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Abstract
We study the continuity in weighted Fourier–Lebesgue spaces for a class of pseu-
dodifferential operators, whose symbol has finite Fourier–Lebesgue regularity with
respect to x and satisfies a quasi-homogeneous decay of derivatives with respect to
the ξ variable. Applications to Fourier–Lebesgue microlocal regularity of linear and
nonlinear partial differential equations are given.

Keywords Microlocal analysis · Pseudodifferential operators · Fourier–Lebesgue
spaces
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1 Introduction

In [13] we studied inhomogeneuos local and microlocal propagation of singularities
of generalized Fourier–Lebesgue type for a class of semilinear partial differential
equations (shortly written PDE); other results on the topic may be found in [6,18,
19]. The present paper is a natural continuation of the same subject, where Fourier–
Lebesgue microlocal regularity for nonlinear PDE is considered. To introduce the
problem, let us first consider the following general equation

F(x, ∂αu)α∈I = 0, (1)
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where I is a finite set of multi-indices α ∈ Z
n+, F(x, ζ ) ∈ C∞(Rn × C

N ) is a
nonlinear function of x ∈ R

n and ζ = (ζ α)α∈I ∈ C
N . In order to study the regularity

of solutions of (1), we can move the investigation to the linearized equations obtained
from differentiation with respect to x j

∑

α∈I

∂ F

∂ζα
(x, ∂βu)β∈I∂α∂x j u = − ∂ F

∂x j
(x, ∂βu)β∈I , j = 1, . . . , n.

Notice that the regularity of the coefficients aα(x) := ∂ F
∂ζα (x, ∂βu)β∈I depends on

some a priori smoothness of the solution u = u(x) and the nonlinear function F(x, ζ ).
This naturally leads to the study of linear PDE whose coefficients have only limited
regularity, in our case they will belong to some generalized Fourier–Lebesgue space.

Results about local and microlocal regularity for semilinear and nonlinear PDE in
Sobolev and Besov framework may be found in [7,12].

Failing of any symbolic calculus for pseudodifferential operators with symbols
a(x, ξ)with limited smoothness in x , one needs to refer to paradifferential calculus of
Bony–Meyer [2,17] or decompose the non smooth symbols according to the general
technique introduced by M.Taylor in [23, Proposition 1.3 B]; here we will follow
this second approach. By the way both methods rely on the dyadic decomposition
of distributions, based on a partition of the frequency space R

n
ξ by means of suitable

family of crowns, see again Bony [2].
In this paper we consider a natural framework where such a decomposition method

can be adapted, namely we deal with symbols which exhibit a behavior at infinity of
quasi-homogeneous type, called in the following quasi-homogeneous symbols. When
the behavior of symbols at infinity does not satisfy any kind of homogeneity, the dyadic
decomposition method seems to fail.

In general the technique of Taylor quoted above splits the symbols a(x, ξ) with
limited smoothness in x into

a(x, ξ) = a#(x, ξ) + a�(x, ξ). (2)

While a�(x, ξ) keeps the same regularity of a(x, ξ), with a slightly improved decay
at infinitive, a#(x, ξ) is a smooth symbols of type (1, δ), with δ > 0.

From Sugimoto–Tomita [21], it is known that, in general, pseudodifferential oper-
ators with symbol in S0

1,δ , are not bounded on modulation spaces M p,q as long as
0 < δ ≤ 1 and q �= 2. Since the Fourier–Lebesgue and modulation spaces are locally
the same, see [14] for details, it follows from [21] that the operators a#(x, D) are
generally unbounded on Fourier–Lebesgue spaces, when the exponent is different of
2. We are able to avoid this difficulty by carefully analyzing the behavior of the term
a#(x, ξ) as described in the next Sects. 5, 6.

In the first section all the main results of the paper are presented. The proofs are
postponed in the subsequent sections. Precisely in Sect. 3 a generalization to the
quasi-homogeneous framework of the characterization of Fourier–Lebesgue spaces,
by means of dyadic decomposition is detailed. Section 4 is completely devoted to
the proof of Thoerem 1. The symbolic calculus of pseudodifferential operators with
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smooth symbols is developed in Sect. 5, while Sect. 6 is devoted to the generalization
of the Taylor splitting technique. In the last section we study the microlocal behavior
of pseudodifferential operators with smooth symbols, jointly with their applications
to nonlinear PDE.

