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Abstract
This article concerns about the existence of a positive SOLA (Solutions Obtained
as Limits of Approximations) for the following singular critical Choquard problem
involving fractional power of Laplacian and a critical Hardy potential.

(−�)su − α
u

|x |2s = λu + u−γ + β

(∫
�

u2
∗
b (y)

|x − y|b dy
)
u2

∗
b−1 + μ in �,

u > 0 in �,

u = 0 in RN\�.

(0.1)

Here,� is a bounded domain ofRN , s ∈ (0, 1),α, λ andβ are positive real parameters,
N > 2s, γ ∈ (0, 1), 0 < b < min{N , 4s}, 2∗

b = 2N−b
N−2s is the critical exponent in the

sense of Hardy–Littlewood–Sobolev inequality and μ is a bounded Radon measure in
�.
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1 Introduction

The nonlocal problem involving fractional Laplacian has a remarkable contribution
in various fields of science. The fractional Laplacian arise in chemical reactions in
liquids, diffusion in plasma, geophysical fluid dynamics, electromagnetism and is the
infinitesimal generator of Lévy stable diffusion process, see [3] for instance. Therefore
a considerable amount of research is carried out by a numerous scientists, engineers,
mathematicians with equal interest. Elliptic PDEs involving singular nonlinearity have
been studied by many authors, refer [6,10,22,24,35] and the references therein. In all
these referred works the authors have proved the existence of solution to the singular
problem with approximation arguments and the solution space depends on the power
of the singular term. Recently, Sun & Zhang in [35] explained the role of power 3 for
elliptic equations with negative exponents and claimed that for exponent greater than
3, the problem does not possess a solution. In [33], for the multiplicity result is proved
with the help of the variational method, where the author proved the existence result
by converting the nonlocal problem to a local problem. Similarly, problems involving
a Radon measure as a nonhomogeneous term are also treated with approximations,
since we can always approximate a Radon measure by sequence of smooth functions.
Thus, in this case one can expect the solution space with lesser degree of differentia-
bility or/and integrability. For example, Boccardo et al. ([5,7]) proved the existence
of solution in W 1,m

0 (�) for every m <
N (p−1)
N−1 for a problem involving p-Laplacian

and a Radon measure. Later, Kuusi et al. [23] extended the work of Boccardo to frac-
tional p-Laplacian set up and guarenteed a solution in Ws̄,m(�) for every s̄ < s < 1,
m < min{ N (p−1)

N−s , p}. Further search of the literature led us to find similar problems
but consisting of both a singularity and a Radonmeasure. The local case (with Laplace
operator) of such problems has been dealt by Panda et al. in [28] and the corresponding
problem admits a weak solution in W 1,m

0 (�) if γ ∈ (0, 1] and in W 1,m
loc (�) if γ > 1

for allm < N
N−1 . The nonlocal case (with fractional Laplacian) with a singularity and

a Radon measure has been studied by Ghosh et al. in [18].
In this paper we will consider the following singular fractional elliptic problem with a
Choquard type critical nonlinearity and a Radon measure. The motivation to condier
this work has been mentioned towards the end of this section.

(−�)su − α
u

|x |2s = λu + u−γ + β

(∫
�

u2
∗
b (y)

|x − y|b dy
)
u2

∗
b−1 + μ in �,

u > 0 in �,

u = 0 in RN \ �.

(Pβ )

where � be a bounded domain in R
N with C2 boundary, s ∈ (0, 1), N > 2s,

0 < γ < 1, α, β, λ > 0, b < min{N , 4s}, μ is a bounded Radon measure and (−�)s

is the fractional Laplacian defined by

(−�)su = P. V.
∫
RN

u(x) − u(y)

|x − y|N+2s dy.
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Nonlinear problems involving a Choquard term draws its motivation from the Hardy–
Littlewood–Sobolev inequality. Buffoni in [9], considered the following Choquard
problem and shown the existence of a ground state solution.

(−�)u + V (x)u =
(

1

|x |b ∗ |u|p
)

|u|p−2u in RN (1.2)

for p > 1 and N ≥ 3. S. Pekar in [30] studied the problem (1.2) for p = 2 and b = 1
as a physical model and described the quantum theory of a polaron at rest. Later,
P. Choquard [25] used the Choquard problem of type (1.2) for the modeling of one
component plasma. The nonlocal Choquard problem, i.e. the Choquard problem with
fractional Laplacian, is known as nonlinear fractional Schrödinger equations with
Hartree-type nonlinearity. These problems have a wide application in the quantum
mechanical theory, mean field limit of weakly in-teracting molecules, physics of multi
particle systems, etc. One can refer [11,26] and the references therein for further study
of fractional Choquard problem.
The Brezis–Nirenberg type critical Choquard problem in a bounded domain �, that
is

−�u = λu +
(∫

�

|u|2∗
b (y)

|x − y|b dy
)

|u|2∗
b−2u in �,

u = 0 in RN\�.

(1.3)

has been studied by [16,20,36], etc. Gao & Yang in [16] proved the existence, nonex-
istence and multiplicity results for a range of λ.
Recently, Giacomoni et al. in [21] dealt with fractional critical Choquard problemwith
singular nonlinearity, i.e. they considered problem (Pβ ) with α, λ = 0 and without
Radon measure μ. In [21], the authors have explained a very weak comparison prin-
ciple, established the existence of two positive weak solution and discussed about the
Sobolev regularity of the solutions.
The problem (Pβ) involves two critical terms, the Hardy potential in the left hand
side and the Choquard nonliner term in the right hand side. The nonlocal problems
with a Hardy critical potential has been recently treated in [4,14,15], etc. In 2016,
Fiscella & Pucci in [15] studied the following problem with a Hardy term and proved
the existence of multiple solutions with the explanation of the asymptotic behavior of
solutions.

