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Abstract
In this paper, we consider the mixed local-nonlocal quasilinear elliptic problem, with
singular nonlinearity having a variable exponent,

(P)

⎧
⎪⎨

⎪⎩

−�pu + (−�)spu = f

uγ (x)
in �,

u > 0 in �,

u = 0 in R
N\�,

where � ⊂ R
N is a bounded regular domain in R

N with 0 < s < 1 < p < N ,
γ is positive continuous function, having a convenient behavior near ∂� and f be a
nonnegative function belonging to a suitable Lebesgue space. By using approximation
methods, we get the existence and regularity of positive solutions for such problems.
The summability of the finite energy solutions to Problem (P) in the case γ (x) ≡ 0
in � is also studied.

Keywords Mixed local and nonlocal p-Laplace operators · Singular problem ·
Existence · Positive solutions · Variable exponent · Regularity
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1 Introduction

In this work, we study the followingmixed local-nonlocal quasilinear elliptic problem,
with singular nonlinearity having a variable exponent,
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⎧
⎪⎨

⎪⎩

−�pu + (−�)spu = f

uγ (x)
in �,

u > 0 in �,

u = 0 in R
N\�,

(1.1)

where � ⊂ R
N be a bounded regular domain with 0 < s < 1 < p < N , γ ∈ C1(�)

is positive function, having a convenient behavior near ∂� and f be a nonnegative
function belonging to a suitable Lebesgue space.

Here �p = div(|∇u|p−2∇u) is standard p-Laplace operator and (−�)sp denotes
the so-called fractional p−Laplacian operator, is defined as,

(−�)spu(x) := P.V
∫

RN

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|N+ps
dy,

where P.V denotes the Cauchy principal value P.V, as usual denoted the principal-
value of the integral.

Recently, several studies and great attention have concentrated to the mixed local
and non-local operator from different points of view, including the regularity theory,
existence and non-existence results and eigenvalue problems, we refer readers to [1,
18–22, 24, 25, 29, 49, 52] and the references therein.

Before stating our main results, we begin by recalling some well known results
related to the singular term.

• Local case (s = 1). In this case, we consider the following problem,

⎧
⎪⎨

⎪⎩

−�pu = f

uγ (x)
in �,

u > 0 in �,

u = 0 in ∂�,

(1.2)

In the case of semilinear problem corresponding to p = 2 and γ (x) = γ ∈ R
+∗ ,

the study of singular elliptic equations was initiated in pioneering work [16] which
constitutes the starting point of a large literature, see for instance [4, 9–12] and the
references therein. The quasilinear case that is for p ∈ (1,∞) with γ (x) = γ ∈ R

+,
authors in [39] answered the question of existence, multiplicity and regularity of weak
solutions in the case γ + ∈ (0, 1), which was further extended to the case of γ + ≥ 1
in [7] where the authors have showed the multiplicity of weak solutions (see also [13,
26]). Recently for theweighted p-Laplace operatorwithMuckenhoupt class ofweights
with γ (x) = γ ∈ R

+ the existence and multiplicity is proved in [32, 43]. In [14], the
authors consider a singular semilinear elliptic problem with variable exponent γ (x),
they obtained existence and regularity of the solution, under some conditions on the
behavior of the function γ (x) near the boundary of �. Other related works can be
found [28, 37, 38, 46, 47] and the references therein.

Notice that Problem (1.2) has been treated by another type of operator, notably an
anisotropic operator see [30], (see also [31, 44]).
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• Non-local case (0 < s < 1). In this case, Problem (1.1) reduces to,

⎧
⎪⎨

⎪⎩

(−�p)
su = f

uγ (x)
in �,

u > 0 in �,

u = 0 in R
N\�,

(1.3)

This kindof nonlocal problemswith nonlinear singular termhas beenwidely studied
in recent years.

Problem (1.3) has been studied in [8] when p = 2 and γ (x) = γ + ∈ R
+∗ , the

authors proved the existence and uniqueness of positive solutions, according to the
range of γ + and to the summability of f , (see also [54]). In [15], the authors generalize
the results of [8] to delicate case of the p − fractional Laplace operator. Notice that,
the quasilinear nonlocal elliptic problem (1.3) with variable singular exponent have
been considered in [35], where the authors established the existence results by using
the approximations arguments. Readers may refer to the related work in [2, 34, 36,
40, 46] and the references therein.

Needless to say, the references mentioned above do not exhaust the rich literature
on the subject.

•Mixed local and non-local case Problem (1.1) with p = 2 and γ (x) = γ + ∈ R
+∗ ,

it was considered recently in [6]. The authors have showed the existence, uniqueness
and regularities properties of the weak solution by deriving uniform a priori estimates
and using the method of approximation. In the very recent work [33], the authors
have obtained the existence and regularity of solution to problem (1.1) for p > 1,
γ (x) = γ + ∈ R

+∗ and under some conditions of f .
The main goal of this paper is to look the natural conditions on f and γ (x) which

allow us to establish the existence and uniqueness of solution to problem (1.1). As far
as we aware, our main results are new even in the semilinear case p = 2.

Notice that, the summability of solutions of the following problem,

⎧
⎨

⎩

−�pu + (−�)spu = f in �,

u > 0 in �,

u = 0 in R
N\�,

(1.4)

is also studied according to the summability of f .
The paper is organized as follows. In the next section we recall some preliminaries

dealing with the functional setting associated to our problem, like the concepts of
solutions, some functional inequalities and useful lemmas are included that will be
needed along of the paper. Section3 is devoted to proving the summability of the
solution of (1.4) in terms of the summability of the right-hand side of this problem.
In Sect. 4, we study approximating regular problems, where the singular nonlinearity
is replaced by a regular one and we prove that the sequence of solutions to such
approximating problems converges to the solution of problem (1.1). Finnaly, in last
section, we establish some useful results that will be used in this paper.
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2 The functional setting and tools

In this section we present some basic results for fractional Sobolev spaces that will be
used in the proofs of our theorems. We refer to Section 2.2 in [51] for the proofs and
for other useful estimates and properties of the fractional Sobolev spaces.

