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Abstract
Given�(⊆ R

1+m), a smooth bounded domain and a nonnegative measurable function
f defined on�with suitable summability. In this paper, wewill study the existence and
regularity of solutions to the quasilinear degenerate elliptic equation with a singular
nonlinearity given by:

−�λu = f

uν
in �

u > 0 in �

u = 0 on ∂�

where the operator �λ is given by

�λu = uxx + |x |2λ�yu; (x, y) ∈ R × R
m

is known as the Grushin operator.
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1 Introduction

In this paper, we are interested in the semilinear elliptic problem, whose model is
given by

−�λu = f

uν
in � (1)

u > 0 in � (2)

u = 0 on ∂� (3)

where the operator �λ is given by

�λu = uxx + |x |2λ�yu; λ ≥ 0

is known as the Grushin operator. �y denotes the Laplacian operator w.r.t y variable.
� ⊆ R

1+m is a �−connected bounded open set (definition provided in the next
section) and X = (x, y) ∈ �, x ∈ R, y = (y1, y2, ..., ym) ∈ R

m , m ≥ 1. Here ν > 0
is a positive real number, and f is a nonnegative measurable function lying in some
Lebesgue space.

To understand the context of our study, we start by looking at available literature
concerning (1). Starting with the classical work by Crandall et al. [7] where the case
λ = 0 was considered and showed to have a unique solution in C2(�) ∩ C(�̄) such
that the solution behaves like some power of the distance function near the boundary,
a plethora of work followed provided f ∈ Cα(�). Of particular significance is the
work of Lazer–Mckenna, where the solution was shown to exist in H1

0 (�) if and only
if 0 < δ < 3. When f ∈ L1(�), Boccardo and Orsina [5] proved if 0 < ν ≤ 1 then
there exist a solution of (1) in H1

0 (�) and for ν > 1 there exist a solution u ∈ H1
loc(�)

such that u
ν+1
2 ∈ H1

0 (�) among other regularity results. The p-laplacian case was
settled in [6], where existence, uniqueness, and some regularity results were proved.

In this paper, we would like to relook at the equation (1) by replacing the Laplacian
with a degenerate elliptic equation whose prototype is given byGrushin Laplacian�λ.
We will prove the existence and regularity results analog to [5]. It is worth pointing out
that there are several issues when degeneracy is introduced. If the distance between
the domain � and the plane x = 0 is positive, then the Grushin operator will become
uniformly elliptic in �, and in this case, the problem is settled in [5]. We assume the
domain � intersects the x = 0 plane, thus degenerating the operator in �. To handle
this kind of degeneracy, assuming that �λ admits a uniformly elliptic direction, we
discuss the solvability of (1) in the weighted degenerate Sobolev space H1,λ(�)which
is defined in [8, 10].Wewould also need to have a notion of convergence of sequence in
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the space H1,λ(�) for whichMonticelli-Payne [18] introduced the concept of a quasi-
gradient, hence providing a proper representation of elements of H1,λ(�). Another
issue is the lack of availability of the Strong Maximum Principle, which we showed
to hold using weak Harnack inequality of Franchi-Lanconelli [11, Theorem 4.3] valid
for d−metric on � provided λ ≥ 1 and assuming that � is �−connected (definition
is provided in the next section). We conclude our study with a brief discussion of how
singular variable exponent for Grushin Laplacian may be handled, whose Laplacian
counterpart can be found in Garain-Mukherjee [13]. For further reading into the topic,
one may look at the papers [1–4, 19] and the references therein.

Notation 1.1 Throughout the paper, if not explicitly stated, C will denote a positive
real number depending only on � and N, whose value may change from line to
line. We denote by 〈., .〉 the Euclidean inner product on R

n and denote by |A| :=
sup|ξ |=1〈Aξ, ξ 〉 the norm of a real, symmetric N × N matrix A. The Lebesgue measure
of S ⊂ R

N is denoted by |S|. The Hölder conjugate of r ≥ 1 is denoted by r ′.

This paper is organized into seven sections. Section2 discusses functional, analyti-
cal settings related to our problem and a few related results. We state our main results
in Sect. 3. Sections4 and 5 are devoted to proving a few auxiliary results.We prove our
main results in Sect. 6. Finally, in Sect. 7, we consider the variable singular exponent
case.

2 Preliminaries and few useful results

We define a few crucial notions, and the metric introduced in Franchi-Lanconelli [11].

Definition 2.1 An open subset �(⊂ R
N ) is said to be �−connected if for every

X , Y ∈ �, there exists a continuous curve lying in � which is piecewise an integral
curve of the vector fields ±∂x ,±|x |λ∂y1, ...,±|x |λ∂ym connecting X and Y .

Note that every �−connected open set in R
N is connected. We denote by P(�)

the set of all continuous curves which are piecewise integral curves of the vector fields
±∂x ,±|x |λ∂y1, ...,±|x |λ∂ym . Let γ : [0, T ] → � is an element in P(�) and define
l(γ ) = T .

Definition 2.2 Let X , Y ∈ �, we define a new metric d on � by d(X , Y ) = inf{l(γ ) :
γ ∈ P(�) connecting X and Y}.

The d−ball around X ∈ � with radius r > 0 is denoted by Sd(X , r) and is given
by Sd(X , r) = {Y ∈ � : d(X , Y ) < r}. ([10, Proposition 2.9]) ensures that the usual
metric is equivalent to the d in �.

Let N = k + m and � ⊆ R
N be a bounded domain. Let A =

(
Ik O
O |x |2λ Im

)
and

define the set

VA(�) = {u ∈ C1(�)|
∫

�

|u|p d X +
∫

�

〈A∇u,∇u〉 p
2 d X < ∞}
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Consider the normed linear spaces (VA(�), ‖.‖) and (C1
0(�), ‖.‖0) where

‖u‖ =
(∫

�

|u|p d X +
∫

�

〈A∇u,∇u〉 p
2 d X

) 1
p

and

‖u‖0 =
(∫

�

〈A∇u,∇u〉 p
2 d X

) 1
p

Now W 1,λ,p(�) and W 1,λ,p
0 (�) is defined as the completion of (VA(�), ‖.‖) and

(C1
0(�), ‖.‖0) respectively. Each element [{un}], of the Banach space W 1,λ,p(�) is a

class of Cauchy sequence in (VA(�), ‖.‖) and ‖[{un}]‖ = limn→∞ ‖un‖. A function
u is said to be in W 1,λ,p

loc (�) if and only if u ∈ W 1,λ,p(�′) for every �′ � �. For
more information, one can look into Monticelli-Payne [18].