(−�)su − α
u

|x |2s = λu + θ f (x, u) + g(x, u) in �,

u = 0 in RN\�,

(1.4)

where the function f appears with a subcritical growth while g could be either a
critical term or a perturbation.
Motivated by the above works, in this paper, we discuss the problem (Pβ) in a bounded
domain. To the best of our knowledge, this work is novel, even for the local case (i.e.
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for s = 1), in the sense that in the literature there is no contribution whatsoever
which indicates a study on problem involving a singular nonlinearity, Hardy potential,
Choquard nonlinearity and a measure data together. We find a very less number of
articles dealing with singular fractional problem with critical exponent and measure
data. Amongst them, Panda et al. in [29] have considered the following problem and
obatained a positive SOLA via a sequence of approximating problems.

(−�)su = 1

uγ
+ λu2

∗
s−1 + μ in �,

u > 0 in �,

u = 0 in RN\�.

(1.5)

We have extended the work in [29] by considering a Hardy potential and a Choquard
type critical nonlinearity in (Pβ).We show the existence of aSOLA toour problemwith
the method of approximations. We follow the approach closely related to approaches
used in [15], [21] and [29].
Turning to the paper organization: In Sect. 2, we provide some functional settings,
introduce a suitable notion of solution (SOLA) to (Pβ ) and further state some auxiliary
results and main results. In Sect. 3, we show that the approximating problem to (Pβ )
admits a positive weak solution for certain range of β. Finally, in Sect. 4, we prove
our main result, i.e. Theorem 2.10, and guarantee the existence of a SOLA to (Pβ).

2 Functional settings and auxiliary results

The fractional Sobolev spaceWs,p(RN ), for 1 ≤ p < ∞ and for s ∈ (0, 1), is defined
as

Ws,p(RN ) =
{
u ∈ L p(RN ) :

∫
R2N

|u(x) − u(y)|p
|x − y|N+sp

dxdy < ∞
}

and

Ws,p
0 (�) = {u ∈ Ws,p(RN ) :

∫
R2N

|u(x) − u(y)|p
|x − y|N+sp

dydx < ∞, u = 0 in RN\�}

is a reflexive subspace of Ws,p(RN ) endowed with the following norm

‖u‖p
Ws,p

0 (�)
=

∫
R2N

|u(x) − u(y)|p
|x − y|N+sp

dydx .

Further, for p = 2, we denote the space Ws,p(RN ) as Hs(RN ) and Ws,p
0 (�) as

Hs
0 (�). Actually, Hs

0 (�) is the completion of C∞
0 (�) with respect to the following

norm

‖u‖2Hs
0 (�) =

∫
R2N

|u(x) − u(y)|2
|x − y|N+2s dydx .
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Moreover, the space (Hs
0 (�), ‖·‖Hs

0 (�)) is a reflexive separable Hilbert space. Accord-

ing to Proposition 3.6 of [27], the norms ‖ · ‖Hs
0 (�) and ‖(−�)s/2 · ‖L2(RN ) are norm

equivalent.
We now state the well known fractional Sobolev embedding theorem, Theorem 6.5 of
[27], which will be used frequently throughout this article.

Theorem 2.1 Let s ∈ (0, 1) and 1 ≤ p < ∞ with N > sp. Then there exists
C = C(s, N , p) > 0 such that for every u ∈ Ws,p

0 (�),

‖u‖Lq (�) ≤ C‖u‖Ws,p
0 (�)

for all 1 ≤ q ≤ p∗
s = Np

N−sp . Further, the embedding from Ws,p
0 (�) to Lq(�) is

compact for every q ∈ [1, p∗
s ).

Define Ss,p, the best Sobolev constant in the Sobolev embedding theorem, by

Ss,p = inf
u∈Ws,p

0 (�)\{0}

‖u‖p
Ws,p

0 (�)

‖u‖p

L p∗s (�)

(2.6)

We now define some function spaces which will be further used in this article.
Choose b < min{N , 4s}. Let us denote 2∗

b = 2N−b
N−2s and for any u ∈ L2∗

s (RN ), define

‖u‖C =
(∫

RN

∫
RN

u2
∗
b (x)u2

∗
b (y)

|x − y|b dxdy

)1/22∗
b

.

According to Lemma 2.2 of [37], ‖ · ‖C is a norm equivalent to the standard norm
‖ · ‖L2∗s (RN )

on L2∗
s (RN ). Thus, in this sense we can say that the problem (Pβ) is a

critical Choquard type problem. To understand this sense of criticalness, we need to
introduce the Hardy–Littlewood–Sobolev Inequality which is the foundation of the
Choquard problem of type (Pβ).

Proposition 2.2 (Proposition 2.1 of [20]). Let t, r > 1 and 0 < b < N with 1/t +
1/r + b/N = 2. Further, assume f ∈ Lt (RN ) and g ∈ Lr (RN ). Then there exists a
sharp constant C(t, r , b, N ) > 0 such that∫

RN

∫
RN

f (x)g(y)

|x − y|b dxdy ≤ C(t, r , b, N )‖ f ‖Lt (RN )‖g‖Lr (RN ).

