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Abstract
Westudy theVladimirov–Taibleson operator, amodel example of a pseudo-differential
operator acting on real- or complex-valued functions defined on a non-Archimedean
local field. We prove analogs of classical inequalities for fractional Laplacian, study
the counterpart of the Dirichlet problem including the property of boundary Hölder
regularity of solutions.
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1 Introduction

The Vladimirov–Taibleson operator Dα of p-adic fractional differentiation is a model
example of a pseudo-differential operator acting on real- or complex-valued functions
defined on a non-Archimedean local field K , its subsets or, for the multi-dimensional
case, on the space Kn .

A number of important results on spectral properties of Dα , its perturbations and
generalizations, as well as the theory of related partial (pseudo-) differential equations
are covered by the monographs [1, 15, 17, 31, 36, 38] and many recent papers, such
as [2–4, 12, 18, 20, 21, 34, 35, 39] and others.

To some extent, the theory of this operator is parallel to that of the fractional
Laplacian of real analysis. While the topological and geometric properties of a non-
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Archimedean local field are quite different from those of R, this parallelism is a
reflection of deep unity of mathematics where similar properties of quite different
objects happen to be found as consequences of parallel algebraic structures.

The simplest and most important example of a non-Archimedean local field is
the field of p-adic numbers, appearing, by Ostrowski’s theorem, as the only possible
alternative to R as a completion of the field of rational numbers. Therefore the non-
Archimedean mathematics is one of the main branches of mathematics as a whole,
now appearing in a variety of applications.

In this paper, we prove non-Archimedean analogs of some classical inequali-
ties including the weighted positivity property [25] and various kinds of fractional
Sobolev and Poincaré inequalities (see, for example, [7, 25, 27]). As in the classi-
cal situation [27], the Poincaré inequality is a basic tool for studying the Dirichlet
problem, formulated appropriately for nonlocal operators. On the other hand, non-
Archimedean analogs of classical inequalities are interesting in themselves. Note that
the non-Archimedean potential theory was initiated by Haran [13].

The investigation of boundary Hölder regularity of solution is a natural task
prompted by comparisons with the classical theory of elliptic equations [8, 23]. For
the non-Archimedean case, there is also a different motivation: the evident examples
of open sets, like balls and spheres, are simultaneously closed, thus not possessing
a boundary. The nontrivial examples are either punctured disks or infinite disjoint
unions of clopen (= closed and open) sets [17]. While it is obvious what domans in R

n

are good (this is defined in terms of smoothness of the boundary), properties of open
sets in the non-Archimedean case are formulated in different geometric terms. Here
we follow, with necessary modifications, the geometric method suggested by Lian et
al [23].

The structure of this paper is as follows. In Sect. 2, we collect necessary preliminar-
ies about local fields K , the structure of open sets in Kn , the representation of Kn in
terms of the unramified extension of K [17, 21, 32], Sobolev spaces of complex-valued
functions on local fields [9–11]. In Sect. 3, we prove analogs of classical inequalities.
In Sect. 4, we study the Dirichlet problem for the operator Dα , prove the existence of
its weak solutions and the comparison theorem, a substitute of themaximum principle.
Section5 is devoted to the boundary Hölder regularity of solutions.

2 Preliminaries

2.1 Local fields

A non-Archimedean local field is a non-discrete totally disconnected locally compact
topological field. Such a field K is isomorphic either to a finite extension of the field
Qp of p-adic numbers (here p is a prime number), if K has characteristic zero, or to
the field of formal Laurent series with coefficients from a finite field, if char K > 0.
For basic notions and results regarding local fields see, for example, [17, 30, 37]. We
consider only non-Archimedean local fields.
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Any local field is endowed with an absolute value | · |K , such that: 1) |x |K = 0 if
and only if x = 0, 2) |xy|K = |x |K · |y|K , 3) |x + y|K ≤ max(|x |K , |y|K ). The last
property called the ultrametric one implies that |x + y|K = |x |K , if |y|K < |x |K .

The ring O = {x ∈ K : |x |K ≤ 1} is called the ring of integers of K . For
K = Qp, we write Zp instead of O . The ideal P = {x ∈ K : |x |K < 1} contains
such an element β that P = βO . The quotient ring K̄ = O/P is a finite field called
the residue field. The absolute value is called normalized, if |β|K = q−1 where q is
the cardinality of O/P . Unless stated otherwise, the absolute values used below are
assumed normalized. Such absolute values take the values qN , N ∈ Z. In the case
K = Qp, the field of p-adic numbers, β = p (where p is seen as an element) and
q = p (as a natural number).

The additive group of a local field K is self-dual, so that the Fourier analysis on K
is similar to the classical one. Let χ be a fixed non-constant additive character on K ,
which is assumed having rank zero, so that χ(x) ≡ 1 for x ∈ O , while χ(x0) �= 1 for
some x0 ∈ K with |x0|K = q.

The Fourier transform of a complex-valued function f ∈ L1(K ) is defined as

(F)(ξ) = ̂f (ξ) =
∫

K

χ(xξ) f (x) dx, ξ ∈ K ,

where dx is the Haar measure on the additive group of K normalized in such a way
that the measure of O equals 1. If F f = ̂f ∈ L1(K ), then the inversion rule

f (x) =
∫

K

χ(−xξ)̂f (ξ) dξ,

is valid. We will denote ˜f = F−1 f .
The Fourier transform preserves the Bruhat-Schwartz spaceD(K ) of test functions,

consisting of locally constant functions with compact supports. The local constancy
of a function f : K → C means the existence of such an integer k that for any x ∈ K

f (x + x ′) = f (x), whenever|x ′| ≤ q−k .

The above Fourier analysis is extended easily to functions on Kn . The natural
non-Archimedean norm on Kn is

|(x1, . . . , xn)|Kn = max
1≤ j≤n

|x j |K .

The Fourier transform extends to the dual space D′(K ) (and to its multi-dimensional
counterpart D′(Kn)) called the space of Bruhat–Schwartz distributions.
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2.2 Field extensions and their use in analysis

If a local field K is a subfield of a local field L , then L is called an extension of K
(which is denoted L/K ). Consider L as a vector space over K . An extension L/K is
called finite, if the space L is finite-dimensional over K . Its dimension is called the
degree of the extension.

An operator of multiplication in a finite extension L by an element ξ can be consid-
ered as a linear operator in the K -vector space, so that Tr(ξ) is defined. The extension
is called separable, if the linear function ξ �→ Tr(ξ) does not vanish identically. All
finite extensions of a field of characteristic zero are separable. The above notion of
separability makes sense also for finite fields K̄ , L̄ .

