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Abstract
This paper studies the Cauchy problem for first order systems,

Lu = ∂t u −
d∑

j=1

A j (t, x)∂x j u − B(t, x)u = f , u(0, ·) = g. (0.1)

Assume that for ξ ∈ R
d ,

∑
A jξ j has only real eigenvalues. For coefficients and

Cauchy data sufficiently Gevrey regular the Cauchy problem has a unique suffi-
ciently Gevrey regular solution. We prove stability and error estimates for the spectral
Crank-Nicholson scheme. Approximate solutions can be computed with accuracy ε

in L∞([0, T ] × R
d) with cost growing at most polynomially in ε−1. The proofs uses

pseudodifferential symmetrizers.
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1 Introduction

1.1 Hyperbolic background

Consider the Cauchy problem (0.1). The coefficients A j and B are m × m complex
matrix valued functions that are independent of x for x outside a fixed compact set in
R
d . Denote

A(t, x, ξ) :=
d∑

j=1

A j (t, x)ξ j .

The operator is assumed to satisfy the very weak hyperbolicity condition,

∀(t, x, ξ) ∈ R × R
d × R

d , Spectrum A(t, x, ξ) ⊂ R. (1.1)

This hypothesis is best understood by considering first the case where the coef-
ficients are independent of t, x . In that case, the initial value problem is solved by
Fourier transform indicated by a hat,

û(t, ξ) = et(i A(ξ)+B) ĝ(ξ).

In the case B = 0, the hypothesis implies that for all ξ ∈ R
d

∥∥ei A(ξ)
∥∥
Hom(Cm )

� 〈ξ 〉m−1, 〈ξ 〉 := (1 + |ξ |2)1/2.

The Cauchy problem is well set in Sobolev spaces with at worst a loss of m − 1
derivatives. For general B not zero one has the weaker estimate

∥∥ei A(ξ)+B
∥∥
Hom(Cm )

� ec|ξ |(m−1)/m 〈ξ 〉m−1. (1.2)

This estimate does not allow one to solve the initial value problem for g ∈ C∞
0 (Rd).

However, its subexponential growth shows that the Cauchy problem is well set in
Gevrey spaces. Those spaces can be localized by Gevrey partitions of unity so provide
a reasonable setting for the initial value problem (0.1). In the constant coefficient case,
condition (1.1) is necessary and sufficient for Gevrey well posedness.

The operators hyperbolic in the sense of Petrowsky and Gårding [1] are character-
ized by the stronger estimate

∥∥ei A(ξ)+B
∥∥
Hom(Cm)

� 〈ξ 〉m−1 (1.3)

equivalent to Sobolev solvability with a loss of no more than m − 1 derivatives.
Estimate (1.2) corresponds to a sort of instability at high frequency that is stronger

than permitted for coefficient problems that are hyperbolic in the sense of Petrovsky
and Gårding [1].
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The remarkable fact is that provided that the coefficients of L areGevrey regular, the
Cauchy problem for L is well-posed in Gevrey classes if and only if (1.1) holds. The
sufficiency is a result of Bronshtein [2]. The necessity is proved in the trio of articles
[3–5]. In (1.1), no hypothesis is made about the singularities of the characteristic
variety of L for t, x fixed, nor on how the geometry of that variety changes as t, x
vary. The precise Gevrey regularity required does depend on such structures. Roughly,
the more variable are the multiplicities the stronger is the required Gevrey regularity.

The present paper provides additional evidence that the weakly hyperbolic opera-
tors characterized by (1.1) deserve the right to be considered hyperbolic. We give an
algorithm that computes approximate solutions with reasonable computational cost.
The stability analysis of discrete approximations took flight in the the classic paper of
Courant Friedrichs and Lewy [6] followed by the work of Von Neumann who showed
that the Fourier Transformoffered profound insights on the stability of discrete approx-
imations. That pseudodifferential operators offered additional insights was observed
by Kreiss, Yamaguti and Nogi and most importantly Lax and Nirenberg who discov-
ered the sharp Gårding inequality for matrix symbol pseudodifferential operators for
such an application. This result is crucial for our analysis too. An excellent overview
of the classic results is presented in [7]. The proof of stability of our scheme is as
difficult as any stability result that we know. The difficulty has two sources. The first
is that the stability of the Cauchy problem is itself very difficult. There is no simple
multiplier method. Second the stability is very weak so it is reasonable to suspect that
it can be destroyed by replacing the problem by a discrete one.

1.2 Algorithm definition

Choose χ(x) ∈ C∞
0 (Rd) with χ = 1 in |x | ≤ 2 and χ = 0 for |x | ≥ 2

√
2 such that

0 ≤ χ ≤ 1. Denote χh(D) = χ(hD). Define a family of spectral truncations of G by

Gh(t, x, D) = χ2h(D)
(
i A(t, x, D) + B(t, x)

)
χ2h(D), 0 < h ≤ 1. (1.4)

The smoothing operators Gh generate the ordinary differential operators ∂t −Gh . The
resulting ordinary differential equation is then approximated by the Crank-Nicholson
scheme.

Definition 1.1 Define for n ∈ Z,

Gn
h(x, D) = Gh(nk, x, D) = χ(2hD)G(nk, x, D) χ(2hD).

The Crank–Nicholson scheme generating a sequence N � n �→ unh intended to
approximate uh(nk) is

un+1
h − unh

k
= Gn

h
un+1
h + unh

2
+ χ(2hD) f n,

u0h(x) = χ(2hD) g, f n := f (nk, ·).
(1.5)
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The uniform stability of the Cauchy problems for ∂t u = Ghu is proved in [8]. This
equation has a symmetrizer Rh = R∗

h with 0 < ch < Rh ≤ 1. However as the spectral
truncation grows the lower bound ch tends to zero.

Therefore, the straight forward stability arguments that would work for the Crank-
Nicholson step, as in [9, 10] fail. The proof of stability must be at least as hard as
the proof of the a priori estimates in [8]. Indeed they are more complicated. The
main effort follows the strategy in [8]. We carefully control the additional errors
from discretization in time. The Crank-Nicholson scheme is chosen because it is well
adapted to estimates using a symmetrizer.

The precise stability result is Theorem 2.4. The proof that the approximations
converge to the exact solution is Theorem 2.5.

For the very special case of operators of the form utt = a(t)uxx with nonnegative
Gevrey a, the spectral Leap-Frog scheme is analysed in [11]. The computational cost
estimates of [11] shows that the cost of computing with error ε grows no faster than
polynomially in ε−1. Virtually identical cost estimates work for our spectral Crank-
Nicholson scheme. They are not repeated here.

Constant coefficient problems that are hyperbolic in the sense of Gårding and
Petrowsky are more strongly hyperbolic than those studied in this paper. However
variable coefficient operators whose frozen problems are hyperbolic in this sense need
not inherit the Sobolev well posedness of the constant coefficient problems. Stability
of difference approximations to constant coefficient problems hyperbolic in the sense
of Gårding and Petrowsky have been studied in a number of works. We refer to [12]
for a review of these.

2 Main theorems

2.1 Definition of the parameter�

First we formulate an important property which follows from the assumption (1.1).
Define

Hr (t, x, ξ, y, η; ε) =
∑

|α+β|≤r

ε|α+β|

α!β! Dα
x ∂

β
ξ A(t, x, ξ)yα(−iη)β, Dx j = −i∂x j

then from [8, Proposition 2.2] (see also [8, (2.3)]) it follows that for any compact set
K ⊂ R

d and T > 0 there are ε0 > 0, c > 0 such that

ζ is an eigenvalue ofHm(t, x, ξ, y, η; ε) �⇒ |Im ζ | ≤ c |ε| (2.1)

for any x ∈ K , |ξ | ≤ 1, |(y, η)| ≤ 1, |ε| ≤ ε0, |t | ≤ T .
Following [8] introduce an integer θ defined as follows.

Hypothesis 2.1 The system is θ -regular with integer 0 ≤ θ ≤ m − 1 in the sense that
for any T > 0 and any compact K ⊂ R

d there exist C > 0, c > 0 and ε0 > 0 such
that with N = max{2θ,m}
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εθ

C ecsε
≤ ∥∥eisHN (t,x,ξ,y,η;ε)∥∥ ≤ C ecsε

εθ
, (2.2)

for all s ≥ 0, 0 < ε ≤ ε0, |ξ | ≤ 1, |(y, η)| ≤ 1, x ∈ K , |t | ≤ T .

Remark 2.1 This definition of θ -regularity is little bit more general than that of [8,
Hypothesis 2.8]. HereHr (t, x, ξ, ξ, 0; ε) coincides with Hr (t, x, ξ ; ε) in [8].

Example 2.1 When (1.1) holds, Hypothesis 2.1 always holds with θ = m − 1. If
A(t, x, ξ) is uniformly diagonalizable then Hypothesis 2.1 holds with θ = 0 (for the
proof see [8, Examples 2.9 and 2.10]).

Example 2.2 Suppose (1.1). Assume that there exists T = T (t, x, ξ, y, η; ε) with
bounds on ‖T ‖ and ‖T−1‖ independent of (t, x, ξ, y, η; ε) such that T−1HmT is a
direct sum ⊕A j where the size of A j is at most μ. Then Hypothesis 2.1 holds with
θ = μ − 1 (for the proof see [8, Example 2.11]).

