
‖u‖p

p, (1.6)

I (u) =
∫ t

0
g(t − s)‖�Bu(t) − �Bu(s)‖22ds

+
(
1 −

∫ t

0
g(s)ds

)
‖�Bu(t)‖22 − ‖u‖p

p. (1.7)

It follows from (1.6) and (1.7) that

J (u) = 1

2
I (u) + p − 2

2p
‖u‖p

p. (1.8)
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Here, ‖u‖p is ‖u‖
L

n
p
p (B)

and H := H1, n2
2,0 (B) ∩ H2, n2

2 (B) defined in Sect. 2.

The main results of this paper are as follows.

Theorem 1.1 Let p satisfy (1.3) and u0 ∈ H. If J (u0) ≤ d, I (u0) > 0 and K (u0) ≥ 0,
then problem (1.1) has a global weak solution u = u(x, t) ∈ L∞([0,+∞);H) with
ut ∈ L2([0,+∞);H). And for any T > 0, u satisfies

‖u‖2H ≤
(
2αt + ‖u0‖2H

)
eβt , 0 ≤ t ≤ T , (1.9)

where α = (m2+2)pd
p−2 , β = (m + 1

m )2(1 − l) − m2 − 2 > 0, and m ∈ R satisfies
1

(m2+1)2
> l. Moreover, if J (u0) ≤ min

{
p−2
q2+2

ω, d
}
, then u satisfies the following

exponential decay
‖u‖2H ≤ ‖u0‖2He1−γ t , t ≥ 0, (1.10)

where ω = K (u0)
p|B| inf

t>0
‖u‖p−1

p−1, γ = q2+2−(q+ 1
q )2(1−l)

C2∗+1
> 0, C∗ is mentioned in Remark

2.2 and q ∈ R satisfies 1
(q2+1)2

< l, K (u0) = ∫
B
u0

dx1
x1

dx ′.

Theorem 1.2 Let p satisfy (1.3) and u0 ∈ H. If J (u0) ≤ −ω, I (u0) < 0, K (u0) < 0
and ∫ ∞

0
g(s)ds <

p − 2

p + 1
p + 2

, (1.11)

then the weak solutions u of problem (1.1) blow up in finite time, where ω is the same
as Theorem 1.1. Moreover, the maximal existence time T satisfies

∫ ∞

‖u0‖2H

dμ

(p + 2)C p
1 μ

p
2 − 2K (u0)|B| C p−1

2 μ
p−1
2

≤ T ≤ ab2

ab(p − 2) − ‖u0‖2H
,

where positive parameters a and b are respectively given in (4.7) and (4.8), C1 and C2

are respectively the best constant of embedding H ↪→ L
n
p
p (B) and H ↪→ L

n
p−1
p−1(B).

This paper is organized as follows. First of all, we introduce several preliminaries
relative to problem (1.1) in Sect. 2, including the definitions of coneSobolev spaces, the
weak solutions of problem (1.1) and several properties of potential wells and invariant
sets. Next, we give the proof of Theorem 1.1 in Sect. 3 and the proof of Theorem 1.2
in Sect. 4.

2 Preliminaries

2.1 Relevant definitions and lemmas

We give some definitions and properties of the cone Sobolev spaces as follows [7].
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Let X be a closed, compact, andC∞ manifold.We set X� = (R̄+×X)/{0}×X , as
a local model interpreted as a cone with the base X . Next, we Denote X∧ = R+ × X
as the corresponding open stretched cone with the base X .

An n-dimensional manifold B with conical singularities is a topological space with
a finite subset B0 = {b1, . . . , bM } ⊂ B of conical singularities, with the following
two properties:

(i) B\B0 is a C∞ manifold;
(ii) Every b ∈ B0 has an open neighborhood U in B, such that there is a homeomor-

phism φ : U → X� for some closed compact C∞ manifold X = X(b), and φ

restricts to a diffeomorphism φ′ : U\{b} → X∧.

For simplicity, we assume that the manifold B has only one conical point on the
boundary. Thus, near the conical point, we have a stretched manifold B, associated
with B.

Definition 2.1 (cf. [7]) For m ∈ N, γ ∈ R, p > 1 and let B = [0, 1) × X be a
stretched manifold of the manifold B with conical singularity. Then the cone Sobolev
space Hm,γ

p (B) is defined as

Hm,γ
p (B) := {

u ∈ Wm,p
loc (intB) : ωu ∈ Hm,γ

p (X∧)
}
,

for any cut off functionω supported by a collar neighborhood of (0, 1)×∂B.Moreover,
the subspace Hm,γ

p,0 (B) of Hm,γ
p (B) is defined by

Hm,γ
p,0 (B) := [ω]Hm,γ

p,0 (X∧) + [1 − ω]Wm,p
0 (intB),

where X∧ = R+ × X denotes the open stretched cone with the base X , Wm,p
0 (intB)

denotes the closure ofC∞
0 (intB) in Sobolev spacesWm,p(X̃)when X̃ is a closed com-

pact C∞ manifold of dimension n that containing B as a submanifold with boundary.

