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Abstract
We study the long time behavior of solutions for time-fractional pseudo-parabolic
equations involving time-varying delays and nonlinear pertubations, where the non-
linear term is allowed to have superlinear growth. Concerning the associated linear
problem, we establish a variation-of-parameters formula of mild solutions and prove
some regularity estimates of resolvent operators. In addition, thanks to local estimates
on Hilbert scales, fixed point arguments and a new Halanay type inequality, we obtain
some results on the global solvability, stability, dissipativity and the existence of decay
solutions to our problem.

Keywords Decay solution · Dissipativity · Time-fractional pseudo-parabolic ·
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1 Introduction

Over the past few years, fractional functional differential equations (FrFDEs) in both
finite and infinite dimensional spaces have been widely investigated in the literature

B Do Lan
dolan@tlu.edu.vn

Tran Van Tuan
tranvantuan@hpu2.edu.vn

1 Faculty of Computer Science and Engineering, Thuyloi University, 175 Tay Son, Dong Da,
Hanoi, Vietnam

2 Department of Mathematics, Hanoi Pedagogical University 2, Xuan Hoa, Phuc Yen, Vinh Phuc,
Vietnam

http://crossmark.crossref.org/dialog/?doi=10.1007/s11868-023-00569-9&domain=pdf


74 Page 2 of 27 D. Lan, T. V. Tuan

by many researchers [1, 2, 13, 16, 24, 28–30, 33, 36, 37]. These studies are strongly
motivated from the fact that FrFDEs are effective tools in the modeling various pro-
cesses and phenomena arising from physics, biology, economics, engineering and
other applied sciences, where the current state of such evolutionary processes depends
on the state [3, 6, 34].

On the other hand, one of the important and interesting trends in qualitative treat-
ments of FrFDEs is related to the long time behavior of solutions for such these
equations. This topic has been studied extensively by many authors and many notable
contributions have been established in the last few years. We mention recent results
concerning to the qualitative analysis on the behavior of solutions such as the Mittag–
Leffler stability, asymptotic stability, weakly asymptotic stability and existence of
decay solutions governed by FrFDEs [1, 2, 4, 13, 16, 24, 28–30].

Motivated by the reasons above and the recent studies [25, 26], we investi-
gate the global existence and long time behavior of solutions for time-fractional
pseudo-parabolic equations (tFrPPEs) involving time-varying delays and superlinear
nonlinearities

∂α
t (u − ν�u) − �u = f (t, u(t − ρ(t))) in �, t > 0, (1.1)

u = 0 on ∂�, t ≥ 0, (1.2)

u(s, x) = ξ(s, x), in �, s ∈ [−q, 0], (1.3)

where � ⊂ R
d , d ≥ 1 be a bounded domain with smooth boundary ∂�, � denotes

the Laplacian, ν > 0, ∂α
t , α ∈ (0, 1), stands for the Caputo fractional derivative of

order α defined by

∂α
t v(t, x) =

∫ t

0
g1−α(t − s)∂sv(s, x)ds, t > 0, x ∈ �,

here g1−α(t) = t−α/	(1 − α), t > 0. In the model problem, ρ ∈ C(R+) be such
that −q ≤ t − ρ(t) ≤ t , ξ ∈ C([−q, 0]; L2(�)) and f : R

+ × R → R is a given
nonlinear function which will be specified in Sect. 3.

Concerning the initial value problem (1.1)–(1.3)without delays, it should be noticed
that the linear part of the Eq. (1.1) is used to describe many different phenomena
in physics such as seepage of homogeneous liquids in fissured rocks [23] and the
aggregation of populations [21]. The existence, stability and blow up in finite time of
solutions governed by tFrPPEs and its nonlinear invariants were dealt with in a large
number of published investigations; see, e.g., [8, 9, 17–19, 25–27, 32, 35]. However, to
our knowledge, questions on the global existence and long time behavior of solutions
for problem (1.1)–(1.3) have not yet been concerned in the literature. This is the main
motivation of our study.

Regarding problem (1.1)–(1.3), our main goal is to find sufficient conditions on ρ

and f to obtain the followings

• The global existence of solutions;
• The asymptotic stability and dissipativity of solutions;
• The existence of decay solutions.
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In order to handle the first objective, we first construct an implicit representation
formula of solutions via resolvent operators and formulate the question on the global
solvability for the problem (1.1)–(1.3) as a fixed point problem of certain mapping
related to f . Based on the smoothness of two resolvent families, compactness of
the Cauchy operator (Lemma 2.3 and Remark 2.1) and fixed point arguments, we
prove some results about the existence of solutions for the problem (1.1)–(1.3) under
different situations of nonlinear terms including the sublinear and superlinear cases
(Theorems 3.1, and 3.2). In addition, a new Halanay type inequality (Proposition 2.4)
will be established to analyze the asymptotic stability and dissipativity of solutions. To
deal with the third objective, we make use of the fixed point theorem for condensing
mappings which is recently proposed in [8, 14]. With the aid of this technique, it is
shown in Theorem 4.5 that if the nonlinearity f obeys a superlinear growth condition
(see (F5) below) then the problem under consideration has a compact set of decay
solutions.

The outline of the paper is as follows. In the next section, a variation of constants
formula of mild solutions to the linear problem associated with problem (1.1)–(1.3)
is presented. In addition, the smoothness of two resolvent operators, the compactness
of the Cauchy operator and the Halanay type inequality are shown. The main goal in
Sect. 3 is devoted to proving the global solvability. The last section shows the results
on the asymptotic stability, the dissipativity and the existence of decay solutions.

2 Preliminaries

In this section, we aim to construct an integral representation of solutions to the linear
problem associated with (1.1)–(1.3). For this purpose, let {en}∞n=1 be an orthonormal
basis of L2(�) consisting of eigenfunctions of −� subjected to the homogeneous
boundary condition, i.e.,

−�en = λnen in �, en = 0 on ∂�,

where one can assume that 0 < λ1 ≤ λ2 ≤ ... and λn → ∞ as n → ∞. Denote (·, ·),
‖ · ‖ the inner product and the standard norm in L2(�). For γ ∈ R, the fractional
power operator (−�)γ is defined as follows

(−�)γ v =
∞∑

n=1

λ
γ
n (v, en)en,

D((−�)γ ) =
{

v ∈ L2(�) :
∞∑

n=1

λ
2γ
n (v, en)2 < ∞

}
.

Let Vγ = D((−�)γ ). It should be noted that Vγ is a Banach space with the norm

‖z‖Vγ
=

( ∞∑
n=1

λ
2γ
n |(z, en)|2

) 1
2

, z ∈ D((−�)γ ).
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Furthermore, for each γ > 0, we can identify V−γ = D((−�)−γ ) with V
∗
γ , the dual

space of Vγ .
Consider the linear problem associated with (1.1)–(1.3) without delay of the form

∂α
t (u − ν�u) − �u = F in �, t > 0, (2.1)

u = 0, on ∂�, t ≥ 0, (2.2)

u(0, ·) = ξ, in �, (2.3)

where F ∈ C(R+; L2(�)).
Assume that

u(t, ·) =
∞∑

n=1

un(t)en, F(t) =
∞∑

n=1

Fn(t)en .

Inserting into (2.1)–(2.4) leads to

(g1−α ∗ u′
n)(t) + λn

1 + νλn
un(t) = 1

1 + νλn
Fn(t), t > 0 (2.4)

un(0) = ξn := (ξ, en). (2.5)

In order to find un from (2.4)–(2.5), we consider the Mittag-Leffler function Eα,β

defined by

Eα,β(z) =
∞∑

n=0

zn

	(αn + β)
, z ∈ C, α, β > 0.

