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Abstract
We study the holomorphic extendibility of Op(p)u, when p is an analytic symbol,
and explicit information is available on the domains of holomorphic extendibility of
both p and u. By a contour deformation argument, we obtain a precise local estimate
of the domain of holomorphy of Op(p)u in terms of the information on p and u.
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1 Introduction

In [3]Karamehmedović defines a class of analytic symbols. This class forms a subspace
of the analytic-type symbols in the sense of Trèves [6]. The aim was to obtain holo-
morphic mapping properties for the associated operators, and apply them to Calderón
projectors in a (local) Helmholtz-type Dirichlet problem, where the boundary is a
piece of a hyperplane.

In this way, Karamehmedović then constructs the Dirichlet-to-Neumann map, and
obtains a result on how well it preserves domains of holomorphic extendibility. That
is, how far Neumann data extends given this information about Dirichlet data, and
in fact vice-versa, by the same system of equations for the Calderón projectors. It
was done by showing that the symbols of the Calderón projectors are of that class.
The class of the "analytic symbols" was first introduced by Boutet de Monvel [1],
and Karamehmedović [3] essentially reuses these, but introduces constraints [3, pp.
3–4, Definition 2.1]. The domains obtained in [3, p. 10, Theorem 2.9] are larger than
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those we get here, and Karamehmedović [3] has the advantage of being adapted to
poly-rectangular shapes.

The aim of this paper is to remove the strong constraints on the symbols in [3], and
reduce them to analytic symbols in the sense of Trèves [6, p. 262, Definition 2.2]. In
the process, we will also obtain a general domain-of-extension mapping theorem. It
appears in Winterrose [7]. Let n ∈ N be the dimension throughout.

2 Notation

Denote by Sd(Rn × R
n) order d ∈ R (1, 0) Hörmander symbols. These are the

p ∈ C∞(Rn × R
n) satisfying, for any α, β ∈ N

n
0, the estimates

sup
(x,ξ)∈Rn×Rn

〈ξ 〉|α|−d |∂β
x ∂α

ξ p(x, ξ)| < ∞,

where we use the notation 〈ξ 〉 = (1 + |ξ |2) 1
2 for ξ ∈ R

n , and put S−∞ = ∩d∈RSd .
Associated to p is Op(p), defined via the Fourier transform F on u ∈ C∞

0 (Rn) by

Op(p)u(x) = 1

(2π)n

∫
Rn

eix ·ξ p(x, ξ)Fu(ξ) dξ for all x ∈ R
n,

which we will later write as an oscillatory integral, regularized by using Gaussians.
We use the notation d̄ξ = (2π)−ndξ for the scaled standard Lebesgue measure dξ .
Finally, B(x, r) denotes the open ball in R

n with center at x ∈ R
n and radius r > 0,

and E ′(Rn) is the space of compactly supported distributions.

3 Contour deformation

Theorem 3.1 Fix R > 0, ε > 0, and p ∈ Sd(Rn ×R
n) a symbol with d ∈ R. Assume

p|B(0,r0)×Rn extends holomorphically into (B(0, r0) + i B(0, δ0)) × Wε , where

Wε = {ζ ∈ C
n | |Im ζ | < ε|Re ζ |} ∩ {ζ ∈ C

n | |Re ζ | > R},

and satisfies

sup
(x,ζ )∈K×Wε

〈Re ζ 〉−d |p(x, ζ )| < ∞ for any K ⊂⊂ B(0, r0) + i B(0, δ0).

Let u ∈ C∞
0 (Rn). Suppose u|B(0,r) extends holomorphically into B(0, r) + i B(0, δ).

Choose r > r ′ > 0 and δ ≥ δ′ > 0 so that

δ′

r − r ′ < ε.

ThenOp(p)u|B(0,min{r ′,r0}) likewise extends to B(0,min{r ′, r0})+ i B(0,min{δ′, δ0}).
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This result is similar to Karamehmedović [3, Theorem 2.9], but without extra con-
straints on u and p. In particular, Op(p)u is real-analytic on B(0,min{r ′, r0}), as is
well-known [6].

A deformation of Rn × R
n into Cn × C

n allows us to continue Op(p)u explicitly.
The main idea is to split the oscillatory integral, and apply Stokes’ theorem.

Proof Take χ2 ∈ C∞
0 (Rn) to be 1 on B(0, 2R) but χ2(ξ) ∈ [0, 1) for ξ /∈ B(0, 2R).

Let χ1 ∈ C∞
0 (B(0, r)) be a cutoff with χ1(y) = 1 when y ∈ B(0, r ′′), else in [0, 1),

where r > r ′′ > r ′ are chosen so that

δ′

r − r ′ <
δ′

r ′′ − r ′ < ε.