Definition 2.2 (cf. [7]) Let B = [0, 1)× X . We say u(x) ∈ Lγ
p(B) with 1 < p < +∞

and γ ∈ R, if

‖u‖Lγ
p(B) =

(∫
B

xn1 |x−γ
1 u(x)|p dx1

x1
dx ′

) 1
p

< +∞.

Remark 2.1 (cf. [6]) We have the following properties:

(i) Hm,γ
p (B) is a Banach space for 1 ≤ p < ∞, and is Hilbert space for p = 2;

(ii) Lγ
p(B) = H0,γ

p (B);

(iii) L p(B) = H0,0
p (B);

(iv) xγ1
1 Hm,γ2

p (B) = Hm,γ1+γ2
p (B);
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(v) The embedding Hm,γ
p (B) ↪→ Hm′,γ ′

p (B) is continuous if m ≥ m′, γ ≥ γ ′; and
is compact embedding if m > m′, γ > γ ′.

For simplicity, ‖u‖
L

n
p
p (B)

is denoted by ‖u‖p throughout the present paper, and (·, ·)

represents the inner product in L
n
2
2 (B). Moreover, we also denote

H := H1, n2
2,0 (B) ∩ H2, n2

2 (B) for u = �Bu = 0 on ∂B,

and
‖u‖2H = ‖u‖22 + ‖�Bu‖22.

Lemma 2.1 If functions u, v ∈ H, then

∫
B

v�2
B
u
dx1
x1

dx ′ =
∫
B

�Bu�Bv
dx1
x1

dx ′. (2.1)

Lemma 2.2 (Cone Poincaré inequality, cf. [6]) Let B = [0, 1) × X be a bounded
subspace in Rn+ with X ⊂ R

n−1. If u(x) ∈ H, then

‖u(x)‖2 ≤ C‖∇Bu(x)‖2, (2.2)

where the constant C depends only on B.

Lemma 2.3 Let B = [0, 1) × X be a bounded subspace in R
n+ with X ⊂ R

n−1. If
u(x) ∈ H, then

‖∇Bu(x)‖2 ≤ 1

λ1
‖�Bu(x)‖2, (2.3)

where λ1 > 0 (cf. [5]) is the first eigenvalue of the following equation

{
−�Bu = λu, x ∈ intB,

u = 0, x ∈ ∂B.

Proof For any ε0 > 0 and u(x) ∈ H, a simple calculation gives that

∫
B

|∇Bu|2 dx1
x1

dx ′ =
∫

∂B

u
∂u

∂ν

dx1
x1

dx ′ −
∫
B

u�Bu
dx1
x1

dx ′

≤ ε0

2

∫
B

|u|2 dx1
x1

dx ′ + 1

2ε0

∫
B

|�Bu|2 dx1
x1

dx ′

≤ ε0

2λ1

∫
B

|∇Bu|2 dx1
x1

dx ′ + 1

2ε0

∫
B

|�Bu|2 dx1
x1

dx ′,

where ν is the unit normal vector pointing toward the exterior of B. Taking ε0 = λ1,
we reach the conclusion of Lemma 2.3. ��
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Remark 2.2 It is easy to know that H is a Banach space with norm ‖ · ‖H, where the
norm ‖ · ‖H is equivalent to the norm ‖�B · ‖2 by Lemmas 2.2 and 2.3. For simplicity,
we denote C∗ = C

λ1
, then ‖u‖2H ≤ (C2∗ + 1)‖�Bu‖22.

Lemma 2.4 (Cone Sobolev embedding, cf. [8]) For 1 < q < 2∗ = 2n
n−2 , the embed-

ding H ↪→ L
n
q
q (B) is continuous.

Lemma 2.5 (Hölder inequality, cf. [9]) For p, q ∈ (1,+∞) such that 1
p + 1

q = 1, if

u(x) ∈ L
n
p
p (B) and v(x) ∈ L

n
q
q (B), then we have the following Hölder inequality

∫
B

|u(x)v(x)|dx1
x1

dx ′ ≤
(∫

B

|u(x)|p dx1
x1

dx ′
) 1

p
(∫

B

|v(x)|q dx1
x1

dx ′
) 1

q

.

In view of the definitions and lemmas above, we give the definitions about the weak
solutions below.

