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Abstract

In this paper we show that if the Nemytskii operator maps the (¢, 2, o)-bounded
variation space into itself and satisfies some Lipschitz condition, then there are
two functions g and % belonging to the (¢, 2, «)-bounded variation space such that
f(t,y) =g@)y+ h(t)forallt € [a,b],y € R.

Keywords Nemytskii operator - (¢, 2, «)-Bounded variation - Riesz p-variation -
Embedding
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1 Introduction

According to Lakoto [16], functions of bounded variation were discovered by Camille
Jordan around 1880 through a “critical” re-examination of Dirichlet’s famous flawed
proof that arbitrary functions can be represented by Fourier series (see, [14]). It was
Jordan who gave the characterization of such functions as differences of increasing
functions, but, as point out by Hawkins [15], the key observation that Dirichlet’s proof
was valid for differences of increasing functions had already been made by Dubois-
Raymond [13]. In the same vein, in 1905 G. Vitali [32] introduce the absolutely
continuous functions of one variable. Since then, the concept has been generalized in
many ways.
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Some of those generalizations were motivated by problems in areas such that
geometric measures theory and mathematical physics. (For applications of function
variation in mathematical physics, see the monograph [33]). One of those generaliza-
tions appeared in 1908, when de la Vallée Poussin [12] defined the second bounded
variation of a function f in the interval [a, b] by

S f&) — fxj-1)

Xj41 — Xj Xj—Xj—1

V() = V3(f. la, b)—supZ

where the supremun is taken over all partition
M={a=x0<x1 <--<x, =0b}
of the interval [a, b].

Another generalization is due to F. Riesz in his 1910 paper (see, [28]), he defined
the p -variation of a function on an interval [a, b] as

f(x] 1)|

—1|P!

VR = Vi TasbD = sup Z'f(x’)_x (L.1)

j=1

Again, the supremun is taken over all partition [1 = {a = x¢9 < x] < --- < x, = b}
of the interval [a, b]. Riesz proved that, for 1 < p < +o0, the class of functions of
bound p-variation (i.e., the class of functions for which V[f (f) < 400) coincides with
the class of absolutely continuous functions with derivative belonging to L ,([a, b]).
Moreover, the p-variation of a function f on [a, D] is given by

b
V() =V (f la,b]) = / £ )P dx. (1.2)

One may replace the p-th power in (1.1) by a function ¢ behaves similar to x? for

p > 1 as follows: A function ¢ : [0, +00) —> [0, +00) such that

(a) ¢(x) =0ifand only if x = 0.

(b) limys o0 (x) =

is known as Young function. In 1953 Y.T. Medvedev [26] introduced the concept

of ¢-bounded variation in the following way: given a Young function ¢, a partition
={a =x0 <x1 <--+ < x, = b}of [a, b] and a function f : [a, b] —> R, the

¢-variation of f is defined as

If(x) — f(le)l) jo1 —xjl. (1.3)

|x Xj _xj—1|p7]

VR = Vi La b])—sup2¢<

where the supremun is taken over all partition IT of [a, b]. We might observe that,
when ¢(x) = xP, p > 1, x > 0 we get back the p-variation concept. In other



Nemytskii operator on (¢, 2, «)-bounded variation... 2025

words, the Medvedev characterization generalizes the one made by Riesz. In such a
sense that (1.3) is called the Riesz-Medvedev variation of f on [a, b]. Again, in case
Vf (f) < oo, we say that f has bounded Riesz-Medvedev variation (or bounded
¢-variation in Riesz’s sense) on [a, b], and we write f € BVf([a, b)).

In the same paper [26], for a convex Young function ¢ which satisfies the co;-

condition (that is limy_ 4~ d’;—x) = +400), the following remarkable result was

proven: f € BVf([a, b]) if and only if f is absolutely continuous on [a, b] and

b
S f (x)Ddx < +oo.

Moreover, the ¢-variation of f on [a, b] is given by

b
VI = V(S la, b)) = / ¢(1f (x)dx. (1.4)

Also note that (1.4) generalizes (1.2). In [6] the first and third named authors, together
with H. Rafeiro, introduced the (2, «)-variation in the sense of de la Vallée Poussin,
combining the second bounded variation with the (p, «)-variation (see [3] and [8]).

Definition 1.1 Let ¢ be a ¢-function (Young function), f a real function defined on
[a, b] and let « be any strictly increasing continuous function defined on [a, b]. Let
IT be a block partition of the interval [a, b], that is,

Mia=x11 <x12<X13<X14=X21 <X22=<X23 <X24=X3] <--"

< Xp—14=Xp2 < Xp3 < Xp4=D.