Now let σ : [0, 1] × R
n × R

n → C
n × C

n be defined by

(t, y, ξ) �→
(
y − i tδ′χ1(y)(1 − χ2(ξ))

ξ

|ξ | , ξ − i t
δ′(1 − χ1(y))

r ′′ − r ′ (1 − χ2(ξ))|ξ | y

|y|
)
,

and let w and ζ denote the first and second C
n components of this σ , respectively.

This type of σ is used by Boutet de Monvel [1, pp. 243–245] with sparse details. Let
us put

C(t) = σ({t} × R
n × R

n) for all t ∈ [0, 1].

Under the σ deformation, if χ2(ξ) = 0 and |Re (x)| < r ′, we get

Re (i(x − w) · ζ ) = −ξ ·
(
Im (x) + tδ′χ1(y)

ξ

|ξ |
)

+ t
δ′(1 − χ1(y))

r ′′ − r ′ |ξ | y

|y| · (Re (x) − y)

≤ −|ξ |
( ξ

|ξ | · Im (x) + tδ′χ1(y) + t
δ′(1 − χ1(y))

r ′′ − r ′
(
|y| − |Re (x)|

))

≤ −|ξ |
(

− |Im (x)| + tδ′χ1(y) + t
δ′(1 − χ1(y))

r ′′ − r ′
(
|y| − |Re (x)|

))

≤ −|ξ |
(
tδ′ − |Im (x)|

)
.

It will ensure that deformations byσ(t, ·, ·) give convergent integrals for |Im (x)| < tδ.
Take x ∈ B(0, r ′) + i t B(0, δ′), and fix ρ > 2R and 1 ≥ t2 > t1 ≥ 0. Put

Q(ρ) = (t1, t2) × R
n × (B(0, ρ) \ B(0, 2R)).

Then σ is injective on Q(ρ), because Rew = y and Re ζ = ξ force uniqueness
of (y, ξ), which, by definition of σ , shows that t must also be unique as long as
ξ /∈ B(0, 2R). Similarly, Re ζ = ξ and |Im ζ | ≤ tε|ξ | shows that

σ(Q(ρ)) ⊂ C
n × Wε for all ρ > 2R.
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In the following, we will put dw = dw1∧· · ·∧dwn and d̄ζ = (2π)−ndζ1∧· · ·∧dζn .
Define for (w, ζ ) ∈ C

n × Wε the 2n-form

μx = Gx (w, ζ ) dw ∧ d̄ζ = eiζ ·(x−w) p(x, ζ )u(w) dw ∧ d̄ζ,

where σ ∗μx is smooth and compactly supported in Q(ρ), and

dμx =
n∑
j=1

∂w j

[
eiζ ·(x−w) p(x, ζ )u(w)

]
dw j ∧ dw ∧ d̄ζ.

Then σ ∗dμx |Q(ρ) = 0, by holomorphy in y ∈ B(0, r), and since w ∈ R
n if y /∈

B(0, r).
Next, we show σ is an injective immersion, and calculate its pullbacks at fixed t .

In order to shorten expressions, we write

s(y, ξ) = δ′χ1(y)(1 − χ2(ξ)),

η(y, ξ) = δ′(1 − χ1(y))

r ′′ − r ′ (1 − χ2(ξ)).

Then we can calculate

dw j = dy j − i t
ξ j

|ξ |
n∑

i=1

∂yi s(y, ξ)dyi − i t
n∑

i=1

∂ξi

(
s(y, ξ)

ξ j

|ξ |
)
dξi − is(y, ξ)dt,

dζ j = dξ j − i t
y j
|y|

n∑
i=1

∂ξi

(
η(y, ξ)|ξ |

)
dξi − i t |ξ |

n∑
i=1

∂yi

(
η(y, ξ)

y j
|y|

)
dyi − iη(y, ξ)dt .

It follows then that the real Jacobian of σ has rank 2n, so σ is an injective immersion.
But with t kept fixed, det d(y,ξ)σ (t, y, ξ) equals the determinant of

⎡
⎢⎢⎣

[
δi j − i t

ξ j
|ξ |∂yi s(y, ξ)

]n
i, j=1

[
− i t∂ξi (s(y, ξ)

ξ j
|ξ | )

]n
i, j=1[

− i t |ξ |∂yi (η(y, ξ)
y j
|y| )

]n
i, j=1

[
δi j − i t

y j
|y|∂ξi (η(y, ξ)|ξ |)

]n
i, j=1

⎤
⎥⎥⎦ ,

which is bounded in (y, ξ), unlike the determinant in [3, pp. 6, Proof of Theorem 2.6].
This term appears when pulling back

σ(t, ·, ·)∗(dw ∧ d̄ζ ) = det d(y,ξ)σ (t, y, ξ) dy ∧ d̄ξ.