Let � ⊂ R
N with N ≥ 2 and 0 < s < 1 < p < ∞ be the real numbers. The

fractional Sobolev space is defined by,

Ws,p(�) =
{

u ∈ L p(�) :
∫

�

∫

�

|u(x) − u(y)|p
|x − y|N+ps

dxdy < +∞
}

.

Ws,p(�) is Banach space endowed with the norm,

‖u‖Ws,p(�) =
(

||u||L p(�) +
∫

�

∫

�

|u(x) − u(y)|p
|x − y|N+ps

dxdy

) 1
p

.

The spaceWs,p(RN ) is defined analogously. The spaceWs,p
0 (�) is the set of functions

defined as,

Ws,p
0 (�) =

{
u ∈ Ws,p(RN ) : u = 0 in R

N\�
}

.

BothWs,p(�) andWs,p
0 (�) are reflexive Banach spaces, see [5, 27] for more details.

The need the next Sobolev inequality, a simple proof can be seen in [48].

Theorem 2.1 (fractional Sobolev inequality): Assume that 0 < s < 1 and p > 1
are such that ps < N, then there exists a positive constant S(N , s) such that for all
v ∈ C∞

0 (RN ), we have that

S(N , s)

( ∫

RN
|v(x)|p∗

s dx

) p
p∗s ≤

∫∫

R2N

|v(x) − v(y)|p
|x − y|N+ps

dx dy, (2.1)

where p∗
s = PN

N−ps is Sobolev critical exponent.

Now we define, for 1 < p < ∞, the Sobolev space

W 1,p(�) =
{
u ∈ L p(�) : |∇u| ∈ L p(�)

}
,

endowed with classical norm,

||u||W 1,p(�) = ||u||L p(�) + ||∇u||L p(�).

Notice that (W 1,p(�), ||.||W 1,p(�)) is Banach reflexive space.

The space W 1,p
0 (�) is defined as the closure of the space C∞

0 (�) of smooth func-
tions with compact support in the norm of the Sobolev space W 1,p(�).
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The next result asserts that Sobolev space W 1,p(�) is continuously embedded in
the fractional Sobolev space, see [27] for more details.

Lemma 2.2 Let � ⊂ R
N be bounded Lipschitz domain and 0 < s < 1 < p < ∞,

then, there exists a constant C = C(N , p, s) such that,

||u||Ws,p(�) ≤ C ||u||W 1,p(�), ∀u ∈ W 1,p(�). (2.2)

We need also the following result, where the proof can be found in [21],

Lemma 2.3 Under the same hypothesis of the previous lemma, then, there exists a
constant C = C(N , p, s,�) such that,

∫

RN

∫

RN

|u(x) − u(y)|p
|x − y|N+ps

dxdy ≤ C
∫

�

|∇u|pdx, ∀u ∈ W 1,p
0 (�). (2.3)

Remark 2.4 It clear that from previous inequality, the following norm on the space
W 1,p

0 (�) defined by

||u||
W 1,p

0 (�)
=

⎛

⎝

∫

�

|∇u|pdx +
∫

RN

∫

RN

|u(x) − u(y)|p
|x − y|N+ps

dxdy

⎞

⎠

1
p

(2.4)

is equivalent to

||u||
W 1,p

0 (�)
=

⎛

⎝

∫

�

|∇u|pdx
⎞

⎠

1
p

. (2.5)

We define the notion of zero of Dirichlet boundary condition as follows,

Definition 2.5 We say that u ≤ 0 on ∂�, if u = 0 in R
N\� and for every ε > 0, we

have

(u − ε)+ ∈ W 1,p
0 (�).

We say that u = 0 on ∂�, if u in nonnegative and u ≤ 0 on ∂�.

Now, we need to precise the sense of the weak solution for the problem (1.1).

Definition 2.6 Assume that u ∈ W 1,p
loc (�)∩L p−1(�). We say that u is a weak solution

to problem (1.1), if u > 0 in �, u = 0 on ∂� in the sense of Definition 2.5 with
f

uγ (.) ∈ L1
loc(�) and for every φ ∈ C1

c (�), we have

∫

�

|∇u|p−2∇u∇φ +
∫

�

φ((−�)spu)dx =
∫

�

f

uγ (x)
φdx . (2.6)
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Remark 2.7 Let u ∈ W 1,p
loc (�) be a nonnegative function in �, satisfy uα ∈ W 1,p

0 (�),
for some α ≥ 1, then, we have u = 0 on ∂� according to Definition 2.5, (see [33] for
more details.)

In order to give the summability of solutions to problem (1.3), we need to clarify
the sense of the energy solution to (1.3),

Definition 2.8 Let f ∈ W−1,p′
(�) be nonnegative function whereW−1,p′

(�) is dual
space of W 1,p

0 (�). We say that u ∈ W 1,p
0 (�) is a energy solution to (1.3), if

u > 0 in �, u = 0 on R
N\�, and for every φ ∈ C∞

c (�), we have that
∫ ∫

D�

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y)

|x − y|N+ps
dxdy

+
∫

�

|∇u|p−2∇u∇φdx =
∫

�

f φdx, (2.7)

where D� = R
2N\(�c × �c).