2 Main results

2.1 Notation

In this preliminary section we give the main definitions and notation most frequently
used in the paper.R+ andN are respectively the sets of strictly positive real and integer
numbers. For M = (μ1, . . . , μn) ∈ R

n+, ξ ∈ R
n we define:

〈ξ 〉M :=
(
1 + |ξ |2M

)1/2
(M − weight), (3)

where

|ξ |2M :=
n∑

j=1

|ξ j |2μ j (M − norm). (4)

For t > 0 and α ∈ Z
n+, we set

t1/Mξ := (t1/μ1ξ1, . . . , t1/μn ξn) ;

〈α, 1/M〉 :=
n∑

j=1

α j/μ j ;

μ∗ := min
1≤ j≤n

μ j , μ∗ := max
1≤ j≤n

μ j .

(5)

We callμ∗ andμ∗ respectively the minimum and the maximum order of 〈ξ 〉M ; further-
more, we will refer to 〈α, 1/M〉 as the M-order of α. In the case of M = (1, . . . , 1),
(4) reduces to the Euclidean norm |ξ |, and the M-weight (3) reduces to the standard
homogeneous weight 〈ξ 〉 = (1 + |ξ |2)1/2.

The following properties can be easily proved, see [8] and the references therein.

Lemma 1 For any M ∈ R
n+, there exists a suitable positive constant C such that the

following hold for any ξ ∈ R
n:

1

C
〈ξ 〉μ∗ ≤ 〈ξ 〉M ≤ C〈ξ 〉μ∗

, Polynomial growth; (6)

|ξ + η|M ≤ C {|ξ |M + |η|M } , M − sub-additivity; (7)

|t1/Mξ |M = t |ξ |M , t > 0, M − homogeneity. (8)

For φ in the space of rapidly decreasing functions S(Rn), the Fourier transform is
defined by φ̂(ξ) = Fφ(ξ) = ∫

e−i x ·ξφ(x) dx , x · ξ = ∑n
j=1 x jξ j ; û = Fu, defined

by 〈û, φ〉 = 〈u, φ̂〉, is its analogous in the dual space of tempered distributions S ′(Rn)
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2.2 Pseudodifferential operators with symbols in Fourier–Lebesgue spaces

Definition 1 For s ∈ R and p ∈ [1,+∞] we denote by FL p
s,M the class of all

u ∈ S ′(Rn) such that û is a measurable function in R
n and 〈·〉s

M û ∈ L p(Rn). FL p
s,M ,

endowed with the natural norm

‖u‖FL p
s,M

:= ‖〈·〉s
M û‖L p , (9)

is a Banach space, said M-homogeneous Fourier–Lebesgue space of order s and
exponent p.

Notice that for p = 2, Plancherel’s Theorem yields that FL2
s,M reduces to the

M-homogeneous Sobolev space of order s, see [8] for details; in this case FL2
s,M

inherits from L2(Rn) the structure of Hilbert space, with inner product (u, v)FL2
s,M

:=
(〈·〉s

M û, 〈·〉s
M v̂)L2 .

In the case M = (1, . . . , 1),FL p
s,M reduces to the homogeneous Fourier–Lebesgue

space FL p
s and, in particular, we set FL p := FL p

0 .
The pseudodifferential operator a(x, D) with symbol a(x, ξ) ∈ S ′(R2n) and stan-

dard Kohn–Nirenberg quantization is the bounded linear map

a(x, D) : S(Rn) → S ′(Rn)

u → a(x, D)u(x) := (2π)−n
∫

eix ·ξ a(x, ξ )̂u(ξ)dξ,
(10)

where the integral above must be understood in the distributional sense.
We introduce here some classes of symbols a(x, ξ), of M-homogeneous type, with

limited Fourier–Lebesgue smoothness with respect to the space variable x .

Definition 2 For m, r ∈ R, δ ∈ [0, 1], p ∈ [1,+∞] and N ∈ N, we denote by
FL p

r ,M Sm
M,δ(N ) the set of a(x, ξ) ∈ S ′(R2n) such that for all α ∈ Z

n+ with |α| ≤ N ,

the map ξ �→ ∂α
ξ a(·, ξ) is measurable inR

n with values inFL p
r ,M ∩FL1 and satisfies

for any ξ ∈ R
n the following estimates

‖∂α
ξ a(·, ξ)‖FL1 ≤ C〈ξ 〉m−〈α,1/M〉

M , (11)

‖∂α
ξ a(·, ξ)‖FL p

r ,M
≤ C〈ξ 〉m−〈α,1/M〉+δ

(
r− n

μ∗q

)

M , (12)

where C is a suitable positive constant and q is the conjugate exponent of p.

When δ = 0, we will write for shortness FL p
r ,M Sm

M (N ).
The first result concerns with the Fourier–Lebesgue boundedness of pseudodiffer-

ential operators with symbol in FL p
s,M Sm

M,δ(N ).