A finite extension L/K is called unramified, if L̄/K̄ is a separable extension of the
same degree as L/K . Any local field K has a unique (up to isomorphism) unramified
extension of any given degree n ≥ 1. Any prime element β of the field K is also a
prime element of any unramified extension. If L is an unramified extension of K of a
degree n, then the cardinality of the residue field equals qn where q is the cardinality
of the residue field of K .

As a vector space over K , the unramified extension L of degree n has a canonical
basis consisting of representatives of a basis in L̄ over K̄ . If x ∈ L has the coeffi-
cients x1, . . . , xn ∈ K of the expansion with respect to the canonical basis, then the
normalized absolute value |x |L has the representation [21, 32]

|x |L =
(

max
1≤ j≤n

|x j |K
)n

. (2.1)

An automorphism σ of the field L is called an automorphism of the extension L/K ,
if σ(a) = a for all a ∈ K . A finite extension L/K is called a Galois extension, if the
order of its group of automorphisms G coincides with the degree of the extension. In
this case G is called the Galois group of the extension.

In the important case of an unramified extension L/K , the group G is cyclic. Its
generator F is called the Frobenius automorphism. By the construction of the absolute
value on L ([30], Chapter II, §2) and the expression of the norm map in terms of the
Galois group ([30], Chapter V, §2), together with the fact that the prime element in K
remains prime in L , we see that F preserves the absolute value on L .

Let L be an unramified extension of degree n of a local field K . Taking into account
(2.1), we see the expansion with respect to a canonical basis in L defines an isometric
linear isomorphism between L and Kn . In various applications (see, for example,
[21]), it is convenient to reduce problems for multi-dimensional operators acting on
functions Kn → C, to one-dimensional operators on functions L → C where L/K
is an unramified extension of degree n.

2.3 Structure of open sets

Let � ⊂ K be an open subset of a local field K . The set � can be represented as a
union
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N
⋃

k=1

Vk, N ≤ ∞, (2.2)

of non-intersecting balls Vk = B(xk, rk) = {x ∈ K : |x − xk |K ≤ qrk }, rk ∈ Z. The
set (2.2) is compact, if and only if N < ∞. See [29] for further investigation of this
case.

Turning to the non-compact case, we note that any local field is a separable metric
space ([28], Exercise 19.B (iii)), and any separable metric space has the Lindelöf
property – its every covering has a countable subcovering. Therefore we may assume
that the disjoint union in (2.2) is countable. It is known (Proposition 3.1 in [17]) that
an open set� is closed, if and only if the sequence {xk} has no finite limit points. Now
we prove a more precise result.

Proposition 2.1 The boundary ∂� = closure(�)\� coincides with the set of all finite
limit points of the sequence of centers {xk}∞1 .

Proof Note first that a limit point of the sequence of centers never belongs to �.
Indeed, otherwise it would belong to one of the balls, and then an infinite subsequence
of the centers would belong to that ball. However the latter property contradicts the
disjointness of the balls. Thus, the above set of limit points belongs to ∂�.

Conversely, let x0 ∈ ∂�. There exists a sequence {y j } ⊂ �, y j → x0. Taking
a subsequence if necessary, we may assume that |y j − xk j |K ≤ qrk j where all the
numbers k j are different.

In addition, we have rkn → −∞, as n → ∞. Indeed, otherwise there exists a sub-
sequence {r ′

j } ⊂ {rkn }, such that r ′
j ≥ R > −∞. For the corresponding subsequences

{y′
j } and {x ′

j }, we get
∣

∣

∣y′
j1 − y′

j2

∣

∣

∣

K
=
∣

∣

∣(y′
j1 − x ′

j1) + (x ′
j1 − x ′

j2) + (x ′
j2 − y′

j2)

∣

∣

∣

K

=
∣

∣

∣x ′
j1 − x ′

j2

∣

∣

∣

K
≥ max{qr ′

j1 , q
r ′
j2 } ≥ qR,

which contradicts the convergence of the sequence {y j }.
Since rkn → −∞, for any ε > 0, there exists such a number j1 that

∣

∣xk j − y j
∣

∣

K
< ε

for j ≥ j1. On the other hand, there exists such a number j2 that
∣

∣y j − x0
∣

∣

K < ε for
j ≥ j2. Now

∣

∣xk j − x0
∣

∣

K
≤ max{∣∣xk j − y j

∣

∣

K
,
∣

∣y j − x0
∣

∣

K } < ε,

as j ≥ max{ j1, j2}. This means that x0 is a limit point of a sequence {xn}. �

The “textbook examples” of non-Archimedean open sets, like balls and spheres,
are clopen and have no boundaries. The simplest nontrivial example is a punctured
unit ball Zp\{0}, for which the decomposition (2.2) has the explicit form
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Zp \ {0} =
∞
⋃

n=0

⎛

⎝

p−1
⋃

k=1

(

kpn + pn+1
Zp

)

⎞

⎠

(seeRemark 4 in [22]). Here the centers of the balls are the points kpn , and the sequence
of centers tends to 0.

2.4 TheVladimirov operator

On a test function ϕ ∈ D(K ), the fractional differentiation operator Dα , α > 0 is
defined as follows:

(Dαϕ)(x) = F−1 [|ξ |αK (F(ϕ))(ξ)
]

(x), x ∈ K . (2.3)

The operator Dα admits a hypersingular integral representation

(

Dαϕ
)

(x) =
∫

K

K(y)[ϕ(x) − ϕ(x + y)] dy, (2.4)

where

K(y) = qα − 1

1 − q−α−1 |y|−α−1
K .

The expression (2.4) makes sense for wider classes of functions.
For the multi-dimensional case, the natural generalization (often called the Taible-

son operator) is defined as a pseudo-differential operator Dα
Kn with the symbol

|(ξ1, . . . , ξn)|αKn , |(ξ1, . . . , ξn)|Kn = max
1≤ j≤n

|ξ j |K .

In this case, we have a hypersingular integral representation similar to (2.4), with the
integration over Kn and

K(y) = qα − 1

1 − q−α−n
|y|−α−n

K .

This operator can be interpreted as the one-dimensional Vladimirov operator Dα/n

over the unramified extension of degree n of K ; see [21].