We need also the following result, the proof of which can be found in [17].

Theorem 2.9 Suppose that s ∈ (0, 1), f ∈ Lm(�) for some m ≥ 1 and define
w ∈ Ws,p

0 (�) to be the unique solution to

⎧
⎨

⎩

(−�)spw = f in �,

w > 0 in �,

w = 0 in R
N\�,

(2.8)

then, we have that

(i) If m > N
ps , then, there exists a constant C > 0 depending on N , s, p,�, ‖ f ‖Lm (�)

such that,

‖w‖L∞(�) ≤ C . (2.9)

(ii) If f ∈ L
N
ps (�), then, there exists, α > 0 such that,

∫

�

eα|u| < +∞. (2.10)

(iii) If pN
(p−1)N+ps = (p∗

s )
′ ≤ m < N

ps , then, there exists a constant,

C = C(N ,m, s) > 0 such that,

‖w‖Lm∗∗
s (�) ≤ C‖ f ‖Lm (�) (2.11)

where m∗∗
s = (p−1)mN

N−pms .
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Definition 2.10 We define for every k ≥ 0 and σ ∈ R the functions,

Tk(σ ) := max{−k,min{k, σ }} and Gk(σ ) := σ − Tk(σ ). (2.12)

For the following result, see [17].

Proposition 2.11 Assume that v ∈ Ws,p
0 (�). Then, we have that

(i) If ψ ∈ Lip(R) is such that ψ(0) = 0, then ψ(v) ∈ Ws,p
0 (�). In particular, for

any k ≥ 0, Tk(v), Gk(v) ∈ Ws,p
0 (�);

(ii) For any k ≥ 0,

‖Gk(v)‖2
Ws,p

0 (�)
≤

∫

�

Gk(v) (−�)spv dx; (2.13)

(iii) For any k ≥ 0,

‖Tk(v)‖2
Ws,p

0 (�)
≤

∫

�

Tk(v) (−�)spv dx . (2.14)

The next elementary algebraic inequality from [3] will be used in some arguments.

Lemma 2.12 Let a, b ≥ 0, p ≥ 1 and α > 0. Then, there exists a positive constant
C > 0 such that

|a − b|p−2(a − b)(aα − bα) ≥ C |a p+α−1
p − b

p+α−1
p |p. (2.15)

Next, we state also the following algebraic inequality, the proof of which can be
found in [23].

Lemma 2.13 Let 1 < p < ∞. Then for any ξ1, ξ2 ∈ R
N , there exists a constant

positive C := C(p) such that

〈|ξ1|p−2ξ1 − |ξ2|p−2ξ2, ξ1 − ξ2〉 ≥ C
|ξ1 − ξ2|2

(|ξ2| + |ξ1|)2−p
. (2.16)

Finally we state the following classical numerical iteration result proved in [53] and
that we will use later for some boundedness results.

Lemma 2.14 Let ψ : R
+ → R

+ be a nonincreasing function such that

ψ(h) ≤ M ψ(k)δ

(h − k)γ
, ∀h > k > 0,

where M > 0, δ > 1 and γ > 0. Then ψ(d) = 0, where dγ = M ψ(0)δ−1 2
δγ
δ−1 .
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3 Summability of solution when f ∈ Lm(Ä),m ≥ (p∗
s )

′ := pN
(p−1)N+ps

In this section we study the summability of solutions to problem (1.4) when we vary
the regularity of source term f ∈ Lm(�) with m ≥ (p∗

s )
′ := pN

(p−1)N+ps . As we
commented in the introduction of this work, we will adapt the technique used in [42]
for the case p = 2 to the general case 1 < p < ∞.

3.1 Boundedness of solution whenm > N
p−1+s

In this subsection, we will show the boundedness of any solutions to problem (1.4) if
f ∈ Lm(�) with
m > N

p−1+s . Notice that the following result can be seen as a generalization of
proposition 9 of [51] to the case of mixed operators.

Theorem 3.1 Let 0 � f ∈ Lm(�) with m > N
p−1+s . Let u ∈ W 1,p

0 (�) be the unique
energy solution to problem (1.4). Then, there exists a positive constant C depending
on N ,�, || f ||Lm (�), s, ||u||

W 1,p
0 (�)

such that

||u||L∞(�) ≤ C .

Proof Notice that the existence and uniqueness of solution u ∈ W 1,p
0 (�) follows by

arguing exactly as in the proof of Lemma 3.1 in [33]. Let be k > 0 and consider the
function Gk(u) defined in (2.12) as test function in(1.4), we get,

∫ ∫

D�

|u(x) − u(y)|p−2(u(x) − u(y))(Gk(u(x)) − Gk(u(y))

|x − y|N+ps
dxdy.

+
∫

�

|∇u|p−2∇u∇Gk(u)dx =
∫

�

f Gk(u)dx, (3.1)

On the other hand, we know that, u(x) = Tk(u(x)) + Gk(u(x)), then, by applying
Proposition 2.11, it holds that,

||Gk(u)||p
Ws,p

0 (�)
≤

∫

�

f Gk(u)dx

≤
∫

Ak

f Gk(u)dx,

where Ak = {x ∈ � : u(x) ≥ k}.
Hence, by using Sobolev inequality (2.1) and Hölder inequality, we get,

S||Gk(u)||p
L p∗s (�)

≤ || f ||Lm (�)||Gk(u)||L p∗s (�)
|Ak |1−

1
m − 1

p∗s .
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Thus, we conclude that,

||Gk(u)||L p∗s (�)
≤ C || f ||

1
p−1
Lm (�)|Ak |

1
p−1

(
1− 1

m − 1
p∗s

)

. (3.2)