Definition 2.3 (Weak solution) A function u = u(x, t) is called a weak solution of
problem (1.1) on B×[0, T ), if u ∈ L∞(0, T ;H) with ut ∈ L2(0, T ;H) and satisfies
(1.1) in the following distribution sense, namely

(ut , φ) + (�But ,�Bφ) + (�Bu,�Bφ)

=
(∫ t

0
g(t − s)�Bu(s)ds,�Bφ

)
+

(
|u|p−2u − 1

|B|
∫
B

|u|p−2u
dx1
x1

dx ′, φ
)

,

(2.4)

for any φ ∈ H, where u0 ∈ H1, n2
2,0 (B) ∩ H2, n2

2 (B).

Definition 2.4 (Maximal existence time) Let u(x, t) be a weak solution of (1.1). We
define the maximal existence time T of u(x, t) as follows:

(i) If u(x, t) exists for all 0 ≤ t < ∞, then T = +∞;

(ii) If there exists t0 ∈ (0,∞) such that u(x, t) exists for 0 ≤ t < t0, but does not
exist at t = t0, then T = t0.

Definition 2.5 (Finite time blow-up) Let u(x, t) be a weak solution of (1.1). We say
u(x, t) blows up in finite time if the maximal existence time T is finite and

lim
t→T− ‖u‖2H := lim

t→T− ‖u‖22 + lim
t→T− ‖�Bu‖22 = +∞.

The following lemmamotivates us to set up the initial value conditions in Theorems
1.1 and 1.2.

Lemma 2.6 Let u be a weak solution of (1.1) and u0 ∈ H\{0}, then ∫
B
u dx1

x1
dx ′ is a

constant for all t ∈ [0, T ), where T is the maximal existence time of u.
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Proof By the boundary condition u = �Bu = 0, it yields

d

dt

∫
B

u
dx1
x1

dx ′ =
∫
B

ut
dx1
x1

dx ′

=
∫
B

(
−�2

B
ut − �2

B
u +

∫ t

0
g(t − s)�2

B
u(s)ds + |u|p−2u

− 1

|B|
∫
B

|u|p−2u
dx1
x1

dx ′
)
dx1
x1

dx ′

= − d

dt

∫
∂B

∇B(�Bu) · νdS −
∫

∂B

∇B(�Bu) · νdS

+
∫ t

0
g(t − s)

∫
∂B

∇B(�Bu(s)) · νdSds +
∫
B

|u|p−2u
dx1
x1

dx ′

− 1

|B|
∫
B

|u|p−2u
dx1
x1

dx ′
∫
B

dx1
x1

dx ′ = 0,

where ν is the unit normal vector pointing toward the exterior of B. ��

Therefore, from Lemma 2.6, we can define

K (u0) =
∫
B

u
dx1
x1

dx ′ =
∫
B

u0
dx1
x1

dx ′.

2.2 Potential wells and invariant sets

Lemma 2.7 Let u(x, t) be a weak solution of (1.1), then J (u) is non-increasing about
t , and

J (u0) = J (u) − 1

2

∫ t

0

∫ τ

0
g′(τ − s)‖�Bu(τ ) − �Bu(s)‖22dsdτ

+ 1

2

∫ t

0
g(τ )‖�Bu(τ )‖22dτ +

∫ t

0
‖uτ‖2Hdτ,

(2.5)

Proof Taking φ = ut in (2.4), it follows from (1.2) and (1.6) that

d

dt
J (u) = 1

2

∫ t

0
g′(t − s)‖�Bu(t) − �Bu(s)‖22ds − 1

2
g(t)‖�Bu‖22 − ‖ut‖2H < 0.

Integrating with respect to t over (0, t), we accomplish the proof of (2.5). ��

Lemma 2.8 For any u ∈ H and ‖u‖p �= 0, we have

(i) lim
λ→0+ J (λu) = 0, lim

λ→+∞ J (λu) = −∞;
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(ii) J (λu) is increasing on 0 ≤ λ ≤ λ∗, decreasing on λ∗ ≤ λ < ∞ and takes the
maximum at λ = λ∗, where

λ∗ =
⎛
⎝

∫ t
0 g(t − s)‖�Bu(t) − �Bu(s)‖22ds +

(
1 − ∫ t

0 g(s)ds
)

‖�Bu(t)‖22
‖u‖pp

⎞
⎠

1
p−2

.

Proof The proof process is similar to the proof of Lemma 2.1 in [10]. ��
Then, we define the Nehari manifold

N :=
{
u ∈ H : I (u) = 0,

∫
B

|�Bu|2 dx1
x1

dx ′ �= 0

}
,

and

d := inf

{
sup
λ≥0

J (λu) : u ∈ H\{0}
}

.