Let
- (xj,4) — f(x;3)
off 5 (f T = ¢>( &), /.
6.2,0) ;

(a(xj4) —olx;3)(a(xj4) —alx; 1))

_ fxj2) = fxj)
(a(xj2) —alx;D))(alxj4) —alx; 1))
Soja)—f(3)  fxj2)—f(xj1)

a(xja)—a(x;3) a(xja)—a(x; 1)

lor(xj4) —a(xj 1)l

D lor(xj4) —a(xj 1)l

=

¢

1

loe(xj4) —alxj 1)l

J

Z¢ <|fa[Xj,4,Xj,3] — falxj2, Xj,1]|> 0Cx4) — a0
=

loe(xj4) —a(xj 1)l

where

_ fl@)— f(p)
Jelp a1 = =t
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and

V(g,z,a)(f, [a,b]) = V(g’z,a)(f) = Sll'llp U(I;,z,a)(f, ID),

where the supremum is taken over all possible block partition of [a, b].
V({; 2.0) (f) is called (¢, 2, a)-variation in the sense of Riesz on the interval [a, b].

If V(g 2.0) (f) < o0, the function f is said to be of (¢, 2, @)-variation in the sense of
Riesz. The set of all this functions is denoted by V(g 2Yo()([a, b]). RVg 2,a)(la, b]) is
the space generated by V({:s,z, a)([a, b)).

2 Definitions and some needed results

In this section, we gather definitions and notations that will be used throughout the
paper. Let o be any strictly increasing continuous function defined on [a, b].

Definition 2.1 Let ¢ be a convex ¢-function, then
RV 2.0y (la,b) ={f :[a,bl — R : f € RV(y2.a)(la,b]) and f(a) = 0}

is the linear space of (¢, 2, «)-bounded variation in the sense of Riesz which vanish
ata.

Definition 2.2 Let ¢ be a convex ¢-function,
R . 0
| 16200 * RV 2. (@, b)) — RF
given by
| f16s 2.0 = [ fu(@] +infle >0 : VE 5, (f/e) < 1}.
Definition 2.3 Suppose f and « are real-valued functions on the same open interval
(bounded or unbounded). Suppose x is a point in this interval. We say f is a-derivable
at xq if

J(x) = f(x0)
m —

a—xo a(x) — o(xp)

exists.

We denote its value by f;, (xp), which we call the a-derivative of f at x.

Definition 2.4 A function v : [a, b)] — R is a-convex in [a, b], if foralla < A <
& < < b the following holds

a() —a@) a(p) —a(§)
VO = 40 —atm " an —ai VY
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As aconsequence, we have, from the properties of «-convex functions, the existence of
the lateral derivatives foi+ (x0) and fo’t_ (xp) in each point xo € (a, b) and the existence
of fb’t+ (a) and fo’{_ b).

Theorem 2.1 Let ¢ be a convex ¢-function. If f € V(g 2.0)[@. D), then f €
BV 29 ([a, b]). Moreover

1
V(Z,a)(f) < q)(_l)v(g’z’a)(f) + a(b) — al(a).

For the proof see [2].

Theorem 2.2 If ¢ is a convex ¢-function such that satisfy the (001)-condition, then we
have the following embedding results

RV(p 2.0 ([a,b]) € BV®9([a,b]) C a — Lip([a, b]) C RV(g.a)(la, b]) C
... Ca—AC(la,b]) C BV(la,b]) C B(la, b)).

Theorem 2.3 f € BV o) ([a, b)) if and only if f = fi — f> where fi and f, are
a-convex functions.

Theorem 2.4 Let ¢ be a convex function, which satisfy the (co)-condition. If f €
V({; ) a)([a, b)), then there exists f,(xo) on each point xq € [a, b].