2.2 Recall the continuous case

Let

G(t, x, D) = i A(t, x, D) + B(t, x)

then Lu = f is written

∂t u = Gu + f .

Denote

〈ξ 〉� =
√

�2 + |ξ |2 = �

√
1 + |ξ/�|2 (2.3)

where � ≥ 1 is a positive parameter. When � = 1 we omit the suffix � and write
〈ξ 〉1 = 〈ξ 〉.
Definition 2.1 If 1 < s < ∞, the function a(x) ∈ C∞(Rd) belongs to Gs(Rd) if
there exist C > 0, A > 0 such that

∀x ∈ R
d , ∀α ∈ N

d , |∂α
x a(x)| ≤ CA|α||α|!s .

Recall [8, Proposition 4.4].

Proposition 2.1 Suppose Hypothesis 2.1 is satisfied. Define

s = 2 + 6θ

1 + 6θ
, ρ = 1

s
, ν := θ(1 − ρ).

For some 1 < s′ ≤ s suppose that A j (t, x) (resp. B(t, x)) are lipschitzian (resp.
continuous) in time uniformly on compact sets with values in Gs′(Rd). Then there
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exist T > 0, ĉ > 0, C > 0 and �0 > 0 such that for all u such that e(T−ĉ t)〈D〉ρ� ∂γ
t,xu ∈

L1([0, T /ĉ]; H ν(Rd)) for |γ | ≤ 1 one has

‖〈D〉−ν
� e(T−ĉ t)〈D〉ρ� u‖2 ≤ C‖〈D〉ν�eT 〈D〉ρ� u(0)‖2

+ C
∫ t

0
‖〈D〉−ν

� e(T−ĉ t ′)〈D〉ρ� (∂t − G)u(t ′)‖2dt ′
(2.4)

for 0 ≤ t ≤ T /ĉ and � ≥ �0.

This is a small improvement of [8, Proposition 4.4]. Here is a sketch of the easy
proof: As noted in Remark 2.1 we useHr (t, x, ξ, y, η; ε) instead ofHr (t, x, ξ ; ε) in
[8] and make the same choice (3.16) below for s, ε, ξ, y, η where χh ≡ 1, χ2h ≡ 1
and τ̄ − τ = T − at . Therefore (3.17) below holds for 0 ≤ T − at ≤ τ̄ which gets
rid off the constraint T − at ≥ c with some c > 0 that we have assumed in [8]. This
enables us to take T1 = T in [8, Proposition 4.4]. In the estimate (2.4) the weight for
Lu is improved from 〈D〉3ν� to 〈D〉−ν

� . That proof is also easy.

Corollary 2.2 There exist T > 0, ĉ > 0, C > 0 and �0 > 0 such that for all u satisfying
∂t u = Gu one has

‖〈D〉−ν
� e(T−ĉ t)〈D〉ρ� u‖ ≤ C‖〈D〉ν�eT 〈D〉ρ� u(0)‖ (2.5)

for 0 ≤ t ≤ T /ĉ and � ≥ �0.

The proof of [8, Theorem 1.3] gives

Proposition 2.3 Assume the same assumption as in Proposition 2.1 and eT 〈D〉ρ g ∈
H ν(Rd). Then there exists a unique u satisfying

∂t u = Gu, t ∈ (0, T /ĉ), u(0, ·) = g

such that e(T−ĉ t)〈D〉ρu ∈ L∞([0, T /ĉ]; H−ν(Rd)).

2.3 Stability and error estimates

The Crank–Nicholson scheme defined in (1.5) is equivalent to

(
I − k

2
Gn

h

)
un+1
h = (

I + k

2
Gn

h

)
unh + k χ2h f n . (2.6)

Note that

∥∥k
2
Gn

hu
∥∥ ≤ k

2

∥∥〈D〉χ2h〈D〉−1G(nk, x, D)χ2hu
∥∥

≤
√
3

2
k h−1

∥∥〈D〉−1G(nk, x, D)χ2hu
∥∥ ≤ C̄k h−1‖u‖
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where

C̄ =
√
3

2
sup

0≤t≤T

∥∥〈D〉−1G(t, x, D)
∥∥L(L2,L2)

.

Assuming C̄ k h−1 < 1 one has

(
I − k

2
Gn

h

)−1 =
∞∑

j=0

(k
2
Gn

h

) j
, (2.7)

and un+1
h is given by

un+1
h = (

I − k

2
Gn

h

)−1
((

I + k

2
Gn

h

)
unh + k χ2h f n

)
.

Reasoning term by term in (2.7),
(
I − k

2 G
n
h

)−1 maps functions with spectrum in
suppχ2h(·) to themselves. Therefore,

suppF(unh) ⊂ suppχ2h(·). (2.8)

Theorem 2.4 Make the same assumption as in Proposition 2.1. Then there exist τ̄ > 0,
β̄ > 0, ā > 0, h̄ > 0 and C > 0 such that the estimate

‖〈D〉−νe(τ̄−ātn)〈D〉ρunh‖2 ≤ C
(
‖〈D〉νeτ̄ 〈D〉ρ g‖2 + k

n−1∑

j=0

‖〈D〉−νe(τ̄−āt j )〈D〉ρ f j‖2
)

≤ C
(
‖〈D〉νeτ̄ 〈D〉ρ g‖2 + sup

0≤ j≤n−1
‖〈D〉−νe(τ̄−āt j )〈D〉ρ f j‖2

)

holds for any n ∈ N, k > 0, h > 0 satisfying tn = nk ≤ τ̄ /ā, kh−1 ≤ β̄ and
0 < h ≤ h̄ where ν = θ(1 − ρ).

A more precise estimate of the stability is given in Proposition 3.12.

Theorem 2.5 In addition to the assumption in Proposition 2.1, assume that A j (t, x)
and B(t, x) are C1 in time uniformly on compact sets with values in Gs′(Rd). Then
there exist τ̄ > 0, β̄ > 0, ā > 0, h̄ > 0 and C > 0 such that for an exact solution u
to (0.1) with Cauchy data g satisfying 〈D〉2+νeτ̄ 〈D〉ρ g ∈ L2 one has

‖〈D〉−νe(τ̄−ātn)〈D〉ρ (u(tn) − unh)‖ ≤ C (k + h)‖〈D〉2+νeτ̄ 〈D〉ρ g‖

and

‖e(τ̄−ātn)〈D〉ρ (u(tn) − unh)‖ ≤ C (k + h)h−ν‖〈D〉2+νeτ̄ 〈D〉ρ g‖
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for any n ∈ N, k > 0, h > 0 satisfying tn = nk ≤ τ̄ /ā, kh−1 ≤ β̄ and 0 < h ≤ h̄.

Corollary 2.6 With the same assumptions as in Theorem 2.5 there exist τ̄ > 0, β̄ > 0,
ā > 0, h̄ > 0 and C > 0 such that for an exact solution u to (0.1) with Cauchy data
g satisfying 〈D〉2+νeτ̄ 〈D〉ρ g ∈ L2 one has

‖u(tn) − unh‖ ≤ C (k + h)h−ν‖〈D〉2+νeτ̄ 〈D〉ρ g‖

for any n ∈ N, k > 0, h > 0 satisfying tn = nk ≤ τ̄ /ā, kh−1 ≤ β̄ and 0 < h ≤ h̄.

Remark 2.2 Note that

ρ ≥ 1 + 6θ

2 + 6θ
⇐⇒ ρ ≥ 3ν + 1

2
(2.9)

so that one has ρ ≥ 3ν + 1/2 under the assumption of Theorems 2.4 and 2.5.

3 Stability for the spectral Crank–Nicholson scheme

3.1 Spectral truncated weight for Crank–Nicholson scheme

Taking (1.5) into account define spectral truncated weights Wh(t, D) by

Wh(t, ξ) := e(T−t)〈ξ〉ρ� χh(ξ)

and for n ∈ N

Wn
h (ξ) := Wh(ank, ξ)

where a > 0 is a positive parameter which will be fixed later. In what follows we
always assume that the parameters a > 0, k > 0, � > 0, h > 0 are constrained to
satisfy

0 < h ≤ �−1, k h−1 ≤ 1/2 C̄, a k h−ρ ≤ log 2/3. (3.1)

Since a〈ξ 〉ρ� χh ≤ 3 a h−ρ because 〈ξ 〉� ≤ 3h−1 if χh(ξ) �= 0, it follows that

1/2 ≤ e−ak〈ξ〉ρ� χh ≤ 1. (3.2)

Here recall [8, Definition 2.3].

Definition 3.1 For 0 < δ ≤ ρ ≤ 1, the family a(x, ξ ; �) ∈ C∞(Rd × R
d) indexed

by � belongs to S̃mρ,δ if for all α, β ∈ N
d there is Cαβ independent of � ≥ 1, x, ξ such

that

∣∣∂β
x ∂α

ξ a(x, ξ ; �)
∣∣ ≤ Cαβ 〈ξ 〉m−ρ|α|+δ|β|

� .
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Denote S̃m = S̃m1,0.