It follows from Lemma 2.8 that 0 < d = inf
u∈N

J (u). The invariant sets are defined by

W := {u ∈ H : I (u) > 0, J (u) < d} ∪ {0},
V := {u ∈ H : I (u) < 0, J (u) < d}.

The following properties of the invariant sets are important for us to get the main
results of problem (1.1).

Lemma 2.9 Let u(x, t) be a weak solution of (1.1) with 0 < J (u0) < d, then

(i) u ∈ W for any t ∈ [0, T ) provided I (u0) > 0;

(ii) u ∈ V for any t ∈ [0, T ) provided I (u0) < 0,
where T is the maximal existence time of u.

Proof (i) If it is false, then there exists t0 ∈ (0, T ) such that u(x, t0) ∈ ∂W , namely

I (u(t0)) = 0, ‖�Bu(t0)‖ �= 0, or J (u(t0)) = d.

By (2.5), J (u(t0)) = d is not true. If I (u(t0)) = 0 but ‖�Bu(t0)‖ �= 0, we have
J (u(t0)) ≥ d by the definition of d, which is contradictive with (2.5).

(ii) By contradiction, then there exists t1 ∈ (0, T ), such that u ∈ V when 0 ≤ t < t1
but u(t1) ∈ ∂V . Namely

I (u(t1)) = 0, or J (u(t1)) = d.

(2.5) implies that J (u(t1)) = d is false. If I (u(t1)) = 0 and for any t ∈ (0, t1),
I (u(t)) < 0, we claim that there exists r > 0 such that ‖�Bu(t1)‖2 ≥ r . Indeed, (1.7)
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implies that

I (u) ≥ l‖�Bu‖22 − ‖u‖p
p

≥ l‖�Bu‖22 − C p
1 ‖u‖p

H

≥ C2
1

C2∗ + 1

(
l − C p

1 (C2∗ + 1)
p
2 ‖�Bu‖p−2

2

)
‖u‖2p,

whereC1 is the best constant of embeddingH ↪→ L
n
p
p (B),C∗ is mentioned in Remark

2.2. Therefore,

r =
(

l

C p
1 (C2∗ + 1)

p
2

) 1
p−2

> 0.

Hence, by the definition of d, we have J (u(t1)) ≥ d, which is contradictive with (2.5).
��

Lemma 2.10 Let u(x, t) be a weak solution of (1.1) with J (u0) = d, then I (u(t)) > 0
for any t ∈ [0, T ) provided I (u0) > 0, where T is the maximal existence time of u.

Proof If it is not true, there exists t∗ ∈ (0, T ), such that for any t ∈ (0, t∗), I (u(t)) > 0
but I (u(t∗)) = 0. If d

dt ‖u‖p
p = 0 for all t ∈ (0, t∗], namely ‖u‖p

p is a constant for all
t ∈ (0, t∗], it follows from (1.8) that

J (u(t∗)) = J (u0) − 1

2
I (u0) < d. (2.6)

If there exists a s ∈ (0, t∗], such that d
dt ‖u‖p

p �= 0 at t = s, then ‖ut‖2 > 0 by Hölder

inequality, which means that
∫ t∗
0 ‖uτ‖2Hdτ is strictly positive(it is easy to verify that

the solution here has some regularity by the standard regularity promotion process).
Combining (2.5), we have

J (u(t∗)) = J (u0) + 1

2

∫ t∗

0

∫ τ

0
g′(τ − s)‖�Bu(τ ) − �Bu(s)‖22dsdτ

− 1

2

∫ t∗

0
g(τ )‖�Bu(τ )‖22dτ −

∫ t∗

0
‖uτ‖2Hdτ < d.

(2.7)

On the other hand, since I (u(t∗)) = 0 and for any t ∈ (0, t∗), I (u(t)) > 0, then
‖�Bu(t∗)‖2 ≥ r > 0, which can be proved as the proof of Lemma 2.9(ii). Conse-
quently, J (u(t1)) ≥ d by the definition of d, which is contradictive with (2.6) and
(2.7). ��

3 Global existence and asymptotic behaviors

If u(x, t) is a solution of problem (1.1) with J (u0) ≤ d, I (u0) > 0 and there exists
t1 > 0 such that ‖�Bu(t1)‖2 = 0, then ‖�Bu(t)‖2 = 0 for all t ≥ t1. Therefore,
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u(x, t) is a global solution of problem (1.1) and satisfies the estimate (1.9) and (1.10).
So in the following discussions, we do not consider this type of solutions.

Proof of Theorem 1.1 We divide the proof into four steps.
Step 1: The low initial energy J (u0) < d.