Using the Laplace transform, it is useful to notice that the functions

sα(t, μ) := Eα,1(−μtα), rα(t, μ) := tα−1Eα,α(−μtα), (2.6)

whereμ is a positive parameter, satisfy the following scalar Volterra integral equations

sα(t, μ) + μ
(
gα ∗ sα(·, μ)

)
(t) = 1, t ≥ 0, (2.7)

rα(t, μ) + μ
(
gα ∗ rα(·, μ)

)
(t) = gα(t), t > 0. (2.8)

Let us remark that for each μ > 0 the function sα(t, μ) is completely monotonic on
(0,∞), that is,

(−1)n ∂n

∂tn
sα(t, μ) ≥ 0, for all n = 0, 1, 2, . . . , t > 0,

thanks to [7, Proposition 3.23, p. 47] (see also [22]). Other useful properties of sα(·, μ),
rα(·, μ) are gathered in the following proposition.

Proposition 2.1 Let sα, rα are given by (2.6). Then the following assertions hold.
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(i) For every μ > 0, it holds that

1

1 + μ	(1 − α)tα
≤ sα(t, μ) ≤ 1

1 + μtα
	(1+α)

, for all t ≥ 0, (2.9)

0 < − d

dt
sα(t, μ) < μtα−1, for almost all t > 0. (2.10)

(ii) μ
(
1 ∗ rα(·, μ)

)
(t) = 1 − sα(t, μ), t ≥ 0 and

d

dt
sα(t, μ) = −μrα(t, μ) for a.e.

t > 0.
(iii) For every μ > 0, the following bounds hold

μrα(t, μ) ≤ 1

t
, and rα(t, μ) ≤ gα(t), for all t > 0. (2.11)

(iv) For each t > 0, the mappings

μ �→ sα(t, μ), μ �→ rα(t, μ)

are nonincreasing.
(v) For each t > 0, the mappings

μ �→ sα

(
t,

μ

1 + νμ

)
, μ �→ 1

1 + νμ
rα

(
t,

μ

1 + νμ

)

are nonincreasing.

Proof The proof of the assertions (i)–(iv) can be found in [31, Proposition 2.1]. The
assertion (vi) is followed by exploiting the chain rule, the claim (v) and the fact that
the mapping μ �→ μ

1+νμ
is increasing on (0,∞). �

Let us now consider the following initial value problem

(g1−α ∗ v′)(t) + a

1 + νa
v(t) = 1

1 + νa
ω(t), t > 0, (2.12)

v(0) = v0, (2.13)

where a > 0 and ω ∈ C(R+). The following proposition gives a representation for
the solution of (2.12)–(2.13).

Proposition 2.2 The function

v(t) = sα

(
t,

a

1 + νa

)
v0 + 1

1 + νa
rα

(
·, a

1 + νa

)
∗ ω(t), t ≥ 0, (2.14)

be the unique solution of (2.12)–(2.13).
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Proof Suppose that v is given by the formula (2.14). We now show that v be a solution
to the problem (2.12)–(2.13). Indeed, by the formulation of v and by the fact that
sα(0, a

1+νa ) = 1, we have that v(0) = sα(0, a
1+νa )v0 = v0. On the other hand,

convolving the Eqs. (2.7), (2.8) by g1−α and using g1−α ∗ gα = 1, one obtains

g1−α ∗ [sα(·, μ) − 1] + μ(1 ∗ sα(·, μ)) = 0, for all μ > 0, (2.15)

and

g1−α ∗ rα = sα, (2.16)

thanks to Proposition 2.1(ii). Using the expression (2.16) and the formula of v, one
knows that

g1−α ∗ [v − v0] = g1−α ∗ [sα − 1]v0 + 1

1 + νa
g1−α ∗ rα ∗ ω

= g1−α ∗ [sα − 1]v0 + 1

1 + νa
sα ∗ ω

Differentiating both sides of the later equality and owing to (2.15), Proposition 2.1(ii),
we find that

(g1−α ∗ v′)(t) + a

1 + νa
v(t)

= d

dt

(
g1−α ∗ [v − v0]

)
(t) + a

1 + νa
v(t)

= − a

1 + νa
sα(t,

a

1 + νa
)v0+ 1

1 + νa

(
ω(t)+s′

α(·, a

1 + νa
) ∗ ω(t)

)+ a

1 + νa
v(t)

= − a

1 + νa
sα(t,

a

1 + νa
)v0+ 1

1 + νa

−a

1 + νa
rα(·, a

1 + νa
) ∗ ω(t)+ 1

1 + νa
ω(t)

+ a

1 + νa
v(t)

= 1

1 + νa
ω(t),∀t > 0,

which is the equality (2.12) as claimed.
Conversely, let v is a solution of (2.12)–(2.13). Taking the Laplace transform of

both sides of the Eq. (2.12), we obtain

λα−1(λv̂ − v0) + a

1 + νa
v̂ = ω̂,

or equivalently

v̂(λ) = v0

λ + a
1+νa λ1−α

+ 1

1 + νa

ω̂

λα + a
1+νa

. (2.17)



Long time behavior of solutions for time-fractional… Page 7 of 27 74

Using formulas (1.10.4), (1.10.9) in [15, p. 50], we know that

̂sα(·, μ)(λ) = λα−1

λα + μ
, ̂rα(·, μ)(λ) = 1

λα + μ
,�(λ) > 0. (2.18)

Combining (2.17), (2.18) and using the inverse Laplace transform, we find that

v(t) = sα

(
t,

a

1 + νa

)
v0 + 1

1 + νa
rα

(
·, a

1 + νa

)
∗ ω(t),

which is (2.14). The proof is complete. �
Taking Proposition 2.2 into account, the solution of problem (2.4)–(2.5) is given by

un(t) = sα(t, θn)ξn + 1

1 + νλn
rα(·, θn) ∗ Fn(t), t ≥ 0,

where θn = λn
1+νλn

, n = 1, 2, . . . Thus

u(t, ·) = Sα(t)ξ +
∫ t

0
Rα(t − τ)F(τ )dτ, (2.19)

where

Sα(t)v =
∞∑

n=1

sα(t, θn)vnen, v ∈ L2(�), t ≥ 0, (2.20)

Rα(t)v =
∞∑

n=1

1

1 + νλn
rα(t, θn)vnen, v ∈ L2(�), t > 0. (2.21)

Here and afterward, for any T > 0, the notations ‖ · ‖∞, ‖ · ‖0 will stand for the
norms in C([0, T ]; L2(�)) and in C([−q, 0]; L2(�)), and the symbol ‖ · ‖op will be
employed for the operator norm of bounded linear operators on L2(�). Furthermore,
we make use of the notation u(t) for u(t, ·) and consider u as a function defined on
[0, T ], taking values in L2(�).

Clearly Sα(t) and Rα(t) defined by (2.20), (2.21) are bounded linear operators
acting on L2(�) for all t ≥ 0.We collect in the following lemma some other interesting
properties of these operators.

Lemma 2.3 Let {Sα(t)}t≥0 and {Rα(t)}t≥0 be the families of linear operators defined
by (2.20) and (2.21), respectively. Then

(a) For each v ∈ L2(�) and T > 0, Sα(·)v ∈ C([0, T ]; L2(�)) and Sα(·) is
differentiable on (0,∞). Furthermore, the following estimates hold

‖Sα(t)v‖ ≤ sα(t, θ1)‖v‖, t ∈ [0, T ], (2.22)

‖S ′
α(t)v‖ ≤ ‖v‖

t
,∀v ∈ L2(�),∀t > 0. (2.23)



74 Page 8 of 27 D. Lan, T. V. Tuan

(b) Let v ∈ L2(�), T > 0 and g ∈ C([0, T ]; L2(�)). Then Rα(·)v ∈
C([0, T ]; L2(�)) and Rα ∗ g ∈ C([0, T ]; Vγ ), for all γ ∈ (0, 1). Furthermore,

‖Rα(t)v‖ ≤ 1

1 + νλ1
rα(t, θ1)‖v‖, t ∈ (0, T ], (2.24)

‖(Rα ∗ g)(t)‖ ≤ 1

1 + νλ1

∫ t

0
rα(t − τ, θ1)‖g(τ )‖dτ, t ∈ [0, T ], (2.25)

‖(Rα ∗ g)(t)‖Vγ
≤ ν−1λ

γ−1
1 θ

−1/2
1

(∫ t

0
rα(t − τ, θ1)‖g(τ )‖2dτ

) 1
2

, t ∈ [0, T ].
(2.26)

Proof (a) Obviously, the series given by (2.20) is uniformly convergent on [0, T ].
Thus Sα(·)v ∈ C([0, T ]; L2(�)), for all v ∈ L2(�). Moreover

‖Sα(t)v‖2 =
∞∑

n=1

sα(t, θn)2v2n

≤ sα(t, θ1)
2

∞∑
n=1

v2n

= sα(t, θ1)
2‖v‖2,

thanks to Proposition 2.1(vi). Therefore, the bound (2.22) is followed. The proofs for
the differentiability of Sα and the bound (2.23) can be found in [31, Lemma 2. 3(c)].