For the choice f = g = |u|2∗
b , by using the above inequality we get

‖u‖22∗
b

C ≤ C(N , b)‖u‖22∗
b

L2∗s (RN )
. (2.7)

Define

SC,b = inf
u∈Hs

0 (�)\{0}

‖u‖2Hs
0 (�)

‖u‖2C
. (2.8)
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Lemma 2.3 (Lemma 2.5 of [20]).
The constant SC,b is achieved if and only if

u = C

(
k

k2 + |x − x0|2
) N−2s

2

where C > 0 is a fixed constant, x0 ∈ R
N and k ∈ (0,∞) are parameters. Moreover,

SC,b = Ss,2

C(N , b)
N−2s
2N−b

Let us define the functional of the elliptic part of our problem (Pβ) as

Hα,λ(u) = 1

2

(
‖u‖2Hs

0 (�) − α‖u‖2NH − λ‖u‖2L2(�)

)
. (2.9)

Since the embedding Hs
0 (�) ↪→ L2(�, |x |−2s) is continuous but not compact, the

Hardy term in the problem is also a critical part. To get rid of this critical term, we look
for a range of α and λ such that the functional Hα,λ is weakly lower semicontinuous
and coercive in Hs

0 (�).
Let λ1 be the first eigenvalue of the fractional Laplacian (−�)s and hence λ1 > 0.
Thus, for every λ < λ1 and every u ∈ Hs

0 (�), we get the following inequalities (refer
[15]).

mλ‖u‖2Hs
0 (�) ≤

∫
�

|(−�)s/2u(x)|2dx − λ

∫
�

|u(x)|2dx ≤ Mλ‖u‖2Hs
0 (�), (2.10)

where mλ = 1 − λ
λ1

and Mλ = 1 + λ
λ1
. The best fractional Hardy constant CH =

CH (N , s) > 0, defined below, plays an important role in Hs
0 (�).

CH = inf
u∈Hs

0 (�),u 	=0

‖u‖2Hs
0 (�)

‖u‖2NH
, ‖u‖2NH =

∫
RN

|u(x)|2
|x |2s dx . (2.11)

Corollary 2.4 (Corollary 2.3 of [15]). For any λ ∈ (−∞, λ1) and α ∈ (−∞,mλCH ),
the functional Hα,λ : Hs

0 (�) → R, defined in (2.9), is weakly lower semicontinuous
and coercive in Hs

0 (�). Furthermore,

Hα,λ(u) ≥ 1

2

(
mλ − α+

CH

)
‖u‖2Hs

0 (�).

The following theorem is a commonly used variational principle, known as ‘Ekeland
Variational Principle’, to prove the existence of solution to variational problems.

Theorem 2.5 (EkelandVariational Principle [13])Assume H to be aBanach space and
the function J : H → R ∪ {+∞} is Gâteaux-differentiable, lower semi continuous
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and bounded from below. Then for every ε > 0 and for every u ∈ H satisfying
J (u) ≤ inf J +ε, every δ > 0, there exists v ∈ H such that J (v) ≤ J (u), ‖u−v‖ ≤ δ

and ‖J ′(v)‖∗ ≤ ε
δ
. The norms ‖.‖ and ‖.‖∗ are the norm of V and the dual norm of

V ∗, respectively.
Since our problem (Pβ) involves a measure data, we do not expect the solution space
to be Hs

0 (�) but expect the solution to lie in a space with a lower degree of integrability
or/and differentiability. Thus, we look for a SOLA (Solutions Obtained as Limits of
Approximations). We now define the notion of solution to problem (Pβ ).

Definition 2.6 LetM(�) be the set of all finite Radonmeasures on� andμ ∈ M(�).
Then a function u ∈ Ws̄,m

0 (�), for s̄ < s and m < N
N−s , is said to be SOLA to (Pβ)

if ∫
RN

(−�)s/2u · (−�)s/2φ − α

∫
�

uφ

|x |2s

= λ

∫
�

uφ +
∫

�

φ

uγ
+ β

∫
�

∫
�

u2
∗
b (y)u2

∗
b−1(x)φ(x)

|x − y|b dxdy +
∫

�

φdμ, (2.12)

for every φ ∈ C∞
c (�). Further, for any ω ⊂⊂ �, there exists a Cω such that

u ≥ Cω > 0. (2.13)

Consider a sequence (μn) ⊂ L∞(�) which is L1 bounded and converges to μ in the
sense of measure as defined in the following definition.

Definition 2.7 Assume (μn) ⊂ M(�) to be a sequence ofmeasurable functions. Then
(μn) converges to μ ∈ M(�) in the sense of measure if∫

�

ϕμn →
∫

�

ϕdμ, ∀ϕ ∈ C0(�̄).

We now construct the following sequence of problems which is the approximating
problem to (Pβ ).

(−�)sun − α
un

|x |2s = λun + 1

(un + 1
n )γ

+ β

(∫
�

u
2∗
b

n (y)

|x − y|b dy
)
u
2∗
b−1

n + μn in �,

un > 0 in �,

un = 0 in RN \ �,

(Pβ,n)

Definition 2.8 Let μn ∈ L∞(�) and γ ∈ (0, 1). Then un ∈ Hs
0 (�) is said to be a

weak solution to (Pβ,n) if∫
RN

(−�)s/2un · (−�)s/2φ − α

∫
�

unφ

|x |2s
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= λ

∫
�

unφ +
∫

�

φ

(un + 1/n)γ

+ β

∫
�

∫
�

u
2∗
b

n (y)u
2∗
b−1

n (x)φ(x)

|x − y|b dxdy +
∫

�

μnφ (2.14)

for every φ ∈ C∞
c (�). Further, for any ω ⊂⊂ � there exists Cω such that un ≥ Cω >

0.