Using the above, we can now, without convergence issues, apply Stoke’s theorem.
Stokes’ theorem for manifolds with corners [5, Theorem 16.25] applied to Q(ρ) gives

0 =
∫
Q(ρ)

σ ∗dμx =
∫
Q(ρ)

d(σ ∗μx ) =
∫

∂Q(ρ)

σ ∗μx .
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Also, by the above estimate, there is some C > 0 such that

|(Gx ◦ σ)(t, y, ξ) det d(y,ξ)σ (t, y, ξ)| ≤ Ce−|ξ |(tδ′−|Im (x)|)〈ξ 〉d1supp(u)(y),

which ensures existence of
∫
C(t) μx when t > 0. If t = 0, it is meaningful if p ∈ S−∞,

but x must then have zero imaginary part. The aim is to show equivalence with t = 1.
Let σρ : [t1, t2] × R

n × S
n−1 → C

n × C
n be defined by

(t, y, ω) �→
(
y − i tδ′χ1(y)ω, ρ

[
ω − i t

δ′(1 − χ1(y))

r ′′ − r ′
y

|y|
])

.

Similarly, if x ∈ B(0, r ′), we get C ′ > 0 such that

|(Gx ◦ σρ)(t, y, ω) det(dσρ)(t, y, ω)| ≤ C ′e−ρtδ′ 〈ρ〉d+n1supp(u)(y),

and as σ(t, y, ξ) = (y, ξ) for ξ ∈ B(0, 2R), σ ∗μx vanishes on (t1, t2) × R
n ×

∂B(0, 2R). Combining integrals of opposite orientation, by dominated convergence,
we get

∫
C(t2)

μx −
∫
C(t1)

μx = lim
ρ→∞

∫ t2

t1

∫
y∈Rn

∫
ξ∈∂B(0,ρ)

(σ∗μx )(t, y, ξ)

= lim
ρ→∞

∫ t2

t1

∫
Rn

∫
Sn−1

[(Gx ◦ σρ) det(dσρ)](t, y, ω) vol
Sn−1(ω) dy dt,

where the integrand is compactly supported in y, bounded as above for every ρ > R.
It follows that the limit is zero, and we obtain that

∫
C(t2)

μx =
∫
C(t1)

μx if x ∈ B(0, r ′).

Pick t0 ∈ (0, 1) so that C(t0) ⊂ C
n × W 1

2
. By dominated convergence, we get

Op(p)u(x) = lim
λ→0

∫
Rn

∫
Rn

eiξ ·(x−y)[e−λ2ξ ·ξ p(x, ξ)]u(y) dy d̄ξ

= lim
λ→0

∫
C(t0)

eiζ ·(x−w)[e−λ2ζ ·ζ p(x, ζ )]u(w) dw ∧ d̄ζ

=
∫
C(t0)

eiζ ·(x−w) p(x, ζ )u(w) dw ∧ d̄ζ

=
∫
C(1)

eiζ ·(x−w) p(x, ζ )u(w) dw ∧ d̄ζ,

which makes sense, because if λ ∈ R, we have

|e−λ2ζ ·ζ | ≤ e−λ2(|Re ζ |2−|Im ζ |2) ≤ e− 1
2λ2|Re ζ |2 if |Im ζ | <

1

2
|Re ζ |.
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But now the last integral extends holomorphically in x to the right open set. ��
Note that for y /∈ B(0, r) the function u in μx may fail to extend holomorphically.

But this is not an issue, as deformation then only happens in the ζ -variable.

Corollary 3.2 The conclusions of Theorem 3.1 hold if u ∈ E ′(Rn).

Proof First pick a χ ∈ C∞
0 (B(0, r)) such that χ(y) = 1 for every y ∈ supp(χ1).

Define σy : [0, 1] × R
n → C

n by

(t, ξ) �→ ζ = ξ − i t
δ′(1 − χ1(y))

r ′′ − r ′ (1 − χ2(ξ))|ξ | y

|y| ,

and put

Cy(1) = σy({1} × R
n).

As before, if χ2(ξ) = 0 and |Re (x)| < r ′, we get

Re (i(x − y) · ζ ) = −ξ · Im (x) + t
δ′(1 − χ1(y))

r ′′ − r ′ |ξ | y

|y| · (Re (x) − y)

≤ −|ξ |
( ξ

|ξ | · Im (x) + t
δ′(1 − χ1(y))

r ′′ − r ′
(
|y| − |Re (x)|

))

≤ −|ξ |
(
tδ′(1 − χ1(y)) − |Im (x)|

)
.