(b) The proofs for Rα(·)v ∈ C([0, T ]; L2(�)) and Rα ∗ g ∈ C([0, T ]; Vγ ) are
done by using the same arguments as those proposed in the work of Ke et al. [12,
Lemma 2.3]. It remains to show the bounds in (2.24), (2.25) and (2.26). Due to the
nondecreasing of the sequence {λn}n≥1, one has

1

1 + νλn
rα(t, θn) ≤ 1

1 + νλ1
rα(t, θ1),∀n = 1, 2, . . .

thanks to Proposition 2.1(vi). Therefore, for all t ∈ (0, T ], we have that

‖Rα(t)v‖ =
( ∞∑

n=1

(
1

1 + νλn
rα(t, θn)

)2

v2n

)1/2

≤ 1

1 + νλ1
rα(t, θ1)‖v‖.

It is obvious that the bound in (2.25) follows immediately from (2.24). Noting that

(−�)γ
(Rα ∗ g

)
(t) =

∞∑
n=1

λ
γ
n

1 + νλn

∫ t

0
rα(t − τ, θn)gn(τ )dτ,
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and using the Hölder inequality, Proposition 2.1(ii)–(iv), we find that

| λ
γ
n

1 + νλn

∫ t

0
rα(t − τ, θn)gn(τ )dτ |

≤ ν−1λ
γ−1
n

(∫ t

0
rα(t − τ, θn) dτ

)1/2(∫ t

0
rα(t − τ, θn)|gn(τ )|dτ

)1/2

≤ ν−1λ
γ−1
1 θ

−1/2
n

(∫ t

0
rα(t − τ, θn)|gn(τ )|dτ

)1/2

.

Therefore

‖(−�)γ
(Rα ∗ g

)
(t)‖2 ≤

∞∑
n=1

ν−2λ
2(γ−1)
1 θ−1

n

∫ t

0
rα(t − τ, θn)|gn(τ )|2dτ

≤ ν−2λ
2(γ−1)
1 θ−1

1

∞∑
n=1

∫ t

0
rα(t − τ, θn)|gn(τ )|2dτ

= ν−2λ
2(γ−1)
1 θ−1

1

∫ t

0
rα(t − τ, θ1)‖g(τ )‖2dτ.

It follows that

‖(Rα ∗ g
)
(t)‖Vγ

≤ ν−1λ
γ−1
1 θ

−1/2
1

(∫ t

0
rα(t − τ, θ1)‖g(τ )‖2dτ

)1/2

.

The proof is complete. �

Remark 2.1 Using Lemma 2.3(b) above, by similar arguments as in [24, Proposition
2.3], the Cauchy operator defined by

Qα : C([0, T ]; L2(�)) → C([0, T ]; L2(�)), g �→ Qαg(t) := (Rα ∗ g)(t)

is also compact.

To deal with the nonlinear problem (1.1)–(1.3), we consider the nonlinearity f as
a map defined on R

+ × L2(�) with values in L2(�). Based on the representation
(2.19), we introduce the following concept of mild solution to problem (1.1)–(1.3).

Definition 2.1 Let ξ ∈ C([−q, 0]; L2(�)) be given. A function u ∈
C([−q, T ]; L2(�)) is said to be a mild solution to (1.1)–(1.3) on the interval [−q, T ]
iff u(s) = ξ(s) for s ∈ [−q, 0] and

u(t) = Sα(t)ξ(0) +
∫ t

0
Rα(t − τ) f

(
τ, u(τ − ρ(τ))

)
dτ, t ∈ [0, T ].
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For given ξ ∈ C([−q, 0]; L2(�)), denote Cξ ([0, T ]; L2(�)) := {u ∈
C([0, T ]; L2(�)) : u(0) = ξ(0)}. Then Cξ ([0, T ]; L2(�)) equipped with supre-
mum norm ‖ · ‖∞ is a closed subset of C([0, T ]; L2(�)). For u ∈ Cξ ([0, T ]; L2(�)),
we define u[ξ ] ∈ C([−q, T ]; L2(�)) as follows

u[ξ ](t) =
{

u(t) if t ∈ [0, T ]
ξ(t) if t ∈ [−q, 0].

Hence

u[ξ ]ρ(t) =
{

u(t − ρ(t)) if t − ρ(t) ∈ [0, T ]
ξ(t − ρ(t)) if t − ρ(t) ∈ [−q, 0].

Let G : Cξ ([0, T ]; L2(�)) → Cξ ([0, T ]; L2(�)) be the operator defined by

G(u)(t) = Sα(t)ξ(0) +
∫ t

0
Rα(t − τ) f

(
τ, u[ξ ]ρ(τ )

)
dτ,

which will be referred to as the solution operator. This operator is continuous if f
is a continuous map. Obviously, u is a fixed point of G iff u[ξ ] is a mild solution of
(1.1)–(1.3).

The following proposition shows a Halanay type inequality which plays important
role in our later analysis.

Proposition 2.4 Let v be a continuous and nonnegative function satisfying

v(t) ≤ sα(t,
μ

1 + νμ
)v0

+ 1

1 + νμ

∫ t

0
rα(t − τ,

μ

1 + νμ
)[a(τ ) + b sup

θ∈[τ−ρ(τ),τ ]
v(θ)] dτ, t > 0,

(2.27)

v(s) = ψ(s), s ∈ [−q, 0], (2.28)

where b ∈ (
0, μ

)
, ψ ∈ C([−q, 0], R

+) and a ∈ L1
loc(R

+) which is nondecreasing.
Then

v(t)≤ μ

μ − b

[
v0+ 1

1 + νμ
rα(·, μ

1 + νμ
) ∗ a(t)

]
+ b

μ
sup

θ∈[−q,0]
ψ(θ),∀t >0. (2.29)

In addition, if rα(·, μ
1+νμ

) ∗ a is bounded on [0,∞) and lim
t→∞(t − ρ(t)) = ∞ then

lim sup
t→∞

v(t) ≤ μ

μ − b
sup
t≥0

rα(·, μ

1 + νμ
) ∗ a(t). (2.30)

In particular, if a = 0 then v(t) → 0 as t → ∞.
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Proof In order to prove this proposition, we need the following result [20, Lemma
2.3]: if v ∈ C([−q,∞); R

+) is a nonnegative function satisfying

v(t) ≤ d(t) + ζ sup
θ∈[−q,t]

v(θ), t > 0

v(s) = ψ(s), s ∈ [−q, 0],

where d(·) is a nondecreasing function and ζ ∈ (0, 1), then

v(t) ≤ (1 − ζ )−1d(t) + ζ sup
θ∈[−q,0]

ψ(θ),∀t > 0. (2.31)

Using Proposition 2.1, it follows from (2.27) that

v(t)≤v0+ 1

1+νμ
rα

(
·, μ

1+νμ

)
∗ a(t)+ b

1+νμ
sup

θ∈[−q,t]
v(θ)

∫ t

0
rα

(
τ,

μ

1+νμ

)
dτ

=v0 + 1

1+νμ
rα

(
·, μ

1 + νμ

)
∗ a(t) + b

μ
sup

θ∈[−q,t]
v(θ)

(
1−sα

(
t,

μ

1+νμ

))

≤ v0 + 1

1 + νμ
rα(·, μ) ∗ a(t) + b

μ
sup

θ∈[−q,t]
v(θ).

