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Abstract
We generalize the results for Banach algebras of pseudodifferential operators obtained
by Gröchenig and Rzeszotnik (Ann Inst Fourier 58:2279–2314, 2008) to quasi-
algebras of Fourier integral operators. Namely, we introduce quasi-Banach algebras
of symbol classes for Fourier integral operators that we call generalized metaplec-
tic operators, including pseudodifferential operators. This terminology stems from
the pioneering work on Wiener algebras of Fourier integral operators (Cordero et
al. in J Math Pures Appl 99:219–233, 2013), which we generalize to our frame-
work. This theory finds applications in the study of evolution equations such as
the Cauchy problem for the Schrödinger equation with bounded perturbations, cf.
(Cordero, Giacchi and Rodino in Wigner analysis of operators. Part II: Schrödinger
equations, arXiv:2208.00505).
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1 Introduction

The main characters of this study are the spaces of sequences

B = �q
vs

(�), 0 < q < 1, s ∈ R,

for � = AZ2d , A ∈ GL(d,R), a given lattice. Namely, a = (aλ)λ∈� ∈ B if the
quasi-norm

‖a‖�
q
vs

=
(∑

λ∈�

|aλ|qvs(λ)q

) 1
q

is finite, with vs(λ) = (1+|λ|)s . The spaces (�
q
vs (�), ‖·‖vs ) are quasi-Banach spaces,

with quasi-norms satisfying

‖a + b‖q
�

q
vs

≤ ‖a‖q
�

q
vs

+ ‖b‖q
�

q
vs

, a, b ∈ �q
vs

(�).

They also enjoy the algebra property (w.r.t. the discrete convolution):

‖a ∗ b‖�
q
vs

≤ ‖a‖�
q
vs

‖b‖�
q
vs

, a, b ∈ �q
vs

(�).

The sequence δ = (δ(λ))λ∈�, given by δ(λ) = 1 for λ = 0 and δ(λ) = 0 for
λ ∈ �\{0}, is the unit element.

These spaces of sequences have manifold applications. For instance, they play a
crucial role in the sparsity estimates for PDE’s (see, e.g., [5, 6, 8] and references
therein) and are widely employed in approximation theory [14].

In our framework, they are the key tool to define classes of operators which behave
nicely since are subclasses of bounded operators on L2(Rd), enjoying many valuable
properties. The pioneering work in this direction is due to Gröchenig [23], where he
proved the algebra property and the inverse-closedness of pseudodifferential operators
having symbols in the Sjöstrand Class [30, 31]. These results were further extended
to other algebras of operators by Gröchenig and Rzeszotnik in [24]. The latter work
is our main source of inspiration.

The function spaces of our study are the Wiener amalgam spaces W (C, �
q
vs )(R

2d)

0 < q ≤ 1, defined in terms of the (quasi-)norms

‖F‖W (C,�
q
vs ) =

⎛
⎝ ∑

k∈Z2d

( sup
z∈[0,1]2d

|F(z + k)|)qvs(k)q

⎞
⎠

1/q

as the spaces of continuous functions F on R
2d such that ‖F‖W (C,�

q
vs ) < ∞ (here

� = Z
2d , see the next section for a general lattice).

Fix χ a matrix in the symplectic group Sp(d,R) (see the next section for its defini-
tion) and 0 < q ≤ 1; we say that T : S(Rd) → S ′(Rd) is in the class F I O(χ, q, vs)
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if there exists H ∈ W (C, �
q
vs )(R

2d) and g ∈ S(Rd) \ {0} such that

|〈T π(z)g, π(w)g〉| ≤ H(w − χ z), w, z ∈ R
2d , (1)

where π(z)g(t) := e2π iξ t g(t − x) (z = (x, ξ) ∈ R
2d ) are the time-frequency shifts

of g.
An operator T that lies in F I O(χ, q, vs) is called generalized metaplectic operator.
The case q = 1 corresponds to the class of generalized metaplectic operators intro-

duced in [11] which gives rise to Banach algebras of operators bounded on L2(Rd).
These algebras can be successfully applied to the study of Schrödinger equations [12].

We extend the results above to the case 0 < q < 1, that is the quasi-algebra case.
Similarly to algebras, these operators can be applied to study Schrödinger equations
with bounded perturbation, cf. [7].

Ourwork concerns the study of themain properties of F I O(χ, q, vs). This requires
a lot of technicalities. As far as we know, the theory of quasi-Banach algebras devel-
oped so far is very poor. So the main work here is to infer all the properties for
quasi-Banach algebras we need for our class of operators.

In the first part of the paper we focus on the quasi-algebras B = �
q
vs (�). We carry

the definition of the matrix quasi-algebras CB given in [24] to B as follows:

A = (aλ,μ)λ,μ∈� ∈ CB ⇐⇒ (sup
λ∈�

|aλ,λ−μ|)μ∈� ∈ B.

We prove that [24, Theorem 3.2] generalizes to the quasi-algebras setting:

Theorem 1.1 The following are equivalent:
(i) B is inverse-closed in B(�2);
(i i) CB is inverse-closed in B(�2);
(i i i) The spectrum B̂  T

d .

Then, we turn to the almost diagonalization of Weyl operators. Briefly, the time-
frequency representation defined for all f , g ∈ S(Rd) as

W ( f , g)(x, ξ) =
∫
Rd

f (x + t

2
)g(x − t

2
)e−2π iξ ·t dt,

is called (cross-) Wigner distribution, and was first introduced by Wigner in 1932 in
Quantum Mechanics, cf. [33].

Since W : S(Rd) × S(Rd) → S(R2d), for σ ∈ S ′(R2d) we can define the Weyl
pseudodifferential operator Opw(σ) : S(Rd) → S ′(Rd) with symbol σ by

〈Opw(σ) f , g〉 = 〈σ, W (g, f )〉 f , g ∈ S(Rd).

We are interested in characterizing the invertibility properties of Opw(σ) in terms of
its Gabor matrix M(σ ):

M(σ )μ,λ = 〈Opw(σ)π(λ)g, π(μ)g〉, λ, μ ∈ �
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(see (21) below for its definition). In general, interesting conclusions follow when
conditions on σ are imposed, such as their membership to some distributional space.
In time-frequency analysis, modulation spaces are used tomeasure the time-frequency
content of tempered distributions. They were introduced by Feichtinger in 1983, cf.
[15], and later extended to the quasi-Banach setting by Galperin and Samarah, cf. [22].
Namely, if 0 < p, q ≤ ∞, g ∈ S(Rd) and m is a vs-moderate weight function, a
tempered distribution f ∈ S ′(Rd) belongs to M p,q

m (Rd) if

‖ f ‖M p,q
m

= ‖Vg f ‖L p,q
m

< ∞,

where Vg f is the Short-Time Fourier transform of f with respect to the window g,
i.e.

Vg f (x, ξ) = 〈 f , π(x, ξ)g〉, (x, ξ) ∈ R
2d .

We prove the inverse-closedness in B(L2(Rd)) of the class of Weyl operators with
symbols σ ∈ M∞,q

1⊗vs
(R2d) (see Theorem 4.6 below):

Theorem 1.2 If σ ∈ M∞,q
1⊗vs

(R2d), 0 < q ≤ 1 and Opw(σ) is invertible on L2(Rd),

then (Opw(σ))−1 = Opw(b) for some b ∈ M∞,q
1⊗vs

(R2d).

The theory developed so far finds application to generalized metaplectic operators.
Namely,wefirst prove the invertibility property in the class F I O(χ, q, s) (cf. Theorem
5.1):

Theorem 1.3 Consider T ∈ F I O(χ, q, vs), such that T is invertible on L2(Rd), then
T −1 ∈ F I O(χ−1, q, vs).

In otherwords, the class of generalizedmetaplectic operators is closed under inversion.
Further, observe that the decay condition (1) alone does not provide an explicit

expression for a generalizedmetaplectic operator.Weprove that ifT ∈ F I O(χ, q, vs),
0 < q ≤ 1, then

T = Opw(σ1)μ(χ) and T = μ(χ)Opw(σ2) (2)

for σ1 ∈ M∞,q
1⊗vs

(R2d), σ2 = σ1 ◦ χ and μ(χ) the metaplectic operator associated to
the symplectic matrix χ (cf. Theorem 5.2 below). This provides an explicit expression
for operators in F I O(χ, q, vs).