By J (u0) < d, I (u0) > 0 and (1.8), we can get J (u0) > 0. So we consider the
case 0 < J (u0) < d and I (u0) > 0.

We construct an approximate weak solution of problem (1.1) by the Galerkin
method. We choose {ω j (x)} as the orthogonal basis of H. Let

um(x, t) =
m∑
j=1

h j
m(t)ω j (x),m = 1, 2, · · · ,

which satisfy

(umt , ωk) + (�Bumt ,�Bωk) + (�Bum , �Bωk)

=
(∫ t

0
g(t − s)�Bum(s)ds,�Bωk

)
+

(
|um |p−2um − 1

|B|
∫
B

|um |p−2um
dx1
x1

dx ′, ωk

)
,

(3.1)
for k = 1, 2, · · · ,m, and

um(x, 0) =
m∑
j=1

a j
m(t)ω j (x) → u0 inH. (3.2)

From (2.5), we obtain

J (um(0)) = J (um(t)) − 1

2

∫ t

0

∫ τ

0
g′(τ − s)‖�Bum(τ ) − �Bum(s)‖22dsdτ

+ 1

2

∫ t

0
g(τ )‖�Bum(τ )‖22dsdτ +

∫ t

0
‖umτ‖2Hdτ < d.

(3.3)

for sufficiently large m and any t ∈ [0, T ), where T is the maximal existence time of
u.

Similar to the proof of Lemma 2.9(i), it implies that um(x, t) ∈ W for sufficiently
large m and any t ∈ [0, T ). Letting t1 = 1

2T , then um(x, t1) ∈ W , which means that
0 < J (um(t1)) < d and I (um(t1)) > 0. Taking um(t1) as initial value, similarly, when
m is large enough and t ∈ [t1, t1 + T ) = [ 12T , 3

2T ), the corresponding formula (3.3)
still holds. By the same way above, we obtain um(x, t) ∈ W for sufficiently large m
and any t ∈ [ 12T , 3

2T ). Taking t2 = T , t3 = 3
2T , · · · in sequence, we deduce that

um(x, t) ∈ W for sufficiently large m and any 0 ≤ t < ∞.
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From (3.3) and the discussion above, we obtain I (um(t)) > 0. Therefore, we have

J (um(t)) = 1

p
I (um(t)) + p − 2

2p

∫ t

0
g(t − s)‖�Bu(t) − �Bu(s)‖22ds

+ p − 2

2p

(
1 −

∫ t

0
g(s)ds

)
‖�Bu(t)‖22 < d.

Hence, we deduce that

‖�Bum(t)‖22 <
2pd

(p − 2)l
, (3.4)

∫ t

0
‖umτ‖2Hdτ < d, (3.5)

and

‖|um |p−2um‖ p
p−1

= ‖um‖p−1
p ≤ C p−1

1 ‖um‖p−1
H < C p−1

1

(
2pd(C2∗ + 1)

l(p − 2)

) p−1
2

,

(3.6)

whereC1 is the best constant of embeddingH ↪→ L
n
p
p (B),C∗ is mentioned in Remark

2.2.
Denote

ω∗−→ as the weakly convergence. By (3.4)–(3.6), there exists u and subse-
quence {um} (still denoted by {um}) such that as m → ∞,

um
ω∗−→ u in L∞([0,∞);H) and a.e. in B × [0,∞);

umt
ω∗−→ ut in L2([0,∞);H);

|um |p−2um
ω∗−→ |u|p−2u in L∞([0,∞); L

(p−1)n
p

p
p−1

(B)).

Fixing k in (3.1) and letting m → ∞, we have

(ut , ωk) + (�But ,�Bωk) + (�Bu,�Bωk)

=
(∫ t

0
g(t − s)�Bu(s)ds,�Bωk

)
+

(
|u|p−2u − 1

|B|
∫
B

|u|p−2u
dx1
x1

dx ′, ωk

)
,

and for any φ ∈ H and t > 0,

(ut , φ) + (�But ,�Bφ) + (�Bu,�Bφ)

=
(∫ t

0
g(t − s)�Bu(s)ds,�Bφ

)
+

(
|u|p−2u − 1

|B|
∫
B

|u|p−2u
dx1
x1

dx ′, φ
)

.