2.5 Sobolev spaces

The Sobolev type spaces related to the operator Dα were introduced by Taibleson [31];
see also [16]. A more general case of locally compact abelian groups was studied by
Górka et al. [9–11]. Here we will not use other Sobolev-type spaces introduced by
Zúñiga-Galindo; see [15].
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The Sobolev space Hα(Kn) where K is a local field, α > 0, consists of such
f ∈ L2(Kn) that

‖ f ‖Hα(Kn) =

⎧

⎪

⎨

⎪

⎩

∫

ξ∈Kn

|̂f (ξ)|2(1 + |ξ |2K N )αdξ

⎫

⎪

⎬

⎪

⎭

1/2

< ∞

where ̂f = Ff.
The imbedding

Hα(Kn) ↪→ Lα∗
(Kn), α∗ = 2γ

γ − α

(

γ > max
(n

2
, α
))

,

holds in the local field situation ([11], Theorem 5). This means that

‖u‖Lα∗
(Kn) ≤ C‖u‖Hα(Kn) for all u ∈ Hα(Kn)

(here and below C denotes various positive constants).
In the “fractional” case, that is 0 < α < 1, there is an equivalent Aronszain-

Gagliardo-Slobodecki norm

‖u‖2AGS = ‖u‖2L2(Kn)
+ [u]2α

where

[u]2α =
∫

Kn

∫

Kn

|u(x) − u(y)|2
|x − y|2α+n

Kn

dx dy,

and we have a more refined estimate called the fractional Sobolev inequality.

Proposition 2.2 For every u ∈ Hα(Kn), 0 < α < min(1, n
2 ),

‖u‖Lα∗
(Kn) ≤ C[u]α, α∗ = 2n

n − 2α
, (2.5)

where C does not depend on u.

Proof For the non-Archimedean case, it is a slight modification of Brezis’ proof for
R
n (see [7, 26]). Let u ∈ Hα(Kn). For each x, y ∈ Kn ,

|u(x)| ≤ |u(x) − u(y)| + |u(y)|,

so that we get integrating in y ∈ B(x, ql) that

qln|u(x)| ≤
∫

|y−x |Kn≤ql

|u(x) − u(y)| dy +
∫

|y−x |Kn≤ql

|u(y)| dy,
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so that

|u(x)| ≤ q−ln
∫

|y−x |Kn≤ql

|u(x) − u(y)| dy + q−ln
∫

|y−x |Kn≤ql

|u(y)| dy,

By the Hölder inequality,

q−ln
∫

|y−x |Kn≤ql

|u(x) − u(y)| dy ≤ q−ln/2

⎧

⎪

⎨

⎪

⎩

∫

|y−x |Kn≤ql

|u(x) − u(y)|2 dy

⎫

⎪

⎬

⎪

⎭

1/2

≤ qαl

⎧

⎪

⎨

⎪

⎩

∫

|y−x |Kn≤ql

|u(x) − u(y)|2
|x − y|2α+n

Kn

dy

⎫

⎪

⎬

⎪

⎭

1/2

.

The Hölder inequality yields also the estimate

q−ln
∫

|y−x |Kn≤ql

|u(y)| dy ≤

⎧

⎪

⎨

⎪

⎩

q−ln
∫

|y−x |Kn≤ql

|u(y)|r dy

⎫

⎪

⎬

⎪

⎭

1/r

,

for any r ∈ [1,∞). Therefore

|u(x)| ≤ qαl

⎧

⎨

⎩

∫

Kn

|u(x) − u(y)|2
|x − y|2α+n

Kn

dy

⎫

⎬

⎭

1/2

+ q−ln/r

⎧

⎨

⎩

∫

Kn

|u(y)|r dy
⎫

⎬

⎭

1/r

, (2.6)

for any l ∈ Z, r ∈ [1,∞).
We may assume that u is bounded. The general case is then considered [26] using

the standard truncation argument. For a bounded u, the right-hand side of (2.6) is finite
for r > 2, for almost all x .

For an arbitrary z > 0, there exists such l ∈ Z that ql ≤ z ≤ ql+1. Then qlα ≤ zα ,

q−ln/r = q−(l+1)n/r · qn/r ≤ qn/r z−n/r ,

and it follows from (2.6) that

|u(x)| ≤ C
(

azα + bz−n/r ) (2.7)

for any z ≥ 0. Here

a =
⎧

⎨

⎩

∫

Kn

|u(x) − u(y)|2
|x − y|2α+n

Kn

dy

⎫

⎬

⎭

1/2

, b =
⎧

⎨

⎩

∫

Kn

|u(y)|r dy
⎫

⎬

⎭

1/r

,
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Minimizing the right-hand side of (2.7) as it was done in [7, 26] and integrating we
come to the inequality (2.5). �

The above fractional Sobolev space is a special case of the Besov spaces on local
fields studied in [14].

3 Inequalities

3.1 The Poincaré inequality

Let � ⊂ Kn be a bounded open set. Denote

X = {Hα(Kn) : u ≡ 0 inKn \ �
}

, 0 < α < 1. (3.1)

The next result is similar to the Poincaré type inequality for nonlocal operators of
real analysis; see the inequality (3.4) in [27].

Theorem 3.1 There exists such a positive constant C that for any u ∈ X,

∫

�

|u(x)|2 dx ≤ C
∫

Kn

∫

Kn

|u(x) − u(x + y)|2
|y|n+2α

Kn

dx dy. (3.2)

Proof Let us apply the Hölder inequality to the integral on the left in (3.2). Since the
set � is bounded, we have

∫

�

|u(x)|2 dx ≤ C

⎡

⎣

∫

Kn

(|u(x)|2) n
n−2α dx

⎤

⎦

n−2α
n

.

By the inequality (2.5),

⎧

⎨

⎩

∫

Kn

(|u(x)|2) n
n−2α dx

⎫

⎬

⎭

n−2α
n

≤ C
∫

Kn

∫

Kn

|u(x) − u(x + y)|2
|y|n+2α

Kn

dx dy,

and we obtain (3.2). �

3.2 The fractional Poincaré-Wirtinger inequality

(Compare with [33]). Let B(n)
N = {x ∈ Kn : |x |Kn ≤ qN

}

, N ∈ Z. Consider the

Sobolev space Hα(B(n)
N ) with the norm ‖u‖2α,N ,n = ‖u‖2

L2(B(n)
N

) + [u]2α,N ,n where

0 < α < 1,
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[u]2α,N ,n =
∫

B(n)
N

∫

B(n)
N

|u(x) − u(y)|2
|x − y|2α+n

Kn

dx dy.

We begin with the case n = 1, and in this case we drop n = 1 from the notations.