Denote

H = {u ∈ Hs
0 (�) : ‖u‖L2∗s (�)

= 1}.

We now state the following existence theorem. We prove this in the next section.

Theorem 2.9 Let γ ∈ (0, 1), b < min{4s, N }, λ ∈ (0, λ1) and α ∈ (0,mλCH ) such

that
(
N−b+2s
2N−b

) N−b+2s
2N−b ≤ mλ − α

CH
. Then there exists β̄ ∈ (0,∞) such that for every

β ∈ (0, β̄), (Pβ,n) possesses a positive weak solution un in H.

We are now ready to state the main result of the paper.

Theorem 2.10 Let the assumptions on γ, b, α, λ are same as in Theorem 2.9. Then
there exists 0 < β̄ < ∞ such that for β ∈ (0, β̄) the problem (Pβ) has a positive

SOLA u ∈ Ws̄,m
0 (�), in the sense of Definition 2.6, for every s̄ < s and m < N

N−s .

3 Existence of weak solution to (Pˇ,n)- Proof of Theorem 2.9

We prove the existence of weak solution to (Pβ,n) via two sequence of problems given
below, (P1

β,n) and (P2
β,n). Let us first consider the following problem

(−�)swn − α
wn

|x |2s = λwn + 1

(wn + 1
n )γ

+ μn in �,

wn > 0 in �,

wn = 0 in RN \ �.

(P1
β,n)

We now prove the problem (P1
β,n) has a weak solution in H̄ = {u ∈ Hs

0 (�) :
‖u‖L2∗s (�)

< 1} in the following lemma.

Lemma 3.1 Let γ ∈ (0, 1), λ ∈ (0, λ1) and α ∈ (0,mλCH ). Then the problem (P1
β,n)

admits a positive weak solution wn in H̄ .

Proof Consider the Euler -Lagrange functional Jn associated to problem (P1
β,n), i.e.

Jn(wn) = 1

2

(
‖wn‖2Hs

0 (�) − α‖wn‖2NH − λ‖wn‖2L2(�)

)
− 1

1 − γ

∫
�

(
(wn + 1/n)1−γ
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− 1

n1−γ

)
−

∫
�

μnwn

= Hα,λ(wn) − 1

1 − γ

∫
�

(
(wn + 1/n)1−γ − 1

n1−γ

)
−

∫
�

μnwn

for anywn ∈ H̄ . By Corollary 2.4,Hα,λ is coercive and weakly lower semicontinuous
in Hs

0 (�). Since γ ∈ (0, 1), it is easy to prove that Jn is coercive and weakly lower
semicontinuous in H̄ . Thus, by using a standard minimization argument we show the
existence of a minimum wn for Jn in H̄ and hence a weak solution to (P1

β,n) in H̄ .

Fix w̄n ∈ H̄\{0}. Then for sufficiently small t > 0,

Jn(tw̄n) = t2Hα,λ(w̄n) − 1

1 − γ

∫
�

(
(tw̄n + 1/n)1−γ − 1

n1−γ

)
− t

∫
�

μnw̄n

< 0.

This implies

Jn(wn) = min
w̄n∈H̄

Jn(w̄n) < 0 = Jn(0)

and hence wn is nontrivial. Let us consider the following problem

(−�)swn = 1

(wn + 1
n )γ

+ μn in �,

wn > 0 in �,

wn = 0 in RN\�.

(3.15)

According to Lemma 2.3 and Lemma 2.4 ofGhosh et.al [18], (3.15) admits a nontrivial
positive weak solution in Hs

0 (�) and for any ω ⊂⊂ �, there exists Cω such that
wn ≥ Cω > 0. Using a standrd comparison principle, Lemma 2.4 of [1], we conclude
that wn ≤ wn . Thus, wn ≥ wn ≥ Cω > 0. This finishes the proof. ��

Let us consider the second problem.

(−�)svn − α
vn

|x |2s + fn(x, vn) = λvn + β

(∫
�

(wn + vn)
2∗
b (y)

|x − y|b dy

)

× (wn + vn)
2∗
b−1 in �,

vn > 0 in �,

vn = 0 in RN \ �,

(P2
β,n)
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where wn is the positive weak solution of (P1
β,n) obtained from Lemma 3.1 and the

function fn : � × R → R ∪ {−∞} is given by

fn(x, s) =
{

1
(wn(x)+ 1

n )γ
− 1

(s+wn(x)+ 1
n )γ

if s + wn(x) + 1
n > 0

−∞ otherwise.
(3.16)

For (x, s) ∈ � × R, let us denote Fn(x, s) = ∫ s
0 fn(x, τ )dτ . The corresponding

energy functional Jβ,n : Hs
0 (�) → (−∞,∞] of (P2

β,n) is defined by

Jβ,n(vn)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2

(∫
R2N

|vn (x)−vn (y)|2
|x−y|N+2s dxdy − α

∫
�

v2n
|x |2s dx − λ

∫
� v2ndx

)

+ ∫
� Fn(x, vn)dx − β

22∗
s

∫
�

∫
�

(vn+wn )
2∗b (x)(vn+wn )

2∗b (y)
|x−y|b dxdy if Fn(., vn) ∈ L1(�)

∞ otherwise.