Thiswork is divided as follows: notation and preliminaries are established in Sect. 2,
where we also justify the importance of the quasi-Banach setting. Section 3 is devoted
to the definition of generalized metaplectic operators, their extensions to bounded
operators on modulation spaces M p

m(Rd), and the proof of Theorem 1.1. In Sect. 4
we study the matrix operators associated to Weyl pseudodifferential operators with
symbols in M∞,q

1⊗vs
(R2d) and prove Theorem 1.2. In Sect. 5 we prove both that the class

of generalized metaplectic operators F I O(Sp(d,R), q, vs) is closed under inversion
and (2). To prove these results, we need to extend the theory of Banach-algebras to
the quasi-Banach algebras setting. We carefully check the main issues and detail the
differences in the Appendix.
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2 Preliminaries

Notation. We denote t2 = t · t , t ∈ R
d , and xy = x · y (scalar product on R

d ). The
spaceS(Rd) is the Schwartz classwhereasS ′(Rd) the space of temperate distributions.
The brackets 〈 f , g〉 denote the extension to S ′(Rd) × S(Rd) of the inner product
〈 f , g〉 = ∫

f (t)g(t)dt on L2(Rd) (conjugate-linear in the second component).We
write a point in the phase space (in the time-frequency space) as z = (x, η) ∈ R

2d ,
and the corresponding phase-space shift (time-frequency shift) acts on a function or
distribution as

π(z) f (t) = e2π iηt f (t − x) . (3)

We shall work with lattices in the phase-space � ⊂ R
2d , � = AZ2d , with A ∈

GL(2d,R) and we will denote by Q a fundamental domain containing the origin.
C∞
0 (R2d) denotes the space of smooth functions with compact support.

2.1 The symplectic group Sp(d,R) and themetaplectic operators

We recall definitions and properties of symplectic matrices and metaplectic operators
in a nutshell, referring to [20] for details. First, we write GL(2d,R) for the group of
2d × 2d real invertible matrices. The standard symplectic matrix is denoted by

J =
(

0d×d Id×d

−Id×d 0d×d

)
, (4)

The symplectic group is

Sp(d,R) =
{
A ∈ GL(2d,R) : AT JA = J

}
, (5)

where AT is the transpose of A.
The symplectic algebra sp(d,R) is the set of 2d × 2d real matrices A such that

etA ∈ Sp(d,R), for every t ∈ R.
The metaplectic representation μ is a unitary representation of (the double cover

of) Sp(d,R) on L2(Rd). For elements of Sp(d,R) of special form the metaplectic
representation can be computed explicitly. That is to say, for f ∈ L2(Rd), C real
symmetric d × d matrix (CT = C) we consider the symplectic matrix

VC =
(

Id×d 0d×d

C Id×d

)
; (6)

then, up to a phase factor,

μ(VC ) f (t) = eiπCt ·t f (t) (7)
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for all f ∈ L2(Rd). For the standard matrix J in (4),

μ(J ) f = F f ; (8)

Fix L ∈ GL(d,R) and consider the related the symplectic matrix

DL =
(

L−1 0d×d

0d×d LT

)
∈ Sp(d,R); (9)

up to a phase factor we have

μ(DL)F(t) = √| det L|F(Lt) = TL F(t), F ∈ L2(Rd). (10)

The metaplectic operators have a group structure with respect to the composition.

Proposition 2.1 The metaplectic group is generated by the operators μ(J ), μ(DL)

and μ(VC ).

The relation between time-frequency shifts and metaplectic operators is the follow-
ing:

π(Az) = cA μ(A)π(z)μ(A)−1 ∀z ∈ R
2d , (11)

with a phase factor cA ∈ C, |cA| = 1 (for details, see e.g. [19, 20]).

2.2 Function spaces

We shall work with lattices � = AZ2d , with A ∈ GL(2d,R) and define the spaces
of sequences accordingly.

We denote by v a continuous, positive, submultiplicative weight function on R
2d ,

i.e., v(z1 + z2) ≤ v(z1)v(z2), for all z1, z2 ∈ R
2d . We say thatw ∈ Mv(R

2d) ifw is a
positive, continuous weight function on R2d v-moderate: w(z1 + z2) ≤ Cv(z1)w(z2)
for all z1, z2 ∈ R

2d .
We denote byMv(�) the restriction of weights w ∈ Mv(R

d) to the lattice �. We
will mainly work with polynomial weights of the type

vs(z) = 〈z〉s = (1 + |z|)s (vs(λ) = (1 + |λ|)s), s ∈ R, z ∈ R
2d (λ ∈ �). (12)

We define (w1 ⊗ w2)(x, η) = w1(x)w2(η), for w1, w2 weights on R
d .

Definition 2.2 For 0 < q ≤ ∞, m ∈ Mv(�), the space �
q
m(�) consists of all

sequences a = (aλ)λ∈� for which the (quasi-)norm

‖a‖�
q
m

=
(∑

λ∈�

|aλ|qm(λ)q

) 1
q
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is finite (with obvious modification for q = ∞).

Here there are some properties we need in the sequel [21, 22]:

(i) Inclusion relations: If 0 < q1 ≤ q2 ≤ ∞, then �
q1
m (�) ↪→ �

q2
m (�), for any positive

weight function m on �.
(ii) Young’s convolution inequality: Consider m ∈ Mv(�), 0 < p, q, r ≤ ∞ with

1

p
+ 1

q
= 1 + 1

r
, for 1 ≤ r ≤ ∞ (13)

and

p = q = r , for 0 < r < 1. (14)

Then for all a ∈ �
p
m(�) and b ∈ �

q
v (�), we have a ∗ b ∈ �r

m(�), with

‖a ∗ b‖�r
m

≤ C‖a‖�
p
m
‖b‖�

q
v
,

where C is independent of p, q, r , a and b. If m ≡ v ≡ 1, then C = 1.
(iii) Hölder’s inequality: For any positive weight function m on �, 0 < p, q, r ≤ ∞,

with 1/p + 1/q = 1/r ,

�
p
m(�) · �

q
1/m(�) ↪→ �r (�), (15)

where the symbol ↪→ denotes that the inclusion is a continuous mapping.

2.3 Wiener amalgam spaces [16–18, 22, 26]

Let B one of the following Banach spaces: C(Rd) (space of continuous functions on
R
2d ), L p(R2d), 1 ≤ p ≤ ∞; let C be one of the following (quasi-)Banach spaces:

�
q
m(�), 0 < q ≤ ∞, m ∈ Mv(�).
For any given function f which is locally in B (i.e. g f ∈ B, ∀g ∈ C∞

0 (R2d)), we
set fB(x) = ‖ f Tx g‖B . The Wiener amalgam space W (B, C) with local component
B and global component C is defined as the space of all functions f locally in B such
that fB ∈ C . Endowed with the (quasi-)norm ‖ f ‖W (B,C) = ‖ fB‖C , W (B, C) is a
(quasi-)Banach space. Moreover, different choices of g ∈ C∞

0 (R2d) generate the same
space and yield equivalent norms.

In particular, for s ≥ 0 and� = AZ2d , with Q fundamental domain containing the
origin, A ∈ GL(2d,R), �q

vs = �
q
vs (�), we shall consider the Wiener amalgam space

W (C, �
q
vs )(R

2d), the space of continuous functions F on R
2d such that

‖F‖W (C,�
q
vs ) =

(∑
λ∈�

(sup
z∈Q

|F(z + λ)|)qvs(λ)q

) 1
q

< ∞ (16)

(evident changes for q = ∞), where vs is defined in (12). Let us recall that vs is
submultiplicative for s ≥ 0.
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Lemma 2.3 Let Bi , Ci , i ∈ {1, 2, 3}, be (quasi-)Banach spaces as defined above.

(i) Convolution. If B1 ∗ B2 ↪→ B3 and C1 ∗ C2 ↪→ C3, then

W (B1, C1) ∗ W (B2, C2) ↪→ W (B3, C3). (17)

(ii) Inclusions. If B1 ↪→ B2 and C1 ↪→ C2 then

W (B1, C1) ↪→ W (B2, C2).