Lemma 3.1 Let V be a closed subspace in Hα(BN ), which does not contain nonzero
constants. Then for any u ∈ V ,

‖u‖L2(BN ) ≤ C(α, N )[u]α,N . (3.3)

Proof Suppose the opposite. Then there exists a sequence {um} ⊂ V , such that
‖um‖L2(BN ) > m[um]α,N for each m ≥ 1. Let vm = ‖um‖−1

L2(BN )
um . Then

‖vm‖L2(BN ) = 1, [vm]α,N <
1

m
. Taking a subsequence if necessary, we may assume

that the sequence {vm} is weakly convergent in Hα(BN ).
Below we will use the identity

|x |αK = 1 − qα

1 − q−α−1

∫

K

|ξ |−α−1
K [χ(xξ) − 1] dξ. (3.4)

To prove (3.4), we use the Riesz kernel [17, 36]

fγ (x) = |x |γ−1
K

K (γ )
, x ∈ K , γ > 0, γ �= 1,

where K (γ ) = 1 − qγ−1

1 − q−γ
. Considering fγ as a distribution fromD′(K ) we have the

identity for its Fourier transform,˜fγ (ξ) = |ξ |−γ

K . Now, for any ϕ ∈ D(K ) we denote
ψ = F−1ϕ and find that

〈|x |αK , ϕ〉 = 〈 fα+1, ϕ〉K (α + 1) = 〈 f̃α+1, ψ〉K (α + 1)

= K (α + 1)〈|x |−α−1
K , ψ(x) − ψ(0)〉

= K (α + 1)
∫

K

|x |−α−1
K dx

∫

K

[χ(−xξ) − 1]ϕ(ξ) dξ.

Applying the Fubini theorem we come to (3.4).
The ball BN is an additive locally compact Abelian group, and the space Hα(BN )

can be interpreted in terms of the Pontryagin duality. While in the proof of (3.4)
we used the harmonic analysis on K , now we switch to harmonic analysis on BN

preserving the notations for additive characters and the Fourier transform.
The dual group ̂BN to BN is isomorphic to the discrete group K/B−N consisting

of the cosets

ξ + B−N = βm (r0 + r1β + · · · + rN−m−1) + B−N , m ∈ Z,m < N ,
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where r j belongs to a complete set of representatives in O of the elements of the
residue field O/P . On ̂BN , there is a normalized discrete measure dξ satisfying the
Plancherel identity (see, for example, [19]).

It is shown in [10] (the formula (12)) that

[u]2α,N =
∫

̂BN

|̂u(ξ + B−N )|2A(ξ) dξ (3.5)

where

A(ξ) =
∫

BN

|χ(zξ) − 1|2
|z|1+2α

K

dz. (3.6)

By (3.4), A(ξ) = const ·|ξ |αK , and it follows from (3.5) that the above definition of
the norm in Hα(BN ) is equivalent to the definition of the Sobolev norm in terms of
the Fourier transform on BN . On the basis of the latter definition, it is proved in [11]
(Theorem 11) that the imbedding Hα(BN ) ↪→ L2(BN ) is compact.

Therefore the sequence {vm}, weakly convergent in Hα(BN ), converges strongly
in L2(BN ) to a certain function v, and ‖v‖L2(BN ) = 1. On the other hand, [·]α,N is
a norm on V . Since a norm is lower semicontinuous (see [6], page 61), [v]α,N ≤
lim inf[vm]α,N = 0, that is [v]α,N = 0, so that v = const, and by our assumption,
v ≡ 0, which contradicts the equality ‖v‖L2(BN ) = 1. �

The analogue of the Poincaré-Wirtinger inequality is as follows.

Theorem 3.2 For any u ∈ Hα(BN ),

‖u − ū‖L2(BN ) ≤ C[u]α,N , ū = q−N
∫

BN

u(x) dx . (3.7)

Proof Let us consider the subspace

V =

⎧

⎪

⎨

⎪

⎩

u ∈ Hα(BN ) :
∫

BN

u(x) dx = 0

⎫

⎪

⎬

⎪

⎭

.

Then u − ū ∈ V , [u − ū]α,N = [u]α,N . Substituting into (3.3) we obtain (3.7).
Turning to the multi-dimensional case where we consider functions on Kn , we

identify Kn with the unramified extension L of the field K of degree n. Then by (2.1),

B(n)
N = {x ∈ Kn : |x |Kn ≤ qN } = {x ∈ L : |x |1/nL ≤ qN } = {x ∈ L : |x |L ≤ r N }

where r is the cardinality of the residue field of L .
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Next, consider the seminorm [u]L, α
n ,N of the form

[u]2L, α
n ,N =

∫

|x |L≤r N

∫

|y|L≤r N

|u(x) − u(y)|2
|x − y|1+2α/n

dx dy.

Using (2.1) once more we see that

[u]L, α
n ,N = [u]α,n,N .

Applying Theorem 3.2, we obtain the following result. �
Corollary 3.1 For any u ∈ Hα(B(n)

N ),

‖u − ū‖
L2(B(n)

N )
≤ C[u]α,N ,n, ū = q−Nn

∫

B(n)
N

u(x) dx .

Note that a little weaker inequality was proved by a different method in [3] for a
more general framework of ultrametric spaces.

3.3 The Poincaré inequality with˛-harmonic capacity

(Compare with Section 6.5 of [25]). Let K be a local field. As before, we identify
Kn with the unramified extension L of the field K of degree n. Let r = qn is the
cardinality of the residue field of L . A prime element β of K is prime also for L . For
any element x ∈ L , |x |L = r N , N ∈ Z, we can write the canonical representation

x = β−N (ξ1 + ξ2β + · · · )

where ξ j belong to a complete set of representatives of residue classes from OL/PL .
Using the same notations as in the previous section, we consider the ball BN ⊂ L ,

BN = {x ∈ L : |x |L ≤ r N }. Then the inclusion x ∈ BN means that

x − β−N ξ1 = β−N+1(ξ2 + ξ3β + · · · ). (3.8)

The ball BN is represented as a disjoint union of r balls BN−1(ξ1) of the radius r N−1

described by (3.8) with fixed ξ1. The Frobenius automorphism F transposes these
balls.