Since |∂α
ξ χh | ≤ Cαh|α| and 2h−1 ≤ 〈ξ 〉� ≤ 3h−1 on the support of ∂α

ξ χh for |α| ≥ 1

it is clear that χh ∈ S̃0.
We examine to what extent Wn

h satisfies the Crank-Nicholson scheme (1.5).

Lemma 3.1 Assume (3.1) then one can write

Wn+1
h − Wn

h

k
= −2 a ωh χh

Wn+1
h + Wn

h

2
(3.3)

where ωh(ξ) ∈ S̃ρ and

〈ξ 〉ρ� /4 ≤ ωh(ξ) ≤ 〈ξ 〉ρ� .

Proof Denote

Wn+1
h − Wn

h

k
= −2 ω̃h

Wn+1
h + Wn

h

2

then it is clear that

ω̃h = 1 − e−ak〈ξ〉ρ� χh

k

1

1 + e−ak〈ξ〉ρ� χh
.

Since

1 − e−ak〈ξ〉ρ� χh

k
= a〈ξ 〉ρ� χh

∫ 1

0
e−akθ〈ξ〉ρ� χh dθ

one can define ωh by

ω̃h = a

(
〈ξ 〉ρ�

∫ 1

0
e−akθ〈ξ〉ρ� χh dθ

1

1 + e−ak〈ξ〉ρ� χh

)
χh = a ωh χh .

Then the first assertion is clear from (3.2). Note that

∣∣∂α
ξ

(
a k〈ξ 〉ρ� χh

)∣∣ ≤ Cα〈ξ 〉−|α|
� (3.4)

because of (3.1). Therefore one has |∂α
ξ ωh | ≤ Cα 〈ξ 〉ρ−|α|

� . Using (3.2) this implies
the second assertion. ��
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3.2 Crank–Nicholson after conjugation

Note that unh satisfy ∀ n ∈ N, χhu
n
h = unh (3.5)

thanks to (2.8). Assume that unh satisfies

δku
n
h = un+1

h − unh
k

= Gn
h(x, D)

un+1
h + unh

2
+ f n (3.6)

where χh f n = f n is not necessarily assumed.
Consider a weighted energy (Rn

hW
n
h u

n
h, W

n
h u

n
h) where Rn

h is a symmetrizer that is
symmetric (Rn

h )
∗ = Rn

h and will be defined in Sect. 3.3 below. The discrete analog of
∂t (Rn

hW
n
h u

n
h, W

n
h u

n
h) is the time difference

δk(R
n
hW

n
h unh, W

n
h unh)

= (Rn+1
h Wn+1

h un+1
h , Wn+1

h un+1
h ) − (Rn

hW
n
h u

n
h, W

n
h u

n
h)

k
.

(3.7)

In what follows we omit the subscript h for ease of reading. Write (3.7) as

(Wn+1RnWn+1un+1, un+1) − (WnRnWnun, un)

k
+ (I I I ),

with

(I I I ) := ((Rn+1 − Rn)Wn+1un+1, Wn+1un+1)

k
. (3.8)

The term (I I I ) is an error term that will be estimated in Sect. 3.3. The first term is
equal to

((Rn δ̄kWn)un+1, un+1) + ((Rn δ̄kWn)un, un)

2

+
((Wn+1RnWn+1 + WnRnWn

2

)(un+1 + un

2

)
, δku

n
)

+
((Wn+1RnWn+1 + WnRnWn

2

)
δku

n,
(un+1 + un

2

))
(3.9)

where

Rn δ̄kW
n = Wn+1RnWn+1 − WnRnWn

k
.

The first line of (3.9) is

(I ) = ((Rn δ̄kWn)un+1, un+1) + ((Rn δ̄kWn)un, un)

2
. (3.10)
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Note that

Rn δ̄kW
n = Wn+1RnWn+1 − WnRnWn

k

= 1

2

Wn+1 − Wn

k
Rn(Wn+1 + Wn) + 1

2
(Wn+1 + Wn)Rn W

n+1 − Wn

k
.

Using (3.3) and ωχh Wm = Wmωχh this becomes

Rn δ̄kW
n = −a

2
(Wn+1 + Wn) ω χh R

n(Wn+1 + Wn)

− a

2
(Wn+1 + Wn)Rn ω χh (Wn+1 + Wn).

Therefore with �n = Wn+1 + Wn one has, since (Rn)∗ = Rn

((Rn δ̄kW
n)w,w) = −a Re (Rn �n w, ωχh �nw)

= −a Re (ωχh R
n �n w, �nw).

Thus (I) yields

(I ) = −a

2

1∑

j=0

Re (ωχh R
n �n un+ j ,�n un+ j ).

Since χh �n = �n χh and ωχh = χhω and using χhun+ j = un+ j that follows from
(3.5) one has

(I ) = −a
1∑

j=0

Re (ω Rn �nun+ j , �nun+ j ). (3.11)

The second line of (3.9) yields, with Un = un+1 + un

((
Wn+1RnWn+1 + WnRnWn

2

) (
un+1 + un

2

)
, δku

n
)

= 1

8
(RnWnUn, WnGnUn) + 1

8
(RnWn+1Un, Wn+1GnUn)

+ 1

4
(Un, (Wn+1RnWn+1 + WnRnWn) f n).

Because of (3.6), this is equal to

1

8

1∑

j=0

(Rn Wn+ j Un, Wn+ j Gn Un) + 1

4

1∑

j=0

(Un, Wn+ j Rn Wn+ j f n).
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Similarly the third line of (3.9) is

(
Wn+1RnWn+1 + WnRnWn

2
δku

n,
un+1 + un

2

)

= 1

8

1∑

j=0

(Wn+ j Gn Un, Rn Wn+ j Un) + 1

4

1∑

j=0

(Wn+ j RnWn+ j f n, Un).

Therefore the sum of the second and the third lines of (3.9), denoted by (I I ), yields

(I I ) = 1

4

1∑

j=0

Re (Rn Wn+ j Un, Wn+ j Gn Un)

+ 1

2

1∑

j=0

Re (Un, Wn+ j Rn Wn+ j f n).

(3.12)

Recalling
δk(R

nWn un, Wn un) = (I ) + (I I ) + (I I I ) (3.13)

we have proved the following proposition.

Proposition 3.2 We have

δk(R
nWn un, Wn un) = −a

1∑

j=0

Re (ω Rn �nun+ j , �nun+ j )

+ 1

4

1∑

j=0

Re (Rn Wn+ j Un, Wn+ j Gn Un) + 1

2

1∑

j=0

Re (Un, Wn+ j Rn Wn+ j f n)

+ ((Rn+1 − Rn)Wn+1un+1, Wn+1un+1)

k

where �n := Wn+1 + Wn and Un := un+1 + un.

3.3 Composition withW±n
h and definition of Rnh

First recall Definition 2.4 from [8].

Definition 3.2 For 1 < s, m ∈ R, the family a(x, ξ ; �) ∈ C∞(Rd × R
d) belongs to

S̃m(s) if there existC > 0, A > 0 independent of � ≥ 1, x, ξ such that for all α, β ∈ N
d ,

∣∣∂β
x ∂α

ξ a(x, ξ ; �)
∣∣ ≤ C A|α+β| |α + β|!s 〈ξ 〉m−|α|

� .

We often write a(x, ξ) for a(x, ξ ; �) dropping the �. If a(x, ξ) is the symbol of a
differential operator of order m with coefficients aα(x) ∈ Gs(Rd) then a(x, ξ) ∈ S̃m(s)
because |∂β

ξ ξα| ≤ CA|β||β|!〈ξ 〉|α|−|β|
� and |∂β

x aα(x)| ≤ CαA
|β|
α |β|!s for any β ∈ N

d .
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Proposition 3.3 Suppose 1/2 ≤ ρ < 1 and s = 1/ρ and let A(x, ξ) be m ×m matrix
valued with entries in S̃1(s) and ∂α

x A(x, ξ) = 0 outside |x | < R for some R > 0 if
|α| > 0. Define m∗ := max {ρ − k(1 − ρ),−1 + ρ}. Then there is τ̄ > 0, �0 > 0
such that

Ã(x, D) = eτ 〈D〉ρ� χh A(x, D)e−τ 〈D〉ρ� χh

is a pseudodifferential operator with symbol given by

Ã(x, ξ) =
∑

|α|≤k

1

α!D
α
x A(x, ξ)

(
τ ∇ξ (〈ξ 〉ρ� χh)

)α + Rk(x, ξ)

with Rk ∈ S̃m
∗
uniformly in τ , � constrained to satisfy

|τ | ≤ τ̄ , � ≥ �0. (3.14)

In particular Ã(x, ξ) ∈ S̃1 uniformly in such τ , �.

Remark 3.1 This proposition with χh ≡ 1 is [8, Proposition 2.6]. The proof for the
case χh ≡ 1 works without any change for the case χh ∈ S̃0.

Choosing a smaller τ̄ > 0 if necessary one can assume that

τ̄
∣∣∇ξ (〈ξ 〉ρ� χh)

∣∣ ≤ 〈ξ 〉ρ−1
� .