Theorem 1 Consider p ∈ [1,+∞], q its conjugate exponent, r > n
μ∗q , δ ∈ [0, 1],

m ∈ R, N > n + 1 and a(x, ξ) ∈ FL p
r ,M Sm

M,δ(N ). Then for all s satisfying

(δ − 1)

(
r − n

μ∗q

)
< s < r
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the pseudodifferential operator a(x, D) extends to a bounded operator

a(x, D) : FL p
s+m,M → FL p

s,M . (13)

If δ < 1 then the above continuity property holds true also for s = r .

The proof is given in the next Sect.4.

Remark 1 Observe that in the case of δ = 0, the above result was already proved in
[13, Proposition 6], where a much more general setting than the framework of M-
homogeneous symbols was considered and very weak growth conditions on symbols
with respect to ξ were assumed.

2.3 M-homogeneous smooth symbols

Smooth symbols satisfying M-quasi-homogenous decay of derivatives at infinity are
useful for the study of microlocal propagation of singularities for pseudodifferential
operators with non smooth symbols and nonlinear PDE.

Definition 3 For m ∈ R and δ ∈ [0, 1], Sm
M,δ is the class of the functions a(x, ξ) ∈

C∞(R2n) such that for all α, β ∈ Z
n+, and x, ξ ∈ R

n

|∂α
ξ ∂β

x a(x, ξ)| ≤ Cα,β〈ξ 〉m−〈α,1/M〉+δ〈β,1/M〉
M , (14)

for a suitable constant Cα,β .

In the following, we set for shortness SM := SM,0. Notice that for any δ ∈ [0, 1]
we have

⋂
m∈R

Sm
M,δ ≡ S−∞, where S−∞ denotes the set of the functions a(x, ξ) ∈

C∞(R2n) such that for all μ > 0 and α, β ∈ Z
n+

|∂α
ξ ∂β

x a(x, ξ)| ≤ Cμ,α,β〈ξ 〉−μ, x, ξ ∈ R
n, (15)

for a suitable positive constant Cμ,α,β .
We recall that a pseudodifferential operator a(x, D) with symbol a(x, ξ) ∈ S−∞

is smoothing, namely it extends as a linear bounded operator from S ′(Rn) (E ′(Rn)) to
P(Rn) (S(Rn)), where P(Rn) and E ′(Rn) are respectively the space of smooth func-
tions polynomially bounded together with their derivatives and the space of compactly
supported distributions.

As long as 0 ≤ δ < μ∗/μ∗, for the M-homogeneous classes Sm
M,δ a complete

symbolic calculus is available, see e.g. Garello–Morando [9,10] for details.
Pseudodifferential operators with symbol in S0

M are known to be locally bounded on
Fourier–Lebesgue spaces FL p

s,M for all s ∈ R and 1 ≤ p ≤ +∞, see e.g. Tachizawa
[22] and Rochberg–Tachizawa [20]. For continuity of Fourier Integral Operators on
Fourier–Lebesgue spaces see [4]. On the other hand, by easily adapting the arguments
used in the homogeneous case M = (1, . . . , 1) by Sugimoto–Tomita [21], it is known
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that pseudodifferential operators with symbol in S0
M,δ are not locally bounded on

FL p
s,M , as long as 0 < δ ≤ 1 and p �= 2.
For this reason we introduce suitable subclasses of M-homogeneous symbols in

Sm
M,δ , δ ∈ [0, 1], whose related pseudodifferential operators are (locally) well-behaved

on weighted Fourier–Lebesgue spaces. These symbols will naturally come into play
in the splitting method presented in Sect. 6 and used in Sect. 7 to derive local and
microlocal Fourier–Lebesgue regularity of linear PDE with non smooth coefficients.

In view of such applications, it is useful that the vector M = (μ1, . . . , μn) has
strictly positive integer components. Let us assume it for the rest of Sect. 2, unless
otherwise explicitly stated.

In the following t+ := max{t, 0}, [t] := max{n ∈ Z; n ≤ t} are respectively the
positive part and the integer part of t ∈ R.

Definition 4 For m ∈ R, δ ∈ [0, 1] and κ > 0 we denote by Sm
M,δ,κ the class of all

functions a(x, ξ) ∈ C∞(R2n) such that for α, β ∈ Z
n+ and x, ξ ∈ R

n

|∂α
ξ ∂β

x a(x, ξ)| ≤ Cα,β〈ξ 〉m−〈α,1/M〉+δ(〈β,1/M〉−κ)+
M , if 〈β, 1/M〉 �= κ, (16)

|∂α
ξ ∂β

x a(x, ξ)| ≤ Cα,β〈ξ 〉m−〈α,1/M〉
M log

(
1 + 〈ξ 〉δM

)
, if 〈β, 1/M〉 = κ, (17)

holds with some positive constant Cα,β .