Proof From Theorem 2.2 we know the V({f,,zm([a, b)) ¢ BV@®9([a, b]) and by
Theorem 2.3 we have that there are lateral «-derivatives at each point of the interval
[a, b]. Suppose there is xg € (a, b) such that f,+(x9) # f,- (x0). From the definition
of V(¢,2,0)(la, b]), let us consider in the partition the points --- < xo +h < xp <

Xo + h < --- in order to obtain

SOot+h)—fxo) _ fxo)=fxo—h)
a(xo+h)—a(xo) a(xp)—a(xo—h)

lae(xp + h) — a(xp — h)

Vig 2. (la. b)) = ler(xo + h) — a(xo — h)|

SGo+h)—f(xg) _ fg)=fxg—h)
a(xg+h)—alxg)  alxg)—alxy—h)

¢ ( o Gro +h)—x (o )]

= |f‘;+ @0)—f,— 0)] | fa+ (x0) — fo- (x0)]

a(xp+h)—a(xo+h)

letting 4 — 0 and using the fact that ¢ and « are continuous, then we have

£ o) £ (o)
P\ T et F /) — (o = )]

—

VE 2o (la,bl) = N fl (60) = fa- (x0)]

|/ (o) = f._ (x0)]
Iim |a(xg + h) — a(xg — h)|
h—0
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|f;;+ (XO)—fO/ﬁ (x0)|

i ¢ la(xo+h)—a(xo—h)|
TS0 1, G070l
le(xo+h)—a(xo—h)|

| fr (X0) = fo (x0)| = +o00.

That is,

1L (%0) = fum (x0)]

m =
h—0 |a(xg + h) — a(xg — h)|

and
lae(xo + h) —a(xg — h)| # 0.

This contradicts the fact that f € V(g 2.0) ([a, b]), so f is a-derivable at each point of
(a, b) and there exist f(}, (a) and f,- (D). O

Theorem 2.5 Let ¢ be a convex ¢-function which satisfies the (001)-condition and

fila,b] — RIf f e VE, ,(abl), thatis VE ) (f) < +oo, then f, €
VE 5 ol bl), that is VE , (1) < +00. Moreover

b
f¢wmmmmoswwmqy

Proof LetI1 : a < x9 < x1--+ < x, = b be a partition of [a,b] and 0 < h <
Ll j=1,2,...,n}.Wehavethat

min{ >

a=xo<xot+th<xi—h<xi<xi+h=<xx—h<
<Xyl <Xp_1t+h<x,—h<x,=b
is a block partition of [a, b]. By definition we have
SGp=fxj=h)  flxj1+h)—f(xj—1)

ax)—atj—h) ~ abyoi+h—al 1)

loe(x;) —a(xj—1)]

la(x;) —alxj_1)| < V(g,z,a)(f)-

n
20
j=1

Allowing that i goes to 0 in the previous expression, we deduce
fepN—fxj—h)  flji+h)—fxj-1)

atp—alx;—h) — a1 +h—alx;_1)

le(xj) —a(xj—1)|

et (xj) — (x| < VE 5.0 ()
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By continuity of ¢ and the definition of f;, and f _

() = for (xj=1)
Zq&( fl-(xj) = fli(xj |>|a(xj)—01(xj—l)| < V(fb’z,a)(f)'

loe(xj) —axj—1)l
This result holds for all partition IT of [a, b]. In consequence

R R
Vig.o(Ja) = Vg2 ()

Hence

fa € VE o 1a, b)),

By virtue of the Theorem of Medved’ev (see [26]) we conclude that f, € o —
AC ([a, b]) and therefore there exists f, a.e. in [a, b]. Moreover

b

[0z daw) < VE (12 < VE 20 (1

a

The next result is the reciprocal.

Theorem 2.6 Let ¢ be a convex function which satisfy the (c01)-condition and f -
la, b] — R. If f}, is a-absolutely continuous and

/¢(| () Dda(r) < +oo,

then
b
V({;,z,m(f) = /¢(|f0//(t)|)da(t).

Proof LetI1 : a = X1,1 < X1.2 < X13 < X144 =X21 <+ < Xp—14 = Xp,1 <
Xpn2 < Xp3 < X4 = b be ablock partition of [a, b].
Since f(; exists, then f is continuous in (a, b) and using the mean value Theorem,

we deduce that there exists x;.r € (xj3,xj4)and x;" € (x; 1, x;4) such that

fxj2) = f(xj.3)

alxj2) —alxj1)

fax) =
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and

fxj4)— f(x)3)

, =1,2,...,n.
a(xj4) —alx;3)

fah) =

In this way we obtain the following estimation

SO a—f(x=3)  fxj2)—fxj—1)

alxjH—alx;3) a(xj2)—alx; 1)

¢( V Ia(x;,4)—a(xnj‘,1)| ' )|Ot(Xj,4)—Ol(Xj,l)|

(If/oz(xf) — fla@)))

loe(xj4) —a(xjq]

) la(xj4) —alxj 1)l

— o |oz(xj4)—oz(x, l)|f|f ©)lda®) | 1ees0) — a0
xJ
1 , 1
= lor(xj,4) — (xj,1)] / If“(é)da@)) lor(xj.4) — a(xj 1)l

f | fo ©)lda (&)

Xj.1

Joej,4) — @y, )l

/ da(€)

Xj.1

By the Jensen inequality

/ (I fy Eda(E)
Xj1

< A la(xj4) —alx; 1)l

/ da(€)

Xj.1

1

Tla(xja) — o)

|:f ¢(foﬁ/(€))d0t(€):| la(xj4) —a(xj 1l
j, 1

= / o (11 EDda(®).