On the other hand, (3.2) implies that u(x, 0) = u0(x) ∈ H. Therefore, u is a global
weak solution of problem (1.1).
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Step 2: The critical initial energy J (u0) = d.
Consider the following problem

⎧⎪⎪⎨
⎪⎪⎩
ut + �2

B
ut + �2

B
u −

∫ t

0
g(t − s)�2

B
u(s)ds = f (u), (x, t) ∈ intB × (0, T ),

u(x, t) = �Bu(x, t) = 0, (x, t) ∈ ∂B × (0, T ),

u(x, 0) = u0m(x), x ∈ intB,

(3.7)
where u0m = μmu0,μm = 1− 1

m (m ≥ 2). If ‖u0‖p = 0, then J (u0m) = μ2
m J (u0) <

d and I (u0m) = μ2
m I (u0) > 0. If ‖u0‖p �= 0, it follows from I (u0) > 0 and Lemma

2.8 that λ∗ = λ∗(u0) ≥ 1. Thenwe can deduce that J (u0m) = J (μmu0) < J (u0) = d
and I (u0m) = μ2

m I (u0) + (μ2
m − μ

p
m)‖u0‖p

p > 0. Similar to the proof in step1, for
each m, problem (3.7) admits a global weak solution um(t) ∈ L∞([0,+∞);H) with
umt ∈ L2([0,+∞);H), which satisfies

(umt , v) + (�Bumt ,�Bv) + (�Bum , �Bv)

=
(∫ t

0
g(t − s)�Bum(s)ds,�Bv

)
+

(
|um |p−2um − 1

|B|
∫
B

|um |p−2um
dx1
x1

dx ′, v
)

,

for any v ∈ H and t ∈ (0,∞), and

J (u0m) = J (um(t)) − 1

2

∫ t

0

∫ τ

0
g′(τ − s)‖�Bum(τ ) − �Bum(s)‖22dsdτ

+ 1

2

∫ t

0
g(τ )‖�Bum(τ )‖22dsdτ +

∫ t

0
‖umτ‖2Hdτ < d, for 0 ≤ t < ∞.

Since J (u0m) < d and I (u0m) > 0, it follows from Lemma 2.9(i) that for any
0 ≤ t < ∞, I (um(t)) > 0. Then for each m, (3.4)–(3.6) still hold. Therefore, there
exists u and subsequence {um} (still denoted by {um}) such that as m → ∞,

um
ω∗−→ u in L∞([0,∞);H) and a.e. in B × [0,∞);

umt
ω∗−→ ut in L2([0,∞);H);

|um |p−2um
ω∗−→ |u|p−2u in L∞([0,∞); L

(p−1)n
p

p
p−1

(B)).

Next, the proof is the same as that of the Step 1 above, so we omit it here.

Step 3: Prove the global estimate (1.9).
We need the following lemma to obtain the result.

Lemma 3.1 (Gronwall Lemma, cf. [11]) Assume that h(t) ∈ L1(0, T ) is a non-
negative function, g(t) and η(t) are the continuous function on [0, T ]. If η(t) satisfies

η(t) ≤ g(t) +
∫ t

0
h(τ )η(τ )dτ for all t ∈ [0, T ],
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then

η(t) ≤ g(t) +
∫ t

0
h(s)g(s)e

∫ t
s h(τ )dτds for all t ∈ [0, T ].

Moreover, if g(t) is non-decreasing, one has

η(t) ≤ g(t)e
∫ t
0 h(τ )dτ for all t ∈ [0, T ].

Multiplying both sides of the first equation in (1.1) by u and then integrating the
obtained results over B × (0, t), for any m ∈ R, it follows from (1.7), (1.8), (2.5),
Lemma 2.9(i) and Lemma 2.10 that

‖u‖2H − ‖u0‖2H = −2
∫ t

0
‖�Bu(τ )‖22dτ + 2

∫ t

0

∫ τ

0
g(τ − s)

∫
B

�Bu(s)�Bu(τ )
dx1
x1

dx ′dsdτ

+ 2
∫ t

0
‖u(τ )‖p

pdτ − 2K (u0)

|B|
∫ t

0
‖u(τ )‖p−1

p−1dτ

≤
(

−2 +
(
2 + 1

m2

) ∫ t

0
g(s)ds

) ∫ t

0
‖�Bu(τ )‖22dτ + 2

∫ t

0
‖u(τ )‖p

pdτ

+ m2
∫ t

0

∫ τ

0
g(τ − s)‖�Bu(τ ) − �Bu(s)‖22dsdτ

≤
(

−m2 − 2 +
(
m2 + 1

m2 + 2

) ∫ t

0
g(s)ds

) ∫ t

0
‖�Bu(τ )‖22dτ

+ 2(m2 + 2)pd

p − 2
t .

Considering the arbitrariness of m, we choose m small enough such that 1
(m2+1)2

> l.
Then we can deduce from (1.2) that

‖u‖2H ≤ 2αt + ‖u0‖2H + β

∫ t

0
‖u(τ )‖2Hdτ.

It follows from Lemma 3.1 that (1.9) holds.

Step 4: Prove the exponential decay (1.10).