Let f be a Lipschitz function on the ball BN−1(ξ
0
1 ) where ξ01 is an arbitrary fixed

element. For any ξ1 �= ξ01 „ there exists ν ∈ {1, . . . , r − 1}, such that F−ν(ξ01 ) = ξ1,
so that F−ν : BN−1(ξ

0
1 ) → BN−1(ξ1), and the function

fν(x) = f (Fν(x)), x ∈ BN−1(ξ1),

is defined.
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Since the Frobenius automorphism and its powers preserves the absolute value,
and the distance between points of different balls equals r N , the functions fν define a
Lipschitz function f ∗ on BN . The mapping f �→ f ∗ is a continuous mapping of the
spaces of Lipschitz functions.

If e is a compact subset of BN−1(ξ
0
1 ), such that dist(supp f , e) > 0, then

dist(supp f ∗, e) > 0.
The α-capacity capα(e, BN ) is defined as

capα(e, BN ) = inf
{

[u]2α,N : u ∈ D(BN ), u = 1 in a neighborhood of e
}

.

Theorem 3.3 Let e be a compact subset of BN . For any real-valued function u ∈
D(BN−1(ξ

0
1 )), such that dist(supp u, e) > 0, we have the inequality

capα(e, BN )‖u‖2
L2(BN−1(ξ

0
1 ))

≤ C[u]α,BN−1(ξ
0
1 ). (3.9)

Proof Let f = 1 − u, f ∗ be the above extension onto BN . Suppose that η ∈ D(BN ),
η = 1 on a neighborhood of BN−1(ξ

0
1 ). Then

capα(e, BN ) ≤ ‖η f ∗‖2
α,BN−1(ξ

0
1 )

≤ C‖1 − u‖2
α,BN−1(ξ

0
1 )

(3.10)

where C does not depend on u. Here we used the invariance of the absolute value and
the Haar measure with respect to the Frobenius automorphism. The double integral
over

Fν1(BN−1(ξ
0
1 )) × Fν2(BN−1(ξ

0
1 )), ν1 �= ν2,

is estimated via the L2-norm.
It follows from (3.10) that

capα(e, BN ) ≤ C inf
{

‖1 − u‖2
α,BN−1(ξ

0
1 )

: u ∈ D(BN−1(ξ
0
1 )), dist(supp u, e) > 0

}

.

(3.11)

Let

M =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

mes BN−1(ξ
0
1 )

∫

BN−1(ξ
0
1 )

u2(x) dx

⎫

⎪

⎪

⎬

⎪

⎪

⎭

1/2

where mes BN−1(ξ
0
1 ) = rn−1. By (3.11),

capα(e, BN ) ≤ C‖1 − M−1u‖α,BN−1(ξ
0
1 )

= CM−2[u]α,BN−1(ξ
0
1 ) + C‖1 − M−1u‖L2(BN−1(ξ

0
1 )),
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that is

M2 capα(e, BN ) ≤ C[u]α,BN−1(ξ
0
1 ) + C‖M − u‖L2(BN−1(ξ

0
1 )). (3.12)

Denote

ū1 =
(

mes BN−1(ξ
0
1 )
)−1

∫

BN−1(ξ
0
1 )

u(x) dx .

We may assume that ū1 ≥ 0. Then by the Cauchy inequality, ū1 ≤ M ,

‖ū1‖L2(BN−1(ξ
0
1 )) = ū1(mes BN−1(ξ

0
1 ))1/2,

‖u‖L2(BN−1(ξ
0
1 )) − ‖ū1‖L2(BN−1(ξ

0
1 )) = (mes BN−1(ξ

0
1 ))1/2(M − ū1),

so that

(mes BN−1(ξ
0
1 ))1/2(M − ū1) ≤ ‖u − ū1‖L2(BN−1(ξ

0
1 )),

and we obtain from Theorem 3.2 that

‖M − u‖L2(BN−1(ξ
0
1 )) ≤ ‖M − ū1‖L2(BN−1(ξ

0
1 ))

+ ‖u − ū1‖L2(BN−1(ξ
0
1 ))

≤ 2‖u − ū1‖L2(BN−1(ξ
0
1 ))

≤ C[u]α,BN−1(ξ
0
1 ).

Now the inequality (3.12) implies (3.9). �

3.4 Weighted positivity

Compare with Section 8.3 in [25].
In this section we prove an integral identity for the operator Dα implying, in par-

ticular, its positivity in a weighted Hilbert space whose weight is the fundamental
solution for Dα .

Lemma 3.2 If u, v are real-valued functions belonging to D(Kn), 0 < α < n, then

u(x)(Dαv)(x) + v(x)(Dαu)(x) − (Dα(u · v))(x)

= aα

∫

Kn

[u(x) − u(x + y)][v(x) − v(x + y)]
|y|n+α

Kn

dy, x ∈ Kn, (3.13)

where aα = qαn − 1

1 − q−α−n
.
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Proof Let us multiply the expression in the right-hand side of (3.13) by a function
ϕ ∈ D(Kn) and integrate over Kn . We use the well-known properties of the Fourier
transform (see [36]): if ϕ,ψ ∈ D(Kn), then

∫

ϕψ dx =
∫

ϕ̂̂ψ dx; ϕ̂ ∗ ψ = ϕ̂̂ψ; ̂ϕψ = ϕ̂ ∗ ̂ψ.

We find that

∫

[u(x) − u(x + y)][v(x) − v(x + y)]ϕ(x) dx

=
∫

Fx [u(x) − u(x + y)](ξ)Fx {[v(x) − v(x + y)]ϕ(x)}(ξ) dξ. (3.14)

Next,

Fx [u(x) − u(x + y)](ξ)=
∫

χ(x · ξ)[u(x) − u(x + y)] dx = [1 − χ(−y · ξ)]̂u(ξ).

The right-hand side of (3.14) equals

∫

[1 − χ(y · ξ)]̂u(ξ)Fx {[v(x) − v(x + y)] ∗ ϕ(x)}(ξ) dξ

=
∫ ∫

[1 − χ(−y · ξ)][1 − χ(−y · η)]̂u(ξ )̂v(η)ϕ̂(ξ − η) dξ dη. (3.15)

The integral in y is evaluated using the identity

|x |αKn = 1 − qα

1 − q−α−n

∫

Kn

|ξ |−α−n
Kn [χ(x · ξ) − 1] dξ, (3.16)

a multi-dimensional version of the identity (3.4). In fact, (3.16) can be obtained from
(3.4) using the approach based on the unramified extension L of degree n of the field
K . As in Sect. 3.2, we consider the operator Dα/n on L and use the relations r = qn ,
|x |L = |x |nKn (see (2.1)).