Since ∇u(x) = ∇Gk(u(x)) for every x ∈ Ak , it follows that,

∫

�

|∇u|p−2∇u∇Gk(u))dx =
∫

�

|∇Gk(u)|pdx . (3.3)

So, combining with (3.1), (3.3), Proposition 2.11 and Sobolev embedding, we derive
that,

S||Gk(u)||p
L p∗ (�)

≤
∫

Ak

|∇Gk(u)|pdx

≤
∫

Ak

f Gk(u)dx

≤ || f ||Lm (�)||Gk(u)||L p∗s (�)
|Ak |1−

1
m − 1

p∗s (3.4)

Thus, combining with (3.2) and (3.4), it holds that,

||Gk(u)||p
L p∗ (�)

≤ C || f ||Lm (�)||Gk(u)||L p∗s (�)
|Ak |1−

1
m − 1

p∗s

≤ C || f ||
p

p−1
Lm (�)|Ak |

p
p−1

(
1− 1

m − 1
p∗s

)

.

Since for every h > k, we know that Ah ⊂ Ak and |Gk(u(x)|χAh (x) ≥ (h − k) in �,
we have that

(h − k)|Ah |
1
p∗ ≤ ||Gk(u)||L p∗(�)

≤ C || f ||
1

p−1
Lm (�)|Ak |

1
p−1

(
1− 1

m − 1
p∗s

)

.

So,

|Ah | ≤ C
|| f ||

p∗
p−1
Lm (�)|Ak |

p∗
p−1

(
1− 1

m − 1
p∗s

)

(h − k)p∗ .

Now we observe that,

p∗

p − 1

(

1 − 1

m
− 1

p∗
s

)

> 1,
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if m > N
p−1+s . Hence, we can apply Lemma 2.14, with

0 < M = C || f ||
p∗
p−1
Lm(�), δ = p∗

p − 1

(

1 − 1

m
− 1

p∗
s

)

> 1, γ = p∗ > 0

and ψ(σ) = |Aσ |,

to derive that, there exists, k0 > 0 such that |Ak | = 0 for every k > k0 and thus,

esssup�|u| ≤ k0.

��

3.2 Summability of solution when pN
(p−1)N+ps ≤ m < N

p−1+s

The main result of this section is the following result,

Theorem 3.2 Assume that f ∈ Lm(�) with

pN

(p − 1)N + ps
≤ m <

N

p − 1 + s
, (3.5)

and let u ∈ W 1,p
0 (�) be the unique energy solution to problem (1.4). Then, there exists

a positive constant C = C(N ,m, s) such that,

||u||Lm∗∗
(�) ≤ C || f ||

1
p−1
Lm(�) (3.6)

where

m∗∗ = (p − 1)Nm(N − ps)

(N − p)(N − psm)
. (3.7)

Proof For T > 0 big to be precise later, we define the following function,

ψ(σ) =
{

σβ σ ≤ T ,

βT β−1(σ − T ) + T β, σ > T ,
(3.8)

where β = m∗∗
s
m′ and m∗∗

s = (p−1)mN
N−pms .

Since pN
(p−1)N+ps ≤ m < N

p−1+s , so, we deduce that, β ≥ 1.

Using ψ(u) as test function in problem (1.4), we get,

∫

RN

∫

RN

|u(x) − u(y)|p−2(u(x) − u(y))(ψ(u(x)) − ψ(u(y))

|x − y|N+ps
dxdy
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+
∫

�

|∇u|p−2∇u∇ψ(u)dx =
∫

�

f ψ(u)dx, (3.9)

Observe that,

∫

�

|∇u|p−2∇u∇ψ(u)dx =
∫

�∩{u>T }
|∇u|p−2∇u∇ψ(u)dx

+
∫

�∩{0≤u≤T }
|∇u|p−2∇u∇ψ(u)dx

= βT β−1
∫

�∩{u>T }
|∇u|pdx

+
∫

�∩{0≤u≤T }
|∇u|p−2∇u∇uβdx

=
∫

�∩{u>T }
|∇u|pdx

+β

(
p

p + β − 1

)p ∫

�∩{0≤u≤T }
|∇u

p−1+β
p |pdx ≥ 0.

(3.10)

Combing with (3.9) and (3.10), we get,

∫

RN

∫

RN

|u(x) − u(y)|p−2(u(x) − u(y))(ψ(u(x)) − ψ(u(y))

|x − y|N+ps
dxdy ≤ f ψ(u)dx .

(3.11)

The same reasoning of the proof of Theorem 2.9, we get that,

||u||Lm∗∗
s (�)

≤ C || f ||Lm (�), (3.12)

where m∗∗
s = (p−1)mN

N−pms and C is positive constant depends on s, N ,m.

Now, we claim that,

∫

RN

∫

RN

|u(x) − u(y)|p−2(u(x) − u(y))(ψ(u(x)) − ψ(u(y))

|x − y|N+ps
dxdy ≥ 0. (3.13)

Indeed, in first we decompose R
N as follows,

R
N =

{
(x, y) ∈ R

N × R
N : u(x) > T

}
∪

{
(x, y) ∈ R

N × R
N : 0 ≤ u(x) ≤ T

}
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Now, we define the following sets,

�1 =
{
(x, y) ∈ R

N × R
N : u(x) > T , u(y) > T

}

�2 =
{
(x, y) ∈ R

N × R
N : u(x) > T , 0 ≤ u(y) ≤ T

}
,

�3 =
{
(x, y) ∈ R

N × R
N : 0 ≤ u(x) ≤ T , u(y) > T

}
,

�4 =
{
(x, y) ∈ R

N × R
N : 0 ≤ u(x) ≤ T , 0 ≤ u(y) ≤ T

}
.