(3.17)

Further,

〈J ′
β,n(vn), v〉 =

∫
R2N

(vn(x) − vn(y))(v(x) − v(y)

|x − y|N+2s dxdy

− α

∫
�

vnv

|x |2s dx − λ

∫
�

vnvdx

+
∫

�

fn(x, vn)vdx

− β

∫
�

∫
�

(vn + wn)
2∗
b (x)(vn + wn)

2∗
b−1(y)v(y)

|x − y|b dxdy

for any v ∈ Hs
0 (�). Let us denote

Hn = {u ∈ H̄ : ‖u + wn‖L2∗s (�)
= 1}.

Definition 3.2 We say a function vn ∈ H̄ is a weak solution of (P2
β,n) if vn is a critical

point of the corresponding energy functional Jβ,n .

Lemma 3.3 The functional Jβ,n satisfies the Palais-Smale (P-S) condition in Hn for
energy level

c <
1

2

(
N − b + 2s

2N − s

)
S

2N−b
N−b+2s
C,b

β
N−2s

N−b+2s

− C(N , b)β

22∗
b

,

where SC,b is the best Sobolev constant defined in (2.8) and C(N , b) is the sharp
constant in the Hardy–Littlewood–Sobolev Inequality given in (2.7).



A critical fractional choquard problem involving a singular… Page 11 of 19 22

Proof Consider a (P-S) sequence (vn, j ) of Jβ,n in Hn , i.e. Jβ,n(vn, j ) → c and
J ′
β,n(vn, j ) → 0 as j → ∞. It is easy to show that Jβ,n is coercive when restricted to
Hn . Thus, (vn, j ) is bounded in Hs

0 (�) and there exists vn in Hs
0 (�) such that, up to a

subsequential level, vn, j → vn weakly in Hs
0 (�). We now claim the following.

Claim: vn, j → vn strongly in Hs
0 (�) and vn ∈ Hn .

Let ‖vn, j − vn‖2Hs
0 (�)

→ a2 and
∫
�

∫
�

(vn, j−vn)
2∗b (x)(vn, j−vn)

2∗b (y)
|x−y|b dxdy → d22

∗
b as

j → ∞. Thus, we have

〈J ′
β,n(vn, j ) − J ′

β,n(vn), vn, j − vn〉
= ‖vn, j − vn‖2Hs

0 (�) − α‖vn, j − vn‖2NH − λ‖vn, j − vn‖2L2(�)

+
∫

�

( fn(x, vn, j ) − fn(x, vn))(vn, j − vn)

− β

∫
�

∫
�

(vn, j + wn)
2∗
b (vn, j + wn)

2∗
b−1(vn, j − vn)

|x − y|b dxdy

+ β

∫
�

∫
�

(vn + wn)
2∗
b (vn + wn)

2∗
b−1(vn, j − vn)

|x − y|b dxdy.

This implies,

〈J ′
β,n(vn, j ) − J ′

β,n(vn), vn, j − vn〉
≥

(
mλ − α

CH

)
‖vn, j − vn‖2Hs

0 (�)

− β

∫
�

∫
�

(vn, j − vn)
2∗
b (vn, j − vn)

2∗
b + (vn + wn)

2∗
b (vn + wn)

2∗
b

|x − y|b dxdy

+ β

∫
�

∫
�

(vn, j + wn)
2∗
b (vn, j + wn)

2∗
b−1(vn + wn)

|x − y|b dxdy

+
∫

�

( fn(x, vn, j ) − fn(x, vn))(vn, j − vn)

+ β

∫
�

∫
�

(vn + wn)
2∗
b (vn + wn)

2∗
b−1(vn, j − vn)

|x − y|b dxdy.

On using the Brezis–Lieb Lemma [8], Hardy–Littlewood–Sobolev Inequality (Propo-
sition 2.2), Corollary 2.4, and then passing the limit j → ∞ in the above equation we
get

βd22
∗
b ≥

(
mλ − α

CH

)
a2. (3.18)

From (2.8) we already have a2 ≥ SC,bd2. Thus, by simplification we obtain
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d ≥
(

(mλ − α
CH

)SC,b

β

) N−2s
2(N−b+2s)

. (3.19)

We have the sequence (vn, j ) is a (P-S) sequence in Hn and by the choice of α, λ, we

obtain
(
N−b+2s
2N−b

) N−b+2s
2N−b ≤ mλ − α

CH
. Now applying Corollary 2.4, (2.7), (3.18) and

(3.19) we have,

c = lim
j→∞ Jβ,n(vn, j )

= 1

2
lim
j→∞

(∫
R2N

|vn, j (x) − vn, j (y)|2
|x − y|N+2s

dxdy − α

∫
�

v2n, j

|x |2s dx − λ

∫
�

v2n, j dx

)

+ lim
j→∞

⎛
⎝∫

�
Fn(x, vn, j )dx − β

22∗
s

∫
�

∫
�

(vn, j + wn)
2∗
b (x)(vn, j + wn)

2∗
b (y)

|x − y|b dxdy

⎞
⎠

≥ lim
j→∞

(
1

2

(
mλ − α

CH

)
‖vn, j‖2 − C(N , b)β

22∗
b

‖vn, j‖22
∗
b

L2
∗
s (�)