Since a(·) is nondecreasing, it implies that the function t �→ v0 + 1
1+νμ

rα

(
·, μ

1+νμ

)
∗

a(t) is nondecreasing as well. Using the inequality (2.31) with

d(t) = v0 + 1

1 + νμ
rα

(
·, μ

1 + νμ

)
∗ a(t), ζ = b

μ
< 1,

we get the inequality (2.29) as desired.
Now assume that rα(·, μ

1+νμ
) ∗ a is bounded on [0,∞). Then by (2.29), v(·) is

bounded by

c̄ := μ

μ − b

[
v0 + 1

1 + νμ
sup
t≥0

rα(·, μ) ∗ a(t)

]
+ b

μ
sup

θ∈[−q,0]
ψ(θ),

and thus the limit � = limt→∞ supζ∈[t,∞) v(ζ ) exists. Due to t − ρ(t) → ∞ as
t → ∞, then for any ε > 0 one can find T ∗ > 0 such that

sup
ζ∈[t−ρ(t),t]

v(ζ ) ≤ sup
ζ∈[t−ρ(t),∞]

v(ζ ) ≤ � + ε,∀t ≥ T ∗.

On the other hand, since for eachμ > 0, sα(t, μ
1+νμ

) → 0 as t → ∞ and rα(·, μ
1+νμ

) ∈
L1(R+), then one can choose t > T ∗ large enough such that

sα(t,
μ

1 + νμ
) ≤ ε,

∫ t

t−T ∗
rα

(
τ,

μ

1 + νμ

)
dτ ≤ ε.
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From the these observations above and the inequality (2.27), for all t > 0, there holds
that

v(t) ≤ sα

(
t,

μ

1 + νμ

)
v0 + 1

1 + νμ
rα(·, μ

1 + νμ
) ∗ a(t)

+ b

1 + νμ

(∫ T ∗

0
+

∫ t

T ∗

)
rα

(
t − τ,

μ

1 + νμ

)
sup

θ∈[τ−ρ(τ),τ ]
v(θ)dτ

≤ sα

(
t,

μ

1 + νμ

)
v0 + 1

1 + νμ
rα

(
·, μ

1 + νμ

)
∗ a(t)

+ bc̄

1 + νμ

∫ T ∗

0
rα

(
t−τ,

μ

1 + νμ

)
ds+ b(� + ε)

1 + νμ

∫ t

T ∗
rα

(
t−τ,

μ

1 + νμ

)
ds

≤ εv0 + 1

1 + νμ
rα

(
·, μ

1 + νμ

)
∗ a(t)

+ bc̄

1 + νμ

∫ t

t−T ∗
rα

(
τ,

μ

1 + νμ

)
ds + b(� + ε)

1 + νμ

∫ t

0
rα

(
t − τ,

μ

1 + νμ

)
ds

≤ εv0 + 1

1 + νμ
rα

(
·, μ

1 + νμ

)
∗ a(t) + bc̄ε

1 + νμ
+ b(� + ε)

μ
. (2.32)

It follows from (2.32) that

� = lim
t→∞ sup

θ∈[t,∞)

v(θ) ≤ �b

μ
+ 1

1 + νμ
sup
t≥0

rα

(
·, μ

1 + μ

)
∗ a(t) +

(
v0 + b

μ

)
ε,

which implies that

� ≤ μ

μ − b
sup
t≥0

rα

(
·, μ

1 + νμ

)
∗ a(t) + μ

μ − b

(
v0 + b

μ

)
ε. (2.33)

Since ε is an arbitrarily positive number, it follows from (2.33) that

lim sup
t→∞

v(t) ≤ � ≤ μ

μ − b
sup
t≥0

rα

(
·, μ

1 + νμ

)
∗ a(t),

from which we have the stated results in the lemma. �

We close this section by collecting some facts and basic results on measure of
noncompactness, and fixed point theorem for condensing maps which are used to
prove the existence of solutions in next sections.

Let E be a Banach space. Denote by B(E) the collection of nonempty bounded
subsets of E . We will use the following definition of the measure of noncompactness
(see, e.g. [11]).
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Definition 2.2 A function ψ : B(E) → R
+ is called a measure of noncompactness

(MNC) on E if

ψ(co D) = ψ(D) for every D ∈ B(E),

where co D is the closure of convex hull of D. An MNC ψ is said to be:

(i) monotone if for each D0, D1 ∈ B(E) such that D0 ⊆ D1, we have ψ(D0) ≤
ψ(D1);

(ii) nonsingular if ψ({a} ∪ D) = ψ(D) for any a ∈ E, D ∈ B(E);
(iii) invariant with respect to the union with a compact set, if ψ(K ∪ D) = ψ(D)

for every relatively compact set K ⊂ E and D ∈ B(E);
(iv) algebraically semi-additive ifψ(D0+ D1) ≤ ψ(D0)+ψ(D1) for any D0, D1 ∈

B(E);
(v) regular if ψ(D) = 0 is equivalent to the relative compactness of D.

A typical example on MNC satisfying all properties stated in Definition 2.2 is the
Hausdorff MNC χ(·) defined by

χ(D) = inf{ε > 0 : D has a finite ε − net}.

Definition 2.3 A continuous map F : Z ⊆ E → E is said to be condensing with
respect to an MNC ψ (ψ−condensing) if for any bounded set D ⊂ Z , the relation

ψ(D) ≤ ψ(F(D))

implies the relative compactness of D.

Let ψ be a monotone and nonsingular MNC in E . We have the following fixed point
principle.

Theorem 2.5 [11, Corollary 3.3.1] Let M be a bounded convex closed subset of E
and let F : M → M be a ψ-condensing map. Then Fix(F) := {x ∈ E : x = F(x)}
is a nonempty and compact set.

3 Solvability results

This section deals with the existence of global in time solutions to the problem (1.1)–
(1.3) on a finite time interval [−q, T ] for every T > 0. Our first result about the global
existence of solutions to problem (1.1)–(1.3) reads as the following.

Theorem 3.1 Assume that the nonlinearity f : [0, T ] × L2(�) → L2(�) satisfies

(F1) f is continuous such that

‖ f (t, v)‖ ≤ ψ f (‖v‖), ∀t ∈ [0, T ], v ∈ L2(�),
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where ψ f ∈ C(R+) is a nonnegative and nondecreasing function such that

lim sup
r→0

ψ f (r)

r
< λ1. (3.1)

Then there exists δ > 0 such that the problem (1.1)–(1.3) has a compact set of mild
solutions on [−q, T ], provided ‖ξ‖0 ≤ δ. Furthermore, if f obeys

(F2) f (·, 0) = 0 and is locally Lipschitz continuous with respect to the second
variable, i.e., for each r > 0, there exists a nonnegative constant κ(r) such that

‖ f (t, v1) − f (t, v2)‖ ≤ κ(r)‖v1 − v2‖, (3.2)

for all t ∈ [0, T ], vi ∈ L2(�) with ‖vi‖ ≤ r , i ∈ {1, 2} and lim supr→0 κ(r) < λ1,
then the mild solution to (1.1)–(1.3) is unique.

Proof To prove this theorem, wemake use of Theorem 2.5.We first show thatG(B�) ⊂
B� for some � > 0, where B� be the closed ball inCξ ([0, T ]; L2(�)) centered at origin

with radius �. Let α f = lim sup
r→0

ψ f (r)

r . Then by assumption (3.1), for ε ∈ (0, λ1 − �),

one can find � > 0 such that

ψ f (r)

r
≤ α f + ε,∀r ∈ (0, 2�].