Lemma 3.2 (cf. [10]) Let y(t) : R+ → R
+ be a nonincreasing function. Assume that

there is a constant A > 0 such that

∫ +∞

s
y(t)dt ≤ Ay(s), 0 ≤ s < +∞.

Then y(t) ≤ y(0)e1−t/A for all t > 0.
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Let Q(t) = −(ut , u) − (�But ,�Bu). Taking φ = u in (2.4), for any q ∈ R, (1.7),
(1.8), (2.5), Lemma 2.9(i) and Lemma 2.10 imply that

Q(t) = ‖�Bu‖22 −
∫ t

0
g(t − s)

∫
B

�Bu(s)�Bu(t)
dx1
x1

dx ′ds − ‖u‖pp + K (u0)

|B| ‖u‖p−1
p−1

≥
(
1 −

(
1 + 1

2q2

) ∫ t

0
g(s)ds

)
‖�Bu‖22 − ‖u‖pp + K (u0)

|B| ‖u‖p−1
p−1

≥
(
q2

2
+ 1 −

(
q2

2
+ 1

2q2
+ 1

)
(1 − l)

)
‖�Bu‖22 − (q2 + 2)p

p − 2
J (u0)

+ K (u0)

|B| ‖u‖p−1
p−1.

Similar to the Step 3, we choose q large enough such that 1
(q2+1)2

< l. Then we can

deduce from the condition J (u0) ≤ min
{

p−2
q2+2

ω, d
}
that

Q(t) ≥ γ

2
‖u‖2H, (3.8)

where

γ = q2 + 2 − (q + 1
q )2(1 − l)

C2∗ + 1
> 0.

On the other hand,

∫ T

t
Q(τ )dτ = 1

2
‖u(t)‖2H − 1

2
‖u(T )‖2H ≤ 1

2
‖u(t)‖2H.

Combining (3.8), we have

∫ T

t
‖u(τ )‖2Hdτ ≤ 1

γ
‖u(t)‖2H.

Letting T → +∞, it follows from Lemma 3.2 that

‖u‖2H ≤ ‖u0‖2He1−γ t , t ≥ 0.

This completes the proof of Theorem 1.1. ��

4 Blow-up and bounds for themaximal existence time

In order to obtain the results of Theorem 1.2, we need the following lemma.

Lemma 4.1 (cf. [12]) Suppose that a positive and twice-differentiable function θ(t)
satisfies the inequality

θ ′′(t)θ(t) − (1 + γ )θ ′2(t) ≥ 0, t > 0,
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where γ > 0. If θ(0) > 0 and θ ′(0) > 0, then there exists a time T ∗ ≤ θ(0)
γ θ ′(0) such

that θ(t) tends to infinity as t → T ∗−.

Proof of Theorem 1.2 We divide the proof into two steps.
Step 1: Blowing up in finite time.
By contradiction, we assume that the maximal existence time T = +∞. For any

T̂ > 0 and t ∈ [0, T̂ ), we let

G(t) =
∫ t

0
‖u‖2Hdτ + (T̂ − t)‖u0‖2H + a(t + b)2, (4.1)

where positive constant a and b are to be determined. It is easy to see that

G ′(t) = ‖u‖2H − ‖u0‖2H + 2a(t + b)

= 2
∫ t

0
(u, uτ )dτ + 2

∫ t

0
(�Bu,�Buτ )dτ + 2a(t + b),

(4.2)

and

G ′′(t) = 2
∫
B

uut
dx1
x1

dx ′ + 2
∫
B

�Bu�But
dx1
x1

dx ′ + 2a. (4.3)

Furthermore, it follows from (4.1)–(4.3) that

G(t)G ′′(t) − p

2
G ′2(t) = G(t)G ′′(t) − 2p(C + a(t + b))2

= G(t)G ′′(t) + 2p

{(
A + a(t + b)2

)(
B + a

)

−
(
G(t) − (T̂ − t)‖u0‖2H

)(∫ t

0
‖uτ‖2Hdτ + a

)
−

(
C + a(t + b)

)2}
,

(4.4)

where

A =
∫ t

0
‖u‖22dτ +

∫ t

0
‖�Bu‖22dτ,

B =
∫ t

0
‖uτ‖22dτ +

∫ t

0
‖�Buτ‖22dτ,

and

C =
∫ t

0
(u, uτ )dτ +

∫ t

0
(�Bu,�Buτ )dτ.