Taking ϕ ∈ C∞
0 (B(0, r ′)), we have

〈Op(p)u, ϕ〉 = 〈Op(p)(χu), ϕ〉 + 〈Op(p)((1 − χ)u), ϕ〉
= 〈Op(p)(χu), ϕ〉 +

∫
Rn

〈
u(y), K (x, y)

〉
ϕ(x) dx

=
〈
Op(p)(χu)(x) + 〈u(y), K (x, y)〉, ϕ(x)

〉
,

where K : B(0, r ′)×R
n → C is the smooth kernel of Op(p)(1−χ) on B(0, r ′) only,

and we use brackets 〈·, ·〉 to denote the pairing of a distribution and a test function.
The action of Op(p) is understood in the distributional sense via the formal adjoint.
By Theorem 3.1, Op(p)(χu) extends holomorphically to the tube

T = B(0,min{r ′, r0}) + i B(0,min{δ′, δ0}),

provided that

δ′

r − r ′ <
δ′

r ′′ − r ′ < ε.
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It follows then (see e.g. [2, pp. 53–54, Exercise 3.14]) that x �→ 〈u, K (x, ·)〉 is smooth,
and all derivatives go through the brackets, because K is smooth and u ∈ E ′(Rn). The
same is true if K extends holomorphically in x to a smooth K : T × R

n → C. We
can then simply take complex derivatives through the brackets

∂z〈u, K (z, ·)〉 = 〈u, ∂z K (z, ·)〉 = 0,

and Op(p)u then extends (strongly) to the holomorphic function

Op(p)u(z) = Op(p)(χu)(z) + 〈u, K (z, ·)〉.

It remains only to show the holomorphic extension as outlined above for K (x, y).
Pick t0 ∈ (0, 1) so that Cy(t0) ⊂ W 1

2
. We deform from 0 to t0 with Cy(t0) ⊂ W 1

2
,

where p is multiplied by a Gaussian symbol, and finally from t = t0 to t = 1 directly.
This is facilitated by an argument via Stokes’ theorem very similar to the above one.
By dominated convergence, K has the form

K (x, y) = lim
λ→0

∫
Rn

ei(x−y)·ξ [e−λ2ξ ·ξ (1 − χ)(y)p(x, ξ)] d̄ξ

= lim
λ→0

∫
Cy(t0)

ei(x−y)·ζ [e−λ2ζ ·ζ (1 − χ)(y)p(x, ζ )] d̄ζ

=
∫
Cy(1)

ei(x−y)·ζ (1 − χ)(y)p(x, ζ ) d̄ζ,

and K vanishes unless y /∈ supp(χ1), in which case

Re (i(x − y) · ζ ) ≤ −|ξ |(tδ′ − |Im (x)|).

This means that the last deformed integral is absolutely convergent if |Im (x)| < δ′,
and thus K extends holomorphically in x to a smooth function on T × R

n . ��
Theorem 3.3 Let U ⊂ R

n be open, and UC be a tube-domain about U in C
n. (This

means z ∈ UC implies Re z ∈ U and Re (z)+ iy ∈ UC for all |y| ≤ |Im (z)|.) Assume
p|U×Rn extends holomorphically into UC × Wε , with Wε as in Theorem 3.1, and

sup
(x,ζ )∈K×Wε

〈Re ζ 〉−d |p(x, ζ )| < ∞ for any K ⊂⊂ UC.

Let u ∈ E ′(Rn) be real-analytic on U, with u|U extending holomorphically into UC.
Then Op(p)u|U extends holomorphically into

{z ∈ UC | |Im z| < ε dist(Re z, ∂U )},

and is independent of R > 0 in Wε .
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Proof Corollary 3.2 is valid over any x ∈ U by translation of x to the origin. This
gives a holomorphic extension of Op(p)u|B(x,r ′) into B(x, r ′) + i B(0, δ′) with

δ′ < ε(dist(x, ∂U ) − r ′),

and by making r ′ small, we can make δ′ arbitrarily close to ε dist(x, ∂U ). ��

4 Remarks

This removes the topologyneeded in [3, pp. 3–4,Definition 2.1]. It reduces the situation
to symbols defined by Boutet de Monvel [1] and Trèves [6]. However, the approach to
the original question raised in [3] has since changed a lot, and in [4], we will approach
it via precise local convergence radius estimates instead. It should be noted that those
estimates do not subsume the result in this paper.

The reason is that it is hard to get parametrix symbols in the same analytic class. It
works in [3] because the geometry is simple - the boundary is a piece of a hyperplane.
To overcome this, the analytic symbols are replaced with pseudo-analytic amplitudes,
which haveweaker conditions imposed on them - analyticity is replaced by an estimate,
and gives a way to build pseudo-analytic parametrices from formal asymptotic sums.
This can be exploited to obtain controlled convergence radius estimates.
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3. Karamehmedović, M.: On analytic continuability of themissing CauchyDatum for Helmholtz boundary

problems. Proc. Am. Math. Soc. 143, 1515–1530 (2015)
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