Moreover, the inclusion of B1 into B2 need only hold “locally” and the inclusion
of C1 into C2 “globally”. Specifically for �

q
vs , s ≥ 0, if we take 0 < qi ≤ ∞,

i = 1, 2, then

q1 ≥ q2 �⇒ W (C, �q1
vs

) ↪→ W (C, �q2
vs

). (18)

For the quasi-algebras of FIOs we shall use the following lemma.

Lemma 2.4 For 0 < q ≤ 1, s ≥ 0, we have

W (C, �q
vs

) ∗ W (C, �q
vs

) ↪→ W (C, �q
vs

). (19)

Proof It follows from the convolution and the inclusion relations in Lemma 2.3.
Namely,

W (C, �q
vs

) ↪→ W (L1, �q
vs

)

since C(R2d) ↪→ L1(R2d) locally. Hence, the convolution relations give

W (C, �q
vs

) ∗ W (C, �q
vs

) ↪→ W (C, �p
vs

) ∗ W (L1, �q
vs

) ↪→ W (C, �q
vs

),

since C(R2d) ∗ L1(R2d) ↪→ C(R2d) and �
q
vs ∗ �

q
vs ↪→�

q
vs , s ≥ 0, 0 < q ≤ 1, by the

Young’s convolution inequalities. ��
Lemma 2.5 Let s ∈ R, 0 < q ≤ ∞ and M ∈ GL(2d,R). Then, W (C, �

q
vs )(R

2d) is
invariant under χ , i.e. if H ∈ W (C, �

q
vs )(R

2d), then H ◦ M ∈ W (C, �
q
vs )(R

2d).

Proof Clearly, H ◦ M is continuous. Assuming q �= ∞,

‖H ◦ M‖q
W (C,�q ) =

∑
λ∈�

(sup
z∈Q

|H(M(z + λ))|)qvs(λ)q

=
∑
λ∈�

( sup
z∈Eλ

|H(z)|)qvs(λ)q ,

where Eλ = M(Q + �). For all λ ∈ �, let Rλ := {Q(λ)
μ }μ∈� be the smallest

finite covering of Eλ with Q(λ)
μ of the family Q = {Q + λ : λ ∈ �}. Clearly,
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β := supλ card(Rλ) < ∞. Then,

‖H ◦ χ‖q
W (C,�

q
vs )

=
∑
λ∈�

( sup
z∈Eλ

|H(z)|)qvs(λ)q ≤
∑
λ∈�

sup
z∈⋃

μ Q(λ)
μ

|H(z)|qvs(λ)q

≤
∑
λ∈�

∑
μ∈Rλ

sup
Q(λ)

μ

|H(z)|qvs(λ)q ≤ β
∑
λ∈�

sup
z∈Q(λ)

|H(z)|qvs(λ),

where Q(λ) is any of the subsets Q(λ)
μ that contain argmax

z∈⋃
μ Q(λ)

μ
|H(z)|q . Observe

that these points exist because the sets Q + λ are compact since Q is, and H is
continuous. It may happen that Q(λ) = Q(h) for h �= λ, but clearly a subset Q(λ) can
belong to at most 22d | det A| families Rλ (recall � = AZ2d ). Therefore,

‖H ◦ M‖q
W (C,�

q
vs )

≤ β
∑
k∈�

sup
z∈Q(λ)

|H(z)|qvs(λ)

≤ 4d | det A|β
∑
λ∈�

sup
z∈λ+Q

|H(z)|qvs(λ)q

= 4d | det A|β‖H‖q
W (C,�

q
vs )

.

The case q = ∞ is trivial. ��

3 Quasi-algebras of generalizedmetaplectic operators

This section contains the most interesting results of this manuscript. In fact, we prove
in detail the issues used to study Schrödinger equations with bounded perturbations
[7].

We first recall the definition of the (quasi-)algebras of FIOs used there, that extend
the algebra definition in the pioneering papers [11, 12].

Basic tool is the theory of Gabor frames. Consider a lattice � = AZ2d , with
A ∈ GL(2d,R), and a non-zero window function g ∈ L2(Rd), then a Gabor system
is the sequence:

G(g,�) = {π(λ)g : λ ∈ �}.

A Gabor system G(g,�) is a Gabor frame if there exist constants A, B > 0 such that

A‖ f ‖22 ≤
∑
λ∈�

|〈 f , π(λ)g〉|2 ≤ B‖ f ‖22, ∀ f ∈ L2(Rd). (20)

For a Gabor frame G(g,�), the Gabor matrix of a linear continuous operator T :
S(Rd) → S ′(Rd) is defined to be

〈T π(z)g, π(u)g〉, z, u ∈ R
2d . (21)



9 Page 10 of 26 E. Cordero, G. Giacchi

Definition 3.1 For χ ∈ Sp(d,R), g ∈ S(Rd), 0 < q ≤ 1, a linear operator
T : S(Rd) → S ′(Rd) is in the class F I O(χ, q, vs) if there exists a function
H ∈ W (C, �

q
vs )(R

2d), such that

|〈T π(z)g, π(w)g〉| ≤ H(w − χ z), ∀w, z ∈ R
2d . (22)

The union

F I O(Sp(d,R), q, vs) =
⋃

χ∈Sp(d,R)

F I O(χ, q, vs)

is named the class of generalized metaplectic operators.
Arguing similarly to [12, Proposition 3.1] we show that the previous definition does

not depend on the function g.

Proposition 3.2 The definition of the class F I O(χ, q, vs) is independent of the win-
dow function g ∈ S(Rd).

Proof Assume that (22) holds for some window function g ∈ S(Rd). We must show
that if ϕ ∈ S(Rd) is another window function, then we can write

|〈T π(z)ϕ, π(w)ϕ〉| ≤ H̃(w − χ z)

for some H̃ ∈ W (C, �
q
vs )(R

2d). The calculation in [12, Proposition 3.1] shows that

|〈T π(z)ϕ, π(w)ϕ〉| ≤ 1

‖g‖42

∫
R2d

(H ∗ |Vμ(χ)gμ(χ)ϕ|)(r − χ z)|Vϕg(w − r)|dr .

By Lemma 2.4,

G := H ∗ |Vμ(χ)gμ(χ)ϕ| ∈ W (C, �q
vs

)(R2d) ∗ S(R2d) ⊂ W (C, �q
vs

)

for all s ≥ 0. Therefore,

|〈T π(z)ϕ, π(w)ϕ〉| ≤ 1

‖g‖42

∫
R2d

G(r − χ z)|Vϕg(w − r)|dr = G ∗ |Vϕg|(w − χ z)

=: H̃(w − χ z).

Again, by Lemma 2.4, H̃ ∈ W (C, �
q
vs )(R

2d). ��
Let us recall that in the case q = 1 the original definition of F I O(χ, vs) in [12]

was formulated for a function H ∈ L1
vs

(R2d), instead of the more restrictive condition
H ∈ W (C, �1vs

)(R2d). However, Proposition 3.1 in [12] shows that the two definitions
are equivalent.

Of interest for applications, is the possibility to rewrite the estimate (22) in the
discrete setting, as explained in the following result. The proof is an easy modification
of the one in [11, Theorem 3.1], so it is omitted.
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Theorem 3.3 Let G(g,�) be a Gabor frame with g ∈ S(Rd). Consider a continuous
linear operator T : S(Rd) → S ′(Rd), a matrix χ ∈ Sp(d,R), and parameters
0 < q ≤ 1, s ≥ 0. Then the following conditions are equivalent:

(i) There exists H ∈ W (C, �
q
vs )(R

2d), such that T satisfies (22);
(ii) There exists h ∈ �

q
vs (�), such that

|〈T π(λ)g, π(μ)g〉| ≤ h(μ − χ(λ)), ∀λ,μ ∈ �. (23)

Following the guidelines of the works [11, 12] we can exhibit the results below.

Theorem 3.4 (i) Boundedness. Consider χ ∈ Sp(d,R), 0 < q ≤ 1, s ≥ 0, m ∈
Mvs (R

2d). Let T be a generalized metaplectic operator in F I O(χ, q, vs). Then T is
bounded from M p

m(Rd) to M p
m◦χ−1(R

d), for q ≤ p ≤ ∞.

(ii)Algebra property. Let χi ∈ Sp(d,R), s ≥ 0 and Ti ∈ F I O(χi , q, vs), i = 1, 2.
Then T1T2 ∈ F I O(χ1χ2, q, vs).