Hence,

∫

RN

∫

RN

|u(x) − u(y)|p−2(u(x) − u(y))(ψ(u(x)) − ψ(u(y))

|x − y|N+ps
dxdy

=
4∑

i=1

∫ ∫

�i

|u(x) − u(y)|p−2(u(x) − u(y))(ψ(u(x)) − ψ(u(y))

|x − y|N+ps
dxdy.

(3.14)

Let us start by I1, where

I1 =
∫ ∫

�1

|u(x) − u(y)|p−2(u(x) − u(y))(ψ(u(x)) − ψ(u(y))

|x − y|N+ps
dxdy.

Therefore, by using the definition of ψ and for (x, y) ∈ �1, it follows that,

ψ(u(x)) − ψ(u(y)) = βT β−1(u(x) − u(y)),

which implies,

I1 = βT β−1
∫ ∫

�1

|u(x) − u(y)|p
|x − y|N+ps

dxdy ≥ 0. (3.15)

Now, we treat I2. Let (x, y) ∈ �2, then, we have that

ψ(u(x)) − ψ(u(y)) = βT β−1(u(x) − T ) + T β − uβ(y) ≥ 0.

Since u(x) ≥ u(y) for all (x, y) ∈ �2, therefore,

I2 =
∫ ∫

�2

|u(x) − u(y)|p−2(u(x) − u(y))(ψ(u(x)) − ψ(u(y))

|x − y|N+ps
dxdy

=
∫ ∫

�2

(u(x) − u(y))p−1(βT β−1(u(x) − T ) + T β − uβ(y)

|x − y|N+ps
dxdy ≥ 0. (3.16)

Respect I3. Let (x, y) ∈ �3, then, by using the definition of ψ , we get,

ψ(u(x)) − ψ(u(y)) = uβ(x) − T β − βT β−1(u(y) − T )) ≤ 0.
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Obviously u(x) ≤ u(y) for every (x, y) ∈ �3, which leads to,

I3 =
∫ ∫

�3

|u(x) − u(y)|p−2(u(x) − u(y))(ψ(u(x)) − ψ(u(y))

|x − y|N+ps
dxdy

=
∫ ∫

�3

(u(y) − u(x))p−2(u(x) − u(y))((uβ(x) − T β) − βT β−1(u(y) − T ))

|x − y|N+ps
dxdy ≥ 0.

(3.17)

Finally, we consider I4. It clear that, for (x, y) ∈ �4, we have that

ψ(u(x)) − ψ(u(y)) = uβ(x) − uβ(y).

Hence, by using Lemma 2.12, we get the existence a positive constant C , such that

I4 =
∫ ∫

�4

|u(x) − u(y)|p−2(u(x) − u(y))(ψ(u(x)) − ψ(u(y))

|x − y|N+ps
dxdy

=
∫ ∫

�4

|u(x) − u(y)|p−2(u(x) − u(y))(uβ(x) − uβ(y))

|x − y|N+ps
dxdy

≥ C
∫ ∫

�4

|u p+β−1
p (x) − u

p+β−1
p (y)|p

|x − y|N+ps
dxdy ≥ 0. (3.18)

Combining with (3.14), (3.15), (3.16), (3.17) and (3.18) and claim follows.

Going back to (3.9) and using (3.13), it follows that,

∫

�

|∇u|p−2∇u∇ψ(u)dx ≤
∫

�

f ψ(u)dx . (3.19)

On the other hand, by taking T large enough in the definition of ψ , it holds that,
ψ(u) = uβ if 0 ≤ u ≤ T .
Now, by using Hölder inequality in (3.19), we get,

β

(
p

p + β − 1

)p ∫

�

|∇u
p+β−1

p |pdx ≤ || f ||Lm (�)||u||β
Lm∗∗

s (�)
,

here, we have used the facts,

1

m
+ β

m∗∗
s

= 1, and
p + β − 1

p
≥ 1.
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Since
p∗

p
(p + β − 1) > 1, then, by using (2.9), we obtain that,

||u p+β−1
p ||p

L p∗ (�)
≤ C || f ||

p−1+β
p−1

Lm (�),

which implies that,

||u||Lm∗∗
(�) ≤ C || f ||

1
p−1
Lm (�), (3.20)

with

m∗∗ = (p − 1)Nm(N − ps)

(N − p)(N − psm)
.

Hence the result follows. ��

Remark 3.3 Observe that, m∗∗ is increasing in s and

lim
s→1−

(p − 1)Nm(N − ps)

(N − p)(N − psm)
= (p − 1)Nm

(N − pm)
.

Thus, we have that

(p − 1)mN

N − pms
< m∗∗ <

(p − 1)Nm

(N − pm)
, (3.21)

which shows that the exponent defined in (3.7) is better than the one coming from the
p −Laplacian fractional only, but it less than the one coming from the p −Laplacian
only.

Hence, the previous result clarify that the mixed local and nonlocal p-Laplace
operators has it own features and we can not consider the fractional p − Laplacian as
a lower order perturbation only of the classical elliptic problem.

4 Existence results

In this section we study the existence and uniqueness of positive solution to problem
(1.1) under some extra hypothesis on f and γ .

4.1 Approximation problems

In order to deal with Problem (1.1), we follow closely the approximate scheme of [33]
(see also [6] in case p = 2).
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For n ∈ IN , let us consider the following approximating problems,

⎧
⎪⎪⎨

⎪⎪⎩

−�pun + (−�)spun = fn
(un + 1

n )γ (x)
in �,

un > 0 in �,

un = 0 in R
N\�.