In what follows we choose T = τ̄ in the definition of W (t, ξ) yielding

W (t, ξ) = e(τ̄−t)〈ξ〉ρ� χh .

With N = max{2θ,m} denote

H(t, x, ξ, τ ) =
∑

|α|≤N

1

α!D
α
x A(t, x, ξ)

(
(τ̄ − τ)∇ξ (〈ξ 〉ρ� χh)

)α
.

Suppressing the subscript h for ease of reading, Proposition 3.3 shows that

W (τ, ξ)#A(t, x, ξ)#W−1(τ, ξ) = H(t, x, ξ, τ ) + R, R ∈ S̃m
∗
.

The choice of N guarantees that where 2θ(1 − ρ) + m∗ ≤ ρ. Define

Hh(t, x, ξ, τ ) = χ2
2h(ξ)H(t, x, ξ, τ ).

Then, the definition of HN implies that

Hh(t, x, ξ, τ )

= χ2
2h(ξ) 〈ξ〉� HN

(
t, x, ξ/〈ξ〉�, (τ̄ − τ)∇ξ (〈ξ〉ρ� χh)/〈ξ〉ρ−1

� , 0, 〈ξ〉ρ−1
�

)
. (3.15)
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In (3.15) choose

s = χ2
2h(ξ)〈ξ 〉�, ε = 〈ξ 〉ρ−1

� , ξ = ξ/〈ξ 〉�,
y = (τ̄ − τ)∇ξ (〈ξ 〉ρ� χh)/〈ξ 〉ρ−1

� , η = 0.
(3.16)

Using 0 ≤ χ2h ≤ 1, it follows from (2.2) that

〈ξ 〉−θ(1−ρ)
� e−cs〈ξ〉ρ� /C ≤ ∥∥eisHh(t,x,ξ,τ )

∥∥ ≤ C〈ξ 〉θ(1−ρ)
� ecs〈ξ〉ρ� (3.17)

for |t | ≤ T , � ≥ �0 where

0 ≤ τ ≤ τ̄ , 0 < ε = 〈ξ 〉ρ−1
� ≤ �ρ−1 ≤ �

ρ−1
0 = ε0. (3.18)

Following [8] define

Mh(t, x, ξ, τ ) = i Hh(t, x, ξ, τ ) − b 〈ξ 〉ρ�

with a positive parameter b > 0 that will be fixed later. Since ‖esMh(t,x,ξ,τ )‖ =
e−bs〈ξ〉ρ� ‖eisHh(t,x,ξ,τ )‖, (3.17) implies

〈ξ 〉−ν
� e−c1b s〈ξ〉ρ� /C ≤ ‖esMh(t,x,ξ,τ )‖ ≤ C 〈ξ 〉ν� e−c2b s〈ξ〉ρ�

with ν = θ(1− ρ) for |t | ≤ T and b ≥ b0 with some b0 > 0 where c1, c2 and C > 0
are independent of �, h and b.

Introduce the symmetrizer

Rh(t, x, ξ, τ ) := b
∫ ∞

0
〈ξ 〉ρ�

(
esM

h(t,x,ξ,τ )
)∗(

esM
h(t,x,ξ,τ )

)
ds.

From [8, Theorem 3.1] it follows that

Rh(t, x, ξ, τ ) ∈ S̃2νρ−ν,1−ρ+ν, b ∂t Rh(t, x, ξ, τ ) ∈ S̃3ν+1−ρ
ρ−ν,1−ρ+ν

under the constraint
b �−(1−ρ) ≤ 1 (3.19)

so that b 〈ξ 〉ρ−1
� ≤ b �−(1−ρ) ≤ 1. Recall [8, page 230] that

RhM
h + (Mh)∗Rh = Rh

(
iχ2

2h H − b〈ξ 〉ρ�
) + (

iχ2
2h H − b〈ξ 〉ρ�

)∗
Rh = −b 〈ξ 〉ρ�

that is
Rh(iχ

2
2h H) + (iχ2

2h H)∗Rh = −b 〈ξ 〉ρ� + 2b 〈ξ 〉ρ� Rh . (3.20)
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Lemma 3.4 We have

b
(
Rh(t, x, ξ, a(n + 1)k) − Rh(t, x, ξ, ank)

)

k a
∈ S̃3νρ−ν,1−ρ+ν

for 0 ≤ t ≤ T uniformly in a, b, n, k, h under the constraint ank ≤ τ̄ .

Proof We show that

∣∣∂β
x ∂α

ξ ∂τ Rh(t, x, ξ, τ )
∣∣ ≤ Cαβ b−|α+β|−1〈ξ 〉3ν+(1−ρ+ν)|β|−(ρ−ν)|α|

� (3.21)

with Cαβ independent of b, h and 0 ≤ τ ≤ τ̄ . If (3.21) is proved then writing

Rh(t, x, ξ, a(n + 1)k) − Rh(t, x, ξ, ank) =
∫ ank+ak

ank
∂τ Rh(t, x, ξ, ν)dν

the assertion follows immediately. To prove the estimate (3.21) we apply the same
arguments in the proof of [8, Theorem 3.1]. First consider ∂τ H(t, x, ξ, τ ). Since

∂τ H
h(t, x, ξ, τ ) = −χ2

2h

∑

1≤|α|≤N

(τ̄ − τ)|α|−1 |α|
α! D

α
x A(t, x, ξ)

(∇ξ (〈ξ 〉ρ� χh)
)α

it follows that ∣∣∂β
x ∂α

ξ ∂τ H
h(t, x, ξ, τ )

∣∣ ≤ Cαβ〈ξ 〉ρ−|α|
� . (3.22)

Denote

X(s; t, x, ξ, τ ) = esM
h(t,x,ξ,τ )v, v ∈ C

m, Xα
τβ = ∂β

x ∂α
ξ ∂τ X(t, x, ξ, τ ).

Since

Ẋτ = MhXτ + ∂τ H
hX , Xτ (0) = 0

then (3.22) and Duhamel’s representation yields

∣∣Xτ

∣∣ =
∣∣∣
∫ s

0
e(s−s̃)Mh

(∂τ H
h)Xds̃

∣∣∣ ≤ C(s + 〈ξ 〉�)〈ξ 〉ν+ρ−1
� E(s)

where E(s) = 〈ξ 〉ν�e−cbs〈ξ〉ρ� . Repeating the same arguments in the proof of
[8,Theorem3.1] one can prove

∣∣Xα
τβ

∣∣ ≤ Cαβ (s + 〈ξ 〉−1
� )|α|(1 + s〈ξ 〉�)|β|+1〈ξ 〉ν(|α+β|+1)+ρ−1

� E(s)

from which we obtain (3.21) by exactly the same way as in the proof of [8, Theorem
3.1]. ��
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Lemma 3.5 With Rn
h (x, ξ) := Rh(nk, x, ξ, ank), one has

b
(
Rn+1
h (x, ξ) − Rn

h (x, ξ)
)

k
∈ S̃−2ν+ρ

ρ−ν,1−ρ+ν

for 0 ≤ (n + 1)k ≤ T uniformly in a, b, n, k, h under the constraint

ank ≤ τ̄ , a �−ρ/6 ≤ 1. (3.23)

Proof Write

Rn+1
h − Rn

h = Rh((n + 1)k, x, ξ, a(n + 1)k) − Rh((n + 1)k, x, ξ, ank)

+ Rh((n + 1)k, x, ξ, ank) − Rh(nk, x, ξ, ank).

Express

Rh((n + 1)k, x, ξ, ank) − Rh(nk, x, ξ, ank) =
∫ nk+k

nk
∂t Rh(t

′, x, ξ, ank)dt ′.

Using b ∂t Rh(t, x, ξ, τ ) ∈ S̃3ν+1−ρ
ρ−ν,1−ρ+ν , one obtains

b (Rh((n + 1)k, x, ξ, ank) − Rh(nk, x, ξ, ank))

k
∈ S̃3ν+1−ρ

ρ−ν,1−ρ+ν

where 3ν + 1− ρ ≤ −2ν + ρ in view of (2.2). For the term Rh((n + 1)k, x, ξ, a(n +
1)k) − Rh((n + 1)k, x, ξ, ank) we apply Lemma 3.4 to get

b
(
Rh((n + 1)k, x, ξ, a(n + 1)k) − Rh((n + 1)k, x, ξ, ank)

)

k a
∈ S̃3νρ−ν,1−ρ+ν .