)

≥ lim
j→∞

1

2

(
mλ − α

CH

)
SC,b

⎛
⎜⎝∫

�

∫
�

v
2∗
b

n, j (x)v
2∗
b

n, j (y)

|x − y|b dxdy

⎞
⎟⎠

2
22∗b

− C(N , b)β

22∗
b

≥ 1

2

(
mλ − α

CH

)
d2SC,b − C(N , b)β

22∗
b

≥ 1

2

(
mλ − α

CH

)
SC,b

(
(mλ − α

CH
)SC,b

β

) N−2s
N−b+2s

− C(N , b)β

22∗
b

= 1

2

(SC,b(mλ − α
CH

))
2N−b

N−b+2s

β
N−2s

N−b+2s

− C(N , b)β

22∗
b

≥ 1

2

(
N − b + 2s

2N − b

)
S

2N−b
N−b+2s
C,b

β
N−2s

N−b+2s

− C(N , b)β

22∗
b

.

This is a contradiction to our assumption

c <
1

2

(
N − b + 2s

2N − b

)
S

2N−b
N−b+2s
C,b

β
N−2s

N−b+2s

− C(N , b)β

22∗
b

.

Thus, a = 0 and lim
j→∞ ‖vn, j − vn‖Hs

0 (�) = 0. Hence, the claim. ��

Let us consider the following sequence (Zε) given by

Zε = ε− N−2s
2 S

(N−b)(2s−N )
4(N−b+2s)

s,2 C(N , b)
2s−N

2(N−b+2s) z∗
( x

ε

)
, x ∈ R

N ,
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where z∗(x) = z̄

(
x

S

1
2s
2,s

)
, z̄(x) = z̃(x)

‖z̃‖
L2

∗
s (�)

and z̃(x) = η1(η
2
2 + |x |2)− N−2s

2 , η1 ∈

R
N\{0}, η2 > 0. By Lemma 2.3, for each ε > 0, corresponding Zε satisfies the

problem

(−�)s z = (|x |−b ∗ |z|2∗
b )|z|2∗

b−2v in RN .

Let us assume 0 ∈ �. Consider ξ ∈ C∞
c (RN ) such that 0 ≤ ξ ≤ 1, for fixed δ > 0,

B4δ ⊂ �, ξ ≡ 0 in RN\B2δ , ξ ≡ 1 in Bδ . Define

�ε(x) = ξ(x)Zε(x).

Then �ε = 0 in R
N\�. By Proposition 6.2 of Giacomoni et al. [21], there exists

a1, a2, a3, a4 > 0 such that for 1 < q < min{2, N
N−2s } we have the following four

estimates.

∫
R2N

|�ε(x) − �ε(y)|2
|x − y|N+2s dxdy ≤ S

2N−b
N−b+2s
C,b + a1ε

N−2s,

∫
�

∫
�

|�ε |2∗
b (x)|�ε |2∗

b (y)

|x − y|b dxdy ≥ S

2N−b
N−b+2s
C,b − a2ε

N ,∫
�

|�ε |qdx ≤ a3ε
(N−2s)q/2,

∫
�

∫
�

|�ε |2∗
b (x)|�ε |2∗

b (y)

|x − y|b dxdy ≤ S

2N−b
N−b+2s
C,b + a4ε

N .

Lemma 3.4 There exists β̄ > 0 such that for β ∈ (0, β̄) and for ε > 0 sufficienty
small,

sup{Jβ,n(t�ε) : t ≥ 0} <
1

2

(
N − b + 2s

2N − b

)
S

2N−b
N−b+2s
C,b

β
N−2s

N−b+2s

− C(N , b)β

22∗
b

.

Proof Clearly for β <
(

2∗
b

C(N ,b)

(
N−b+2s
2N−b

)) N−b+2s
2N−b

SC,b, we have

1

2

(
N − b + 2s

2N − b

)
S

2N−b
N−b+2s
C,b

β
N−2s

N−b+2s

− C(N , b)β

22∗
b

> 0.

For a fixed sufficiently small ε > 0 and for any t ≥ 0,

Jβ,n(t�ε)

= t2

2

(∫
R2N

|�ε(x) − �ε(y)|2
|x − y|N+2s

dxdy − α

∫
�

|�ε |2
|x |2s − λ

∫
�

|�ε |2
)

+
∫
�
Fn(x, t�ε)dx
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− β

22∗
b

∫
�

∫
�

|t�ε + wn |2∗
b |t�ε + wn |2∗

b

|x − y|b dxdy

≤ t2

2

∫
R2N

|�ε(x) − �ε(y)|2
|x − y|N+2s

dxdy +
∫
�

|t�ε |
(wn + 1/n)γ

− 1

1 − γ

∫
�

(t�ε + wn + 1/n)1−γ − (wn + 1/n)1−γ

− β

22∗
b

∫
�

∫
�

|t�ε + wn |2∗
b |t�ε + wn |2∗

b

|x − y|b dxdy

≤ t2

2
(S

2N−b
N−b+2s
C,b + a1ε

N−2s ) + tnγ
∫
�

|�ε | + C(N , b)β

22∗
b

− C(N , b)β

22∗
b

− 1

1 − γ

∫
�

(t�ε + wn + 1/n)1−γ − (wn + 1/n)1−γ − βt22
∗
b

22∗
b

∫
�

∫
�

|�ε |2
∗
b |�ε |2

∗
b

|x − y|b dxdy

≤ t2

2
(S

2N−b
N−b+2s
C,b + a1ε

N−2s ) + tnγ a1/q3 ε(N−2s)/2 + C(N , b)β

22∗
b

− C(N , b)β

22∗
b

− 1

1 − γ

∫
�

(t�ε + wn + 1/n)1−γ − (wn + 1/n)1−γ − βt22
∗
b

22∗
b

(S

2N−b
N−b+2s
C,b − a2ε

N ). (3.20)