Choosing δ = (λ1−α f −ε)�

λ1+α f +ε
, it is obvious that 0 < δ ≤ �. Considering G on B� with

‖ξ‖0 ≤ δ, one first sees that

‖u[ξ ]ρ(t)‖ ≤ ‖ξ‖0 + sup
s∈[0,t]

‖u(s)‖ ≤ δ + �,∀t ≥ 0.

Therefore, according to Lemma 2.3 and the formulas of G, δ, we find that

‖G(u)(t)‖ ≤ sα(t, θ1)‖ξ(0)‖ + 1

1 + νλ1

∫ t

0
rα(t − τ, θ1)‖ f (τ, u[ξ ]ρ(τ ))‖dτ

≤ ‖ξ(0)‖ + 1

1 + νλ1

∫ t

0
rα(t − τ, θ1)ψ f (‖u[ξ ]ρ(τ )‖)dτ

≤ ‖ξ‖0 + α f + ε

1 + νλ1

∫ t

0
rα(t − τ, θ1)‖u[ξ ]ρ(τ )‖dτ

≤ δ + (α f + ε)(δ + �)

1 + νλ1

∫ t

0
rα(t − τ, θ1)dτ

≤ δ + (α f + ε)(δ + �)

1 + νλ1

1

θ1

≤ �,∀t ∈ [0, T ], (3.3)
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thanks to the facts sα(t, μ) ≤ 1,
∫ t
0 rα(τ, μ)dτ ≤ μ−1,∀t ≥ 0, μ > 0. The inequality

(3.3) ensures that G(B�) ⊂ B�, provided ‖ξ‖0 ≤ δ. We now consider G : B� → B�.
Since f is continuous, it is easily seen that G is continuous as well.

Now let χ be the Hausdorff MNC in C([0, T ]; L2(�)). According to the
decomposition

G(u) = Sα(·)ξ(0) + Qα ◦ N f (u),

N f (u)(t) = f
(
t, u[ξ ]ρ(t)

)
,

we get G is a compact operator, thanks to the compactness ofQα stated in Remark 2.1.
Consequently, for any bounded set D ⊂ B�, we get that G(D) is a relatively compact
in C([0, T ]; L2(�)). It follows that G is χ -condensing. Thus, the existence of global
solutions of Theorem 3.1 follows by applying Theorem 2.5.

We now suppose that the nonlinearity f satisfies the locally Lipschitz condition
(F2). In this case, the assumption (F1) is also fulfilled for ψ f (r) = rκ(r). Let us
fix �, δ, and ε as above. We now testify the uniqueness of solutions. Assume that
u, v ∈ C([−q, T ]; L2(�)) are two solutions of (1.1)–(1.3) with the initial condition
ξ , then one can assume that u, v ∈ BR̄ for some R̄ > 0. Due to the representation
formula of u, v, one has

‖u(t) − v(t)‖ ≤
∫ t

0
rα(t − τ, θ1)κ(R̄)‖u[ξ ]ρ(τ ) − v[ξ ]ρ(τ )‖dτ

≤ κ(R̄)

∫ t

0
rα(t − τ, θ1) sup

θ∈[0,τ ]
‖u(θ) − v(θ)‖dτ, ∀t ∈ [0, T ],

thanks to the fact that u(t) = v(t) = ξ(t),∀t ∈ [−q, 0]. Since the last inequality is
nondecreasing in t , we thus obtain

sup
τ∈[0,t]

‖u(τ ) − v(τ)‖ ≤ κ(R̄)

∫ t

0
rα(t − τ, θ1) sup

θ∈[0,τ ]
‖u(θ) − v(θ)‖dτ

≤ κ(R̄)

	(α)

∫ t

0
(t − τ)α−1 sup

θ∈[0,τ ]
‖u(θ) − v(θ)‖dτ,

thanks to Proposition 2.1(iii). Utilizing the Gronwall type inequality [10, Theorem
4.3, p. 99], we get sup

τ∈[0,t]
‖u(τ ) − v(τ)‖ = 0 for all t ∈ [0, T ], which implies u = v.

The proof is complete. �
In the next theorem, we will show that the smallness condition on initial data and

coefficients of f can be relaxed if the nonlinear function f fulfills a sublinear growth
or a global Lipschitz condition. More precisely, we prove

Theorem 3.2 Assume that f satisfies the condition

(F3) f is continuous such that ‖ f (t, v)‖ ≤ a(t) + b(t)‖v‖, for all t ∈ [0, T ], v ∈
L2(�), where a ∈ L1

loc(R
+), b ∈ L∞(0, T ) are nonnegative functions.
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Then the problem (1.1)–(1.3)has a compact set of mild solutions on [−q, T ]. Moreover,
if the nonlinearity function f satisfies

(F4) ‖ f (t, v1)− f (t, v2)‖ ≤ c(t)‖v1−v2‖, for all t ∈ [0, T ], vi ∈ L2(�), i ∈ {1, 2},
where c ∈ L1

loc(R
+) is a nonnegative function,

then the problem (1.1)–(1.3) has a unique mild solution on [−q, T ].
Proof Assume that the assumption (F3) holds. Let

D = {u ∈ Cξ ([0, T ]; L2(�)) : sup
τ∈[0,t]

‖u(τ )‖ ≤ ϑ(t), ∀t ∈ [0, T ]},

where ϑ is the unique solution of the integral equation

ϑ(t) = (
1 + λ−1

1 ‖b‖L∞(0,T )

)‖ξ‖0 + 1

1 + νλ1
sup

t∈[0,T ]
rα(·, θ1) ∗ a(t)

+ ‖a‖L∞(0,T )

1 + νλ1

∫ t

0
rα(t − τ, θ1)ϑ(τ)dτ, t ∈ [0, T ].

Then D is a closed, bounded and convex set in Cξ ([0, T ]; L2(�)). Considering the
solution operator G on D, we see that

‖G(u)(t)‖ ≤ ‖Sα(t)ξ(0)‖ +
∫ t

0
‖Rα(t − τ)‖op‖ f (τ, u[ξ ]τ )‖dτ

≤ sα(t, θ1)‖ξ(0)‖+ 1

1 + νλ1

∫ t

0
rα(t−τ, θ1)[a(τ )+b(τ )‖u[ξ ]ρ(τ )‖]dτ

≤ sα(t, θ1)‖ξ‖0
+ 1

1 + νλ1

∫ t

0
rα(t − τ, θ1)

[
a(τ ) + b(τ )

(‖ξ‖0 + sup
θ∈[0,τ ]

‖u(θ)‖)]dτ

≤ ‖ξ‖0+ 1

1+νλ1

∫ t

0
rα(t−τ, θ1)a(τ )dτ + ‖b‖L∞(0,T )‖ξ‖0

1 + νλ1

∫ t

0
rα(τ, θ1)dτ

+ ‖b‖L∞(0,T )

1 + νλ1

∫ t

0
rα(t − τ, θ1) sup

θ∈[0,τ ]
‖u(θ)‖dτ

≤ ‖ξ‖0 + ‖b‖L∞(0,T )‖ξ‖0
λ1

+ 1

1 + νλ1
sup

t∈[0,T ]
rα(·, θ1) ∗ a(t)

+ ‖b‖L∞(0,T )

1 + νλ1

∫ t

0
rα(t − τ, θ1) sup

θ∈[0,τ ]
‖u(θ)‖dτ

= (
1 + λ−1

1 ‖b‖L∞(0,T )

)‖ξ‖0 + 1

1 + νλ1
sup

t∈[0,T ]
rα(·, θ1) ∗ a(t)

+ ‖b‖L∞(0,T )

1 + νλ1

∫ t

0
rα(t − τ, θ1) sup

θ∈[0,τ ]
‖u(θ)‖dτ, (3.4)
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for any u ∈ D, thanks to Lemma 2.3. Since the function t �→ sup
τ∈[0,t]

‖u(τ )‖ is nonde-

creasing, the integral term in the right hand side of (3.4) is nondecreasing in t as well.
Thus

sup
τ∈[0,t]