(4.1)

where fn = Tn( f ).
Let us start by proving that problem (4.1) has a positive solution un ∈ W 1,p

0 (�) ∩
L∞(�), more precisely we have the following result,

Lemma 4.1 Problem (4.1) has a nonnegative positive solution un ∈ W 1,p
0 (�) ∩

L∞(�).

Proof Let n ∈ IN be fixed and v ∈ L p(�), then, by using Lemma 3.1 in [33], there
exists a unique positive solution w ∈ W 1,p

0 (�) to the following problem,

⎧
⎪⎪⎨

⎪⎪⎩

−�pw + (−�)spw = fn
(v+ + 1

n )γ (x)
in �,

w > 0 in �,

w = 0 in R
N\�,

(4.2)

where v+ = max{v, 0}.
So, we can define the operator v ∈ L p(�) �→ w := S(v) ∈ W 1,p

0 (�) ⊂ L p(�),
where w is the unique solution to problem (4.2).

Since γ ∈ C1(�), we can define γ ∗ = ||γ ||L∞(�). Choosing w as test function in
(4.2) and using Poincaréand Hölder’s inequalities, we obtain

∫

�

|∇w|pdx ≤ nγ ∗+1|�| p−1
p

⎛

⎝

∫

�

|w|pdx
⎞

⎠

1
p

≤ Cnγ ∗+1|�| p−1
p

⎛

⎝

∫

�

|∇w|pdx
⎞

⎠

1
p

,

where C is positive constant.
So,

⎛

⎝

∫

�

|∇w|pdx
⎞

⎠

1
p

≤ C
1

p−1 n
γ ∗+1
p−1 |�| 1p := R,

which means that the ball of the radius R in L p(�) is invariant by S. Now, by using
the same arguments as in the proof of Proposition 2.3 in [15], (see also Lemma 3.2
in [33]), it follows that the mapping S is continuous and compact. Therefore, by
applying Schauder’s fixed point Theorem, the operator T admits at least one fixed
point un ∈ W 1,p

0 (�) such that S(un) = un . Hence, we get the existence un which is
the solution to Problem (4.1).
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Since the r.h.s of (4.1) belongs to L∞(�), then, by applying Theorem 3.1, we get
un ∈ L∞(�).

Now, keeping in mind that, fn
(u+

n + 1
n )γ (x) ≥ 0, thus, using u−

n as test function in

problem (4.1), we get

0 ≤
∫

�

|∇u−
n |pdx ≤

∫

�

fn
(u+

n + 1
n )γ (x)

u−
n ≤ 0.

Hence un ≥ 0, and result follows. ��
Lemma 4.2 The sequence {un}n obtained in the previous lemma is increasing with
respect to n and

un(x) ≥ c(ω) > 0, for a.e x ∈ ω ⊂⊂ �.

Proof Let un and un+1 are two positive solutions to (4.1), then, by taking ϕ+ =
(un − un+1)

+ as test function in (4.1), we get

∫ ∫

D�

|un(x) − un(y)|p−2 (un(x) − un(y))
(
ϕ+(x) − ϕ+(y)

)

|x − y|N+ps
dxdy

+
∫

�

|∇un|p−2∇un∇ϕ+(x)dx =
∫

�

fn
(
un + 1

n

)γ (x)
ϕ+(x)dx, (4.3)

and

∫ ∫

D�

|un+1(x) − un+1(y)|p−2 (un+1(x) − un+1(y))
(
ϕ+(x) − ϕ+(y)

)

|x − y|N+ps
dxdy

+
∫

�

|∇un+1|p−2∇un+1∇ϕ+(x)dx =
∫

�

fn+1
(
un+1 + 1

n+1

)γ (x)
ϕ+(x)dx, (4.4)

where ϕ+ = (un − un+1)
+.

Since, { fn}n is increasing with respect to n, it follows that,

∫

�

⎡

⎢
⎣

fn
(
un + 1

n

)γ (x)
− fn+1

(
un+1 + 1

n+1

)γ (x)

⎤

⎥
⎦ ϕ+(x)dx ≤ 0. (4.5)

Now, subtracting (4.3) with (4.4) and by taking into consideration (4.5), we obtain,

∫ ∫

D�

|un(x) − un(y)|p−2(un(x) − un(y))(ϕ+(x) − ϕ+(y))

|x − y|N+ps
dxdy

−
∫ ∫

D�

|un+1(x) − un+1(y)|p−2(un+1(x) − un+1(y))(ϕ+(x) − ϕ+(y))

|x − y|N+ps
dxdy
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+
∫

�

(|∇un |p−2∇un − |∇un+1|p−2∇un+1
) ∇ϕ+(x)dx ≤ 0. (4.6)

Hence, arguing exactly as in the proof of Lemma 9 in [41], it holds that,

∫ ∫

D�

|un(x) − un(y)|p−2(un(x) − un(y))(ϕ+(x) − ϕ+(y))

|x − y|N+ps
dxdy

−
∫ ∫

D�

|un+1(x) − un+1(y)|p−2(un+1(x) − un+1(y))(ϕ+(x) − ϕ+(y))

|x − y|N+ps
dxdy ≥ 0. (4.7)

Therefore, combining (4.6) and (4.7), we get

∫

�

(
|∇un|p−2∇un − |∇un+1|p−2∇un+1

)
∇ϕ+(x)dx ≤ 0. (4.8)

Thus, by applying Lemma 2.13, we derive that, un+1 ≥ un . This concludes the proof
of the first assertion.

Now, we will show the second assertion. Observe that u1 ∈ L∞(�) solves,

−�pu1 + (−�)spu1 = f1
(u1 + 1)γ (x)

∈ L∞(�).