Assume β ≤ 1 and define g : R+ → R as

g(t) = C(N , b)β

22∗
b

− 1

1 − γ

∫
�

(t�ε + wn + 1/n)1−γ − (wn + 1/n)1−γ

≤ C(N , b)

22∗
b

− 1

1 − γ

∫
�

(t�ε + wn + 1/n)1−γ − (wn + 1/n)1−γ . (3.21)

Hence, g(t) → −∞ as t → ∞. Therefore, there exists t̄ > 0 such that g(t) ≤ 0 for
every t ≥ t̄ . First consider the case t ≥ t̄ and we have

Jβ,n(t�ε) ≤ t2

2
(S

2N−b
N−b+2s
C,b + a1ε

N−2s) + tnγ a1/q3 ε(N−2s)/2

− βt22
∗
b

22∗
b

(S
2N−b

N−b+2s
C,b − a2ε

N ) − C(N , b)β

22∗
b

= ḡε(t).

Clearly, ḡε attains the maximum value at

tβ =
(
1

β

) 2(N−b+2s)
N−2s + o(ε(N−2s)/2).

This implies,

Jβ,n(t�ε) ≤ 1

2

(
N − b + 2s

2N − b

)
S

2N−b
N−b+2s
C,b

β
N−2s

N−b+2s

− C(N , b)β

22∗
b

+ o(ε(N−2s)/2)



A critical fractional choquard problem involving a singular… Page 15 of 19 22

<
1

2

(
N − b + 2s

2N − b

)
S

2N−b
N−b+2s
C,b

β
N−2s

N−b+2s

− C(N , b)β

22∗
b

. (3.22)

For the second case, i.e. t < t̄ ,

Jβ,n(t�ε) ≤ t2

2

∫
R2N

|�ε(x) − �ε(y)|2
|x − y|N+2s dxdy +

∫
�

|t�ε |
(wn + 1/n)γ

≤ t2

2
(S

2N−b
N−b+2s
C,b + a1ε

N−2s) + tnγ a1/q3 ε(N−2s)/2

<
t̄2

2
(S

2N−b
N−b+2s
C,b + a1ε

N−2s) + t̄nγ a1/q3 ε(N−2s)/2.

Choose β∗ > 0 depending on t̄, N , s,SC,b such that for β ∈ (0, β∗) we get

Jβ,n(t�ε) <
1

2

(
N − b + 2s

2N − b

)
S

2N−b
N−b+2s
C,b

β
N−2s

N−b+2s

− C(N , b)β

22∗
b

.

Choose β̄ = min{1,
(

2∗
b

C(N ,b)

(
N−b+2s
2N−b

)) N−b+2s
2N−b

SC,b, β
∗}. Thus, for β ∈ (0, β̄) we

obtain

sup{Jβ,n(t�ε) : t ≥ 0} <
1

2

(
N − b + 2s

2N − b

)
S

2N−b
N−b+2s
C,b

β
N−2s

N−b+2s

− C(N , b)β

22∗
b

.

This concludes the proof. ��
The following is the existence theorem for (P2

β,n) in Hn .

Theorem 3.5 Assume b < min{4s, N }, λ ∈ (0, λ1) and α ∈ (0,mλH). Then there
exists β̄ > 0 such that for every β ∈ (0, β̄), (P2

β,n) admits a positive weak solution
vn ∈ Hn.

Proof The functional Jβ,n is bounded from below and Gâteaux-differentiable on Hn .
Hence, it satisfies all the hypotheses of Theorem 2.5, i.e. Ekeland variational principle.
Thus, we can produce a Palais-Smale sequence (vn, j ) in Hn of the functional Jβ,n . By
Lemma 3.3 and Lemma 3.4, (vn, j ) satisfies the (P-S) conditions and hence, up to a
subsequential level, (vn, j ) converges strongly to vn ∈ Hn . This implies vn is a critical
point of Jβ,n and therefore a weak solution of (Pβ,n) in Hn for any β ∈ (0, β̄). ��
Proof of Theorem 2.9 According to Theorem 3.5, vn is a nontrivial weak solution to
(P2

β,n) in Hn = {u ∈ Hs
0 (�) : ‖u + wn‖L2∗s (�)

= 1}, for every for β ∈ (0, β̄), where

wn is the weak solution of (P1
β,n) from Lemma 3.1. Hence, the function un = vn +wn

is a positive weak solution of (Pβ,n) in H = {u ∈ Hs
0 (�) : ‖u‖L2∗s (�)

= 1} in the
sense of Definition 2.8. ��
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4 Existence of SOLA to (Pˇ)- Proof of Theorem 2.10

From the previous section, Sect. 3,we aweak solutionun of the approximating problem
(Pβ,n) in H . In this section, using some apriori estimates, we pass the limit n → ∞
in the weak formulation of (Pβ,n), i.e. (2.14), to obtain a SOLA to (Pβ).