Here note that (2.9) implies 1/2 > 3ν because 1 > ρ ≥ 3ν + 1/2 and hence

ρ ≥ 3ν + 1/2 > 6ν. (3.24)

Then noting that a〈ξ 〉3ν� ≤ a〈ξ 〉−ρ/6
� 〈ξ 〉ρ−2ν

� ≤ a �−ρ/6〈ξ 〉ρ−2ν
� one has

b
(
Rh((n + 1)k, x, ξ, a(n + 1)k) − Rh((n + 1)k, x, ξ, ank)

)

k
∈ S̃−2ν+ρ

ρ−ν,1−ρ+ν

under the constraint a �−ρ/6 ≤ 1. Thus the proof is complete. ��
Definition 3.3 For a m × m complex matrix M = M∗, the notation M � 0 means
that for all v ∈ C

m one has (Mv, v)Cm ≥ 0. For two such matrices, M1 � M2
means that M1 − M2 � 0.
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Equation (3.17) yields for any v ∈ C
m

(Rn
h (x, ξ)v, v) = b

∫ ∞

0
〈ξ 〉ρ� ‖esMh(nk,x,ξ,ank)v‖2 ds

≥ C−2 ‖v‖2〈ξ 〉−2ν
�

∫ ∞

0
b 〈ξ 〉ρ� e−2c1b s〈ξ〉ρ� ds ≥ c 〈ξ 〉−2ν

� ‖v‖2.

This is an important pointwise lower bound for the symbol

Rn
h (x, ξ) � c 〈ξ 〉−2ν

� I (3.25)

where c is independent of b, a, n, k, h constrained to satisfy (3.23) and (3.19).

3.4 Estimate of (I)

Suppressing the suffix h again, denote

W (ξ) = e−ak〈ξ〉ρ� χh

so that Wn+1 = WnW where 1/2 ≤ W ≤ 1 and W±1 ∈ S̃0 which follows from (3.2)
and (3.4). Consider Re(ω Rn �n w, �n w). Write �n = Wn+1 + Wn = (1+ W )Wn

and hence

Re (ω Rn �n w,�n w) = Re
(
(1 + W )ω Rn(1 + W )Wn w, Wn w

)
.

Note that Rn ∈ S̃2νρ−ν,1−ρ+ν uniformly for parameters satisfying the constraints (3.23)
and (3.19).

Lemma 3.6 One can write

(1 + W )#ω#Rn#(1 + W ) = (1 + W )2 ω Rn + i Rn
1 + Rn

2

with (Rn
1 )

∗ = Rn
1 and Rn

2 ∈ S̃4ν−ρ
ρ−ν,1−ρ+ν .

Proof Denote f (ξ) = (1+ W (ξ))ω(ξ) and g(ξ) = 1+ W (ξ). Since one has f (ξ) ∈
S̃ρ ⊂ S̃ρ

ρ−ν,1−ρ+ν and g(ξ) ∈ S̃0 ⊂ S̃0ρ−ν,1−ρ+ν applying [13,Theorem 18.5.4] one
can write

(
(1 + W )ω

)
#Rn#(1 + W ) = (1 + W )2ωRn

+ 1

2i

∑

|α+β|=1

(−1)|β|∂α
ξ f (∂α+β

x Rn) ∂
β
ξ g

+
∑

2≤|α+β|<N

(−1)|β|

(2i)|α+β|α!β!∂
α
ξ f (∂α+β

x Rn) ∂
β
ξ g + RN
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where RN ∈ S̃2ν+ρ−N (2ρ−1−2ν)
ρ−ν,1−ρ+ν .

Choose N so large that 2ν + ρ − N (2ρ − 1 − 2ν) ≤ 4ν − ρ. The second term on
the right-hand side, denoted by i Rn

1 , clearly satisfies (Rn
1 )

∗ = Rn
1 because f (ξ) and

g(ξ) are real scalar symbols. Since ∂α
ξ f ∈ S̃ρ−|α|

ρ−ν,1−ρ+ν and ∂
β
ξ g ∈ S̃−|β|

ρ−ν,1−ρ+ν it is

clear that the third term on the right-hand side is in S̃4ν−ρ
ρ−ν,1−ρ+ν . ��

Thanks to Lemma 3.6 we have

Re((1 + W ) ωRn(1 + W )Wn w, Wn w)

≥ (
Op((1 + W )2ωRn)Wn w, Wn w

) − C‖〈D〉2ν−ρ/2
� Wn w‖2.

It follows from Lemma 3.1 and (3.25) that

(1 + W )2ωRn � c
(〈ξ 〉ρ−2ν

� I + 〈ξ 〉ρ� Rn), (1 + W )2ωRn ∈ S̃2ν+ρ
ρ−ν,1−ρ+ν

with c > 0 uniformly in the constrained parameters k, n, h, a, b. Note that

(1 + W )2ωRn ∈ S
(〈ξ 〉2ν+ρ

� , b−2(〈ξ 〉2(1−ρ+ν)
� |dx |2 + 〈ξ 〉−2(ρ−ν)

� |dξ |2)

since for any k(ξ) ∈ S̃q one has

|∂α
ξ k(ξ)| ≤ Cα〈ξ 〉q−|α|

� ≤ Cα�−|α|(1−ρ+ν)〈ξ 〉q−|α|(ρ−ν)
�

which is bounded byCαb−|α|〈ξ 〉q−|α|(ρ−ν)
� because of (3.19). Repeating the arguments

proving [8,(4.6)] it follows from the sharp Gårding inequality [13,Theorem 18.6.7]
that there is �0 > 0 such that

(Op((1 + W )2ωRn)Wn w,Wn w) ≥ c ‖〈D〉−ν+ρ/2
� Wn w‖2

+ c (Op(〈ξ 〉ρ� Rn)Wn w,Wn w) − Cb−2‖〈D〉−ρ/2+1/2+2ν
� Wn w‖2

for � ≥ �0. Since −ν + ρ/2 ≥ −ρ/2 + 1/2 + 2ν by (2.9), choosing another b0 if
necessary one obtains

(Op((1 + W )2ωRn)Wn w, Wn w)

≥ c′ ‖〈D〉−ν+ρ/2
� Wn w‖2 + c′ (Op(〈ξ 〉ρ� Rn)Wn w, Wn w)

(3.26)

with c′ > 0 uniform for � ≥ �0 and b ≥ b0. From (2.9) again one sees that

‖〈D〉2ν−ρ/2
� v‖2 ≤ C�−1‖〈D〉−ν+ρ/2

� v‖2

and one concludes that choosing another �0 if necessary
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Re ((1 + W )ω Rn (1 + W )Wn w, Wn w)

≥ c ‖〈D〉−ν+ρ/2
� Wn w‖2 + c (Op(〈ξ 〉ρ� Rn)Wn w, Wn w)

with c > 0 uniform for � ≥ �0 and b ≥ b0. Repeating the same arguments one obtains

Re ((1 + W−1) ω Rn(1 + W−1)Wn+1 w, Wn+1w)

≥ c ‖〈D〉−ν+ρ/2
� Wn+1 w‖2 + c (Op(〈ξ 〉ρ� Rn)Wn+1 w, Wn+1 w).

Summarizing we have

Lemma 3.7 There are c > 0, �0 and b0 such that for � ≥ �0 and b ≥ b0 one has

Re (ω Rn �n w, �n w)

≥ c

(
1∑

i=0

‖〈D〉−ν+ρ/2
� Wn+i w‖2 + (

Op(〈ξ 〉ρ� Rn)Wn+i w, Wn+i w
)
)

.

Lemma 3.7 together with (3.11) prove the following

Proposition 3.8 There exist c > 0, �0 > 0 and b0 such that for � ≥ �0 and b ≥ b0
one has

(I ) ≤ −c a
∑

0≤i≤1
0≤ j≤1

(
‖〈D〉−ν+ρ/2

� Wn+i un+ j‖2

+ (
Op(〈ξ 〉ρ� Rn)Wn+i un+ j , Wn+i un+ j )).

From (3.25) one has Rn � c〈ξ 〉−2ν I and 〈ξ 〉ρ� Rn � c〈ξ 〉ρ−2ν I with some c > 0
then repeating the same arguments proving (3.26) above there is c > 0 such that

(Op(Rn) v, v) ≥ c ‖〈D〉−ν
� v‖2,

(Op(〈ξ 〉ρ� Rn) v, v) ≥ c ‖〈D〉−ν+ρ/2
� v‖2 (3.27)

for b ≥ b0. In particular Op(〈ξ 〉ρ� Rn) is nonnegative hence

2
∣∣(Op(〈ξ 〉ρ� Rn) v, w)

∣∣ ≤ δ(Op(〈ξ 〉ρ� Rn) v, v) + δ−1(Op(〈ξ 〉ρ� Rn) w, w) (3.28)

for any δ > 0.

3.5 Estimate of (II)

Consider the term Re (RnWn Un, Wn Gn Un). Recall Gn = χ2h(i A(nk, x, D) +
B(nk, x))χ2h and with tn = nk

Wn#A(t, x, ξ)#W−n = H(t, x, ξ, atn) + R(t, atn), R(t, atn) ∈ S̃m
∗
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where

W−n := (
Wh(atn, ξ)

)−n = e−n(τ̄−atn)〈ξ〉ρ� χh .

Then thanks to Proposition 3.3,

Wn Gn W−n = χ2h W
n(i A(tn, x, D) + B(tn, x))W

−n χ2h

= χ2h(i H(tn, x, D, atn) + R(tn, atn))χ2h + χ2h W
nB(tn, x)W

−n χ2h .