‖G(u)(τ )‖ ≤ (
1 + λ−1

1 ‖b‖L∞(0,T )

)‖ξ‖0 + 1

1 + νλ1
sup

t∈[0,T ]
rα(·, θ1) ∗ a(t)

+ ‖b‖L∞(0,T )

1 + νλ1

∫ t

0
rα(t − τ, θ1) sup

θ∈[0,τ ]
‖u(θ)‖dτ

≤ (
1 + λ−1

1 ‖b‖L∞(0,T )

)‖ξ‖0 + 1

1 + νλ1
sup

t∈[0,T ]
rα(·, θ1) ∗ a(t)

+ ‖b‖L∞(0,T )

1 + νλ1

∫ t

0
rα(t − τ, θ1)ϑ(τ)dτ, for all t ∈ [0, T ]. (3.5)

From the inequality (3.5) yields G(D) ⊂ D. The existence of global mild solutions
is followed by using the same lines as the proof of Theorem 3.1 for the case of
(F1). Besides, in the case of (F4), one can consider a suitable weighted norm in
Cξ ([0, T ]; L2(�)) and prove that the solution operator G is a contraction operator.
Thus, the proof of the theorem is now complete. �

4 Long time behavior of solutions

This section is devoted to analyzing the long time behavior of solutions to the problem
(1.1)–(1.3). Firstly, by using the Halanay type inequality, we establish results about
stability and dissipativity of solutions, whose definitions are given in the following
definitions.

Definition 4.1 Let u(·, ξ) ∈ C([−q,∞); L2(�)) be the solution of the problem (1.1)–
(1.3) with the initial datum ξ . The solution u(·, ξ) is said to be asymptotic stable if it
is the following:

(i) stable: for all ε > 0 there exists δ > 0 such that if ψ ∈ C([−q, 0]; L2(�)) is
obeying ‖ξ − ψ‖0 < δ, then ‖ut − vt‖∞ < ε, for all t > 0.

(ii) attractive: there exists r > 0 such that for every ψ ∈ C([−q, 0]; L2(�))

satisfying ‖ξ − ψ‖0 < r then limt→∞ ‖ut − vt‖∞ = 0.

Definition 4.2 The problem (1.1)–(1.3) is said to be dissipativity with an absorbing
set BR if one can find a positive constant R: such that for each ξ ∈ C([−q, 0]; L2(�))

there exists T > 0 such that the solution u(·, ξ) satisfying

‖ut‖∞ ≤ R, for all t > T .

We are now ready to present results about stability and dissipativity of solutions of
our problem.

Theorem 4.1 Assume that the hypothesis (F2) of Theorem 3.1 holds for any T > 0.
Then the zero solution of (1.1) is asymptotically stable.
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Proof Take �, δ, and ε as in the proof of Theorem 3.1. Then for every ‖ξ‖0 ≤ δ, there
exists a unique mild solution to (1.1)–(1.3) such that ‖u(t)‖ ≤ � for all t ≥ 0. Note
that

‖u[ξ ]ρ(t)‖ ≤ ‖ξ‖0 + ‖u‖∞ ≤ 2�, for all t ∈ [0, T ],

and it holds that

‖u(t)‖ ≤ ‖Sα(t)ξ(0)‖ +
∫ t

0
‖Rα(t − τ)‖op‖ f (τ, u[ξ ]ρ(τ )) − f (τ, 0)‖dτ

≤ sα(t, θ1)‖ξ(0)‖ + 1

1 + νλ1

∫ t

0
rα(t − τ, θ1)κ(2�)‖u[ξ ]ρ(τ )‖dτ

≤ sα(t, θ1)‖ξ(0)‖ + 1

1 + νλ1

∫ t

0
rα(t − τ, θ1)(α f + ε) sup

θ∈[τ−ρ(τ),τ ]
‖u(θ)‖dτ.

Employing the Halanay type inequality in Proposition 2.4 with v(t) = ‖u(t)‖, t ≥
−q, μ = λ1, we obtain

‖u(t)‖ ≤ λ1

λ1 − α f − ε
‖ξ(0)‖ + α f + ε

λ1
‖ξ‖0,∀t ≥ 0, (4.1)

lim
t→∞ ‖u(t)‖ = 0. (4.2)

The inequalities (4.1), (4.2) guarantee the stability and attractivity of the zero solution,
respectively. We thus finish the proof of this theorem. �
Considering the case when f is globally Lipschitzian, we have a stronger result.

Theorem 4.2 Assume that the hypothesis (F4) holds for any T > 0 and for
c ∈ L∞(R+; R

+). If ‖c‖L∞(R+) < λ1, then every mild solution of (1.1)–(1.3) is
asymptotically stable.

Proof Let u and v be solutions of (1.1)–(1.3). Then, by the formula of solutions and
by Lemma 2.3, we get that

‖u(t) − v(t)‖ ≤ ‖Sα(t)[u(0) − v(0)]‖
+ 1

1 + νλ1

∫ t

0
Rα(t − τ)‖op‖ f (τ, u[ξ ]ρ(τ )) − f (τ, v[ξ ]ρ(τ ))‖dτ

≤ sα(t, θ1)‖u(0) − v(0)‖
+ 1

1 + νλ1

∫ t

0
rα(t − τ, θ1)c(τ )‖u[ξ ]ρ(τ ) − v[ξ ]ρ(τ )‖dτ

≤ sα(t, θ1)‖u(0) − v(0)‖
+ 1

1 + νλ1

∫ t

0
rα(t − τ, θ1)‖c‖L∞(R+) sup

[τ−ρ(τ),τ ]
‖u(θ) − v(θ)‖dτ.
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Applying Proposition 2.4 leads to

‖u(t) − v(t)‖ ≤ λ1‖u(0) − v(0)‖
λ1 − ‖c‖L∞(R+)

+ ‖c‖L∞(R+)

λ1
‖u(0) − v(0)‖0,∀t ≥ 0,

lim
t→∞ ‖u(t) − v(t)‖ = 0,

from which we obtain the conclusion of this theorem. �
In the next theorem,we establish a result on the dissipativity of solutions of our system.

Theorem 4.3 Let the assumption (F3) of Theorem 3.2 hold for any T > 0 with b ∈
L∞(R+; R

+) satisfying ‖b‖L∞(R+) < λ1 and a ∈ L1
loc(R

+; R
+) is nondecreasing

such that rα(·, θ1) ∗ a is a bounded function on R
+. Then there exists an absorbing

set for solutions of (1.1)–(1.3) with arbitrary initial data. Moreover, if a = 0, then the
zero solution of (1.1) is asymptotically stable.

Proof Let u be a solution of (1.1)–(1.3). Using Lemma 2.3 and the estimate of f , we
obtain

‖u(t)‖ ≤ sα(t, θ1)‖ξ(0)‖ + 1

1 + νλ1

∫ t

0
rα(t − τ, θ1)[a(τ ) + b(τ )‖u[ξ ]ρ(τ )‖]dτ

≤sα(t, θ1)‖ξ(0)‖+ 1

1+νλ1

∫ t

0
rα(t−τ, θ1)[a(τ )+‖b‖L∞(R+)‖u[ξ ]ρ(τ )‖] dτ.

Using Proposition 2.4 again, we arrive at

lim sup
t→∞

‖u(t)‖ ≤ λ1

λ1 − ‖b‖L∞(R+)

sup
t≥0

rα(·, θ1) ∗ a(t).