Using (3.16), we get

∫

[1 − χ(−y · ξ)][1 − χ(−y · η)]|y|−α−n
Kn dy

= −
∫

(χ(y · ξ) − 1) + (χ(−y · η) − 1) − (χ(y · (ξ − η)) − 1)|y|−α−n
Kn dy

= 1

aα

(|ξ |αKn + |η|αKn − |ξ − η|αKn

)

.
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Taking into account (3.14) and (3.15) we obtain that the result of multiplying in
(3.13) by ϕ, with subsequent integration, is the expression

∫ ∫

(|ξ |αKn + |η|αKn − |ξ − η|αKn

)

û(ξ )̂v(η)ϕ̂(ξ − η) dξ dη.

Here |η|αKn v̂(η) = (F(Dαv))(η),

∫

(F(Dαv))(η)ϕ̂(ξ − η) dη = ((F(Dαv)) ∗ ϕ̂)(ξ) = (F(Dαv · ϕ))(ξ),

so that
∫ ∫

|η|αKn û(ξ )̂v(η)ϕ̂(ξ − η) dξ dη

=
∫

û(ξ)(F(Dαv · ϕ))(ξ) =
∫

u(x)(Dαv)(x)ϕ(x) dx .

Similarly,

∫ ∫

|ξ |αKn û(ξ )̂v(η)ϕ̂(ξ − η) dξ dη =
∫

v(x)(Dαu)(x)ϕ(x) dx .

Finally,

∫ ∫

|ξ − η|αKn û(ξ )̂v(η)ϕ̂(ξ − η) dξ dη =
∫ ∫

|τ |αKn û(ξ )̂v(ξ − τ)ϕ̂(τ ) dξ dτ

=
∫

(F(Dαϕ))(τ )(̂u ∗ v̂)(τ )) dτ

=
∫

(Dαϕ)(x)u(x)v(x) dx

=
∫

ϕ(x)(Dα(uv))(x)(x) dx .

Since ϕ is arbitrary, we come to (3.13). �
Note that the Riesz kernel fα (see the above Sect. 3.2 and Section VIII.4 in [36]

where the multi-dimensional case is considered) is a fundamental solution for the
operator Dα , that is Dα fα = δ; this is easily verified using the Fourier transform [17,
36]. The explicit expression for fα is

fα(x) = |x |α−1
Kn

Kn (α)
, Kn (α) = 1 − qα−n

1 − q−α
.

It is important that fα(x) ≥ 0, if 0 < α < n.
Consider the equality (3.13) for u = v, multiply both sides by fα and integrate. We

obtain the next result.
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Theorem 3.4 (weighted positivity) Let 0 < α < n. For every real-valued u ∈ D(Kn),
the following equality is valid; both sides are nonnegative:

2
∫

(Dαu)(x)u(x) fα(x) dx = u(0)2 + aα

∫ ∫ |u(x) − u(y)|2
|x − y|n+α

Kn

fα(x) dx dy.

4 Dirichlet problem

4.1 The case of a homogeneous boundary condition

The Poincaré type inequality (3.2) implies weak solvability of the Dirichlet problem

Dαu = f in� ⊂ Kn, (4.1)

u = 0 inKn \ �, (4.2)

where � is a bounded open subset of Kn . As in analysis on R
n [27], for a nonlocal

operator, the boundary condition is set on the complement of �.
Let XKn be the space of functions u(x), x ∈ Kn , such that u ≡ 0 on Kn \ �,

∫

Kn

∫

Kn

|u(x) − u(x + y)|2
|y|n+2α

Kn

dx dy < ∞.

XKn is a Hilbert space with the inner product

(v,w) = 1

2

∫

Kn

∫

Kn

(v(x) − v(x + y))(w(x) − w(x + y))K(y) dx dy.

The weak formulation of the problem (4.1)–(4.2) is as follows. Suppose f ∈ X ′
Kn

(the dual space); we write our equation as

(u, ϕ) =
∫

�

f (x)ϕ(x) dx for allϕ ∈ XKn .

The existence of a unique weak solution is a consequence of the Lax-Milgram
theorem (see Corollary 5.8 in [6]).

4.2 Inhomogeneous boundary condition

The Dirichlet problem

Dαu = 0 in � ⊂ Kn, (4.3)

u = g inKn \ �, (4.4)
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has been studied by Haran [13] as a part of his p-adic potential theory. Here we
reproduce some results from [13] we use in a sequel. As before, we extend easily
some results from K to Kn using the unramified extension technique.

Let � = B(n)
−N−1, K

n\� = {x ∈ K N : |x |Kn ≥ q−N }. Let g be a continuous
function on Kn \ �, such that

∫

Kn\�
|g(x)| dx

|x |n+α
Kn

< ∞.

Define the function u as the extension of g onto Kn by the constant

1 − q−α

1 − q−n
q−Nα

∫

Kn\�
g(x)

dx

|x |n+α
Kn

Then the function u is a solution of (4.3)–(4.4) ([13], page 935).
In other words, the above expression is a counterpart of the classical Poisson kernel.

It is used ([13], Section 7.7) to obtain an expression for the Green function Gα
�(x, y)

corresponding to the problem (4.1)–(4.2) with � = B−N−1.
For our purposes, it is sufficient to list some of its properties. Namely, for a ball �,

0 ≤ Gα
�(x, y) ≤ C |x − y|α−n

Kn (4.5)

(see [13], page 935), where C does not depend on �, Gα
�(x, y) = 0 for x ∈ Kn\�,

y ∈ �, and also for y ∈ Kn\� and any x . We do not touch a more involved theory
based on the notion of regular boundary points.

4.3 Comparison theorem

In the p-adic case, a comparison theorem is different from real counterparts where
the technique is based typically on the non-existence of continuous step functions;
see, for example, Lemma 9 in [24]. For the non-Archimedean local field K , the space
D(K ) of (continuous) step functions is dense in L2(K ). Therefore non-Archimedean
comparison theorems contain additional assumptions.

For linear equations, it suffices to prove positivity of solutions.

Theorem 4.1 Let u be a continuous weak solution of the Dirichlet problem

Dαu = f in� ⊂ Kn, (4.6)

u = g inKn \ �, (4.7)

where f and g are continuous functions, f ≥ 0 on �, g ≥ 0 on �c = Kn \ �, � is a
bounded open subset of K n satisfying at least one of the following conditions:

(i) � has a nonempty boundary ∂�;
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(ii) For each x ∈ �,

x + � ⊂ �; x + �c ⊂ �c.

Then u ≥ 0 on �.