Lemma 4.1 Let un be a weak solution to (Pβ,n) in H. Then the sequence (un) is

uniformly bounded in W s̄,m
0 (�) for every s̄ < s and m < N

N−s .

Proof Let us fix a k > 0 and define a truncation function Tk : R → R by

Tk(un) =
{
un if un ≤ k

k if un > k.

Choose φ = Tk(un) in (2.14) as a test function. Thus, we have∫
RN

|(−�)s/2Tk(un)|2 ≤
∫
RN

(−�)s/2un · (−�)s/2Tk(un)

= α

∫
�

unTk(un)

|x |2s + λ

∫
�

unTk(un) + β

∫
�

∫
�

u
2∗
b

n u
2∗
b−1

n Tk(un)

|x − y|b dxdy

+
∫

�

1

(un + 1
n )γ

Tk(un) +
∫

�

μnTk(un). (4.23)

The sequence (un) ⊂ H , i.e. ‖un‖L2∗s (�)
= 1 for each n and (μn) is bounded in

L1(�). So, equation (4.23) becomes

∫
RN

|(−�)s/2Tk(un)|2

≤ αk
∫

�

un
|x |2s + λ

∫
�

u2n +
∫

�

u1−γ
n + k‖μn‖L1(�) + βC(N , b)

≤ αk
∫

�

un
|x |2s + λC1‖un‖2L2∗s (�)

+ C2‖un‖1−γ

L2∗s (�)
+ C3k + βC(N , b)

≤ αk
∫

�

un
|x |2s + C4k. (4.24)

Since N > 2s, this implies (N − 2s(2∗
s )

′) > 0 where (2∗
s )

′ is the Hölder conjugate of
2∗
s . Therefore, using the Hölder’s inequality we get

∫
�

un
|x |2s ≤

∥∥∥x |−2s
∥∥∥
L(2∗s )′ (�)

‖un‖L2∗s (�)

=
∥∥∥|x |−2s

∥∥∥
L(2∗s )′ (�)

≤ C5. (4.25)
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Hence, (un) is bounded in L1(�, |x |−2s) and from (4.24), we conclude that

∫
RN

|(−�)s/2Tk(un)|2 ≤ Ck. (4.26)

Therefore, (Tk(un)) is uniformly bounded in Hs
0 (�). By following the proof of Lemma

4.1 of Panda et al. [29], we conclude that (un) is uniformly bounded in Ws̄,m
0 (�), for

all s̄ < s and m < N
N−s . ��

We are now in a position to prove our main result, i.e. the existence of positive SOLA
to (Pβ).

Proof of Theorem 2.10 Let μ ∈ M(�) and the assumptions on γ, b, α, λ are same as
provided in the statement of Theorem 2.10. From Theorem 2.9, for any β ∈ (0, β̄),
we have a positive weak solution un of (Pβ,n) in H . Since (un) is uniformly bounded
inWs̄,m

0 (�), for every s̄ < s andm < N
N−s , by Lemma 4.1, there exists u ∈ Ws̄,m

0 (�)

such that un → u weakly in Ws̄,m
0 (�). This implies un → u a.e. in RN and u ≡ 0 in

R
N\s�. From the weak formulation of (Pβ,n), i.e. (2.14), we have

∫
R2N

(un(x) − un(y))(φ(x) − φ(y))

|x − y|N+2s dxdy − α

∫
�

unφ

|x |2s

= λ

∫
�

unφ +
∫

�

1

(un + 1
n )γ

φ + β

∫
�

∫
�

u
2∗
b

n u
2∗
b−1

n φ

|x − y|b dxdy +
∫

�

μnφ,

(4.27)

for all φ ∈ C∞
c (�). Proceeeding on similar lines as in Theorem 1.1. of [29] and using

Vitali convergence theorem, we establish

lim
n→∞

∫
R2N

(un(x) − un(y))(φ(x) − φ(y))

|x − y|N+2s dxdy

=
∫
R2N

(u(x) − u(y))(φ(x) − φ(y))

|x − y|N+2s dxdy.

On using the definition of convergence in measure, i.e. Definition 2.7, Dominated
convergence theorem and the fact that ‖un‖L2∗s (�)

= 1, we can pass the limit n → ∞
in the following integrals.

lim
n→∞

∫
�

μnφ =
∫

�

φdμ,

lim
n→∞ β

∫
�

∫
�

u
2∗
b

n u
2∗
b−1

n φ

|x − y|b dxdy = β

∫
�

∫
�

u2
∗
bu2

∗
b−1φ

|x − y|b dxdy,

lim
n→∞

∫
�

unφ

|x |2s =
∫

�

uφ

|x |2s ,
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lim
n→∞

∫
�

1

(un + 1
n )γ

φ =
∫

�

1

uγ
φ.

Hence, we obtain a SOLA u to (Pβ), in the sense of Definition 2.12, as the limit of
approximation in (4.27). Thus, for every φ ∈ C∞

c (�), u satisfies

∫
R2N

(u(x) − u(y))(φ(x) − φ(y))

|x − y|N+2s dxdy − α

∫
�

uφ

|x |2s

= λ

∫
�

uφ +
∫

�

1

uγ
φ + β

∫
�

∫
�

u2
∗
bu2

∗
b−1φ

|x − y|b dxdy +
∫

�

μφ.

This concludes the proof our main result. ��
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