Xj.1
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Next, adding for j =1,2,...,n

G a ACTE VR ST ) e ACT V)

a(xj4)—a(x;3) alxj2)—alx; 1)

le(xj4) —alxj 1)l

U(I;‘z,a)(fa ) = Z¢

J=1

loe(xj4) —a(xj 1)l

va4

=Y [ eusi@ndae)

4/':1ij|

b
= f S L2 EDda(é).

From this expression we deduce that

b
Vi 2a)(f) < / b (£ E)Dda(®),

therefore f € V(g .2,a)(la, b]). O
From the previous theorems, we deduce the following.

Corollary 2.7 Let ¢ be a convex ¢-function which satisfy the (0o1)-condition and
f :la, b] —> R. Then the following propositions are equivalent

1. fe v({;’zva)([a, bl) if and only if f, € V({;)a)([a, b)).
b
2. feVE,pa bl ifandonlyif f € @ — AC(la, b)) and [ ¢ (| f3(D])da(1) <
—+00. ¢
Moreover

b

Vi 2wy () = Vi o) (fa) = /¢(|fé’(§)|)da(§)-

a

Corollary 2.8 Let ¢ be a convex ¢-function which satisfy the (0o1)-condition and
fe Rv&z’a)([a, b)). Then

b

| £ 165 2.0 = [ fa(@)] +inffe > 0 : /¢ (@) da(t) < 1}.

a

Proof By Corollary 2.7 and Definition 2.2 we obtain

| £16s 2.0 =1 (@] +infle > 0 1 Vigaa)(f/e) < 1}
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b

=|f,(a)| +inf{e > 0 : / ('f ml)da(t) <1}

a

Remark 2.1 From Corollary 2.8 we might derive the following result:

b
1FIE 5 o) = Lf@] + @) +inf{e > 0 : f¢(@> da(r) < 1),

a

Corollary2 9 Let ¢ be a convex ¢-function which satisfy the (001)-condition and
f €RV ¢2a)([a b)). Then

18 2 = IFLIE .

Proof Applying Corollary 2.7 we have

| £ 165 2.0 =Ifa@] +infle >0 = VE,  (f/e) < 1}
=|fy(@|+infle >0 : VE (fi/e) <1}

R
=||fo/t||(¢,2,a)‘

Definition 2.5 Let ¢ be a convex ¢-function, then

{f:la,bl — R : 3> Osuchthat Af € V§ , , (la, b])
={f :[a,b] — R : 3Ir > 0 such that V({;’z’a)()\f) < +o00}

it is called the linear space of the (¢, 2, «)-bounded variation functions in the sense
of Riesz, and it is denoted by RV 2 o) (a, b]).

Definition 2.6 Let ¢ be a convex ¢-function, then

{f :la,b] — R : 3x > Osuchthat Af € V§ , ([a, b])}
={f :[a,b] — R : 31 > 0 such that V(I;’a)()&f) < +o0}

it is called the linear space of the (¢, «)-bounded variation functions in the sense of
Riesz, and it is denoted by RV «)([a, b]).

Corollary 2.10 Let ¢ be a convex ¢-function which satisfy the (001)-condition and let
fila, bl —> R, then f € RV(p 2.4 (la, b]) if and only if f1 € RV($.0)(la, b)).



Nemytskii operator on (¢, 2, «)-bounded variation... 2033

Proof f € RV(42.4)(la, b]) iff there exits A > 0 such that V({;’z’a) (Af) < +oo. By
Definition 2.5

<= 31 > 0 such that V(f)’a)((kf)&) < +o00
by Corollary 2.7

&= 32 > Osuch that V§ , (A fy) < +o0
< f. € RV(4.a)([a, b]), by Definition 2.6.

m}

Definition 2.7 If ¢ is a convex ¢-function || - ”@,2,0:) : RVig2.a)(la,b]) — R*
given by

1A 2y = [ F @1+ 1f = F@IF 5.0

Lemma 2.11 Let ¢ be a ¢-function, then f € RV(y 2 o) (la, b)) if and only if f —
f(@) € RV, (Ia, b))

Proof By Definition 1.1, we observe that 0( 2 o) (f — f(a), 1) = G(I; 2m(f, IT) for
any partition IT of [a, b] where

Vig2.a)(f = [(@) =V 5 0 ().