Proof (i) Fix q ≤ p ≤ ∞ and a window g ∈ S(Rd) such that G(g,�) is a Parseval
Gabor frame for L2(Rd). Using T = V ∗

g VgT V ∗
g Vg , the equivalent discrete (quasi-

)norm for the modulation space, see e.g. [32, Proposition 1.5], the estimate in (23)
and Young’s convolution inequality �

q
vs ∗ �

p
m ↪→ �

p
m , for q ≤ p, 0 < q ≤ 1, m ∈

Mvs (R
2d),

‖T f ‖M p

m◦χ−1
� ‖Vg(T f )‖�

p

m◦χ−1 (�) ≤ ‖|h ◦ χ | ∗ |Vg f |(χ−1(·))‖�
p

m◦χ−1 (�)

� ‖h‖�
q
vs (�)‖Vg f ‖�

p
m (�) ≤ C‖ f ‖M p

m
,

since h ◦ χ ∈ �
q
vs (�).

(i i) We write T1T2 = V ∗
g (VgT1V ∗

g )(VgT2V ∗
g )Vg and denote with Hi the function

controlling the kernel of Ti defined in (22) (i = 1, 2). Then, the same computation in
[12, Theorem 3.4] gives

|〈T1T2π(z)g, π(w)g〉| ≤ (((H1 ◦ χ1) ∗ H2) ◦ χ−1
1 )(w − χ1χ2z), z, w ∈ R

2d .

The assertion follows applying Lemmas 2.4 and 2.5. ��
We next focus on the invertibility property. We use the notations already introduced

in [7]. Let us underline that the algebra cases corresponding to �1vs
(�) where already

treated in [23] and [24] (and references therein).

Definition 3.5 (Definition 6.5 [7]) We define B := �
q
vs (�), 0 < q ≤ 1, s ≥ 0. Let A

be a matrix on � with entries aλ,μ, λ,μ ∈ �, and dA be the sequence with entries
dA(μ) defined by

dA(μ) = sup
λ∈�

|aλ,λ−μ|. (24)

We state that A ∈ CB if dA ∈ B. The (quasi-)norm in CA is given by

‖A‖CB = ‖d‖B.
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The value dA(μ) is the supremumof the entries in theμ−th diagonal of A, thus the CB-
norm describes the off-diagonal decay of A. We identify an element b ∈ B ⊂ �1(�)

with the corresponding convolution operator Cba = a ∗ b. This allows to treat B as a
quasi-Banach subalgebra of B(�2(�)), the algebra of bounded operators on �2(�).

The elementary properties of CB proved for the algebra case B = �1vs
(�) are valid

also for the quasi-algebra case B = �
q
vs (�), 0 < q < 1. We list them and for their

proof we refer to the arguments in Lemma 3.4 in [24].

Lemma 3.6 For 0 < q < 1 we have that B = �
q
vs (�) is a solid quasi-Banach algebra

under convolution and the following properties hold:
(i) CB is a quasi-Banach algebra under matrix multiplication (equivalently, under

composition of the associated operators).
(ii) Let Y a solid quasi-Banach space of sequences on �. If B ∗ Y ⊆ Y then CB

acts boundedly on Y , that is

‖Ac‖Y ≤ ‖A‖CB‖c‖Y , ∀A ∈ CB, c ∈ Y . (25)

(iii) Since B ⊆ �1(�) we may identify CB as a quasi-Banach subalgebra of B(�2(�)).

Observe that B is commutative whereas CB is not, that is why the passage from B to
CB can be viewed as a non-commutative extension of convolution quasi-algebras of
sequences on �. Crucial question about CB is whether it is inverse closed.

Definition 3.7 Let B ⊆ A two quasi-Banach algebras with common unit element.
Then B is inverse-closed in A if b ∈ B and b−1 ∈ A implies that b ∈ B.

The following theorem gives a characterization of the inverse closedness of CB.
The proof for B = �1vs

(�) is due to Baskakov [3], see the general algebra case in [24,
Theorem 3.5].

We shall give a detailed proof of the result below for the quasi-algebras cases
0 < q < 1. This result is valuable of its own and could find applications in other
frameworks. The proof follows the same pattern as in [24], but the tools involved
needed to be extended to the quasi-Banach algebras setting. We devote the appendix
below to prove those results. By a basis change for the lattice �, we assume without
loss of generality that � = Z

2d . Moreover, for the sake of generality, the following
theorem is stated for the dimension d, namely B = �

q
vs (Z

d).
A tool we shall need to prove Theorem 3.9 is the Fourier transform of matrices

A = (ak, j ) j,k∈Zd . Let

DA(n)k, j =
{

ak,k−n if j = k − n,

0 otherwise
(n, j, k ∈ Z

d)

be the n-th diagonal of A and

Mt c(k) = e2π ikt c(k) t ∈ T
d , k ∈ Z

d ,

where c = (c(k))k∈Z is a sequence, be the modulation operator, which is unitary on
�2(Zd) for all t ∈ T

d and satisfies Mt+k = Mt for all k ∈ Z
d .



Quasi-Banach algebras and Wiener properties... Page 13 of 26 9

For a matrix A = (ak, j ) j,k∈Zd , we set

f (t) = Mt AM−t t ∈ T
d . (26)

We need the following result, whose proof for the quasi-Banach algebra case goes
exactly as that of [24, Lemma 8.5].

Lemma 3.8 LetB be a commutative quasi-Banach algebra. Under the notation above,
(i) f (t)k, j = ak, j e2π i(k− j)t for k, j ∈ Z

d and t ∈ T
d;

(ii) the matrix-valued Fourier coefficients of f (t) are given by

f̂ (n) =
∫

[0,1]d
f (t)e−2π int dt = DA(n),

with the appropriate interpretation of the integral, and ‖DA(n)‖op = dA(n);
(iii) let B(Td , B(�2)) be the space of matrix-valued Fourier expansions g that are

given by g(t) = ∑
n∈Zd Bne2π int , with Bn ∈ B(�2) and (‖Bn‖op)n∈Zd ∈ B. Then,

A ∈ CB ⇐⇒ f (t) ∈ B(Td , B(�2)).

Theorem 3.9 Consider B = �
q
vs (Z

d), 0 < q < 1, s ≥ 0. Then the following are
equivalent:

(i) B is inverse-closed in B(�2).
(ii) CB is inverse-closed in B(�2).

(iii) The spectrum B̂  T
d .

Proof We first prove that (i) and (i i i) are equivalent, then we turn to the other impli-
cations.

(i i i) ⇒ (i). Assume that B̂  T
d and let a ∈ B such that Ca is invertible in

B(�2). We have to prove that a has an inverse in B. Since B̂  T
d , the restriction

of the Gelfand transform to T
d is the Gelfand transform itself, so that Fa coincides

with the Gelfand transform by Proposition A.19 (i i i). Hence, by Proposition A.19
(i i), the Fourier series of a does not vanish at any point, which means that the Gelfand
transform does not vanish at any point. By TheoremA.20, it follows that a is invertible
in B.

(i) ⇒ (i i i). Assume B̂ � T
d . Since B ⊂ �1 then �̂1  T

d ⊂ B̂ and the Fourier
series of any elements of B is the restriction to the strict subset Td of its Gelfand
transform, so they do not coincide unless the Gelfand transform vanishes on B̂ \ T

d .
Assume that B is inverse closed in B(�2).

By Theorem A.10 (i i i), a ∈ B is invertible if and only if the Gelfand transform of
a does not vanish on B̂. Moreover, by definition, a is invertible in B if and only if Ca

is invertible in B(�2) with inverse, say Cb, that satisfies b ∈ B. On the other hand, Ca

is invertible if and only if the Fourier series of a does not vanish on Td , by Proposition
A.19 (i i).

But the Fourier series of a is only the restriction of the Gelfand transform to Td , so
the invertibility of a is not equivalent to that of Ca . This is a contradiction.
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(i i) ⇒ (i). Since Cab(k) = a ∗ b(k) = ∑
j∈Zd a(k − j)b( j), Ca has matrix A

with entries a(k − j), k, j ∈ Z
d . Therefore,

dA( j) = sup
k

|Ak,k− j | = sup
k

|a(k − j + j)| = |a( j)|,

so that ‖A‖CB = ‖dA‖B = ‖a‖B. Hence, A ∈ CB if and only if a ∈ B.
Assume that B is not inverse-closed in B(�2) and let a ∈ B be such that Ca is

invertible on �2 with inverse Cb, with b /∈ B. By the previous argument, the matrix B
of Cb cannot be in CB, that means that CB cannot be inverse-closed in B(�2).