It is obvious that AB ≥ C2 by Schwarz inequality. Hence, we have

(
A + a(t + b)2

)(
B + a

)
≥

(
C + a(t + b)

)2
. (4.5)

Combining (4.4) and (4.5), we calculate
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G(t)G ′′(t) − p

2
G ′2(t) ≥ G(t)

{
G ′′(t) − 2p

(∫ t

0
‖uτ‖2Hdτ + a

)}
:= G(t)ζ(t),

where

ζ(t) = 2
∫
B

uut
dx1
x1

dx ′ + 2
∫
B

�Bu�But
dx1
x1

dx ′ − 2p
∫ t

0
‖uτ‖2Hdτ − 2(p − 1)a.

(4.6)
Taking φ = u in (2.4), it follows from (1.6), (2.5) and (4.6) that

ζ(t) = −2‖�Bu‖22 − 2
∫ t

0
g(t − s)

∫
B

�Bu(s)�Bu(t)
dx1
x1

dx ′ds + 2‖u‖pp

− 2K (u0)

|B| ‖u‖p−1
p−1

+ 2p

{
1

2

∫ t

0
g(τ )‖�Bu(τ )‖22dτ − 1

2

∫ t

0

∫ τ

0
g′(τ − s)‖�Bu(τ ) − �Bu(s)‖22dsdτ

+ J (u) − J (u0)

}
− 2(p − 1)a

≥
(
p − 2 − p

∫ t

0
g(s)ds

)
‖�Bu‖22 − 2

∫ t

0
g(t − s)

∫
B

�Bu(s)�Bu(t)
dx1
x1

dx ′ds

+ p
∫ t

0
g(t − s)‖�Bu(t) − �Bu(s)‖22ds − 2(p − 1)a

≥
(
p − 2 −

(
p + 1

p
+ 2

) ∫ t

0
g(s)ds

)
‖�Bu‖22 − 2(p − 1)a.

Taking a small enough such that

a ≤ p − 2 − (p + 1
p + 2)(1 − l)

2(p − 1)
‖�Bu‖22, (4.7)

this implies that ζ(t) ≥ 0. From (4.1) and (4.2), we calculateG(0) > 0 andG ′(0) > 0.
We choose b large enough such that

ab(p − 2) − ‖u0‖2H > 0. (4.8)

Taking the arbitrariness of T̂ into consideration, let

T̂ ≥ ab2

ab(p − 2) − ‖u0‖2H
. (4.9)

It follows from lemma 4.1 that there exists T ∗ ∈ [0, T̂ ] such that G(t) → ∞ as
t → T ∗−, which means that

‖u‖2H → ∞, as t → T ∗−.
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This is a contradiction with T = +∞. Hence, T < +∞, i.e. the solutions of problem
(1.1) blow up in finite time.

Step 2: Bounds for the maximal existence time.
Lemma 4.1 and (4.9) imply that the maximal existence time T satisfies

T ≤ ab2

ab(p − 2) − ‖u0‖2H
,

where parameters a and b are respectively given in (4.7) and (4.8).
To state the estimate of the lower bound for the maximal existence time T , we

define the function
L(t) = ‖u‖2H.

Multiplying u on both sides of the first equation in (1.1) and integrating over B by
parts, from (1.2), (1.7), (1.11) and Lemma 2.9(ii), we have

L′(t) = −2‖�Bu‖22 + 2
∫ t

0
g(t − s)

∫
B

�Bu(s)�Bu(t)
dx1
x1

dx ′ds + 2‖u‖p
p − 2K (u0)

|B| ‖u‖p−1
p−1

≤ −2‖�Bu‖22 +
(
2 + 1

p

) ∫ t

0
g(s)ds‖�Bu‖22 + p

∫ t

0
g(t − s)‖�Bu(t) − �Bu(s)‖22ds

+ 2‖u‖p
p − 2K (u0)

|B| ‖u‖p−1
p−1

≤
(

−p − 2 +
(
p + 1

p
+ 2

) ∫ t

0
g(s)ds

)
‖�Bu‖22 + (p + 2)‖u‖p

p − 2K (u0)

|B| ‖u‖p−1
p−1

≤ (p + 2)C p
1 L

p
2 (t) − 2K (u0)

|B| C p−1
2 L p−1

2 (t),

where C1 and C2 are respectively the best constant of embedding H ↪→ L
n
p
p (B) and

H ↪→ L
n

p−1
p−1(B). Then, a simple calculation gives that

∫ ‖u‖2H
‖u0‖2H

dμ

(p + 2)C p
1 μ

p
2 − 2K (u0)|B| C p−1

2 μ
p−1
2

≤ t .

From the proof in Step 1 above, letting t → T−, we obtain

T ≥
∫ ∞

‖u0‖2H

dμ

(p + 2)C p
1 μ

p
2 − 2K (u0)|B| C p−1

2 μ
p−1
2

.

The proof of Theorem 1.2 is accomplished. ��
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