Thus, by using Theorem 8.3 in [45], we have for everyω ⊂⊂ �, there exists a constant
c(ω) > 0 such that u1 ≥ c(ω) > 0 in �.
Hence by using monotonicity of {un}n , the second assertion follows. ��

4.2 Passing to the limit

For fixed δ > 0, we define the following set,

�δ = {x ∈ � : dist(x, ∂�) < δ}.

Theorem 4.3 Let f ∈ Lσ1(�)+ with σ1 = pN

(p − 1)N + p
. Suppose that, there exists

a δ > 0 such that γ (x) ≤ 1 in �δ . Then, there exists a solution u ∈ W 1,p
0 (�) to

problem (1.1).

Proof Let us denote ωδ = �\�δ , by previous Lemma, we know that, un(x) ≥ Cωδ >

0. Now taking un as test function in (4.1), we obtain

∫

�

|∇un|pdx +
∫ ∫

D�

|un(x) − un(y)|p
|x − y|N+ps

dxdy
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=
∫

�

fn
(
un + 1

n

)γ (x)
undx,

=
∫

�δ

fn
(
un + 1

n

)γ (x)
undx +

∫

ωδ

fn
(
un + 1

n

)γ (x)
undx

≤
∫

�δ

f u1−γ (x)
n dx +

∫

ωδ

f

Cγ (x)
ωδ

undx

≤
∫

�δ∩{un≤1}
f u1−γ (x)

n dx +
∫

�δ∩{un≥1}
f u1−γ (x)

n dx +
∫

ωδ

f

Cγ (x)
ωδ

undx

≤ || f ||L1(�) +
(
1 + ||C−γ (.)

ωδ
||L∞(�)

) ∫

�

f undx . (4.9)

Therefore, by using Hölder’s and Sobolev’s inequalities, it holds that,

||un||p
W 1,p

0 (�)
≤ || f ||L1(�) + C

(
1 + ||C−γ (.)||L∞(�)

)
|| f ||Lσ1 (�)||un||W 1,p

0 (�)
,

hence, we conclude

||un||W 1,p
0 (�)

≤ C, for all n ∈ IN ,

where C is positive constant independent of n.
Since {un} is bounded inW 1,p

0 (�), then (up to a subsequence) {un} such that, un⇀u

weakly in W 1,p
0 (�), un → u strongly in Lr (�) for every r < p∗ and un(x) → u(x)

a.e in �. Hence, the pointwise limit u belong also to L p−1(�).
So, by applying Theorem 5.2, we get

∇un → ∇u pointwise almost everywhere in �.

Hence, we conclude that

lim
n→∞

∫

�

|∇un|p−2∇undxϕ =
∫

�

|∇u|p−2∇uϕdx, (4.10)

for every ϕ ∈ C1
0(�).

On the other hand, {un} is bounded in W 1,p
0 (�) and ϕ ∈ C1

0(�), then by using
Lemma 2.3, it follows that

|un(x) − un(y)|p−2 (un(x) − un(y))

|x − y|
N+ps
p′

∈ L p′
(RN × R

N )
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is uniformly bounded and

ϕ(x) − ϕ(y)

|x − y| N+ps
p

∈ L p(RN × R
N ).

Whence, by using the weak convergence, we get

lim
n→∞

∫ ∫

D�

|un(x) − un(y)|p−2 (un(x) − un(y)) (ϕ(x) − ϕ(y))

|x − y|N+ps
dxdy

=
∫ ∫

D�

|u(x) − u(y)|p−2 (u(x) − u(y)) (ϕ(x) − ϕ(y))

|x − y|N+ps
dxdy. (4.11)

Using now Lemma 4.2, we obtain

0 ≤
∣
∣
∣
∣
∣

fn(x)ϕ
(
un + 1

n

)γ (x)

∣
∣
∣
∣
∣
≤ ||C−γ (x)

ω ϕ||L∞(�) f (x),

for every ϕ ∈ C1
0(�) whenever ϕ �= 0 and on the set {un ≥ Cω}, ω being the support

of ϕ.
So, by applying Lebesgue dominated convergence theorem, we derive that

lim
n→∞

∫

�

fn
(
un + 1

n

)γ (x)
ϕdx =

∫

�

f

uγ (x)
ϕdx . (4.12)

Using (4.10), (4.11), (4.12) and by taking into consideration remark 2.7, we get the
desired result. ��
Theorem 4.4 Assume that for some γ ∗ > 1 and δ > 0 we have that,

||γ ||L∞(�) ≤ γ ∗. Suppose that, f ∈ Lσ2(�)+ with σ2 = N (p − 1 + γ ∗)
N (p − 1) + pγ ∗ , then,

there exists a unique weak positive u ∈ W 1,p
loc (�) ∩ L p−1(�) to problem (1.1) such

that u
p−1+γ ∗

p ∈ W 1,p
0 (�).

Proof We proceed as in the proof of the previous result. Let un be the unique positive
solution to (4.2).