(i i i) ⇒ (i i). Assume that A ∈ CB is invertible in B(�2), we have to prove that if
(i i i) holds, the inverse of A is in CB. Let f (t) = Mt AM−t (t ∈ T

d ) be defined as in
(26). By Lemma 3.8 (i i i), f (t) has a B(�2)- valued Fourier series

f (t) =
∑
n∈Zd

DA(n)e2π int , (27)

where DA(n) the n-th diagonal of A, and ‖DA(n)‖op = dA(n) is in B. We identify B
with a sub-quasi-algebra of B(Td , B(�2)) via the embedding ι : B → B(Td , B(�2))

defined for all a ∈ B and all t ∈ T
d as

ι(a)(t) =
∑
n∈Zd

a(n)e2π int I = â(t)I ,

where â is the Fourier transform of a ∈ B, which coincides with the Gelfand transform
by the validity of (i i i) and I is the identity operator. LetM be a maximal left ideal of
B(Td , B(�2)) and πM be the corresponding representation. Since ι(a) is a multiple
of I , ι(a) commutes with every element of B(Td , B(�2)), we find that for all T ∈
B(Td , B(�2)) and all a ∈ B,

πM(T )πM(ι(a)) = πM(ι(a))πM(T ).

By Lemma A.15, πM(ι(a)) must be a multiple of the identity, and since πM is
a homomorphism, there exists a multiplicative linear functional χ ∈ B̂ such that
πM(ι(a)) = χ(a)I . Since B̂  T

d , and χ ∈ B̂, there exists t0 ∈ T
d such that

χ(a) = â(t0). Consequently,

πM(ι(a)) = â(t0)I , a ∈ B.

Let δn be the standard basis of �1(Zd). SinceB is solid, δn ∈ B and ι(δn)(t) = e2π int I .
By (27), f = ∑

n∈Zd DA(n)ι(δn), so that

πM( f ) = πM

⎛
⎝ ∑

n∈Zd

DA(n)ι(δn)

⎞
⎠ =

∑
n∈Zd

πM(DA(n))πM(ι(δn))
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=
∑
n∈Zd

πM(DA(n))e2π int0 I = πM

⎛
⎝ ∑

n∈Zd

DA(n)e2π int0

⎞
⎠

= πM( f (t0)).

Since the modulations Mt are unitary, if A ∈ CB is invertible in B(�2), so is
f (t) = Mt AM−t for all t ∈ T

d . By Lemma A.14, πM( f (t0)) is left-invertible
for every maximal left ideal in B(Td , B(�2)). Equivalently, πM( f ) is invertible for
every maximal left ideal in B(Td , B(�2)). By Lemma A.14, f (t) is invertible in
B(Td , B(�2)). By definition of B(Td , B(�2)), this means that f (t)−1 possesses a
Fourier series

f (t)−1 = Mt A−1M−t =
∑
n∈Zd

Bne2π int

with (‖Bn‖)n∈Zd ∈ B. By Lemma 3.8 (i i), Bn is the n-th side diagonal of A−1. As a
consequence, Lemma 3.8 (i i i) implies that A−1 ∈ CB. ��

Corollary 3.7 of [24] works also for quasi-algebras, the proof uses Lemma 3.6 and
it is exactly the same.

Corollary 3.10 (Spectral Invariance) Consider the (quasi-)algebra B above. Assume
B̂  T

d , then

SpB(�2)(A) = SpCB (A), ∀ A ∈ CB. (28)

If B acts boundedly on a solid sequence space Y , then

SpB(Y )(A) ⊆ SpB(�2)(A), ∀ A ∈ CB. (29)

4 Almost diagonalization for Weyl operators

Fix a Parseval Gabor frame G(g,�) with g ∈ S(Rd), take σ ∈ S ′(R2d) (or some
suitable subspace) and let M(σ ) the matrix with entries

M(σ )μ,λ = 〈Opw(σ)π(λ)g, π(μ)g〉, λ, μ ∈ �. (30)

Following the notation in [24], we denote by

V �
g f (λ) = 〈 f , π(λ)g〉,

the restriction of the STFT of f to the lattice �. We can write

f =
∑
λ∈�

〈 f , π(λ)g〉π(λ)g,
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so that

〈Opw(σ) f , π(μ)g〉 =
∑
λ∈�

〈 f , π(λ)g〉〈Opw(σ)π(λ)g, π(μ)g〉,

that is

V �
g (Opw(σ) f ) = M(σ )V �

g f . (31)

The commutation relation can be easily seen via the diagram

L2(Rd) L2(Rd)

�2(�) �2(�)

�

V �
g

�Opw(σ)

�

V �
g

�M(σ )

(32)

Our goal is to characterize the inverse of Opw(σ) in terms of the matrix operator
M(σ ). Let us underline that that the invertibility of Opw(σ) on L2(Rd) does not
guarantee the invertibility of M(σ ) on �2(�), see Lemma 4.3 below. That is why we
recall the definition of pseudo-inverse.

Definition 4.1 An operator A : �2 → �2 is pseudo-invertible if there exists a closed
invariant subspace R ⊆ �2, such that A is invertible on ranA = R and kerA = R⊥.
The unique operator A† that satisfiesA†Ah = AA†h = h for h ∈ R and ker A† = R⊥
is called the pseudo-inverse of A.

A consequence of Theorem 3.9 is the property of pseudo-inverses for elements in
CB. The proof is the same as in [24, Lemma 5.4].

Lemma 4.2 If B is inverse-closed in B(�2) and A ∈ CB has a pseudo-inverse A†, then
A† ∈ CB.

We recall the following lemma [23]:

Lemma 4.3 [23] If Opw(σ) is bounded on L2(Rd) then M(σ ) is bounded on �2(�)

and maps ran V �
g into ran V �

g with ran (V �
g )⊥ ⊆ ker M(σ ).

Let T be a matrix such that V �
g (Opw(σ) f ) = T V �

g f for all f ∈ L2(Rd).

If ran (V �
g )⊥ ⊆ ker T , then T = M(σ ).

In what follows we need the characterization for Weyl operators with symbols
in M∞,q

1⊗vs
(R2d) which is contained in [1]. A direct inspection of the proof allows

to replace the dominating function H ∈ Lq
vs (R

2d) with one in the smoother space
W (C, �

q
vs )(R

2d).

Theorem 4.4 Consider g ∈ S(Rd)\{0} and a lattice � ⊂ R
2d such that G (g,�) is a

Gabor frame for L2
(
R

d
)
. For any s ∈ R, 0 < q ≤ ∞, the following properties are

equivalent:
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(i) σ ∈ M∞,q
1⊗vs

(
R
2d

)
.

(i i) σ ∈ S ′ (
R
2d

)
and there exists a function H ∈ W (C, �

q
vs )(R

2d) such that

|〈Opw(σ)π (z) g, π (u) g〉| ≤ H(u − z), ∀u, z ∈ R
2d . (33)

(i i i) σ ∈ S ′ (
R
2d

)
and there exists a sequence h ∈ �

q
vs (�) such that

|〈Opw(σ) (σ ) π (μ) g, π (λ) g〉| ≤ Ch(λ − μ), ∀λ,μ ∈ �. (34)

Theorem 4.5 For 0 < q ≤ 1, we have σ ∈ M∞,q
1⊗vs

(R2d) if and only if M(σ ) ∈ CB
with equivalence of norms:

‖M(σ )‖CB � ‖σ‖M∞,q
1⊗vs

. (35)

Proof It is a consequence of the equivalence (i) ⇔ (i i i) of Theorem 4.4. The algebra
case q = 1 is proved in [24]. ��
Theorem 4.6 The class of Weyl operators with symbols in M∞,q

1⊗vs
(R2d), 0 < q ≤ 1,

is inverse-closed in B(L2(Rd)). In other words, if σ ∈ M∞,q
1⊗vs

(R2d) and Opw(σ) is

invertible on L2(Rd), then (Opw(σ))−1 = Opw(b) for some b ∈ M∞,q
1⊗vs

(R2d).