Proof The function u is a weak solution in the sense of Section 4.1, satisfying the
appropriate identity for an arbitrary test function ϕ.

In order to specify ϕ, write u = u+ − u− on �, that is

u+ = max{u, 0}1�, u− = max{−u, 0}1�.

where 1� is the indicator function of the set �. If u is not nonnegative, then u− is not
identically zero, and we may set ϕ = u−.

We have

∫∫

(Kn×Kn)\(�c×�c)

(u(x) − u(z))(ϕ(x) − ϕ(z))K(z − x) dx dz +
∫

�

f ϕ dx (4.8)

where the right-hand side is nonnegative. On the other hand, the left-hand side of (4.8)
equals

∫

�

∫

�

(u(x) − u(z))(u−(x) − u−(z))K(z − x) dx dz

+2
∫

�

dx
∫

�c

(u(x) − g(z))u−(x)K(z − x) dz.

Next, u+(x)u−(x) = 0, so that

(u(x) − u(z))(u−(x) − u−(z)) = (u+(x) − u+(z))(u−(x) − u−(z))

− (u−(x) − u−(z))2

= −(u+(x)u−(z) + u+(z)u−(x))

− (u−(x) − u−(z))2 ≤ 0,

and returning to (4.8) we see that the left-hand side is less than or equal to zero. To
avoid the contradiction, we have to consider a possibility that u−(x) equals identically
a nonnegative constant C , that is u(x) ≡ −C on �

Under our assumption (i), there exists a point x0 ∈ ∂�. It is known ([5], 1.1.6)
that x0 belongs also to the boundary of �c. Since u is continuous on Kn , its value
u(x0) must coincide with lim��x→x0 u(x) and with lim�c�x→x0 u(x). The first of
these limits equals −C ≤ 0, the second one equals g(x0) ≥ 0. Therefore, C = 0,
u− = 0, and we have come to a contradiction.
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Under the assumption (ii), for any x ∈ �,

(Dαu)(x) =
∫

�

[u(x) − u(x + y)]K(y) dy +
∫

�c

[−C − u(x + y)]K(y) dy

= −C
∫

�c

K(y) dy −
∫

�c

g(x + y)K(y) dy ≤ −C
∫

�c

K(y) dy < 0.

This contradiction completes the proof. �

5 Boundary regularity

In this section, we consider the Dirichlet problem (4.6)–(4.7) where 0 < α < 1, � is
a bounded open set with nonempty boundary. To be definite, we assume that 0 ∈ ∂�.
To simplify notations, we consider the one-dimensional case, � ⊂ K ; the general
situation can be studied, as before, using the unramified extension of degree n.

We also assume that f ∈ Ls(�), s > 1
α
, g is bounded and belongs to the Hölder

space Cδ(0), g(0) = 0.
Our task is to find conditions on �, under which a continuous solution of the

problem (4.6)–(4.7) satisfies the estimate

|u(x)| ≤ C |x |γK , γ > 0, (5.1)

on a neighborhood of the origin 0 ∈ ∂�.
Geometric properties of � are described by the following condition: there exists

ν ∈ (0, 1), such that for all k > 0

mes
[

(B(rk) \ B(rk+1)) ∩ �c] ≥ νrk (5.2)

where rk = q−λk , {λk} is a sequence of natural numbers satisfying the quasi-geometric
growth condition, that is

1 < R− ≤ λk+1

λk
≤ R+ < ∞, k = 1, 2, . . . ; λ1 = 1. (5.3)

Theorem 5.1 Let u be a continuous solution of the Dirichlet problem (4.6)–(4.7).
Denote

M = ‖u‖L∞(�∩B(1)) + ‖ f ‖Ls (�∩B(1)) + ‖g‖Cδ(0).

Then the geometric condition (5.2) implies the inequality

|u(x)| ≤ ̂CM |x |γK , for some γ > 0,

where ̂C and γ do not depend on u, valid in a neighborhood of the origin.
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Proof Let us construct a sequence of nonnegative functions {vk}∞1 , such that v1 ≡ M ,
while for k ≥ 2,

⎧

⎨

⎩

Dαvk = | f | on B
(

r(k−1)k0

) ;
−vk ≤ u ≤ vk on K ;
vk ≤ ĈMq−λkk0ρ on B

(

rkk0
)

(5.4)

where k0 ≥ 1 is a natural number, 0 < ρ < min(α − 1
s , δ),

̂C does not depend on u
and k. Specific values of k0 and ρ (independent of k) will be chosen later.

For k = 2, we set

v2(x) =
∫

B(rk0 )c

Pα
rk0

(x, y)v1(y) dy +
∫

B(rk0 )

Gα
rk0

(x, y)| f |(y) dy (5.5)

where Pα
rk0

(x, y) is the Poisson kernel for the ball B(rk0) understood in the sense of
Section 4.2, Gα

rk0
(x, y) is the Green function for the same ball.

Since the Poisson kernel, for any x ∈ B(rk0), defines a probability measure, the
first summand in (5.5) equals M and can be extended continuously onto K by this
constant. By the ultrametric property and the Holder inequality, the second summand

is less than or equal to c1Mq−λk0 (α− 1
s ) where c1 > 0 does not depend on k0. We have,

for 0 < ρ1 < min(α − 1
s , δ), that

v2(x) ≤ M + c1Mq−ρ1λk0 = M + c1Mrρ1
k0

.

By (5.3),

λn+1

R+
≤ λn,

λn+2

R+
≤ λn+1,

. . .

λn+n

R+
≤ λn+n−1.

Multiplying these inequalities we find that

λ2n

Rn+
≤ λn, n = 1, 2, . . . . (5.6)

In particular, λk0 ≥ R−k0+ λ2k0 , so that

q−ρ1λk0 ≤ q−σλ2k0 , σ = ρ1

Rk0+
.
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Taking a larger constant ̂C we find that v2(x) satisfies the inequality from (5.4) with
k = 2:

v2(x) ≤ ̂CMq−σλ2k0 , x ∈ B(r2k0). (5.7)

The inequality −v2 ≤ u ≤ v2 is a consequence of Theorem 4.1.
Suppose that the estimate from (5.4) is fulfilled for some k ≥ 2. Let us prove it for

k + 1. Denote

G(x) =

⎧

⎪

⎨

⎪

⎩

Mr δ
(k−1)k0

on
(

B(r(k−1)k0) \ B(r(kk0)
) ∩ �c;

̂CMrσ
(k−1)k0

on
(

B(r(k−1)k0) \ B(rkk0)
) ∩ �;

vk on K \ (B(r(k−1)k0) \ B(rkk0)
)

.