The following theorem proves that ‖.‖0 and ‖.‖ are equivalent norm on W 1,λ,p
0 (�).

Theorem 2.1 (Poincaré Inequality) (Monticelli–Payne [18, Theorem 2.1]) Let � ⊂
R

N be a bounded domain, and A is given as above. Then for any 1 ≤ p < ∞ there
exists a constant C p = C(N , p, ‖A‖∞, d(�)) > 0 such that

‖u‖p
L p(�) ≤ C p

∫
�

〈A∇u,∇u〉 p
2 d X for all u ∈ C1

0(�)

where d(�) denotes the diameter of �.

Now the suitable representation of an element of W 1,λ,p(�) and W 1,λ,p
0 (�) is

given by the following theorem, whose proof follows exactly that of Monticelli-Payne
where it is done for p = 2.

Theorem 2.2 (Monticelli–Payne [18, Theorem 2.1])) Let � ⊂ R
N be a bounded open

set, and A is given as above. Then for every [{un}] ∈ W 1,λ,p(�) there exists unique
u ∈ L p(�) and U ∈ (L p(�))N such that the following properties hold

(i) un → u in L p(�) and
√

A∇un → U in (L p(�))N .

(ii)
√

A
−1

U is the weak gradient of u in each of the component of � \ �

(iii) If |[√A]−1| ∈ L p′
(�) then [√A]−1U is the weak gradient of u in �.

(iv) One has

‖[un]‖p = ‖u‖p
L p(�) + ‖U‖p

(L p(�))N

where � = {X ∈ � : det[A(X)] = 0}, p′ = p
p−1 .

Proof Let [{un}] ∈ W 1,λ,p. So [{un}] is a Cauchy sequence in (VA, ‖.‖). Clearly {un}
and {√A∇un} are Cauchy in L p(�) and L p(�)N respectively. Hence there exists
u ∈ L p(�) and U ∈ L p(�)N such that un → u in L p(�) and {√A∇un} → U in
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L p(�)N as n → ∞. If [{un}] = [{vn}] and {√A∇un} → U , {√A∇vn} → V in
L p(�)N as n → ∞. Then

‖U − V ‖L p(�)N ≤ ‖√A∇un − U‖L p(�)N + ‖√A∇un

− √
A∇vn‖L p(�)N + ‖√A∇vn − V ‖L p(�)N

→ 0 as n → ∞

which implies U = V a.e in �. So U does not depend on the representative of the
class [{un}]. Let φ ∈ C∞

0 (�). Since un → u in L p(�) so un converges to u in the
distributional sense as well. As un ∈ C1(�) so

∫
�

un∇φdx = −
∫

�

φ∇undx

Taking limit n → ∞ we have

∫
�

u∇φdx = − lim
n→∞

∫
�

φ∇undx = − lim
n→∞

∫
�

φ
√

A
−1√

A∇undx

Hence if |φ√
A

−1| ∈ L p′
(�) then

∫
�

u∇φdx = −
∫

�

φ
√

A
−1

Udx (4)

If support of φ is contained in a component of � \ � then |φ√
A

−1| ∈ L p′
(�). By

using (4) we can conclude that
√

A
−1

U is the weak gradient of u in that component

of � \ �. Hence (ii) is proved. Also, if |√A
−1| ∈ L p′

(�) then (4) is true for every

φ ∈ C∞
0 (�). So

√
A

−1
U is the weak gradient of u in �. Which proves (iii). For

[{un}] ∈ W 1,λ,p(�),

‖[{un}]‖p = lim
n→∞(‖un‖p

L p(�) + ‖√A∇un‖p
L p(�)N ) = (‖u‖p

L p(�) + ‖U‖p
L p(�)N )

Hence (iv) is proved. ��
Using the above theorem, we have the following embedding theorem.

Corollary 2.3 The space W 1,λ,p(�) is continuously embedded into L p(�).

Proof Define the map T : W 1,λ,p(�) → L p(�) by T ([{un}]) = u. T is a bounded
linear map.
Claim: T is injective. Let u = 0. If we can prove U = 0, then we are done. Since �

has measure zero, we can prove that U = 0 a.e in each component of � \ �. Let �′
be a component of � \ �. By the above theorem for every φ ∈ C∞

0 (�′)
∫

�′
φ
√

A
−1

Udx = −
∫

�′
u∇φdx = 0
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which ensures us
√

A
−1

U = 0 a.e in �′. So U = 0 a.e in �′. ��
Henceforth we use the notation u for the element [{un}] ∈ W 1,λ,p(�) or

[{un}] ∈ W 1,λ,p
0 (�) which is determined in Theorem (2.2). Using the properties

of U ∈ (L p(�))N in the theorem we introduce the following definition:

Definition 2.3 For u ∈ W 1,λ,p(�) we denote the weak quasi gradient of u by ∇∗u
and defined by

∇∗u := (
√

A)−1U

which is a vector-valued function defined almost everywhere in �.

Also for u ∈ W 1,λ,p(�),

‖u‖p = ‖u‖p
L p(�) + ‖√A∇∗u‖p

L p(�)

=
∫

�

|u|pdx +
∫

�

〈A∇∗u,∇∗u〉 p
2 .

We define H1,λ(�) := W 1,λ,2(�) and H1,λ
0 (�) := W 1,λ,2

0 (�). (H1,λ(�), ‖.‖) and
(H1,λ

0 (�), ‖.‖0) are Hilbert spaces.
Theorem 2.4 (Embedding Theorem) ([12, Theorem 2.6] and [16, Proposition 3.2])
Let � ⊂ R

k+m be an open set. The embedding

H1,λ
0 (�) ↪→ Lq(�)

is continuous for every q ∈ [1, 2∗
λ] and compact for q ∈ [1, 2∗

λ), where 2∗
λ =

2Q
Q−2 , Q = k + (λ + 1)m.

Theorem 2.5 (Stampacchia–Kinderlehrer [15, lemma B.1]) Let φ : [k0,∞) → R be
a nonnegative and nonincreasing such that for k0 ≤ k ≤ h,

φ(h) ≤ [C/(h − k)α]|φ(k)|β

where C, α, β are positive constant with β > 1. Then

φ(k0 + d) = 0

where dα = C2
αβ

β−1 |φ(k0)|(β−1)

Now we will prove the Strong Maximum Principle for super-solutions of −�λu =
0. In this proof, we denote ρ and Sρ , which are defined in [10, Definition 2.6]. The
constants a, c1 are introduced in [10, Theorem 4.3]. Also, c and ε0 are defined in [10,
Proposition 2.9].
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Theorem 2.6 (Strong Maximum Principle) Let � ⊂ R
1+m be a �−connected,

bounded open set and λ ≥ 1. Let u be a nonnegative (not identically zero) function
in H1,λ

0 (�) such that u is a super solution of −�λu = 0, i.e., for every nonnegative

v ∈ H1,λ
0 (�),

∫
�

〈A∇∗u,∇∗v〉d X ≥ 0.