Observe that

116 2.0y = 1F @I+ 1f = F@I8 2.0
= f @I +|(f = f@)y @]+ |f = f(@)I(y,.4) by Definition 2.2
f = fla)

&

= |f@|+|fy@]|+inf{e >0 : V&, ( ) < 1}, by Definition 2.1

= |f@|+|f @] +infle >0 : V&, (f/e) <1}, by Lemma2.11.

3 RV(¢,2,a)([a, b]) as a Banach algebra

In this section we will show that RV(s 2 4)([a, b]) is closed under the product of
functions. To attain such a goal, we will use a criterion given in 1987 by L. Maligranda
and W. Orlicz [17], which supplies a test to check if some function space is a Banach
algebra, namely.
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Lemma 3.1 (Maligranda Orlicz criterion) Let (X, || - ||) be a Banach space whose ele-
ments are bounded functions and the space is closed under multiplication of functions.
Let us asssume that

frgeXand | fgll = flleo - lIgh+ A1 lIglloo

forany f,g € X. Then the space X equipped with the norm

If = 1flloo + LA

is a normed Banach algebra. Also if X < B([a, b]), then the norms || - ||| and || - |
are equivalent. Moreover, if || flloo < M| fll for f € X, then (X, || - ||2) is a normed
Banach algebra with || f |l = 2M || f|, f € X and the norms || - |2 and | - || are
equivalent.

In [7] the first and third named authors generalized the Maligranda Orlicz Lemma,
in the following way.

Theorem 3.2 (Generalized Maligranda-Orlicz’s Lemma) Let (X, || - ||) be a Banach

space whose elements are bounded functions, which is closed under pointwise multi-
plication of functions. Let us assume that f - g € X such that

I8l < llglleo - lgl + ILA1 - ligloo + KNS - NIgH, K > 0.

Then (X, || - ||) equipped with the norm

£l =1flle +KIfIl, feX

is a Banach algebra, if X — B([a, b)), then || - |1 and || - || are equivalent.

Theorem 3.3 Let ¢ be a convex ¢-convex function which satisfy the (c01)-condition.
Let f,g € RV(y2.a)([a, D)), then f - g € RV 2.4 ([a, D).

Proof Let f,g € RV(42q)([a,b]), then by Corollary 2.10, we have f, g, €
RV($.a)(la, b]) since RV 2 4 (la,b]) C RVy(la,b]) by Theorem 2.2. Also,
/.8 € RVp.0)(la, b]) since RV(y ) is an algebra, (see [4]), we obtain that

fa8 + 8o f = (f8)y € RV(p,0)([a, D).
One more time from Theorem 2.2 we conclude that f - g € RV(g 2 o) ([a, b]). m|

Lemma 3.4 Let ¢ be a convex ¢-function which satisfy the (0o1)-condition. Let f, g €

RV(% 2.0 ([@, b), then there exists K > 0 such that

R R R R R
lf - g|(¢,,2,a) < flleo - |g|(¢,2,a) + gl - |f|(¢’2’a) + K|f|(¢,2,a) : |g|(¢,2,a)~



Nemytskii operator on (¢, 2, «)-bounded variation... 2035

Proof Let f, g € RV(%,z’a)([a, b]), then by Corollary 2.9 we have

1f - 8165 2.0y =N DN
<8l ey + 1 gl
<[ flloo - L& oy + g lloo - NFIE o + lgllocll £LIIE
— all(¢,a) alloo (¢,a) llJall(g,a)
1 oo - 181165 e
=111 lloo - 181(5.2.0) F 18lloc 1 £ 10520 + N8elloo LS (5.0
1o lloo - 1811¢s -

f(a) = 0 implies ||f||{;,a) = |f|€fp,a). Then
1f - 81820y < 1 oo 1815 2.0 + 18I0 - 115 2.0
+llgl ool £1(5 0 + I filloo - €115 -

Since RV(y.«)(la, b]) — B(la, b]), there exists M> > 0 such that

1/l < Mall fll (500 = M2l £1(5 2.0 since f € RV(g.a)(la, b]).