Proof Assume Opw(σ) is invertible on L2(Rd) for some σ ∈ M∞,q
1⊗vs

(R2d). Let τ ∈
S ′(R2d) be the unique distribution such that Opw(σ)−1 = Opw(τ). We shall prove
that τ ∈ M∞,q

1⊗vs
(R2d). Since Opw(τ) is bounded on L2(Rd), Lemma 4.3 implies that

the infinite matrix operator M(τ ) is bounded on �2(�) and maps ran V �
g into itself

with ran (V �
g )⊥ ⊆ ker T . If f ∈ L2(Rd), then by (31) we can write

M(τ )M(σ )V �
g f = M(τ )V �

g (Opw(σ) f ) = V �
g (Opw(τ)Opw(σ) f ) = V �

g f .

Hence M(τ )M(σ ) = Id on ran V �
g and M(τ )M(σ ) = 0 on ran (V �

g )⊥. Likewise,
M(σ )M(τ ) = Id on ran V �

g and M(σ )M(τ ) = 0 on ran (V �
g )⊥. Hence M(τ ) =

M(σ )†.

By Theorem 4.5, if σ ∈ M∞,q
1⊗vs

(R2d) then M(σ ) ∈ CB and Lemma 4.2 gives

M(τ ) = M(σ )† ∈ CB. By Theorem 4.4 we conclude that τ ∈ M∞,q
1⊗vs

(R2d). ��

5 Generalizedmetaplectic operators

The theory developed so far find application in the framework of generalized meta-
plectic operators. In what follows we shall show the invertibility property and the
explicit representation of such operators.

Theorem 5.1 (Invertibility in the class F I O(χ, q, vs))Consider T ∈ F I O(χ, q, vs),

such that T is invertible on L2(Rd), then T −1 ∈ F I O(χ−1, q, vs).
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Proof The pattern is similar to Theorem 3.7 in [11]. We detail the differences. We first
show that the adjoint operator T ∗ belongs to the class F I O(χ−1, q, vs). By Definition
3.1:

|〈T ∗π(z)g, π(w)g〉| = |〈π(z)g, T (π(w)g)〉| = |〈T (π(w)g, π(z)g)〉|
≤ H(z − χ(w)) = I(H ◦ χ)(w − χ−1z).

Observe that I(H ◦ χ) ∈ W (C, �
q
vs ) for H ∈ W (C, �

q
vs ) by Lemma 2.5, since vs ◦

χ−1 � vs , and the claim follows. Hence, by Theorem 3.4 (i i), the operator P := T ∗T
is in F I O(Id, q, vs) and satisfies the estimate (23), that is:

|〈Pπ(λ)g, π(μ)g〉| ≤ h(λ − μ), ∀λ,μ ∈ �,

and a suitable sequence h ∈ �
q
vs (�). The characterization for pseudodifferential oper-

ators in Theorem 3.2 [1] says that P is a Weyl operator P = Opw(σ) with a symbol
σ in M∞,q

1⊗vs
(R2d). Since T and therefore T ∗ are invertible on L2(Rd), P is also

invertible on L2(Rd). Now we apply Theorem 4.6 and conclude that the inverse
P−1 = Opw(τ) is a Weyl operator with symbol in τ ∈ M∞,q

1⊗vs
(R2d). Hence P−1

is in F I O(Id, q, vs). Eventually, using the algebra property of Theorem 3.4 (i i), we
obtain that T −1 = P−1T ∗ is in F I O(χ−1, q, vs). ��
Theorem 5.2 Fix 0 < q ≤ 1, χ ∈ Sp(d,R). A linear continuous operator T :
S(Rd) → S ′(Rd) is in F I O(χ, q, vs) if and only if there exist symbols σ1, σ2 ∈
M∞,q

1⊗vs
(R2d),

such that

T = Opw(σ1)μ(χ) and T = μ(χ)Opw(σ2). (36)

The symbols σ1 and σ2 are related by

σ2 = σ1 ◦ χ. (37)

Proof It follows the same pattern of the proof of [12, Theorem 3.8]. The main tool is
the characterization in Theorem 3.2 of [1] which extends Theorem 4.6 in [24] to the
case 0 < q < 1. We recall the main steps for the benefit of the reader.

Assume T ∈ F I O(χ, q, vs) and fix g ∈ S(Rd). We first prove the factorization
T = σw

1 μ(χ). For every χ ∈ Sp(d,R), the kernel of μ(χ) with respect to time-
frequency shifts can be written as

|〈μ(χ)π(z)g, π(w)g〉| = |Vg
(
μ(χ)g

)(
w − χ z

)|.
Since both g ∈ S(Rd) and μ(χ)g ∈ S(Rd), we have Vg(μ(χ)g) ∈ S(R2d) (see
e.g., [13]). Consequently, we have found a function H = |Vg

(
μ(χ)g

)| ∈ S(R2d) ⊂
W (C, �

q
vs ) such that

|〈μ(χ)π(z)g, π(w)g〉| ≤ H(w − χ z) w, z ∈ R
2d . (38)
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Sinceμ(χ)−1 = μ(χ−1) is in F I O(χ−1, q, vs) by Theorem 5.1, the algebra property
of Theorem 3.4 (i i) implies that T μ(χ−1) ∈ F I O(Id, q, vs). NowTheorem 3.2 in [1]
implies the existence of a symbol σ1 ∈ M∞,q

1⊗vs
(R2d), such that T μ(χ)−1 = Opw(σ1),

as claimed. The rest goes exactly as in [12, Theorem 3.8]. ��

Appendix A. Quasi-Banach algebras

We consider here the solid involutive quasi-Banach algebras with respect to convolu-
tion B = �

q
vs (�), s ≥ 0, 0 < q ≤ 1. For q = 1 we recapture the algebra �1vs

(�). As
before, without loss of generality, we may assume � = Z

2d .
The unit element is given by the sequence δ = (δ(k))k∈Z2d , with elements

δ(k) =
{
1, k = 0

0, k ∈ Z
2d\{0},

We have ‖δ||�q
vs

= 1 for every s ∈ R. Moreover, for every a ∈ �
q
vs (Z

2d),

a ∗ δ(k) =
∑

j∈Z2d

δ( j)a(k − j) = δ(0)a(k) = a(k),

k ∈ Z
2d .

For sake of clarity, we first recall the general definition of a quasi-Banach space.

Definition A.1 Let be X a complex vector space. A functional ‖ · ‖ : X → [0,+∞)

is called quasinorm if the following inequality holds

‖ f + g‖ ≤ K (‖ f ‖ + ‖g‖), ∀ f , g ∈ X , (39)

where K ≥ 1, moreover,

‖ f ‖ ≥ 0 and ‖ f ‖ = 0 ⇔ f = 0

and

‖λ f ‖ = |λ|‖ f ‖, ∀λ ∈ C, f ∈ X .

The couple (x, ‖ · ‖) is called a quasinormed space. A complete quasinormed vector
space is called a quasi-Banach space.

Standard examples are Lq spaces with 0 < q < 1. In this case the functional ‖ · ‖ =
‖ · ‖Lq is not a norm but satisfies (39) with K = 21/q − 1 > 1 and it holds

‖ f + g‖q ≤ ‖ f ‖q + ‖g‖q , ∀ f , g ∈ Lq . (40)
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A functional satisfying (39) and (40) is called a q-norm. Relation (40) generalizes to

‖ f1 + f2 + · · · fn‖q ≤
n∑
1

‖ fn‖q , ∀ fi ∈ Lq , i = 1, . . . , n. (41)

If the metric d( f , g) = ||| f − g|||q on X defines a metric that induces the same
topology on the quasi-Banach space (X , ‖ · ‖), then X is also called q-Banach space.

Theorem A.2 (Aoki-Rolewicz [29]) If ‖ ·‖ is a quasinorm on X, then there exist q > 0
and a q-norm ||| · ||| on X such that

1

C
‖ f ‖ ≤ ||| f ||| ≤ ‖ f ‖, f ∈ X ,

where C > 0 is independent of f .

Following the pattern of [25], from now on we assume that quasinorm means q-norm,
for some q ∈ (0, 1].