If there exist a ball Br (x0) � � with infBr (x0) u = 0 then u is identically zero in �.

Proof Let n0 be a natural number such that nε0
0 > 2c1. We can choose r > 0 such

that B(X0, n0r) � �, infBr (X0) u = 0 and Sρ(X , ac(n0r)ε0) ⊂ �. By using ([10,
Proposition 2.9]) and ([10, Theorem 2.7]) we have

B(X0, r) ⊂ B(X0, n0r) ⊂ Sd(X0, c(n0r)ε0) ⊂ Sρ(X0, ac(n0r)ε0) ⊂ �

Put R = ac(n0r)ε0

c1
and by [10, Theorem 4.3] with p = 1, we have

inf
Sρ(X0,

R
2 )

u ≥ M |Sρ(X0, R)|−1
∫

Sρ(X0,R)

|u| d X . (5)

By using ([10, Proposition 2.9]) and ([10, Theorem 2.7]) we easily can show that
B(X0, r) ⊂ Sρ(X0,

R
2 ). Hence, inf Sρ(X0,

R
2 )

u = 0. By (5) we have u = 0 a.e. in

Sρ(X0, R) and hence, in B(X0, r). Let Y ∈ � and r0 = r . Since � is a bounded
domain, we can find a finite collection of balls {B(Xi , ri )}i=k

i=0 such that B(Xi , n0ri ) �
�, Sρ(Xi , ac(n0ri )

ε0) ⊂ �, B(Xi−1, ri−1) ∩ B(Xi , ri ) �= ∅ for i = 1, 2...k and
Y ∈ B(Xk, rk). We can use the previous process to show that u = 0 a.e. in B(X1, r1).
Iterating we have u = 0 a.e. in B(Xk, rk). Hence, u = 0 a.e.in �. ��

Now we are ready to define the notion of solution of (1).

Definition 2.4 A function u ∈ H1,λ
loc (�) is said to be a weak solution of (1) if for every

�′ � �, there exists a positive constant C(�′) such that

u ≥ C(�′) > 0 a.e in �′,∫
�

〈A∇∗u,∇v〉 d X =
∫

�

f v

uν
d X for all v ∈ C1

0(�)

and

• if ν ≤ 1 then u ∈ H1,λ
0 (�).

• if ν > 1 then u
ν+1
2 ∈ H1,λ

0 (�).
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3 Existence and regularity results

Henceforth, we will assume N = 1 + m, and � ⊂ R
N is a �−connected, bounded

open set. We will also assume f is a nonnegative (not identically zero) function and
λ ≥ 1. Our main results are the following:

3.1 The case � = 1

Theorem 3.1 Let ν = 1 and f ∈ L1(�). Then the Dirichlet boundary value problem
(1) has a unique solution in the sense of definition (2.4).

Theorem 3.2 Let ν = 1 and f ∈ Lr (�), r ≥ 1. Then the solution given by Theorem
3.1 satisfies the following

(i) If r >
Q
2 then u ∈ L∞(�).

(ii) If 1 ≤ r <
Q
2 then u ∈ Ls(�).

where Q = (m + 1) + λm and s = 2Qr
Q−2r .

3.2 The case � > 1

Theorem 3.3 Let ν > 1 and f ∈ L1(�). Then there exists u ∈ H1,λ
loc (�) which

satisfies Eq. (1) in sense of definition (2.4).

Theorem 3.4 Let ν > 1 and f ∈ Lr (�), r ≥ 1. Then the solution u of (1) given by
the above theorem is such that

(i) If r >
Q
2 then u ∈ L∞(�).

(ii) If 1 ≤ r <
Q
2 then u ∈ Ls(�).

where s = Qr(ν+1)
(Q−2r)

and Q = (m + 1) + λm.

3.3 The case � < 1

Theorem 3.5 Let ν < 1 and f ∈ Lr (�), r = (
2∗
λ

1−λ
)′. Then (1) has a unique solution

in H1,λ
0 (�).

Theorem 3.6 Let ν < 1 and f ∈ Lr (�), r ≥ (
2∗
λ

1−ν
)′. Then the solution u of (1) given

by the above theorem is such that

(i) If r >
Q
2 then u ∈ L∞(�).

(ii) If (
2∗
λ

1−ν
)′ ≤ r <

Q
2 then u ∈ Ls(�).

where s = Qr(ν+1)
(Q−2r)

, Q = (m + 1) + λm and r ′ denotes the Hölder conjugate of r .
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Theorem 3.7 Let ν < 1 and f ∈ Lr (�) for some 1 ≤ r <
2Q

(Q+2)+ν(Q−2) . Then there

exists u ∈ W 1,λ,q
0 (�) which is a solution of (1) in the sense

∫
�

〈A∇∗u,∇v〉d X =
∫

�

f v

uν
d X for all v ∈ C1

0(�)

where q = Qr(ν+1)
Q−r(1−ν)

.

4 Approximation of the Equation (1)

Let f be a nonnegative (not identically zero) measurable function and n ∈ N . Let us
consider the equation

−�λun = fn

(un + 1
n )ν

in �

u = 0 on ∂� (6)

where fn := min{ f , n}.
Lemma 4.1 Equation (6) has a unique solution un ∈ H1,λ

0 (�) ∩ L∞(�).

Proof Let w ∈ L2(�) be a fixed element. Now consider the equation

−�λu = gn in �

u = 0 on ∂� (7)

where gn = fn

(|w|+ 1
n )ν

. Since |gn(x)| ≤ nν+1 one has gn ∈ L2(�). By [18, Theorem

4.4], we can say equation (7) has a unique solution uw ∈ H1,λ
0 (�) and the map

T : L2(�) → H1,λ
0 (�) such that T (w) = uw is continuous. By Theorem 2.4, we

have the compact embedding

H1,λ
0 (�) ↪→ L2(�).

Hence, the T : L2(�) → L2(�) is continuous as well as compact.
Let S = {w ∈ L2(�) : w = λT w for some 0 ≤ λ ≤ 1}.