Hence,

1f - 8105 2.0 I f ool 8l(s 2.y F 18llool £1(5 200 + MIM2IEIE 5.0 15
+ M1M2|f|(¢,2,a)|g|§p,2,a)
=1 Flloolgl® 2 oy + Ngllool 18 5 oy + KIgl& 5 | FIE
ool8l(g,2,0) T I18llool (4,2,0) 82,0l (¢, @)

with K = 2M | M>. |

Lemma 3.5 Let ¢ be a convex ¢-function which satisfy the (co01)-condition, let f, g €
RV($.2.0)([a, b)), then there exists K > 0 such that

18185 2.0 < N loollElEs 2.0 + ENcoll FlIGs 2.y F+ KNI 2,00 181165 2.0
Proof Let f,g € RV(g,zya)([a, b)), then

1£81& 2.0y = 1(fR@] + | £8 = (f2) @I, ;.4 By Definition 2.7

= 1(f)@| + Ifg — (/O @]y ll@.2.00
since fg — (fg)(a) € RV(%,Z.D()([a, b]) and by Corollary 2.9, we have

= U@+ 1(LIE

|f @] 18@)] + 1 £ 8l .y + 187211 a0

20f @1 - Lg@] + 1Lf oo llge Iy + Ngellooll F1Is ) + g llooll £71I
F1 e lloo gy

IA

IA
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< 1 flloclg@] +1f @] - lglloo + Il fllooll (& = 8@ Iy )
Hlglooll(f = £ @ lIfy oy + 18 ool F ISy o + I Falloclgl -

Since RV 2.0)(la, b]) = RV(4.a)(la, b]) (Theorem 2.2) there exists M; > 0 such
that || - ||f§> o <Ml ||{; 2. and by Remark 2.1 we have

17816 2,00 < 1 N0l @]+ liglool f @] + 1 flloclg — 8@ 2.0
Flgllool f = F@I8 2.0 + Millgi ool £y 2.0 + Mill fiulloo I8y 2.9

Since RV(y.o)([a, b]) = B([a, b]) (Theorem 2.2) there exists M> > 0 such that

I falloo = I1(f = f@ylloo < Mall(f = f@)g )R = Mal f = f(@)]5 2.0

(by Corollary 2.9). Since f — f(a) € RV(4,«)([a, b]) (by Corollary 2.10)

I falloe =<1 flloe (1@ + 18 = @I 2 + 1glloe (/@1 + 1 = F@IF, 2.09)
+ MiMa|f = [ @Gy 2.0) 181105 2.0) + MiM21g — 8@)|(5 200 1 F 15 200
< loollglls 2.ay + gllooll £l 2.0
+ MM (1 @141 = F@IF 20) 16,20
=11 £ lloollgly 2.y + I8N0l fllig.2.0) + KN F I 2.0 1€ (5 2.0

with K = 2M M,. o

Theorem 3.6 Let ¢ be a convex ¢-function which satisfy the (oo1)-condition. Then
RV(.2.0)(la, b]) with the norm

1 g 2c) = I lloo + KI5 200> S € RVig2.0) ([, b])
] ¢

is a Banach algebra. The norms || - ||(R¢ 2.0) and || - ||%¢ 2.q) Are equivalents, that is
there exists y, § > 0 such that

1 R 1
v - ||(¢,2,a) <I- ||(¢,2,a) <4ll- ||(¢72,0,)~

Proof We just need to check the hypotheses of Theorem 3.2. O

4 Nemytskii operatoron RV (¢ > o) ([a, b])

The superposition operator, or Nemytskii operator, defined by F (u(s)) = f(s, u(s)),
is the simplest among the nonlinear operators. It appeared for the first time in 1934 in
the paper of V.V. Nemytskii [27], in connection with the study of solutions of some
nonlinear integral equations. Due to its simplicity, this operator have largely studied,
since it is very useful in diverse modeling applications in differential and integral
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equations, variational calculus, probability theory and statistics, optimization theory,
among others. In the monograph [1] can be found the fundamental properties of this
operators like boundedness, compactness etc, in the general setting of ideal spaces of
measurable functions. In this section we study under what conditions the Nemytskii
operator acts in the (¢, s, «)-bounded variation space.