Put

R = ε + λ1

λ1 − ‖b‖L∞(R+)

sup
t≥0

rα(·, θ1) ∗ a(t)

for some ε > 0, then the ball BR is an absorbing set for solutions of (1.1)–(1.3).
Finally, if a = 0, then (1.1) admits the zero solution and it holds that

‖u(t)‖ ≤ λ1

λ1 − ‖b‖L∞(R+)

‖ξ(0)‖ + ‖b‖L∞(R+)

λ1
‖ξ‖0,∀t ≥ 0,

lim
t→∞ ‖u(t)‖ = 0,

thanks to Proposition 2.4 again, which ensures the asymptotic stability of the zero
solution. �
Remark 4.1 Results about the asymptotic stability of solutions to the problem (1.1)–
(1.3) obtained in Theorems 4.2 and 4.3 under the assumption that the coefficient of
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the nonlinearity f is small. Our approach is based on the Halanay type inequality. It is
interesting to ask that are these results still valid or invalid in the different cases (that
is, ‖c‖L∞(R+) ≥ λ1 in Theorem 4.2 and ‖b‖L∞(R+) ≥ λ1 in Theorem 4.3)? These
issues will be a topic of future works.

In the remainder of this section, we deal with the existence of decay solutions to
(1.1)–(1.3). In particular, we assume that, the nonlinearity f is non-Lipschitzian and
possibly superlinear. More precisely,

(F5) f : R
+ × L2(�) → L2(�) is a continuous mapping such that

‖ f (t, v)‖ ≤ p(t)�(‖v‖), ∀t ∈ R
+, v ∈ L2(�),

where p ∈ L1
loc(R

+) is a nonnegative function and � ∈ C(R+) is a nonnegative
and nondecreasing function such that

lim sup
r→0

�(r)

r
· sup

t≥0

∫ t

0
rα(t − τ, θ1)p(τ )dτ < 1 + νλ1, (4.3)

and

lim
T →∞ sup

t≥T

∫ βt

0
rα(t − τ, θ1)p(τ )dτ = 0. (4.4)

for some β ∈ (0, 1).

We start with considering the solution operator G on BC0(R
+; L2(�)), the space

of continuous functions on R
+, taking values in L2(�) and decaying as t → ∞.

Given ξ ∈ C([−q, 0]; L2(�)), put BCξ
0 = {u ∈ BC0(R

+; L2(�)) : u(0) = ξ(0)}.
Then BCξ

0 is a closed subset of BC0(R
+; L2(�)) furnished by the sup norm ‖ · ‖∞.

Let D be a bounded set in BCξ
0 and πT : BCξ

0 → C([0, T ]; L2(�)) the restriction

operator on BCξ
0, i.e. πT (u) is the restriction of u ∈ BCξ

0 to the interval [0, T ]. Define

d∞(D) = lim
T →∞ sup

u∈D
sup
t≥T

‖u(t)‖,

χ∞(D) = sup
T >0

χT (πT (D)),

where χT (·) is the Hausdorff MNC in C([0, T ]; L2(�)). Then the following MNC
defined in [1],

χ∗(D) = d∞(D) + χ∞(D), (4.5)

possesses all properties stated in Definition 2.2. In addition, if χ∗(D) = 0 then
D is relatively compact in BC0(R

+; L2(�)). Especially, d∞({u}) = 0 iff u ∈
BC0(R

+; L2(�)).
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Lemma 4.4 Let (F5) hold. Then there exist positive numbers δ and R such that
G(BR) ⊂ BR for ‖ξ‖0 ≤ δ, where BR is the closed ball in BCξ

0 centered at origin
with radius R.

Proof Let

α0 = lim sup
r→0

�(r)

r
,M∞ = sup

t≥0

∫ t

0
rα(t − τ, θ1)p(τ )dτ.

By (4.3), one can take η > 0 such that

(α0 + η)M∞ < 1 + νλ1, (4.6)

and we can find R > 0 satisfying �(r)
r ≤ α0 + η for all r ∈ (0, 2R] thanks to the

definition of lim sup. Recalling that the solution operator G is defined by

G(u)(t) = Sα(t)ξ(0) +
∫ t

0
Rα(t − τ) f (τ, u[ξ ]ρ(τ ))dτ, u ∈ BCξ

0.

Considering G on BR with ‖ξ‖0 ≤ R, we have

‖G(u)(t)‖ ≤ sα(t, θ1)‖ξ(0)‖ + 1

1 + νλ1

∫ t

0
rα(t − τ, θ1)p(τ )�

(‖u[ξ ]ρ(τ )‖)dτ.

(4.7)

We first check that BCξ
0 is invariant under G, i.e., G(BCξ

0

) ⊂ BCξ
0. In view of (4.7)

and the fact sα(t, θ1)‖ξ(0)‖ → 0 as t → ∞, we need to show that

H(t) =
∫ t

0
rα(t − τ, θ1)p(τ )�

(‖u[ξ ]ρ(τ )‖)dτ → 0 as t → ∞.

Since t − ρ(t) → ∞ as t → ∞, we have both ‖u(t)‖ and ‖u[ξ ]ρ(t)‖ go to zero as
t → ∞. This means that, for any ε > 0, there exists T > 0 such that�

(‖u[ξ ]ρ(t)‖) ≤
ε for all t ≥ T , thanks to the fact that � is continuous and �(0) = 0. Therefore, for
t > T , we find that

H(t) =
(∫ T

0
+

∫ t

T

)
rα(t − τ, θ1)p(τ )�

(‖u[ξ ]ρ(τ )‖)dτ

≤ �(2R)

∫ T

0
rα(t − τ, θ1)p(τ )dτ + ε

∫ t

T
rα(t − τ, θ1)p(τ )dτ

≤ �(2R)rα(t − T , θ1)

∫ T

0
p(τ )dτ + εM∞

≤ [�(2R) + M∞]ε,
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because of the fact that rα(t − T , θ1)
∫ T
0 p(τ )dτ → 0 as t → ∞ (see, e.g. [5,

Proposition 2.4(i)]). We have shown that G(u) ∈ BCξ
0, provided u ∈ BCξ

0.
Now let

δ= R

1+νλ1+(α0+ε)M∞
inf
t≥0

(
1 + νλ1 − (α0 + η)

∫ t

0
rα(t − τ, θ1)p(τ )dτ

)
,

(4.8)

then δ > 0 and δ ≤ R due to (4.6). We now show that G(u) ∈ BR , provided u ∈ BR

and ‖ξ‖0 ≤ δ. Indeed, by the formula of G and by Lemma 2.3, we have

‖G(u)(t)‖ ≤ sα(t, θ1)‖ξ(0)‖ + 1

1 + νλ1

∫ t

0
rα(t − τ, θ1)p(τ )�

(‖u[ξ ]ρ(τ )‖)dτ

≤ ‖ξ‖0 + 1

1 + νλ1

∫ t

0
rα(t − τ, θ1)p(τ )(α0 + η)‖u[ξ ]ρ(τ )‖dτ

≤ ‖ξ‖0+ 1

1+νλ1

∫ t

0
rα(t−τ, θ1)p(τ )(α0+η)

(‖ξ‖0+ sup
θ∈[0,τ ]

‖u(θ)‖)dτ

≤ δ + (α0 + η)(δ + R)

1 + νλ1

∫ t

0
rα(t − τ, θ1)p(τ )dτ

≤
[
1 + (α0 + ε)M∞

1 + νλ1

]
δ + (α0 + η)R

1 + νλ1

∫ t

0
rα(t − τ, θ1)p(τ )dτ

≤ R,∀t ≥ 0,

thanks to the formulation of δ given by (4.8). The proof is complete. �
The following theorem gives a result on the existence of decay solutions to the problem
(1.1)–(1.3).

Theorem 4.5 Let the hypothesis (F5) hold. Then there exists δ > 0 such that the
problem (1.1)–(1.3) has a compact set of decay solutions, provided that ‖ξ‖0 ≤ δ.

Proof Taking δ and BR from Lemma 4.4, we consider the solution map G : BR → BR .
By standard reasoning, we get that G is continuous. We will show that G is χ∗-
condensing. Using the same arguments as in the proof of Theorem 3.1, one has πT ◦G
is compact. This implies χT (πT (G(D))) = 0 for D ⊂ BR and then χ∞(G(D)) = 0.
We are now in a position to estimate d∞(G(D)).