Claim: The set S is bounded.
Let w ∈ S. By the Poincaré inequality (see [18, Theorem 2.1]), there exists a

constant C > 0 such that,

‖uw‖2L2(�)
≤ C

∫
�

〈A∇∗uw,∇∗uw〉 d X

= C
∫

�

gn(x)uw d X ≤ Cnν+1
∫

�

uw d X ≤ Cnν+1|�| 12 ‖uw‖L2(�)
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Hence, we have

‖uw‖L2(�) ≤ Cnν+1|�| 12

where C > 0 is a independent of w. This proves S is bounded. Hence by Schaefer’s
fixed point theorem, there exists un ∈ H1,λ

0 (�) such that

−�λun = fn

(|un| + 1
n )ν

in �

u = 0 on ∂� (8)

By Weak Maximum Principle (see [18, Theorem 4.4]), we have un ≥ 0 in �. So un

is a solution of (6). Hence,

∫
�

〈A∇∗un,∇v〉d X =
∫

�

fnv

(un + 1
n )ν

d X for every v ∈ C1
0(�) (9)

Now, we want to prove un ∈ L∞(�).
Let k > 1 and define S(k) = {x ∈ � : un(x) ≥ k}. We can treat the function

v(x) =
{

un(x) − k x ∈ S(k)

o otherwise

as a function in C1
0(�). By putting v in (9), we obtain

∫
S(k)

〈A∇∗v,∇∗v〉 d X =
∫

S(k)

fnv

(v + k + 1
n )ν

d X ≤ nν+1
∫

S(k)

v d X

≤ nν+1‖v‖
L2∗

λ (�)
|S(k)|1−

1
2∗
λ

Here, 2∗
λ = 2Q

Q−2 and Q = (m + 1) + λm. Now, by Theorem 2.4 there exists C > 0
such that

‖v‖2
L2∗

λ (�)
≤ C

∫
�

〈A∇∗v,∇∗v〉 d X = C
∫

S(k)

〈A∇∗v,∇∗v〉 d X

≤ Cnν+1‖v‖
L2∗

λ (�)
|S(k)|1−

1
2∗
λ .

We have

‖v‖
L2∗

λ (�)
≤ Cnν+1|S(k)|1−

1
2∗
λ (10)
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Assume 1 < k < h and using Inequality (10) we get

|S(h)|
1
2∗
λ (h − k) =

(∫
S(h)

(h − k)2
∗
λ d X

) 1
2∗
λ

≤
(∫

S(k)

(v(x))2
∗
λ d X

) 1
2∗
λ ≤ ‖v‖

L2∗
λ (�)

≤ Cnν+1|S(k)|1−
1
2∗
λ

The above two inequalities implies

|S(h)| ≤
(

Cnν+1

(h − k)
)2

∗
λ

)
|S(k)|2∗

λ−1

Letd2∗
λ = (Cnν+1)2

∗
λ)2

2∗
λ
(2∗

λ
−1)

2∗
λ
−2 |S(1)|2∗

λ−2 thenby theTheorem2.5,weget |S(1+d)| =
0. Hence, un(x) ≤ 1+d a.e in�. We get a positive constantC(n) such that un ≤ C(n)

a.e in �. Consequently, un ∈ L∞(�).
Let un and vn be two solutions of (6). The function w = (un − vn)+ ∈ H1,λ

0 (�)

can be considered as a test function. It is clear that

[(
vn + 1

n

)ν

−
(

un + 1

n

)ν]
w ≤ 0 (11)

Since un and vn are two solutions of (6) so by putting w in (9) we get

∫
�

〈A∇∗un,∇∗w〉d X =
∫

�

fnw

(un + 1
n )ν

d X

and
∫

�

〈A∇∗vn,∇∗w〉d X =
∫

�

fnw

(vn + 1
n )ν

d X

Therefore,

∫
�

〈A∇∗(un − vn),∇∗w〉 d X =
∫

�

fn[(vn + 1
n )ν − (un + 1

n )ν]
(un + 1

n )ν(vn + 1
n )ν

w d X

Using (11) we have

∫
�

〈A∇∗w,∇∗w〉 d X ≤ 0

Hence, w = 0 and so (un − vn) ≤ 0. By a similar argument, we can prove that
(vn − un) ≤ 0. Consequently, un = vn a.e in �. ��



63 Page 12 of 25 K. Bal, S. Biswas

Lemma 4.2 Let for each n ∈ N, un be the solution of (6). Then the sequence {un} is
an increasing sequence and for each �′ � �, there exists a constant C(�′) > 0 such
that

un(x) ≥ C(�′) > 0 a.e x ∈ �′ and for all n ∈ N

Proof Let n ∈ N be fixed. Define w = (un − un+1)
+. It is clear that

[(
un+1 + 1

n + 1

)ν

−
(

un + 1

n

)ν]
w ≤ 0.

w can be considered as a test function. Arguing as in the proof of the previous theorem,
we obtain w = 0. Hence, un − un+1 ≤ 0 �⇒ un ≤ un+1 a.e in � and for all n ∈ N.
Since f is not identically zero so fi is not identically zero for some i ∈ N . Without
loss of generality, we may assume that f1 is not identically zero.

Consider the equation

−�λu1 = f1
(u1 + 1)ν

in �

u1 = 0 on ∂� (12)

Since f1 is not identically zero so u1 is not identically zero. So by Theorem 2.6, we
have u1 > 0 in �. Hence, for every compact set �′ � �, there exists a constant
C(�′) > 0 such that u1 ≥ C(�′) a.e. in �′. Monotonicity of the sequence implies
that for every n ∈ N ,

un ≥ C(�′).

��

5 A few auxiliary results

We start this section with the proof of a priori estimates on un .

Lemma 5.1 Let un be the solution of equation (6) with ν = 1 and assume f ∈ L1(�)

is a nonnegative function (not identically zero). Then the sequence {un} is bounded in
H1,λ
0 (�).

Proof Since un ∈ H1,λ
0 (�) is a solution of (6) so from (9) we obtain

∫
�

〈A∇∗un,∇∗un〉 d X =
∫

�

fnun

(un + 1
n )

d X ≤
∫

�

f d X = ‖ f ‖L1(�)

Hence, {un} is bounded in H1,λ
0 (�). ��
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Lemma 5.2 Let un be the solution of the Eq. (6) with ν > 1 and f ∈ L1(�) is a

nonnegative function (not identically zero). Then {u
ν+1
2

n } is bounded in H1,λ
0 (�) and

{un} is bounded in H1,λ
loc (�) and in Ls(�), where s = (ν+1)Q

(Q−2) .

Proof Since ν > 1 and un ∈ H1,λ
0 (�) so by putting v = uν

n in (9) we have,

∫
�

〈A∇∗un,∇∗uν
n〉d X =

∫
�

fnuν
n

(un + 1
n )ν

d X ≤
∫

�

f d X .