A.1. General theory of quasi-Banach algebras

Definition A.3 A (complex) quasi-Banach algebra A is a complex vector space in
which a multiplication · : A × A → A is satisfied so that

(i) x · (y · z) = (x · y) · z,
(ii) (x + y) · z = x · z + y · z,
(iii) α(x · y) = (αx) · y = x · (αy) for all x, y, z ∈ A and α ∈ C. In addition,A is

a quasi-Banach space with respect to a quasi-norm ‖ · ‖ that satisfies

‖x · y‖ ≤ CP‖x‖‖y‖ (42)

for some CP > 0, and A contains an element e such that
(iv) x · e = e · x = x ; (v) ‖e‖ = 1.

For CP = 1 (42) becomes ‖x · y‖ ≤ ‖x‖‖y‖ and we have the standard algebra
property. In particular, if CP ≤ 1 then the estimate ‖x · y‖ ≤ ‖x‖‖y‖ holds as well.
Thus, we limit to the case

CP ≥ 1.

In what follows, A will always denote a quasi-Banach agebra and CP will always
denote the constant that appears in (42). Also, we denote with CS the constant in the
definition of quasi-norm, namely

‖x + y‖ ≤ CS‖x‖‖y‖.
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Examples for the case CS = 1 is given by A = �
q
vs (Z

2d), 0 < q ≤ 1, s ≥ 0, which
satisfies:

‖x ∗ y‖�
q
vs

≤ ‖x‖�
q
vs

‖y‖�
q
vs

.

Moreover �
q
vs (Z

2d) are q-Banach spaces.
From now on, we may assume without loss of generality that � = Z

2d .

Remark A.4 The multiplication · : A × A → A is continuous with respect to the
quasi-norm topology on A and left/right continuous. The proof goes exactly as in the
Banach case.

[27, Proposition 10.6] extends to the quasi-Banach case directly. For the following
theorem in the Banach setting, we refer to [27, Theorem 10.7].

Recall that a complex homomorphism on a quasi-Banach algebra A is a linear
mapping φ : A → C such that φ �≡ 0 and φ(x · y) = φ(x)φ(y) for all x, y ∈ A.

Theorem A.5 Let A be a quasi-Banach algebra, x ∈ A, ‖x‖ < 1
CP

. Then,
(i) e − x is invertible in A with inverse s;

(ii) ‖s − e − x‖ ≤ C2
P‖x‖2

(1−(CP‖x‖)q )1/q ;
(iii) |φ(x)| < 1 for all complex homomorphism φ on A.

Proof (i) It follows precisely as in [27, Theorem 10.7 (a)], with

‖xm + xm+1 + . . . + xn‖q ≤
n∑

j=m

‖x j‖q ≤
n∑

j=m

(CP‖x‖)q j ,

which goes to 0 since the series converges. This proves that the partial sums sn =
e+x +x2+ . . .+xn form a Cauchy sequence inA. Moreover, we also have ‖xn‖ → 0
as n → +∞ because

‖xn‖q ≤ Cnq
P ‖x‖nq → 0

since CP‖x‖ < 1 So, all the ingredients used to prove (i) are still valid.
The proof of (ii) goes exactly as that of [27, Theorem 10.7 (b)], with the difference

that

‖s − e − x‖q = ‖x2 + x3 + . . .‖q ≤
∞∑
j=2

(CP ) jq‖x‖ jq = C2q
P ‖x‖2q

1 − (CP‖x‖)q
.

(iii) It is proved verbatim as in [27, Theorem 10.7 (c)]. ��
WedenotewithG(A) the group of invertible elements ofA. If x ∈ A, the spectrum

of x is defined exactly as in the Banach setting as

σ(x) = {λ ∈ C : λe − x is not invertible}.
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C\σ(x) is called the resolvent of x and ρ(x) = supλ∈σ(x) |λ| is the spectral radius of
x . The following result generalizes [27, Theorem 10.11] to the quasi-Banach setting,
and its proof is also a straightforward generalization.

Theorem A.6 Let A be a quasi- Banach algebra, x ∈ G(A) and h ∈ A be such that
‖h‖ < 1

2C2
P
‖x−1‖−1. Then, x + h ∈ G(A) and

‖(x + h)−1 − x−1 + x−1hx−1‖ ≤ C4
P‖x−1‖3‖h‖2.

Proof Since ‖h‖ < 1
2C2

P
‖x−1‖−1,

‖x−1h‖ ≤ CP‖x−1‖‖h‖ < CP
1

2C2
P

‖x−1‖−1‖x−1‖ = 1

2CP
<

1

CP

By Theorem A.5, x−1h is invertible in A and

‖(x + h)−1 − x−1x−1hx−1‖ = ‖(e + x−1h)−1 − e + x−1h‖‖x−1‖

≤ C2
P‖x−1h‖2

(1 − Cq
P‖x−1h‖q)1/q

‖x−1‖

≤ C2
P‖x−1h‖2‖x−1‖ ≤ C4

P‖x−1‖3‖h‖2.

��
As a consequence, G(A) is open and x �→ x−1 is a homomorphism of G(A) onto

itself, cf. [27, Theorem 1.12]. It is also immediate to verify that [27, Theorem 1.13]
generalizes with the same statement, and the upper bound for ρ(x) changes to

ρ(x) ≤ CP‖x‖ x ∈ A,

in particular the spectral radius formula holds:

ρ(x) = lim
n→+∞‖xn‖1/n = inf

n≥1
‖xn‖1/n

and the proof of the [27, Theorem 10.14] extends to the quasi-Banach setting.

Theorem A.7 (Gelfand-Mazur) If A is a quasi-Banach algebra and G(A) = A \ {0},
then A is (isometrically) isomorphic to C.

Remark A.8 The condition ‖e‖ = 1 serves in the proof of Theorem A.7 to prove that
the isomorphism λ : A → C of the Theorem of Gelfand-Mazur is an isometry. If
‖e‖ > 0, then λ is a quasi-isometry, as |λ(x)| = ‖e‖‖x‖ for all x ∈ A. Condition A.3
(v) is barely used in this part of Banach quasi-algebras and, exactly as condition (42)
with CP > 0, it has a minor impact on the validity of the Banach setting results.
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Definition A.9 LetA be a commutative complex quasi-Banach algebra. A linear sub-
space J ⊆ A is an ideal of A if x · y ∈ J for all x ∈ A and all y ∈ J . J is proper
if J �= A and it is maximal if it proper and it is not contained in any larger proper
ideal.

[27, Proposition 11.2] and [27, Theorem 11.3] extend trivially to the quasi-Banach
setting.

Let J be a closed and proper ideal of A. Let π : A → A/J be the quotient map
π(a) = a + J (a ∈ A). Define

‖a + J ‖ := inf
y∈J

‖a + y‖.

Then, ‖·‖ defines a complex quasi-Banach algebra structure on A/J . In fact, the
product onA/J is definedprecisely as in theBanach setting.Moreover,‖π(x)‖ ≤ ‖x‖
since 0 ∈ J , so π is continuous with respect to the quasi-norm topologies. A slightly
modification of the proof for the Banach setting leads to the inequality

‖π(x)π(y)‖ ≤ CP‖π(x)‖‖π(y)‖ ∀π(x), π(y) ∈ A/J .

Finally, ‖π(e)‖ = ‖π(e)π(e)‖ ≤ CP‖π(e)‖2, which implies that ‖π(e)‖ ≥ 1/CP . If
CP = 1, this implies that ‖π(e)‖ ≥ 1 and the other inequality follows trivially by the
continuity of π . If CP > 0, then we have

1

CP
≤ ‖π(e)‖ ≤ 1.

For this reason,when dealingwith quotients quasi-algebras, condition (v) ofDefinition
A.3 can be replaced by 1

CP
≤ ‖π(e)‖ ≤ 1.

For our purposes CP = 1 and so also ‖π(e)‖ = 1.

Theorem A.10 Let A be a commutative quasi-Banach algebra and

Â := {φ : A → C, complex homomor phism}.

Then, (i) every maximal ideal of A is the kernel of some h ∈ Â,
(ii) if h ∈ Â, ker(h) is a maximal ideal of A,
(iii) x ∈ A is invertible if and only if h(x) �= 0 for all h ∈ Â,
(iv) x ∈ A is invertible if and only if x lies in no proper ideal of A,
(v) λ ∈ σ(x) if and only if h(x) = λ for some h ∈ Â.