Since γ ∗ > 1, then, by using Lemma 5.1, we can chose uγ ∗
n ∈ W 1,p

0 (�) as test
function in (4.1), we get

∫ ∫

D�

|un(x) − un(y)|p−2 (un(x) − un(y))
(
uγ ∗
n (x) − uγ ∗

n (y)
)

|x − y|N+ps
dxdy

+
∫

�

|∇un|p−2∇un∇uγ ∗
n (x)dx =

∫

�

fn
(
un + 1

n

)γ (x)
uγ ∗
n (x)dx, (4.13)
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Therefore, by applying Lemma 2.12, for all most (x, y) ∈ R
N × R

N , we obtain that

|un(x) − un(y)|p−2 (un(x) − un(y))
(
uγ ∗
n (x) − uγ ∗

n (y)
)

≥ 0. (4.14)

Hence, from (4.13) and (4.14), it follows that

γ ∗
(

p

p − 1 + γ ∗

)p ∫

�

|∇u
p−1+γ ∗

p
n |pdx =

∫

�

|∇un|p−2∇un∇uγ ∗
n (x)dx

≤
∫

�

fn
(
un + 1

n

)γ (x)
uγ ∗
n (x)dx,

≤
∫

�δ

fn
(
un + 1

n

)γ (x)
uγ ∗
n (x)dx +

∫

ωδ

fn
(
un + 1

n

)γ (x)
uγ ∗
n (x)dx

≤
∫

�δ

f uγ ∗−γ (x)
n dx +

∫

ωδ

f

Cγ (x)
ωδ

undx

≤ || f ||L1(�) +
(
1 + ||C−γ (.)

ωδ
||L∞(�)

) ∫

�

f uγ ∗
n dx

≤ || f ||L1(�) +
(
1 + ||C−γ (.)

ωδ
||L∞(�)

)
⎛

⎝

∫

�

f σ2

⎞

⎠

1
σ 2

⎛

⎝

∫

�

u
γ ∗σ ′

2
n

⎞

⎠

1
σ

′
2

. (4.15)

Since σ2 = N (p − 1 + γ ∗)
N (p − 1) + pγ ∗ , so, γ

∗σ ′
2 = N (p − 1 + γ ∗)

N − p
and therefore,

∫

�

|∇u
p−1+γ ∗

p
n |pdx

≤ C || f ||L1(�) + C
(
1 + ||C−γ (x)||L∞(�)

)
⎛

⎝

∫

�

f σ2

⎞

⎠

1
σ 2

⎛

⎝

∫

�

|∇u
p−1+γ ∗

p
n |p

⎞

⎠

p∗
pσ ′

2

,

(4.16)

where in the rhs of (4.16) we have used the Sobolev’s inequality.

By using the fact, p∗
pσ ′

2
< 1 in the last inequality, we get that

{
u

p−1+γ ∗
p

n
}
in bounded

in W 1,p
0 (�).

Since γ ∗ > 1, then, by applying Lemma 4.2, we have that

∫

ω

|∇un|pdx =
(

p

p − 1 + γ ∗

)p ∫

ω

u1−γ ∗
n |∇u

p−1+γ ∗
p

n |pdx
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≤
(

p

p − 1 + γ ∗

)p

C(ω)1−γ ∗
C,

which implies that, {un} in bounded in W 1,p
loc (�).

Hence u
p−1+γ ∗

p ∈ W 1,p
0 (�), and therefore u ∈ L p−1(�).

To complete the proof, we follow the same steps as in previous result. ��
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5 Appendix

In this section we give some useful Lemmas that we have used in the proof of Theo-
rems 4.3–4.4.

First, let us start by the following result, which allow us to use the test functions
from the space W 1,p

0 (�) in the Eq. (2.6). Notice that in the case γ (x) = costant it
was proved in [33].

Lemma 5.1 Let γ ∈ C1(�) and f ∈ Lσ (�)+ where σ = σi with i ∈ {1, 2} (where
σ1 and σ2 are defined in Theorems 4.3–4.4 respectively). Assume that u be a weak
solution of the problem (1.1), then, the Eq. (2.6) holds for every ϕ ∈ W 1,p

0 (�).

Proof The result follows by using the same reasoning as in the proof of Lemma 5.1
of [33]. ��

Now, by adapting the same strategy as in the proof of TheoremA.1 of the Appendix
in [33], we can show also, in the case γ ∈ C1(�), the pointwise convergence of the
gradient of the approximate solutions {un} founded in Lemma 4.1, more precisely we
have the following result,

Lemma 5.2 Let p > 1 and γ ∈ C1(�). Assume that, {un}n be the sequence of
approximate solutions to problem (4.1) given by Lemma 4.1 and u is the pointwise limit
of {un}n. For γ (x) ≤ 1 in �δ , let f ∈ Lσ1(�)+ where σ1 is defined in Theorem 4.3
and for γ ∗ > 1 where ||γ ||L∞(�) ≤ γ ∗, let f ∈ Lσ2(�)+ where σ2 is defined in
Theorem 4.4. Then, up to a subsequence, ∇un(x) → ∇u(x) a.e in �.

Proof Let f ∈ Lσ1(�)+ and γ ∈ C1(�) such that, γ (x) ≤ 1, then, by Theorem 4.3,
we have the sequence {un}n is uniformly bounded in W 1,p

0 (�).
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Now, if we take f ∈ Lσ2(�)+ with γ (x) > 1, therefore, by Theorem 4.4, the

sequences {un}n and
{
u

p−1+γ ∗
p

n
}

n are bounded in W 1,p
loc (�) and in W 1,p

0 (�) respec-
tively.

Thus, we have

un⇀u weakly in W 1,p
loc (�),

and

un → u strongly in L p
loc(�).

On the other hand, by Lemma 4.2, for all n ∈ IN , we have

un ≤ u in R
N .

Let K be a compact set and consider a functionφK ∈ C1
c (�) such that suppφK = ω,

0 ≤ φK ≤ 1 in � and φK ≡ 1 in K . For μ > 0, we chose vn = φK Tμ(un − u) ∈
W 1,p

0 (�) as test function in (4.1) and by arguing exactly as in the step 1 and step 2 of the
proof TheoremA.1 of [33], we can show that, (up to a subsequence)∇un(x) → ∇u(x)
a.e in �. As desired. ��
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