Now,

∫
�

〈A∇∗u
ν+1
2

n ,∇∗u
ν+1
2

n 〉d X = (ν + 1)2

4ν

∫
�

νuν−1
n 〈A∇∗un,∇∗un〉d X

= (ν + 1)2

4ν

∫
�

〈A∇∗un,∇∗uν
n〉d X ≤ (ν + 1)2

4ν

∫
�

f d X . (13)

Hence, {u
ν+1
2

n } is bounded in H1,λ
0 (�). By Theorem 2.4, there exists a constant C > 0

such that

‖u
ν+1
2

n ‖
L2∗

λ (�)
≤ C‖u

ν+1
2

n ‖H1,λ
0 (�)

By using (13), we have

(∫
�

u
2∗
λ

(ν+1)
2

n d X

) 2
2∗
λ ≤ C

(ν + 1)2

4ν
‖ f ‖L1(�)

Since s = 2∗
λ

(ν+1)
2 so

∫
�

us
nd X ≤

(
C

(ν + 1)2

4ν
‖ f ‖L1(�)

) 2∗
λ
2

Hence, {un} is bounded in Ls(�). To prove {un} is bounded in H1,λ
loc (�), let �′ � �

and η ∈ C∞
0 (�) such that 0 ≤ η ≤ 1 and η = 1 in �′. It is a test function as

unη2 ∈ H1,λ
0 (�). By Lemma 4.2, there exists a constant C > 0 such that un ≥ C a.e

in supp(η). Put v = unη2 in (9) we have

∫
�

〈A∇∗un,∇∗(unη2)〉d X =
∫

�

fnunη2

(un + 1
n )ν

d X (14)

Also,

∫
�

〈A∇∗un,∇∗(unη2)〉d X =
∫

�

{η2〈A∇∗un,∇∗un〉 + 2ηun〈A∇∗un,∇η〉} (15)
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From (14) and (15) we get

∫
�

η2〈A∇∗un,∇∗un〉d X =
∫

�

fnη2

C (ν−1)
d X −

∫
�

2ηun〈A∇∗un,∇η〉d X (16)

Choose ε > 0 and use Young’s inequality; one has

|
∫

�

2ηun〈A∇∗un,∇η〉d X | ≤
∫

�

2|〈η√
A∇∗un, un

√
A∇η〉|d X

≤ 1

ε

∫
�

η2|√A∇∗un|2d X + ε

∫
�

u2
n|√A∇η|2d X ,

(17)

Put ε = 2 then we get

|
∫

�

2ηun〈A∇∗un,∇η〉d X | ≤ 1

2

∫
�

η2|√A∇∗un|2d X + 2
∫

�

u2
n|√A∇η|2d X

= 1

2

∫
�

η2〈A∇∗un,∇∗un〉d X + 2
∫

�

u2
n〈A∇η,∇η〉d X

(18)

Using (16) and (18), we have

∫
�

η2〈A∇∗un,∇∗un〉d X ≤ 2
∫

�

f η2

C (ν−1)
d X + 4

∫
�

u2
n〈A∇η,∇η〉d X

≤ 2‖η‖2∞‖ f ‖L1(�)

Cν−1 + 4‖〈A∇η,∇η〉‖∞
∫

�

u2
nd X

Since {un} is bounded in Ls(�) and s > 2 So {un} is bounded in L2(�).

∫
�

η2〈A∇∗un,∇∗un〉d X ≤ 2‖η‖2∞‖ f ‖L1(�)

Cν−1 + 4‖〈A∇η,∇η〉‖∞
∫

�

u2
nd X

≤ C( f , η)

Now,

∫
�′

〈A∇∗un,∇∗un〉d X ≤
∫

�

η2〈A∇∗un,∇∗un〉d X ≤ C( f , η)

Hence, {un} is bounded in H1,λ
loc (�). ��

Lemma 5.3 Let un be the solution of (6) with ν < 1 and f ∈ Lr , r = (
2∗
λ

1−ν
)′ is a

nonnegative (not identically zero) function. Then {un} is bounded in H1,λ
0 (�).
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Proof Since r = (
2∗
λ

1−ν
)′, we can choose v = un in (9) and using Hölder inequality,

one has

∫
�

〈A∇∗un,∇∗un〉d X =
∫
�

fnun

(un + 1
n )ν

≤
∫
�

f u1−ν
n d X ≤ ‖ f ‖Lr (�)

(∫
�

u(1−ν)r ′
n d X

) 1
r ′

≤ ‖ f ‖Lr (�)

(∫
�

u
2∗
λ

n d X

) 1−ν

2∗
λ .

(19)

By Theorem 2.4 and using the above inequality, we get

∫
�

u
2∗
λ

n d X ≤ C

(∫
�

〈A∇∗un,∇∗un〉d X

) 2∗
λ
2 ≤ C(‖ f ‖Lr (�)

(∫
�

u
2∗
λ

n d X

) 1−ν

2∗
λ

)
2∗
λ
2 .

(20)

So we have

∫
�

u
2∗
λ

n d X ≤ C‖ f ‖
2∗
λ

1+ν

Lr (�). (21)

Hence, {un} is bounded L2∗
λ(�). Using (19) and (21), we can conclude ‖un‖H1,λ

0 (�)
≤

C‖ f ‖
1

1+ν

Lr (�) where C is independent of n. Hence, {un} is bounded in H1,λ
0 (�). ��

6 Proof of main results

6.1 The case � = 1

Proof of Theorem 3.1: Consider the above sequence {un} and define u as the pointwise
limit of the sequence {un}. Since H1,λ

0 (�) is Hilbert space and {un} is bounded in

H1,λ
0 (�) so it admits a weakly convergent subsequence. Assume un weakly converges

to v in H1,λ
0 (�) and hence un converges to v in L2(�). So {un} has a subsequence that

converges to v pointwise. Consequently, u = v. So we may assume that the sequence
{un} weakly converges to u in H1,λ

0 (�). Choose v′ ∈ C1
0(�). By Lemma 4.2, there

exists C > 0 such that u ≥ un ≥ C a.e in supp(v’) and for all n ∈ N. So

| fnv′

(un + 1
n )

| ≤ ‖v′‖∞| f |
C

for all n ∈ N

By Dominated Convergence Theorem, we have

lim
n→∞

∫
�

fnv′

(un + 1
n )

d X =
∫

�

lim
n→∞

fnv′

(un + 1
n )

d X =
∫

�

f v′

u
d X . (22)
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As un is a solution of (6) so from (9) we get,

∫
�

〈A∇∗un,∇v′〉d X =
∫

�

fnv′

(un + 1
n )

d X

Take n → ∞ and use (22) we obtain,

∫
�

〈A∇∗u,∇v′〉d X =
∫

�

f v′

u
d X

Hence, u ∈ H1,λ
0 (�) is a solution of (1).