In his 1982 paper, J. Matkowski [18] has show that the operator F generated by
f i la,b] x R — R maps Lip([a, b]) into itself and it is globally Lipschitz, that is,
there exists a positive constant K such that

1 F@) — F)lLipa,pn < Kllu — vllLipa,b)
where u, v € Lip([a, b]) if and only if there exist g, h € Lip([a, b]) such that

ft,x)=g@®)x +h(t) forte[a,b], x eR. “4.1)

Remark 4.1 Note that there are function spaces where the Matkowski result does no
remain valid. For example, on the spaces C([a, b]) and L ,([a, b]) with p > 1 take
g : R — R given by g(x) = sin(x) and define f (¢, x) = g(x), t € [a, b], x € R.

The function g is Lipschitz on R, but does not satisfy the relation (4.1), however,
the operator F generated by f maps each the above spaces into itself and

| F(u) — F)| = [ sin(u()) —sin(v(-))lloo < Kl — v|loo
with u, v € C([a, b]), and

1/p

b
I1F () = F)lLipa.pn < / | sin(u(#)) — sin(v(®))|"dt

< K|lu —vllLip(a,b)

with u, v € L,([a, b]), where K is Lipschitz result has been extended in the frame-
work of various function spaces for single-valued as well as multivalued Lipschitzian
Nemytskii operators c.f. [9-11,17,19-25,29-31,34]. In this section we extend the
Matkowski result in the framework of the function space RV 2 o) ([a, b]).

Theorem 4.1 Let ¢ be a convex ¢-function which satisfies the (001) condition. Let
f :la, b] x R —> R. Then Nemyskii operator associated to f defined by

F : RV(¢,2,O,)([CZ, b)) — R

u+r— F(u)

with F(u) = f(t,u(t)), t € [a, bl act on RV(y 2 «)(la, b]) and is globally Lipschitz,
that is there exists K > 0 such that

IF 1) = FUu) p.0 < Kllur —uallfy 5 0y, 1 €la, bl
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if and only if there exist g, h € RV 2.«)(la, b]) such that
f,y)=g@)y+h@), telabl yeR.

Proof From Theorem 2.2 RV(y 2 4)(la,b]) — a — Lip([a, b]), then there exists
N > 0 such that

I Nlo—Liptasn < NI 11 2.0
By hypothesis, there exists K > 0 such that

| Fuir — Fuzlla—rLip(a.by) <NIIFuj — Fuzllf;,z,a)
<KNur —ually 4y 1,U2 € RV(p2.0)(a, b)).

Let us define two particular polynomials ui,u> such a way that uj,u; €
RV 2,0)([a, b]).

To define that fix #,t" € [a,b], t < 1/, y1,¥2, ], ¥, € R. Let us define u; :
[a,b] — R,i =1,2by

yi/ — i _ 2
2l —a@) —a(t))(a(s) a(a))
Yi = Vi [1 @) —a)) = (@) — a(@)?
a(t') — () 2(a(t) —a()

_ i _ 2 ViV
2@ — gy O @) e T

(@(t') —a()? — (@) — a(a))?
i [1 - 2a(t) —a()) } (@@®) —a(), s €la,bl.

ui(s) =

] (a(s) —a(a))

+yi—

The functions # and u; satisfies the following conditions:

ui(t) =y;, i=12
uith =y, i=12

Moreover,
D (e 3
(ui)(s) = 2 —a®) (a(s) —ala))
. no_ 2 _ 2
y; = Vi [1_ (a(t’) —a(t)” — () —ala)) ] selabl i=1.2
a(t’) —a(r) 2(a(t) — a(?))
and

Vi = yi

—— sé€la,b],i=12.
a(t’) — a(t)

(ui)y(s) =
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Let us calculate |ju; — u2||€§> 2.0) We observe that (u;),,, i = 1,2 is absolutely
continuous with respect to « in [a, b], and

b b
/¢<|(u,->;§<s>|)da(s) =/¢>(

By Corollary 2.7 we conclude that u; € RV(g 2.o)([a, b]),i =1, 2.
To calculate ||u; — “2”{; 2.0)"

Vi = Vi
a(t’) — alt)

) da(s)

i = Vi
a(t’) —a(r)

) (a(b) — ala)) < 400, i=1,2.

r_ o + . ,
ur(@) — ux(@) = yi — ys — 21 a(f,l) _yof(t) 2 (@(t) — a(a)) (M + 1) :
==Vt

(1), — (u2), = ! 2 —a®) [2 —a() —at) +2a)].

One more time by Corollary 2.7

o (52) = o
ab
o
|

(1 — u2)y (s)

)da(s)

Yi—y1—Y,+»
e(a(t’) —al(t))

) da(s)

Vi—y1—Y,+»
e(a(t) —a(t))

) (a(b) — ala)).