Then −G ≤ u ≤ G on B(rkk0)
c. Let

vk+1(x) =
∫

B(rkk0 )c

Pα
rkk0

(x, y)G(y) dy +
∫

B(rkk0 )

Gα
rkk0

(x, y)| f |(y) dy, x ∈ B(rkk0 ).

(5.8)

Let us write the first summand in (5.8) as I1 + I2 where

I1 =
∫

B(r(k−1)k0 )\B(rkk0 )

Pα
rkk0

(x, y)G(y) dy, I2 =
∫

B(r(k−1)k0 )c

Pα
rkk0

(x, y)G(y) dy.

Let

A = (B(r(k−1)k0) \ B(rkk0)) ∩ �c =
kk0
⋃

j=(k−1)k0

(B(r j ) \ B(r j+1)) ∩ �c.

Using (5.2) and the notation ζ(α) = (1 − q−α)−1 we write

∫

A

Pα
rkk0

(x, y) dy = 1

ζ(α)
q−αλkk0

kk0
∑

j=(k−1)k0

∫

(B(r j )\B(r j+1))∩�c

dy

|y|1+α
K

= 1

ζ(α)
q−αλkk0

kk0
∑

j=(k−1)k0

q(1+α)λ j

∫

(B(r j )\B(r j+1))∩�c

dy

≥ 1

ζ(α)
q−αλkk0 ν

kk0
∑

j=(k−1)k0

qαλ j ≥ ν

ζ(α)

def= μ ∈ (0, 1).
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Let

H = G − Mr δ
(k−1)k0

̂CMrσ
(k−1)k0

− Mr δ
(k−1)k0

. (5.9)

Since 0 < σ < δ, the denominator in (5.9) is positive, provided ̂C ≥ 1. Therefore
H ≤ 0 on A. Moreover, H ≤ 1 on B(r(k−1)k0). Therefore

∫

B(r(k−1)k0 )\B(rkk0 )

Pα
rkk0

(x, y)H(y) dy

=
∫

B(r(k−1)k0 )\B(rkk0 )

Pα
rkk0

(x, y) dy +
∫

B(r(k−1)k0 )\B(rkk0 )

Pα
rkk0

(x, y)(H(y) − 1) dy

≤
∫

B(rkk0 )c

Pα
rkk0

(x, y) dy −
∫

A

Pα
rkk0

(x, y) dy ≤ 1 − μ.

Returning to G and expressing G via H, we see that

I1 ≤ (1 − μ)
[

̂CMrσ
(k−1)k0 − Mr δ

(k−1)k0

]

+ Mr δ
(k−1)k0 ≤ [(1 − μ)̂CM + μM]rσ/R

k0+
(k+1)k0

.

Let us estimate I2. It follows by induction from (5.8) and the properties of the
Poisson kernel and Green function that vk(x) = M for x ∈ B(r(k−1)k0)

c. Now

I2 = M
∫

B(r(k−1)k0 )c

Pα
rkk0

(x, y) = ζ(1)

ζ(α)
Mq−αλkk0

∫

|y|K≥q
−λ(k−1)k0

+1

dy

|y|1+α
K

= M

ζ(α)
q−αλkk0

∞
∑

j=λ(k−1)k0+1

q− jα = Mq−αλkk0+αλ(k−1)k0−1.

Like in the previous estimates, we find from (5.3) that

λn ≤ λn+l

Rl−
, l ≥ 0.

In particular,

λ(k−1)k0 ≤ λkk0

Rk0−
,

so that

I2 ≤ Mq
−αλkk0 (1− 1

R
k0−

)R
k0− λ(k+1)k0 ≤ ̂CMq−ρλ(k+1)k0 ,
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if k0 is chosen in such a way that

ρ = α(1 − R−k0− )R−k0− < min(α − 1

s
, δ).

Next, using the Hölder inequality we get as before that

∫

B(rkk0 )

Gα
rkk0

(x, y)| f |(y) dy ≤ c1Mr
α− 1

s
kk0

≤ c1Mrρ
kk0

≤ c1Mr
ρ(R

k0− )−1

(k+1)k0
.

Taking together several latest estimates we can choose k0 and ρ (not depending on k)
in such a way that the inequality in (5.4) holds for the step k + 1. In principle, these
values of k0 and ρ could be chosen before the induction process. Thus the sequence
of functions described in (5.4) has been constructed.

For any x ∈ B(rk0), there exists such a number k that x ∈ B(rkk0)\B(r(k+1)k0),
that is

q−λ(k+1)k0 < |x |K ≤ q−λkk0

and

|u(x)| ≤ ̂CMq−ρλkk0 .

As we know, λkk0 ≥ λ(k+1)k0

Rk0+
, so that

|u(x)| ≤ ̂CMq
− ρ

R
k0+

λ(k+1)k0 ≤ ̂CM |x |
ρ

R
k0+

K ,

which means the Hölder continuity of the function u. �
Examples 1) Let

� =
∞
⋃

k=1

S(rk), S(rk) = {x ∈ K : |x |K = q−λk
}

where rk = q−λk , and the sequence {λk} satisfies the inequalities (5.3) with R− > 2.

We have 0 ∈ ∂�, �c =
∞
⋂

k=1
S(rk)c = {x ∈ K : |x |K �= rk for all k=1,2,…},

[

B(rk) \ B(rk+1)
] ∩ �c = {x ∈ K : rk+1 < |x |K < rk} ,

so that

mes
[

B(rk) \ B(rk+1)
] ∩ �c = q−λk−1 − q−λk+1 = q−λk

(

q−1 − q−(λk+1−λk )
)

.
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By our definition,

λk+1 − λk = λk

(

λk+1

λk
− 1

)

≥ (R− − 1)λk,

and therefore

q−1 − q−(λk+1−λk ) ≥ q−1 − q−(R−−1)λk ≥ q−1 − q−R−+1

= q−1
(

1 − q−(R−−2)
)

def= ν > 0,

that is the condition (5.2) is satisfied, and the solution on � is Hölder continuous at
the origin.

2) An obvious example of irregular behavior at the boundary is the punctured disk

� = O\{0} and the fundamental solution u(x) = 1 − q−α

1 − q−α−1 |x |α−1
K (see [17], Section

2.2).
In this case, �c = {x ∈ K : x = 0 or|x |K > 1}. Here the condition (5.2) is of

course violated.
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