Let u and v be two solutions of (1). The function w = (u − v)+ ∈ H1,λ
0 (�) can be

considered as a test function. Since un and vn are two solutions of (1) so we have

∫
�

〈A∇∗u,∇∗w〉d X =
∫

�

f w

u
d X

and∫
�

〈A∇∗v,∇∗w〉d X =
∫

�

f w

v
d X

By subtracting one from the other, we get

∫
�

〈A∇∗(u − v),∇∗w〉 d X =
∫

�

f (v − u)

uv
wd X ≤ 0.

Which ensures us
∫

�

〈A∇∗w,∇∗w〉 d X ≤ 0.

Hence, w = 0 and so (u − v) ≤ 0. By interchanging the role of u and v, we get
(v − u) ≤ 0. Consequently, u = v a.e in �. ��
Proof of Theorem 3.2: (i) Let k > 1 and define S(k) = {x ∈ � : un(x) ≥ k}. We can

treat the function

v(x) =
{

un(x) − k x ∈ S(k)

o otherwise

as a function in C1
0(�). So by (5) we have

∫
S(k)

〈A∇∗v,∇∗v〉 d X =
∫

S(k)

fnv

(v + k + 1
n )

d X

≤
∫

S(k)

f v d X ≤ ‖ f ‖Lr (�)‖v‖
L2∗

λ (�)
|S(k)|1−

1
2∗
λ
− 1

r

(23)
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where 2∗
λ = 2Q

Q−2 . By Theorem 2.4, there exists C > 0 such that

‖v‖2
L2∗

λ (�)
≤ C

∫
�

〈A∇∗v,∇∗v〉d X

= C
∫

S(k)

〈A∇∗v,∇∗v〉 d X ≤ C‖ f ‖Lr (�)‖v‖
L2∗

λ (�)
|S(k)|1−

1
2∗
λ
− 1

r

(24)

The last inequality follows from (23). Inequality (24) ensures us

‖v‖
L2∗

λ (�)
≤ C‖ f ‖Lr (�)|S(k)|1−

1
2∗
λ
− 1

r

Assume 1 < k < h. Using last inequality, we obtain

|S(h)|
1
2∗
λ (h − k) =

(∫
S(h)

(h − k)2
∗
λ d X

) 1
2∗
λ ≤

(∫
S(k)

(v(x))2
∗
λ d X

) 1
2∗
λ

≤ ‖v‖
L2∗

λ (�)
≤ C‖ f ‖Lr (�)|S(k)|1−

1
2∗
λ
− 1

r

So,

|S(h)| ≤
(

C‖ f ‖Lr (�)

(h − k)

)2∗
λ |S(k)|2

∗
λ(1− 1

2∗
λ
− 1

r )

As r >
Q
2 we have, 2∗

λ(1 − 1
2∗
λ

− 1
r ) > 1. Let

d2∗
λ = (C‖ f ‖Lr (�))

2∗
λ2

(2∗
λ
)2(1− 1

2∗
λ

− 1
r )

[2∗
λ
(1− 1

(2∗
λ

− 1
r )−1] |S(1)|2

∗
λ(1− 1

2∗
λ
− 1

r )−2

By Theorem 2.5 we have |S(1+ d)| = 0. Hence, un(x) ≤ 1+ d a.e in �. We get
a positive constant C independent of n such that un ≤ C‖ f ‖Lr (�) a.e in � for all
n ∈ N. Hence, ‖u‖L∞(�) ≤ C‖ f ‖Lr (�)

(ii) If r = 1 then s = 2∗
λ. Since u ∈ H1,λ

0 (�) so by Theorem 2.4, we have u ∈ Ls(�).
If 1 < r <

Q
2 . Choose δ > 1 (to be determined later). Consider the function

w = u2δ−1. By the density argument, w can be treated as a test function. Put w in
(9), we have

∫
�

(2δ − 1)u(2δ−2)
n 〈A∇∗un,∇∗un〉d X =

∫
�

fnw

un + 1
n

d X ≤
∫

�

f u2δ−2
n d X

By using Hölder inequality on the RHS of the above inequality, we get

∫
�
〈A∇∗uδ

n,∇∗uδ
n〉d X = ∫

�
δ2u(2δ−2)

n 〈A∇∗un,∇∗un〉d X
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≤ δ2

(2δ−1)‖ f ‖Lr (�)

(∫
�

u(2δ−2)r ′
n d X

) 1
r ′

(25)

where 1
r + 1

r ′ = 1. By Theorem 2.4, we have

∫
�

u
2∗
λδ

n ≤ C

(∫
�

〈A∇∗uδ
n,∇∗uδ

n〉d X

) 2∗
λ
2

≤ C

{
δ2

(2δ − 1)
‖ f ‖Lr (�)

(∫
�

u(2δ−2)r ′
n d X

) 1
r ′

} 2∗
λ
2

, [by (25)] (26)

We choose δ such that 2∗
λδ = (2δ − 2)r ′ so δ = r(Q−2)

(Q−2r)
. Clearly, δ > 1 and

2∗
λδ = s. By using (26), we have

(∫
�

us
nd X

)(1− 2∗
λ

2r ′ )
≤ C

Also, (1 − 2∗
λ

2r ′ ) > 0 as r <
Q
2 . So we get

∫
�

us
nd X ≤ C, C > 0 is independent of n.

By Dominated Convergence Theorem, we have

∫
�

usd X ≤ C .

Hence we are done.
��

6.2 The Case � > 1

Proof of Theorem 3.3: Define u as the pointwise limit of {un}. By Lemma 5.2, {un} and
{u

ν+1
2

n } are bounded in H1,λ
loc (�) and H1,λ

0 (�) respectively. So by the similar argument

as the proof of Theorem 3.1 we can prove u ∈ H1,λ
loc (�) and u

ν+1
2 ∈ H1,λ

0 (�).
Let v ∈ C1

0(�) and �′ = supp(v). Without loss of generality we can assume un

weakly converges to u in H1,λ(�′). By Lemma 4.2, there exists C > 0 such that
un(x) ≥ C a.e x ∈ �′ and for all n ∈ N. So, u ≥ C > 0 a.e in �′. Also,

| fnv

(un + 1
n )ν

| ≤ ‖v‖∞| f |
Cν

, for all n ∈ N
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By the Dominated Convergence Theorem, we have

lim
n→∞

∫
�′

fnv

(un + 1
n )ν

d X =
∫

�′
lim

k→∞
fnv

(un + 1
n )ν

d X =
∫

�′
f v

uν
d X . (27)

As un is a solution of (6) so

∫
�′

〈A∇∗un,∇v〉d X =
∫

�′
fnv

(un + 1
n )ν

d X

Take n → ∞ and use (27), we get

∫
�

〈A∇∗u,∇v〉d X =
∫

�

f v

uν
d X

Hence, u ∈ H1,λ
loc (�) is a solution of (1). ��

Proof of Theorem 3.4: (i) The same proof of Theorem (3.2) will work.