Since χ2h ∈ S̃0 and H(tn, x, ξ, atn) ∈ S̃1, one sees that

χ2h#(i H(tn, x, ξ, atn))#χ2h = iχ2
2h H(tn, x, ξ, atn) + R̃n

where R̃n ∈ S̃0 uniformly in all parameters satisfying atn = ank ≤ τ̄ . Define Kn :=
R̃n + χ2h#R(tn, atn)#χ2h + χ2h#Wn#B(tn)#W−n#χ2h . Then

Wn#Gn#W−n = iχ2
2h H(tn, x, ξ, atn) + Kn(x, ξ)

so,
Wn#Gn = (iχ2

2h H(tn, x, ξ, atn) + Kn)#Wn . (3.29)

In addition,

Kn ∈ S̃m̄, with m̄ = max{0,m∗}.

Note that 2ν + m̄ ≤ ρ since 2ν + m∗ ≤ ρ. Recall

Rh = b
∫ ∞

0
〈ξ 〉ρ� (esM

h
)∗esMh

ds, Mh = iχ2
2h H(t, x, ξ, τ ) − b 〈ξ 〉ρ�

and Rn
h = Rh(tn, x, ξ, atn) so that from (3.20) it follows that

Rn(iχ2
2hH(tn, x, ξ, atn)) + (iχ2

2h H(tn, x, ξ, atn))
∗Rn

= −b 〈ξ 〉ρ� + 2b 〈ξ 〉ρ� Rn .
(3.30)

In view of (3.29), denoting H(tn) = H(tn, x, ξ, atn), one has

2Re (RnWn Un, Wn Gn Un) = 2Re (Wn Un, RnWn Gn Un)

= 2Re (WnUn, Rn Op(iχ2
2h H(tn) + Kn)Wn Un)

= 2Re (Rn Op(iχ2
2h H(tn) + Kn)Wn Un, Wn Un)

= (Op(F)Wn Un, Wn Un).

It follows from (3.30) that
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F = Rn#(iχ2
2h H(tn) + Kn) + (iχ2

2h H(tn) + Kn)∗#Rn

= −b 〈ξ 〉ρ� + 2b 〈ξ 〉ρ� Rn + Ln + L̃n,

where b Ln ∈ S̃1−ρ+3ν
ρ−ν,1−ρ+ν and L̃

n ∈ S̃2ν+m̄
ρ−ν,1−ρ+ν ⊂ S̃ρ

ρ−ν,1−ρ+ν . Since ρ ≥ 1−ρ+3ν
taking another b0 if necessary one concludes

− b (〈D〉ρ� Wn Un, Wn Un) + Re(Op(Ln + L̃n)Wn Un, Wn Un)

≤ −b

2
‖〈D〉ρ/2

� Wn Un‖2

for b ≥ b0. Thanks to (3.28) one has

2b (Op(〈ξ 〉ρ� Rn)Wn Un, Wn Un) ≤ 4 b
1∑

j=0

(Op((〈ξ 〉ρ� Rn)Wn un+ j , Wn un+ j ).

Combining these estimates one obtains for b ≥ b0,

2 Re (RnWn Un, Wn Gn Un) ≤ −b

2
‖〈D〉ρ/2

� Wn Un‖2

+ 4 b
1∑

j=0

(Op((〈ξ 〉ρ� Rn)Wn un+ j , Wn un+ j ).

(3.31)

Next study Re (RnWn+1 Gn Un, Wn+1Un).

Lemma 3.9 One has

Wn+1#Gn#W−(n+1) = iχ2
2h H(tn) + Kn + T n, with T n ∈ S̃0.

Proof Write Wn+1#Gn#W−(n+1) = W#
(
Wn#Gn#W−n)#W−1 so that

Wn+1#Gn#W−(n+1) = W#
(
iχ2

2h H(tn) + Kn)#W−1.

Since W±1 ∈ S̃0 and H(tn) ∈ S̃1 it is clear that

W#(iχ2
2h H(tn) + Kn)#W−1 = iχ2

2h H(tn) + Kn + T n, T n ∈ S̃0.

This proves the lemma. ��
Lemma 3.9 implies that

2 Re (Rn Wn+1Gn Un, Wn+1Un)

= 2 Re
(
(Rn Op(iχ2

2h H(tn) + Kn + T n)Wn+1Un, Wn+1Un)

= (Op(F)Wn+1Un, Wn+1Un)
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with

F := Rn#(iχ2
2h H(tn) + Kn + T n) + (iχ2

2h H(tn) + Kn + T n)∗#Rn .

Since Rn#T n + (T n)∗#Rn ∈ S̃2νρ−ν,1−ρ+ν and ρ ≥ 4ν by (3.24) repeating the same
arguments proving (3.31) one obtains for b ≥ b0

2 Re (RnWn+1 Gn Un, Wn+1Un) ≤ −b

2
‖〈D〉ρ/2

� Wn+1Un‖2

+ 4 b
1∑

j=0

(Op((〈ξ 〉ρ� Rn)Wn+1 un+ j , Wn+1 un+ j ).

(3.32)

Equations (3.31) and (3.32) yield the following lemma.

Lemma 3.10 There exist b0 > 0 and �0 > 0 such that for b ≥ b0 and � ≥ �0 one has

1

4

1∑

j=0

Re (Rn Wn+ j Un, Wn+ j Gn Un) ≤ − b

16

1∑

j=0

‖〈D〉ρ/2
� Wn+ j Un‖2

+ b

2

1∑

i=0

1∑

j=0

(
Op(〈ξ 〉ρ� Rn)Wn+i un+ j , Wn+i un+ j ).

Next estimate
∑1

i=0 Re (Wn+i RnWn+i f n, Un). Since Rn ∈ S̃2νρ−ν,1−ρ+ν , it fol-
lows that

∣∣
1∑

i=0

(
Wn+i RnWn+i f n, Un)∣∣

≤
1∑

i=0

‖〈D〉−ρ/2
� RnWn+i f n‖‖〈D〉ρ/2

� Wn+iUn‖

≤ b

16

1∑

i=0

‖〈D〉ρ/2
� Wn+i Un‖2 + C

b

1∑

i=0

‖〈D〉2ν−ρ/2
� Wn+i f n‖2.

Equation (3.24) implies that −ν > 2ν − ρ/2 so

1

2

1∑

i=0

Re (Wn+i RnWn+i f n, Un)

≤ b

32

1∑

i=0

‖〈D〉ρ/2
� Wn+i Un‖2 + C

b

1∑

i=0

‖〈D〉−ν
� Wn+i f n‖2. (3.33)

Lemma 3.10 together with (3.12) and (3.33) yield the following proposition.
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Proposition 3.11 There exist C > 0, b0 > 0 and �0 > 0 such that for b ≥ b0 and
� ≥ �0 one has

(I I ) ≤ − b

32

1∑

i=0

‖〈D〉ρ/2
� Wn+i Un‖2

+ b

2

1∑

i=0

1∑

j=0

(
Op(〈ξ 〉ρ� Rn)Wn+i un+ j , Wn+i un+ j )

+ C

b

1∑

i=0

‖〈D〉−ν
� Wn+i f n‖2.

3.6 Proof of Theorem 2.4

First choose b = b̄ and �1 such that Propositions 3.8 and 3.11 and (3.27) hold with
b = b̄ and � ≥ �1. Next choose a = ā such that c ā ≥ b̄/2 then taking (3.27) into
account it follows from Propositions 3.8 and 3.11 that

(I ) + (I I ) ≤ −c ā
1∑

i=0

1∑

j=0

‖〈D〉−ν+ρ/2
� Wn+i un+ j‖2

−c′ b̄
1∑

i=0

‖〈D〉ρ/2
� Wn+i Un‖2 + Cb̄−1

1∑

i=0

‖〈D〉−ν
� Wn+i f n‖2. (3.34)

Finally we estimate (III). Thanks to Lemma 3.5 one has

|(I I I )| =
∣∣∣
((Rn+1 − Rn)Wn+1un+1, Wn+1un+1)

k

∣∣∣

≤ C ′ b̄−1‖〈D〉−ν+ρ/2
� Wn+1 un+1‖2. (3.35)

Increase ā if necessary so that c ā ≥ 2C ′ b̄−1, in view of (3.34) and (3.35), recalling
(3.13), we conclude that

δk(R
nWnun, Wnun) ≤ − c

2
ā

1∑

i=0

1∑

j=0

‖〈D〉−ν+ρ/2
� Wn+i un+ j‖2

−c′ b̄
1∑

i=0

‖〈D〉ρ/2
� Wn+i Un‖2 + C b̄−1

1∑

i=0

‖〈D〉−ν
� Wn+i f n‖2. (3.36)

Noting (3.23) and (3.19) we set

�2 := max {ā6/ρ, b̄1/(1−ρ), �1}.
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In what follows we assume � ≥ �2. Taking (3.1) into account define

β̄ := min {1/2 C̄, log 2/3 ā}.