Let z ∈ G(D) and u ∈ D be such that z = G(u). Since t − ρ(t) → ∞ as t → ∞,
for given T > 0, there exists T1 > T such that t − ρ(t) ≥ T for all t ≥ T1. Thus, for
t > β−1T1, we find that

‖z(t)‖ ≤ sα(t, θ1)‖ξ(0)‖ + 1

1 + νλ1

∫ t

0
rα(t − τ, θ1)p(τ )�(‖u[ξ ]ρ(τ )‖)dτ

≤ sα(t, θ1)‖ξ(0)‖ + (α0 + η)

1 + νλ1

∫ t

0
rα(t − τ, θ1)p(τ )‖u[ξ ]ρ(τ )‖dτ
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= sα(t, θ1)‖ξ(0)‖ + (α0 + η)

1 + νλ1

(∫ βt

0
+

∫ t

βt

)
rα(t − τ, θ1)p(τ )‖u[ξ ]ρ(τ )‖ dτ

≤ sα(t, θ1)‖ξ(0)‖ + (α0 + η)(δ + R)

1 + νλ1

∫ βt

0
rα(t − τ, θ1)p(τ )dτ

+ (α0 + η)

1 + νλ1
sup
θ≥βt

‖u(θ − ρ(θ))‖
∫ t

βt
rα(t − τ, θ1)p(τ )dτ

≤ sα(t, θ1)‖ξ(0)‖ + (α0 + η)(δ + R)

1 + νλ1

∫ βt

0
rα(t − τ, θ1)p(τ )dτ

+ (α0 + η)

1 + νλ1
sup
u∈D

sup
s≥T

‖u(s)‖
∫ t

0
rα(t − τ, θ1)p(τ )dτ.

Since z ∈ G(D) is taken arbitrarily, we thus obtain

sup
z∈G(D)

sup
t≥β−1T1

‖z(t)‖ ≤ sup
t≥β−1T1

sα(t, θ1)‖ξ(0)‖

+ (α0 + η)(δ + R)

1 + νλ1
sup

t≥μ−1T1

∫ βt

0
rα(t − τ, θ1)p(τ )dτ

+ (α0 + η)

1 + νλ1
sup
u∈D

sup
s≥T

‖u(s)‖ sup
t≥μ−1T1

∫ t

0
rα(t − τ, θ1)p(τ )dτ

≤ sup
t≥T

sα(t, θ1)‖ξ(0)‖

+ (α0 + η)(δ + R)

1 + νλ1
sup
t≥T

∫ βt

0
rα(t − τ, θ1)p(τ )dτ

+ (α0 + η)M∞
1 + νλ1

sup
u∈D

sup
s≥T

‖u(s)‖.

Letting T → ∞ then μ−1T1 → ∞ and using the fact that

sup
t≥T

sα(t, θ1)‖ξ(0)‖ = sα(T , θ1)‖ξ(0)‖ → 0 as T → ∞,

we find that

d∞(G(D)) ≤ (α0 + η)M∞
1 + νλ1

d∞(D),

thanks to (4.4). Therefore,

χ∗(G(D)) = χ∞(G(D)) + d∞(G(D)) = d∞(G(D)) ≤ (α0 + η)M∞
1 + νλ1

d∞(D)

≤ (α0 + η)M∞
1 + νλ1

[d∞(D) + χ∞(D)] = (α0 + η)M∞
1 + νλ1

χ∗(D).



74 Page 24 of 27 D. Lan, T. V. Tuan

Now if χ∗(D) ≤ χ∗(G(D)) then χ∗(D) ≤ (α0+η)M∞
1+νλ1

χ∗(D) which implies χ∗(D) =
0, thanks to (4.6). Thus G is χ∗-condensing and it admits a fixed point, according
to Theorem 2.5. Denote by D the fixed point set of G in BR . Then D is closed and
D ⊂ G(D). Hence,

χ∗(D) ≤ χ∗(G(D)) ≤ (α0 + η)M∞
1 + νλ1

χ∗(D),

which ensures χ∗(D) = 0 and D is a compact set. The proof is complete. �
Remark 4.2 It should be remarked that when p ∈ L∞(R+; R

+) then the conditions
(4.3)–(4.4) can be simplified. In this case, it is testified that

sup
t≥0

∫ t

0
rα(t − τ, θ1)p(τ )dτ ≤ ‖p‖L∞(R+) sup

t≥0

∫ t

0
rα(t − τ, θ1)dτ

≤ ‖p‖L∞(R+)θ
−1
1 sup

t≥0
(1 − sα(t, θ1))

= ‖p‖L∞(R+)θ
−1
1 .

Therefore condition (4.3) is replaced by

‖p‖L∞(R+) lim sup
r→0

�(r)

r
< λ1.

On the other hand, we observe that

∫ βt

0
rα(t − τ, θ1)p(τ )dτ ≤ ‖p‖L∞(R+)

∫ βt

0
rα(t − τ, θ1)dτ

= ‖p‖L∞(R+)

∫ t

(1−β)t
rα(τ, θ1)dτ.

Then

sup
t≥T

∫ βt

0
rα(t − τ, θ1)p(τ )dτ ≤ ‖p‖L∞(R+)

∫ ∞

(1−β)T
rα(τ, θ1)dτ

→ 0 as T → ∞,

due to the fact that rα(·, θ1) ∈ L1(R+). Thus condition (4.4) is satisfied as claimed.

Let us finish our work with an example of the nonlinear function f . Let

f (t, uρ)(x) = h(t) f̃

(∫
�

|u(r t − q, x)|2dx

)
u(r t − q, x), t ≥ 0, (4.9)

where f̃ : R
+ → R is a continuous function and ρ(t) = (1− r)t + q, r ∈ (0, 1). The

nonlinear function of this type is contructed to depend on both the history state and
its energy. Concerning f̃ , h, we first assume that
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• h is continuous and bounded function on R
+;

• f̃ : R → R is a function such that | f̃ (z)| ≤ a|z|σ for some a > 0, σ > 0.

By these assumptions, we testify that f is locally Lipschitzian. For v1, v2 ∈ L2(�),
‖v1‖, ‖v2‖ ≤ r , one has

‖ f (t, v1)− f (t, v2)‖ ≤ |p(t)|[∣∣ f̃ (‖v1‖2)− f̃ (‖v2‖2)
∣∣‖v2‖+∣∣ f̃ (‖v1‖2)

∣∣‖v1−v2‖
]

≤ ‖p‖∞
[
(‖v1‖ + ‖v2‖)‖v2‖

∣∣ f̃ ′((1 − ζ )‖v2‖2 + ζ‖v1‖2
)∣∣

+ a‖v1‖2σ
]‖v1 − v2‖,

where ζ ∈ [0, 1], thanks to the mean value formula. Thus

‖ f (t, v1) − f (t, v2)‖ ≤ ‖p‖∞
[
2r2 sup

s∈[0,r2]
| f̃ ′(s)| + ar2σ

]‖v1 − v2‖,

which means that f obeys (F3) with

κ(r) = ‖p‖∞
[
2r2 sup

s∈[0,r2]
| f̃ ′(s)| + ar2σ

] → 0 as r → 0.

Applying Theorem 4.1, we conclude that the zero solution of (1.1) is asymptotically
stable.

Now if we drop the assumption that f̃ ∈ C1(R+), then the Lipschitz property for
f is unavailable. Assuming f̃ ∈ C(R+) such that | f̃ (s)| ≤ a|s|σ for a, σ > 0, we
get the estimate

‖ f (t, v)‖ ≤ |p(t)|∣∣ f̃ (‖v‖2)∣∣‖v‖ ≤ |p(t)|a‖v‖2σ+1.

Aspointed out inRemark4.2, f in this case fulfills (F5)with�(r) = ar2σ+1 satisfying
that �(r)

r = ar2σ → 0 as r → 0. Therefore, Theorem 4.5 ensures the existence of a
compact set of decay solutions to the problem (1.1)–(1.3).
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