(ii) If r = 1 then s = 2∗
λ(ν+1)

2 . Also, u
ν+1
2 ∈ H1,λ

0 (�). By Theorem 2.4, we have

u ∈ Ls(�). If 1 < r <
Q
2 . Choose δ > ν+1

2 . By the density argument, v = u2δ−1
n

can be considered a test function. From (9), we have

∫
�

〈A∇∗un,∇∗u2δ−1
n 〉 d X =

∫
�

fnu2δ−1
n

(un + 1
n )ν

d X

which gives us

∫
�

(2δ − 1)u2δ−2
n 〈A∇∗un,∇∗un〉d X ≤

∫
�

f u2δ−ν−1
n d X

≤ ‖ f ‖Lr (�)

(∫
�

u(2δ−ν−1)r ′
n d X

) 1
r ′

(28)

By Theorem 2.4, there exists C > 0 such that

∫
�

u
δ2∗

λ
n d X ≤ C

(∫
�

〈A∇∗uδ
n, ∇∗uδ

n〉d X

) 2∗
λ
2 ≤ C

(∫
�

δ2u2δ−2
n 〈A∇∗un, ∇∗un〉d X

) 2∗
λ
2

(29)

By using (28) and (29), we get

∫
�

u
δ2∗

λ
n d X ≤ C{ δ2

(2δ − 1)
‖ f ‖r

L(�)}
2∗
λ
2

(∫
�

u(2δ−ν−1)r ′
n d X

) 2∗
λ

2r ′
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Choose δ such that δ2∗
λ = (2δ − ν − 1)r ′ then 2∗

λδ = s. As r <
Q
2 so 1− 2∗

λ

2r ′ > 0.
we have

∫
�

us
nd X ≤ C . Hence, by Dominated Convergence Theorem we get

u ∈ Ls(�).
��

6.3 The Case � < 1

Proof of Theorem 3.5: Since {un} is bounded in H1,λ
0 (�) so it has a subsequence

which converges to u weakly in H1,λ
0 (�). Without loss of generality we can assume

un⇀uin H1,λ
0 (�). Let v ∈ C1

0(�). By the Lemma 4.2, there exists C > 0 such that
un(x) ≥ C a.e x ∈ supp(v) and for all n ∈ N. So

| fnv

(un + 1
n )ν

| ≤ ‖v‖∞| f |
Cν

for all n ∈ N

By the Dominated Convergence Theorem, we have

lim
n→∞

∫
�

fnv

(un + 1
n )ν

d X =
∫

�

lim
k→∞

fnv

(un + 1
n )ν

d X =
∫

�

f v

uν
d X . (30)

As un is a solution of (6) so,

∫
�

〈A∇∗un,∇v〉d X =
∫

�

fnv

(un + 1
n )ν

d X

Take n → ∞ and (30) we get

∫
�

〈A∇∗u,∇v〉d X =
∫

�

f v

uν
d X

Hence, u ∈ H1,λ
0 (�) is a solution of (1) with ν < 1. The proof of uniqueness is similar

to Theorem 3.1. ��
Proof of Theorem 3.6: (i) The proof is similar to the proof of Theorem 3.2.

(ii) If r = (
2∗
λ

1−ν
)′ then s = 2∗

λ. By the embedding theorem and (9), we have

(∫
�

u
2∗
λ

n d X

) 1
2∗
λ ≤ C

(∫
�

〈A∇∗un,∇∗un〉d X

) 1
2

= C

(∫
�

fnun

(un + 1
n )ν

d X

) 1
2

≤ C

(∫
�

f u1−ν
n d X

) 1
2

≤ C‖ f ‖
1
2
Lr (�)

(∫
�

u(1−ν)r ′
n d X

) 1
2r ′
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Since r ′ = 2∗
λ

1−ν
so using the above inequality we get

∫
�

u
2∗
λ

n d X ≤ C‖ f ‖
2∗
λ

1+ν

Lr (�)

By Dominated Convergence Theorem we have u ∈ L2∗
λ(�).

Let (
2∗
λ

1−ν
)′ < r <

Q
2 . Choose δ > 1 (to be determined later). We can treat the

function v = u2δ−1
n as a test function and put it in (9), we obtain

∫
�

〈A∇∗un,∇∗u2δ−1
n 〉d X =

∫
�

fnu2δ−1
n

(un + 1
n )ν

d X

≤
∫

�

f u2δ−ν−1
n d X ≤ ‖ f ‖Lr (�)

(∫
�

u(2δ−ν−1)r ′
n d X

) 1
r ′

(31)

Also,
∫

�

〈A∇∗un,∇∗u2δ−1
n 〉d X =

∫
�

(2δ − 1)u2δ−2
n 〈A∇∗un,∇∗un〉d X

=
∫

�

(2δ − 1)

δ2
〈A∇∗uδ

n,∇∗uδ
n〉d X (32)

Using (31) and (32) we have

∫
�

〈A∇∗uδ
n,∇∗uδ

n〉d X) ≤ δ2

(2δ − 1)
‖ f ‖Lr (�)

(∫
�

u(2δ−ν−1)r ′
n d X

) 1
r ′

By Theorem 2.4, there exists C > 0 such that

∫
�

u
δ2∗

λ
n d X ≤ C

(∫
�

〈A∇∗uδ
n,∇∗uδ

n〉d X

) 2∗
λ
2

≤ C{ δ2

(2δ − 1)
‖ f ‖

2∗
λ
2

Lr (�)}
(∫

�

u(2δ−ν−1)r ′
n d X

) 2∗
λ

2r ′

Choose δ such that δ2∗
λ = (2δ − ν − 1)r ′ then 2∗

λδ = s. As (
2∗
λ

1−ν
)′ < r <

Q
2

so δ > 1 and
2∗
λ

2r ′ < 1. Hence, we have
∫
�

us
nd X ≤ C . Hence, by Dominated

Convergence Theorem, we get u ∈ Ls(�).
��

Proof of Theorem 3.7: Let ε < 1
n and v = (un + ε)2δ−1 − ε2δ−1 with 1+ν

2 ≤ δ < 1.
We can treat v as a function in C1

0(�). Put v in (9) and we obtain

∫
�

〈A∇∗un,∇∗un〉(un + ε)2δ−2d X ≤ 1

(2δ − 1)