Note that ‖〈D〉−ν
� Wn+1 f n‖ ≤ ‖〈D〉−ν

� Wn f n‖ thanks to (3.2). Summing (3.36)
from 0 to n − 1 yields

(RnWnun, Wnun) + k
c

2
ā

n∑

p=0

‖〈D〉−ν+ρ/2
� W pu p‖

≤ (R W 0u0, W 0u0) + C k
n−1∑

p=0

‖〈D〉−ν
� W p f p‖2. (3.37)

SinceW p = e(τ̄−ātp)〈D〉ρ� χh with χh = 1 on suppχ2h , and recalling (2.8), it follows
from (3.27) and (3.37) that

‖〈D〉−ν
� e(τ̄−ātn)〈D〉ρ� un‖2 + c k ā

n∑

p=0

‖〈D〉−ν+ρ/2
� e(τ̄−ātp)〈D〉ρ� u p‖2

≤ C‖〈D〉ν� eτ̄ 〈D〉ρ� u0‖2 + C k
n−1∑

p=0

‖〈D〉−ν
� e(τ̄−ātp)〈D〉ρ� f p‖2.

Equation (3.24) implies that ρ/2 − ν > 2ν yielding the following proposition.

Proposition 3.12 There exist τ̄ > 0, ā > 0, β̄ > 0, C > 0 and �̄ (≥ �2) such that one
has

‖〈D〉−ν
� e(τ̄−ātn)〈D〉ρ� un‖2 + k ā

n∑

p=0

‖〈D〉2ν� e(τ̄−ātp)〈D〉ρ� u p‖2

≤ C‖〈D〉ν�eτ̄ 〈D〉ρ� g‖2 + C k
n−1∑

p=0

‖〈D〉−ν
� e(τ̄−ātp)〈D〉ρ� f p‖2

≤ C‖〈D〉ν�eτ̄ 〈D〉ρ� g‖2 + C (τ̄ /ā) sup
0≤p≤n−1

‖〈D〉−ν
� e(τ̄−ātp)〈D〉ρ� f p‖2 (3.38)

for any n ∈ N, k > 0, � > 0, h > 0 satisfying nk ≤ τ̄ /ā, kh−1 ≤ β̄ and h−1 ≥ � ≥ �̄.

Remark 3.2 To obtain Proposition 3.12 the spectral condition χhun = un is assumed
while for f n no spectral condition is assumed.

Proof of Theorem 2.4 Fix � = �̄ in Proposition 3.12. Since

〈ξ 〉ρ ≤ 〈ξ 〉ρ
�̄

≤ �̄ρ + 〈ξ 〉ρ, 〈ξ 〉 ≤ 〈ξ 〉�̄ ≤ �̄ 〈ξ 〉 (3.39)

the proof is immediate. ��
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4 Error estimates for the spectral Crank–Nicholson scheme

4.1 Continuous case revisited

Start by extending estimates (2.5) in Corollary 2.2 to ∂
j
t u for j = 1, 2. It is clear that

one can assume τ̄ ≤ T and ā ≥ ĉ. Then it is easy to examine that Corollary 2.2 holds
with T = τ̄ and ĉ = ā. Suppose ∂t u = Gu. Write

〈D〉μ� G〈D〉−μ
� = G + Bμ

so 〈D〉μ� u satisfies ∂t (〈D〉μ� u) = (G+Bμ)〈D〉μ� u. The Bμ satisfy the following bounds.

Lemma 4.1 There is A > 0 such that for any α, β ∈ N
d one has

|∂α
ξ ∂β

x Bμ(x, ξ)| ≤ CαA
|β||β|!s〈ξ 〉−|α|

� 〈x〉−2d .

Proof Up to a multiplicative constant Bμ is given by

Bμ(x, ξ) =
∑

|γ |=1

∫
e−iyη∂γ

η

(〈ξ + η/2〉μ〈ξ − η/2〉−μ
)
dydη

×
∫

∂
γ
x G(x + θ y, ξ)dθ.

Therefore ∂α
ξ ∂

β
x Bμ is, after change of variables x + θ y �→ y, θ−1η �→ η, a sum of

terms

∫
eixη∂α′+γ

ξ

(〈ξ + θη/2〉μ〈ξ − θη/2〉−μ
)
dydη

∫
e−iyη∂α′′

ξ ∂
γ+β
x G(y, ξ)dθ

with α′ + α′′ = α. Recall that

∣∣∣
∫

e−iyη∂α′′
ξ ∂

γ+β
x G(y, ξ)dθ

∣∣∣ ≤ Cα′′ 〈ξ 〉1−|α′′|
� A|β||β|!se−c〈η〉ρ

with some c > 0 (see [8,Lemma 6.2]). In addition, it is easy to see that

∣∣∂δ
η∂

α′+γ
ξ

(〈ξ + θη/2〉μ〈ξ − θη/2〉−μ
)∣∣ ≤ Cα′δ〈ξ 〉−1−|α′|

� 〈η〉2|μ|+|δ|+1+|α′|.

Using 〈x〉2deixη = 〈Dη〉2deixη, an integration by parts in η proves the assertion. ��
Thanks to Lemma 4.1 it follows from the proof of Proposition 3.3 that

e(τ̄−āt)〈ξ〉ρ� #Bμ#e
−(τ̄−āt)〈ξ〉ρ� ∈ S̃0.
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Apply Corollary 2.2 to ∂tv = (G + Bμ)v with v = 〈D〉μ� u to find that choosing a
smaller τ̄ > 0 and larger ā > 0 and �0 if necessary,

‖〈D〉−ν+μ
� e(τ̄−āt)〈D〉ρ� u(t)‖ ≤ C‖〈D〉ν+μ

� eτ̄ 〈D〉ρ� u(0)‖ (4.1)

for 0 ≤ t ≤ τ̄ /ā and � ≥ �0. Indeed in the proof of Proposition 2.1 the term B satisfies
e(T−ĉt)〈ξ〉ρ� #B#e(T−ĉt)〈ξ〉ρ� ∈ S̃0 so choosing ĉ large, it is irrelevant. Write

〈D〉μ� e(τ̄−āt)〈D〉ρ� ∂t u =
(
e(τ̄−āt)〈D〉ρ� (G + Bμ) e−(τ̄−āt)〈D〉ρ�

)
〈D〉μ� e(τ̄−āt)〈D〉ρ� u.

Proposition 3.3 and Lemma 4.1 imply that e(τ̄−āt)〈ξ〉ρ� #(G + Bμ)#e−(τ̄−āt)〈ξ〉ρ� ∈ S̃1.
It follows that

‖〈D〉μ� e(τ̄−āt)〈D〉ρ� ∂t u(t)‖ ≤ C ′‖〈D〉1+μ
� e(τ̄−āt)〈D〉ρ� u(t)‖

≤ C ′C‖〈D〉1+2ν+μ
� eτ̄ 〈D〉ρ� u(0)‖

from (4.1). Next assume that A j (t, x) and B(t, x) areC1 in time uniformly on compact
setswith values inGs′(Rd). Since ∂2t u = (∂tG)u+G∂t u repeating the same arguments
one has

‖〈D〉μ� e(τ̄−āt)〈D〉ρ� ∂2t u(t)‖
≤ C ′′(‖〈D〉1+μ

� e(τ̄−āt)〈D〉ρ� u(t)‖ + ‖〈D〉1+μ
� e(τ̄−āt)〈D〉ρ� ∂t u(t)‖)

≤ C ′′′‖〈D〉2+2ν+μ
� eτ̄ 〈D〉ρ� u(0)‖.

Choosing μ = −ν + i , i = 0, 1, 2 one obtains the following lemma.

Lemma 4.2 Assume that A j (t, x) and B(t, x) are C1 in time uniformly on compact
sets with values in Gs′(Rd) and that ∂t u = Gu. Then there exist C > 0, �0 > 0 such
that

‖〈D〉−ν+i
� e(τ̄−āt)〈D〉ρ� ∂ j

t u(t)‖ ≤ C‖〈D〉i+ j+ν
� eτ̄ 〈D〉ρ� u(0)‖

for 0 ≤ t ≤ τ̄ /ā, � ≥ �0 and 0 ≤ i, j ≤ 2.

4.2 Error estimate for the spectral Crank–Nicholson scheme

Suppose that u(t, x) satisfies

∂t u(t, x) = G(t, x, D)u(t, x) (4.2)

where G(t, x, D) = i A(t, x, D) + B(t, x). Denote ũ = χ2hu so that χhũ = ũ. Thus

∂t ũ = Gũ + f , f = [χ2h,G]u. (4.3)
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Next estimate to what extent ũ(tn, x) satisfies the difference scheme. The error,
denoted by g(n) = g(n, ·), is given by

ũ(tn+1) − ũ(tn)

k
− Gn ũ(tn+1) + ũ(tn)

2
:= g(n)

where Gn = χ2h(i A(nk, x, D) + B(nk, x))χ2h . Note that

suppF(g(n)) ⊂ suppχ2h(·). (4.4)

The approximate solution un = unh satisfies

un+1 − un

k
− Gn un+1 + un

2
= 0.

At t = 0 the approximate solution is equal to the spectral truncation of the exact
solution, u0 = χ2hg = ũ(0).

Noting suppF(
ũ(tn) − un

) ⊂ suppχ2h and hence χh(ũ(tn) − un) = ũ(tn) − un ,
Proposition 3.12 implies

‖〈D〉−ν
� Wn (ũ(tn) − un)‖2 ≤ C k

n−1∑

l=0

‖〈D〉−ν
� Wl g(l)‖2 (4.5)

for any tn = kn ≤ τ̄ /ā.