Then
V(g,z,a) <u1 ;M) <1
Vi= Y1 =Yy +» B
= d)( e@(t) — a(0) )("‘(”> a(@) < 1
yi—yl/—y§+y2 Sd)_l(;)
e(a(t’) —a()) Ol(b)—a(a)
— |yi_)’1_)é+yz| -
o~ (smriem ) le@) — (o)
and then

inf{s>O-VR (M><1}: Y] =31 — ¥ + ¥ .
N e T e (Gt ) le@) — )
a(b)—a(a)
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Since Fuy and Fuj are in RV(y 2 o)([a, b]) — «a — Lip([a, b]) also Fuy — Fuj €
o — Lip([a, b]) with Fu; : [a, b] —> R given by

(Fui)(s) = f(s,u;i(s)), i=1,2.

In particular,

(Fui))(@®) =f(t,u;(®) = f(s,u;(s)) i=1,2
(Fup) (@) =f(" ui(t") = f(' u;(t")) i=1,2.

Then

[(Fui — Fup)(t") — (Fuy — Fuz)(1)|
<|Fui — Fuol|lq—Li
la(t) — a(r)] =I 1 2l Lip([a,b])

<KNllur — 2]y 2.0y

Replacing

|f@ y) — f{' y) — (ft y1) — f(t, )]

la(t) — (1)
M mn=ynt» B at) —a(t)
<KN { Y=y 2 () —a® (a(r) —a(a)) <—2 + 1)‘

V=Y, — (1 —y)
2(a(t’) — a(t))

2 —a() —a@) + Za(a)]‘

Iy] = y1 — ¥ + 32l

+
¢~ (W) () — a(2)]

Multiplying the inequality by |« (z") — «(¢)| and applying the triangular inequality, we
obtain

Lf( v — f(&, ¥ — (ft, y1) — f(t, y2))]
< KN {Iy1 = »2lla(’) — (@] + 1y] — y5 — (y1 — y2)llee(?)

—ata) |20 1'

a(t’) —alt)
2

Yi = Y1 =Y+ ¥l
—1 1
¢ <—\a<b>fa<a)\>
For y € R the constant function uo(¢) = y, t € [a, b] belong to RV(y 2 «)([a, b]) by

hypothesis the function (Fug)(t) = f(t, uo(t)) = f (¢, y) belong to RV(y 2 «)(la, b])
and therefore the function f (-, y) is continuousin [a, b]. Since « is continuous (1) —

|
+yp =y — O —yz)l‘l— +a(a>‘+
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a(t) whenever t’ — t, then

LF( ¥ — f(¥5) — (ft, y1) — f(t, y2))]
< KNIy} — )

— 1 =)y le@) —a(@)| + |a@) —ala) — 1] +

|
—1 1
¢ (—\aax)fa(a)\)

1

-1 1
o~ (e
Arguing as in Theorem 3.1 in [5] we get the result.
Reciprocally, let g, h € RV(g 2.4)([a, b]) such that f(z,y) = g(t)y + h(t). The
Nemytskii operator generated by f is given by

<KNly; — ¥,

— (1 =yl le®) —a(@] + |abd) —ala) — 1] +

(Fu)(t) = f(t,u@) = gOu®) + h(), te€la,bl
Since RV(y 2 4)([a, b]) is an algebra (Theorem 3.3) we conclude the F acts in the
space RV(4 2 a)([a, b]). We will show that F satisfies a globally Lipschitz condition,
letuy, ur € RVip 2,4)(la, b]) and so

| Fur = Fuall®, 5 o =17 Cour () = FCuaO)E .0
=l1gOu1() —h() — (§Oua) — h(NIE 5 )
=181 () = 2O, 5.0y = 81 — 1)1 5.0)-

By Theorem 3.6 the norms || - ||f¢ 2.0) and || - ||<1¢ 2.0 A€ equivalents, thus
R 1
g Qi — u2)ll 2.0y =8NgU1 — u2)ll (42 0

Since (RV(p.2,0)([a, b]), || - ||%¢ 2 a)) is a Banach algebra, we have

Sllgur = uD)l{p2.0) <Ol p2.m 1 — u2lliy 2.0
1 ) R 1 R
<5(=) el —luy — ua|
(y (9,2,a) y (¢,2,0)

1) R R
=ﬁ||g||(¢,2,a)””1 — 2l 2 0)-

Considering % Ilg ||f; 2.q) 35 Lipschitz constant, it is concluded. O
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