∫
�

f v

(un + 1
n )ν
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As ε < 1
n so we have

∫
�

〈A∇∗un,∇∗un〉(un + ε)2δ−2d X ≤ 1

(2δ − 1)

∫
�

f (un + ε)2δ−1−ν d X (33)

By some simple calculation, we get

∫
�

〈A∇∗v,∇∗v〉d X ≤ δ2

(2δ − 1)

∫
�

f (un + ε)2δ−1−νd X

By Theorem 2.4, we have

(∫
�

v2
∗
λd X

) 2
2∗
λ ≤ Cδ2

(2δ − 1)

∫
�

f (un + ε)2δ−1−ν

Take ε → 0 and use Dominated convergence Theorem we have,

(∫
�

u
2∗
λδ

n

) 2
2∗
λ ≤ Cδ2

(2δ − 1)

∫
�

f u2δ−1−ν
n (34)

If r = 1 then choose δ = ν+1
2 and from the previous inequality we have {un} is

bounded in Ls(�) with s = Q(ν+1)
(Q−2) .

If r > 1 then choose δ in such a way that (2δ − 1 − ν)r ′ = 2∗
λδ. Now, applying

Hölder inequality on RHS of (34) we have,

(∫
�

u
2∗
λδ

n

) 2
2∗
λ ≤ Cδ2

(2δ − 1)
‖ f ‖Lr (�)

(∫
�

u(2δ−1−ν)r ′
n

) 1
r ′

= Cδ2

(2δ − 1)
‖ f ‖Lr (�)

(∫
�

u
2∗
λδ

n

) 1
r ′

As 1 ≤ r <
2Q

(Q+2)+ν(Q−2) <
Q
2 so 2

2∗
λ

> 1
r ′ . Hence, {un} is bounded in Ls(�) with

s = 2∗
λδ = Qr(ν+1)

(Q−2r)
. Using Hölder inequality in (33), we have

∫
�

〈A∇∗un,∇∗un〉(un + ε)2δ−2d X ≤ 1

(2δ − 1)
‖ f ‖Lr (�)

(∫
�

(un + ε)2
∗
λδ

) 1
r ′

Since un is bounded in Ls(�) so

∫
�

〈A∇∗un,∇∗un〉(un + ε)2δ−2d X ≤ C .

For q = Qr(ν+1)
Q−r(1−ν)

and above chosen δ satisfies the condition (2 − 2δ)q = (2 − q)s.
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So,

∫
�

〈A∇∗un,∇∗un〉 q
2 d X =

∫
�

|√A∇∗un|q
(un + ε)q−qδ

(un + ε)q−δqd X

≤
(∫

�

|√A∇∗un|2
(un + ε)2−2δ d X

) (∫
�

(un + ε)sd X

)1− q
2

since {un} is bounded in Ls(�) and ε < 1
n so {un + ε} is bounded in Ls(�).

Consequently, {un} is bounded in W 1,λ,q
0 (�). Hence u ∈ W 1,λ,q

0 (�). ��

7 Variable singular exponent

Consider the equation

−�λu = f

uν(x)
in �

u > 0 in �

u = 0 on ∂� (35)

where ν ∈ C1(�) is a positive function.

Theorem 7.1 Let f ∈ L(2∗
λ)′(�) be a function. If there exists K � � such that

0 < ν(x) ≤ 1 in K c (complement of K) then (35) has an unique solution in H1,λ
0 (�)

provided λ ≥ 1.

Proof The same approximation used in the earlier section yields the existence of
a strictly positive function u, which is the increased limit of the sequence {un} ⊂
H1,λ
0 (�) ∩ L∞(�). Also, Lemma 4.2 is satisfied. As K � � so by Lemma 4.2, there

exists C > 0 such that un(x) ≥ C for a.e x ∈ K and for all n ∈ N. For each n ∈ N,
un solves

−�λun = fn

(un + 1
n )ν(x)

in �

u > 0 in �

u = 0 on ∂� (36)

By using Hölder inequality and the embedding theorem, we have

∫
�

〈A∇∗un,∇∗un〉dx =
∫

�

fnun

(un + 1
n )ν(x)

dx

=
∫

K

fnun

(un + 1
n )ν(x)

dx +
∫

{K c∩�}
fnun

(un + 1
n )ν(x)

dx
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≤ || 1

Cν(x)
||∞

∫
K

f undx +
∫

{x∈K c∩�:un(x)≤1}
f u1−ν(x)

n dx

+
∫

x∈K c∩�:un(x)≥1
f u1−ν(x)

n dx

≤ || 1

Cν(x)
||∞

∫
K

f undx +
∫

{x∈K c∩�:un(x)≤1}
f dx

+
∫

x∈K c∩�:un(x)≥1
f undx

≤ || 1

Cν(x)
||∞|| f ||

L(2∗
λ
)′
(�)

||un||L2∗
λ

+ || f ||L1(�)

+ || f ||
L(2∗

λ
)′
(�)

||un||L2∗
λ (�)

≤ C || f ||
L(2∗

λ
)′
(�)

||un||H1,λ
0 (�)

+ || f ||L1(�)

We obtain

||un||2H1,λ
0 (�)

≤ C || f ||
L(2∗

λ
)′
(�)

||un||H1,λ
0 (�)

+ || f ||L1(�).

Hence, un is bounded in H1,λ
0 (�). Without loss of generality we can assume that un

weakly converges to u in H1,λ
0 (�). Let w ∈ C1

c (�). Using Lemma 4.2, there exists
c > 0 such that un ≥ c for a.e x in supp(w). Since un solves (36) so

∫
�

〈A∇∗un,∇w〉dx =
∫

�

fnw

(un + 1
n )ν(x)

dx

Taking n → ∞ and using the dominated convergence theorem, we get

∫
�

〈A∇∗u,∇w〉dx =
∫

�

f w

uν(x)
dx

Hence, u is a solution of (35). The proof of the uniqueness part is identical to the one
given in Theorem 3.1. ��
Theorem 7.2 Let u be the solution of Eq. (35) with f ∈ Lr (�), r >

Q
2 . Then u ∈

L∞(�), where Q = (m + 1) + λm.

Proof The proof is similar to that of the Theorem 3.2 and is omitted here. ��
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