Lemma 4.3 There is C > 0 so that

‖〈D〉−ν
� W jg( j)‖ ≤ C (k + h)‖〈D〉2+ν

� eτ̄ 〈D〉ρ� u(0)‖

for 0 ≤ j ≤ n − 1 and 0 ≤ tn ≤ τ̄ /ā.

Proof Use (4.3) to write

g( j) = g( j) − (
ũt (t j ) − G(t j )ũ(t j ) − f ( j)

)
.

The triangle inequality yields

‖〈D〉−ν
� W jg( j)‖ ≤

∥∥∥〈D〉−ν
� W j

( ũ(t j+1) − ũ(t j )

k
− ũt (t j )

)∥∥∥

+
∥∥∥〈D〉−ν

� W j
(
G j

( ũ(t j+1) + ũ(t j )

2
− ũ(t j )

))∥∥∥

+‖〈D〉−ν
� W j (G(t j ) − G j ) ũ(t j )‖ + ‖〈D〉−ν

� W j f ( j)‖. (4.6)

Write

〈D〉−ν
� W j

(
ũ(t j+1) − ũ(t j )

k
− ũt (t j )

)
= 1

k

∫ t j+1

t j
ds

∫ s

t j
〈D〉−ν

� W j∂2t ũ(s′)ds′
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and note that

W j∂2t ũ(s′) = eā(s′−t j )〈D〉ρ� χh e(τ̄−ās′)〈D〉ρ� χh∂2t ũ(s′).

Since 0 ≤ s′ − t j ≤ k if t j ≤ s′ ≤ t j+1 it follows from (3.2) that

‖〈D〉−ν
� W j∂2t ũ(s′)‖ ≤ 2‖〈D〉−ν

� e(τ̄−ās′)〈D〉ρ� χh∂2t ũ(s′)‖
≤ 2‖〈D〉−ν

� e(τ̄−ās′)〈D〉ρ� ∂2t u(s′)‖ ≤ C‖〈D〉2+ν
� eτ̄ 〈D〉ρ� u(0)‖

thanks to Lemma 4.2. Therefore one has
∥∥∥∥〈D〉−ν

� W j
(
ũ(t j+1) − ũ(t j )

k
− ũt (t j )

)∥∥∥∥ ≤ C k ‖〈D〉2+ν
� eτ̄ 〈D〉ρ� u(0)‖.

Turn to the second term on the right-hand side of (4.6). Use

〈D〉−ν
� W j

(
G j

(
ũ(t j+1) + ũ(t j )

2
− ũ(t j )

))
= 1

2

∫ t j+1

t j
〈D〉−ν

� W jG j∂t ũ(s′)ds′

to write

〈D〉−ν
� W jG j = 〈D〉−ν

� W jG jW− j (W je−(τ̄−ās′)〈D〉ρ� χh
)
e(τ̄−ās′)〈D〉ρ� χh .

Proposition 3.3 implies that 〈ξ 〉−ν
� #W j#G j#W− j ∈ S̃1−ν . In addition, W j

e−(τ̄−ās′)〈D〉ρ� χh = eā(s′−t j )〈D〉ρ� χh when 0 ≤ s′ − t j ≤ k. Repeat the same arguments
as above to find

‖〈D〉−ν
� W jG j∂t ũ(s′)‖ ≤ C‖〈D〉2+ν

� eτ̄ 〈D〉ρ� u(0)‖ for t j ≤ s′ ≤ t j+1.

Then
∥∥∥∥〈D〉−ν

� W j
(
G j

(
ũ(t j+1) + ũ(t j )

2
− ũ(t j )

))∥∥∥∥ ≤ C k ‖〈D〉2+ν
� eτ̄ 〈D〉ρ� u(0)‖.

Next study the third and fourth term on the right-hand side of (4.6).

Lemma 4.4 Let α ≥ 0. There is C > 0 such that

‖(I − χ2h)u‖ ≤ C hα‖〈D〉α� u‖.

Proof Since 1 − χ2h(ξ) = 0 unless |ξ | ≥ h−1 one has

‖(I − χ2h)u‖2 =
∫

(1 − χ2h(ξ))2〈ξ 〉−2α
� 〈ξ 〉2α� |û(ξ)|2dξ

≤ Ch2α
∫

〈ξ 〉2α� |û(ξ)|2dξ = C
(
hα‖〈D〉α� u‖

)2

which proves the assertion. ��
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Since G j − G(t j ) = χ2hG(t j )(χ2h − I ) + (χ2h − I )G(t j ) one can write

〈D〉−ν
� W j (G j − G(t j )) = χ2h

(〈D〉−ν
� W jG(t j )W

− j )(χ2h − I )W j

+(χ2h − I )
(〈D〉−ν

� W jG(t j )W
− j )W j .

Using 〈ξ 〉−ν
� #W j#G(t j )#W− j ∈ S̃1−ν together with Lemma 4.4 one finds

‖〈D〉−ν
� W j (G j − G(t j ))ũ(t j )‖

≤ C ‖〈D〉1−ν
� (χ2h − I )W j ũ(t j )‖ + C h ‖〈D〉1−ν

� W jG(t j )W
− jW j ũ(t j )‖

≤ C ′ h ‖〈D〉2−ν
� W j ũ(t j )‖ ≤ C ′ h ‖〈D〉2−ν

� e(τ̄−āt j )〈D〉ρ� u(t j )‖.

Therefore by Lemma 4.2,

‖〈D〉−ν
� W j (G j − G(t j ))ũ(t j )‖ ≤ C h ‖〈D〉2+ν

� eτ̄ 〈D〉ρ� u(0)‖.

Turn to f ( j) := [χ2h,G(t j )]u(t j ). Since

[χ2h,G(t j )] = χ2hG(t j )(I − χ2h) − (I − χ2h)G(t j )χ2h

repeating the same arguments as above one obtains that

‖〈D〉−ν
� W j f ( j)‖ ≤ C h ‖〈D〉2+ν

� eτ̄ 〈D〉ρ� u(0)‖.

This finishes the proof of Lemma 4.3. ��

4.3 Proof of Theorem 2.5

Noting that suppF(
ũ(tn) − un

) ⊂ suppχ2h and χh = 1 on the support of χ2h it
follows from (4.5) and Lemma 4.3 that

‖〈D〉−ν
� e(τ̄−ātn)〈D〉ρ� (ũ(tn) − un)‖

≤ C
√

τ̄ /ā (k + h)‖〈D〉2+ν
� eτ̄ 〈D〉ρ� u(0)‖. (4.7)

Since 〈ξ 〉� ≤ √
3h−1 on the support of χ2h , (4.7) implies that

‖e(τ̄−ātn)〈D〉ρ� (ũ(tn) − un)‖ ≤ C
√

τ̄ /ā (k + h)h−ν‖〈D〉2+ν
� eτ̄ 〈D〉ρ� u(0)‖. (4.8)

Finally estimate ‖〈D〉−ν
� Wn(u(tn) − ũ(tn))‖. Since u(tn) − ũ(tn) = (1 − χ2h)u(tn)

the same arguments as above prove that

‖〈D〉−ν
� e(τ̄−ātn)〈D〉ρ� (u(tn) − ũ(tn))‖ ≤ Ch2‖〈D〉2+ν

� eτ̄ 〈D〉ρ� u(0)‖. (4.9)
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Similarly one has

‖e(τ̄−ātn)〈D〉ρ� (u(tn) − ũ(tn))‖ ≤ Ch2−ν‖〈D〉2+ν
� eτ̄ 〈D〉ρ� u(0)‖. (4.10)

Combining (4.7), (4.8) and (4.9), (4.10) yields the following proposition.

Proposition 4.5 There exist τ̄ > 0, ā > 0, β̄ > 0,C > 0 and �̄ > 0 such that for any
exact solution u to (4.2) with Cauchy data u(0) such that 〈D〉2+ν

� eτ̄ 〈D〉ρ� u(0) ∈ L2 one
has

‖〈D〉−ν
� e(τ̄−ātn)〈D〉ρ� (u(tn) − un)‖ ≤ C (k + h)‖〈D〉2+ν

� eτ̄ 〈D〉ρ� u(0)‖

and

‖e(τ̄−ātn)〈D〉ρ� (u(tn) − un)‖ ≤ C (k + h)h−ν‖〈D〉2+ν
� eτ̄ 〈D〉ρ� u(0)‖

for any 0 ≤ tn = nk ≤ τ̄ /ā, kh−1 ≤ β̄ and h−1 ≥ � ≥ �̄.

Remark 4.1 In order for a difference approximation to be accurate, the time discretiza-
tion must be taken sufficiently fine [6]. Here Proposition 4.5 shows that one could
constrain k to satisfy a CFL type condition kh−1 ≤ β̄. More precisely, the proof
shows that it suffices to constrain k to satisfy

kh−1 ≤ 1/2C̄, kh−ρ ≤ log 2/3ā.

Proof of Theorem 2.5 Taking (3.39) into account it is enough to choose � = �̄ in Propo-
sition 4.5. ��
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