Proof Is just a readjustment of the proof of [27, Theorem 11.5]. ��
Definition A.11 Let A be a commutative quasi-Banach algebra and Â be the set of
the complex homomorphism of A. The Gelfand transform of x ∈ A is the mapping
x̂ : � → C defined for all h ∈ Â as

x̂(h) = h(x).
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Corollary A.12 Let A be a commutative quasi-Banach algebra. Then, x ∈ A is invert-
ible if and only if x̂(h) �= 0 for all h ∈ Â.

Proof It follows directly by Theorem A.10 (iii). ��
Following thepattern ofSection24 in [4], one can infer that the representation theory

for quasi-Banach algebras goes exactly the same as for Banach algebras, since themain
ingredients are the algebraic properties, the closedness criteria and the continuity of
the representations. We then restate the same Lemmata 8.7, 8.8 and 8.9 in [24] in our
setting as follows.

Let A be a quasi-Banach algebra with identity and M ⊆ A a closed left ideal.
Then A acts on the quasi-Banach space A/M by the left regular representation

πM(a)x̃ = ãx, a ∈ A, x̃ ∈ A/M, (43)

where x̃ is the equivalence class of x in A/M.

Lemma A.13 If M is a maximal left ideal of a quasi-Banach algebra A, then πM is
algebraically irreducible. That is,

{πM(a)x̃ : a ∈ A} = A/M,

for every x̃ �= 0.

Lemma A.14 Let A be a quasi-Banach algebra with identity. An element A is left-
invertible (right-invertible) if and only if πM(a) is invertible for every maximal left
(right) ideal M ⊆ A.

Lemma A.15 (Schur’s Lemma for quasi-Banach space representations) Assume that
π : A → B(X) is an algebraically irreducible representation of A on a quasi-Banach
space X. If T ∈ B(X) and T π(a) = π(a)T for all a ∈ A, then T is a multiple of the
identity operator Id on X.

A.2. The quasi-Banch algebrasB

Observe that, for 0 < q ≤ 1,

�q
vs

(Z2d) ↪→ �2(Z2d), s ≥ 0. (44)

(continuous embedding).
Let D := {a ∈ �2(Zd) : Fa ∈ L∞(Td)} be the Banach algebra with the norm

‖a‖D := ‖Fa‖∞, where

Fa(ξ) =
∑
n∈Zd

a(n)e2π inξ . (45)
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Lemma A.16 B is continuously embedded in D and ‖a‖D ≤ ‖a‖B.

Proof Since �
q
vs (Z

d) ↪→ �1(Zd)with ‖a‖�1 ≤ ‖a‖�
q
vs
and �1(Zd) ↪→ D with ‖a‖D ≤

‖a‖�1 , the result immediately follows. ��
We recall a list of Lemmata from [24]. Namely,

Lemma A.17 (Lemma 8.3 [24]) If b ∈ D and |a| ≤ b then a ∈ D and ‖a‖D ≤ ‖b‖D.

Lemma A.18 (Lemma 8.4 [24]) Let a be a sequence on Z
d such that F |a| is well

defined. Then

‖a‖1 = ‖F |a|‖∞. (46)

Proposition A.19 (i) The Gelfand transform of a ∈ �1(Zd) coincides with the Fourier
series Fa in (45).

(ii) The convolution operator Cab = a ∗ b for a ∈ �1(Zd) is invertible if and only
if the Fourier series (45) does not vanish at any ξ ∈ T

d .
(iii) If a ∈ B, then the restriction of the Gelfand transform of a to T

d is the Fourier
series Fa of a.

Proof For Items (i) and (ii) see [24]. Item (iii) follows from the inclusion �
q
vs (Z

d) ⊆
�1(Zd), 0 < q ≤ 1. We know that if B ⊆ �1, then T

d ⊆ B̂ and the Fourier transform
is the restriction of the Gelfand transform on Td , so (iii) hold if Td  B̂. ��

As a consequence of Corollary A.12 and Proposition A.19, we have

Theorem A.20 Assume that B̂  T
d . An element a ∈ B is invertible if and only if its

Fourier series Fa does not vanish at any point.

References

1. Bastianoni, F., Cordero, E.: Characterization of smooth symbol classes by Gabor matrix decay. J.
Fourier Anal. Appl. (2022). https://doi.org/10.1007/s00041-021-09895-2

2. Beals, R.: Characterization of pseudodifferential operators and applications. Duke Math. J. 44(1),
45–57 (1977)

3. Baskakov, A.G.: Wiener’s theorem and the asymptotic estimates of the elements of inverse matrices.
Funct. Anal. Appl. 24, 222–224 (1990)

4. Bonsall, F., Duncan, J.: Complete Normed Algebras. Springer-Verlag, New York (1973)
5. Candés, E.J., Demanet, L.: The curvelet representation of wave propagators is optimally sparse. Com-

mun. Pure Appl. Math. 58, 1472–1528 (2005)
6. Candés, E.J., Demanet, L., Ying, L.: Fast computation of Fourier integral operators. SIAM J. Sci.

Comput. 29(6), 2464–2493 (2007)
7. Cordero, E., Giacchi, G., Rodino, L.: Wigner analysis of operators. Part II: Schrödinger equations.

Submitted. arXiv:2208.00505
8. Cordero, E., Nicola, F., Rodino, L.: Sparsity of Gabor representation of Schrödinger propagators. Appl.

Comput. Harmon. Anal. 26(3), 357–370 (2009)
9. Cordero, E., Rodino, N.: Wigner analysis of operators. Part I: pseudodifferential operators and wave

front sets. Appl. Comput. Harmon. Anal. 58, 85–123 (2022)
10. Cordero, E., Rodino, N.: Characterization of modulation spaces by symplectic representations and

applications to Schrödinger equations. Submitted

https://doi.org/10.1007/s00041-021-09895-2
http://arxiv.org/abs/2208.00505


9 Page 26 of 26 E. Cordero, G. Giacchi

11. Cordero, E., Gröchenig, K., Nicola, F., Rodino, L.: Wiener algebras of Fourier integral operators. J.
Math. Pures Appl. 99(2), 219–233 (2013)

12. Cordero, E., Gröchenig, K., Nicola, F., Rodino, L.: Generalized metaplectic operators and the
Schrödinger equation with a potential in the Sjöstrand class. J. Math. Phys. 55(8), 081506 (2014)

13. Cordero, E., Rodino, L.: Time-Frequency Analysis of Operators. De Gruyter Studies in Mathematics
(2020)

14. DeVore, R.A., Temlyakov, V.N.: Some remarks onGreedy algorithms. Adv. Comput.Math. 5, 173–187
(1996)

15. Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. Technical Report, University
Vienna, 1983. In: Krishna, M., Radha, R., Thangavelu, S. (eds) Wavelets and Their Applications, pp.
99–140. Allied Publishers (2003)

16. Feichtinger, H.G.: Banach spaces of distributions of Wiener’s type and interpolation. In: Functional
Analysis andApproximation (Oberwolfach, 1980), vol. 60 of Internat. Ser. Numer.Math., pp. 153–165.
Birkhäuser, Basel (1981)

17. Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: Functions, Series, Operators, Vol.
I, II (Budapest, 1980), pp. 509–524. North-Holland, Amsterdam (1983)

18. Feichtinger, H.G.: Generalized amalgams, with applications to Fourier transform. Can. J. Math. 42(3),
395–409 (1990)

19. Folland, G.B.: Harmonic Analysis in Phase Space. Princeton Univ. Press, Princeton (1989)
20. de Gosson, M.A.: Symplectic methods in harmonic analysis and in mathematical physics. In: Pseudo-

Differential Operators, Theory and Applications, vol. 7. Birkhäuser/Springer, Basel (2011)
21. Galperin, Y.V.: Young’s convolution inequalities for weighted mixed (quasi-) norm spaces. J. Inequal.

Spec. Funct. 5(1), 1–12 (2014)
22. Galperin, Y.V., Samarah, S.: Time-frequency analysis on modulation spaces M p,q

m , 0 < p, q ≤ ∞.
Appl. Comput. Harmon. Anal. 16(1), 1–18 (2004)

23. Gröchenig,K.: Time-frequency analysis of Sjöstrand’s class. Rev.Mat. Iberoam.22(2), 703–724 (2006)
24. Gröchenig, K., Rzeszotnik, Z.: Banach algebras of pseudodifferential operators and their almost diag-

onalization. Ann. Inst. Fourier 58(7), 2279–2314 (2008)
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