Remark 2 It is easy to see that for any κ > 0, the symbol class Sm
M,δ,κ defined above

is included in Sm
M,δ for all m ∈ R and δ ∈ [0, 1] (notice in particular that Sm

M,0,κ ≡
Sm

M,0 ≡ Sm
M whatever is κ > 0). Compared to Definition 3, symbols in SM,δ,κ display a

better behavior face to the growth at infinity of derivatives; the loss of decay δ〈β, 1/M〉,
connected to the x derivatives when δ > 0, does not occur when the M- order of β is
less than κ; for the subsequent derivatives the loss is decreased of the fixed amount κ .

Since for M = (μ1, . . . , μn), with positive integer components, the M-order of
any multi-index α ∈ Z

n+ is a rational number, we notice that symbol derivatives never
exhibit the “logarithmic growth” (17) for an irrational κ > 0.

Theorem 2 Assume that
κ > [n/μ∗] + 1 (18)

Then for all p ∈ [1,+∞] a pseudodifferential operator with symbol a(x, ξ) ∈ Sm
M,δ,κ ,

satisfying the localization condition

supp a(·, ξ) ⊆ K, ∀ ξ ∈ R
n, (19)

for a suitable compact set K ⊂ R
n, extends as a linear bounded operator

a(x, D) : FL p
s+m,M → FL p

s,M , ∀ s ∈ R, if 0 ≤ δ < 1, (20)

a(x, D) : FL p
s+m,M → FL p

s,M , ∀ s > 0, if δ = 1. (21)

The proof of Theorem 2 is postponed to Sect. 5.3.
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Taking δ = 0, we directly obtain the boundedness property (20), for any pseudod-
ifferential operator with symbol in Sm

M .
The following result concerning the Fourier multipliers readily follows from

Hölder’s inequaltity.

Proposition 1 Let a tempered distribution a(ξ) ∈ S ′(Rn) satisfy

〈ξ 〉−m
M a(ξ) ∈ L∞(Rn)

for m ∈ R. Then the Fourier multiplier a(D) extends as a linear bounded operator
from FL p

s+m,M to FL p
s,M , for all p ∈ [1,+∞] and s ∈ R.

2.4 Microlocal propagation of Fourier–Lebesgue singularities

Consider a vector M = (μ1, . . . , μn) ∈ N
n and set T ◦

R
n := R

n × (Rn\{0}).
We say that a set ΓM ⊂ R

n\{0} is M-conic, if t1/Mξ ∈ ΓM for any ξ ∈ ΓM and
t > 0.

Definition 5 For s ∈ R, p ∈ [1,+∞], u ∈ S ′(Rn), we say that (x0, ξ0) ∈ T ◦
R

n

does not belong to the M-conic wave front set W FFL p
s,M

u, if there exist φ ∈ C∞
0 (Rn),

φ(x0) �= 0, and a symbol ψ(ξ) ∈ S0
M , satisfying ψ(ξ) ≡ 1 on ΓM ∩ {|ξ |M > ε0}, for

suitable M-conic neighborhood ΓM ⊂ R
n\{0} of ξ0 and 0 < ε0 < |ξ0|M , such that

ψ(D)(φu) ∈ FL p
s,M . (22)

We say in this case that u is F L p
s,M− microlocally regular at the point (x0, ξ0) and

we write u ∈ FL p
s,M,mcl(x0, ξ0).

We say that u ∈ S ′(Rn) belongs to FL p
s,M,loc(x0) if there exists a smooth function

φ ∈ C∞
0 (Rn) satisfying φ(x0) �= 0 such that

φu ∈ FL p
s,M .

Remark 3 In view of Definition 1, it is easy to verify that u ∈ FL p
s,M,mcl(x0, ξ0) if

and only if
χε0,ΓM 〈·〉r

M φ̂u ∈ L p(Rn), (23)

where φ and ΓM are considered as in Definition 5 and χε0,ΓM is the characteristic
function of ΓM ∩ {|ξ |M > ε0}.

Definition 6 We say that a symbol a(x, ξ) ∈ Sm
M,δ is microlocally M-elliptic at

(x0, ξ0) ∈ T ◦
R

n if there exist an open neighborhood U of x0 and an M-conic open
neighborhood ΓM of ξ0 such that for c0 > 0, ρ0 > 0:

|a(x, ξ)| ≥ c0〈ξ 〉m
M , (x, ξ) ∈ U × ΓM , |ξ |M > ρ0. (24)
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Moreover the characteristic set of a(x, ξ) is Char(a) ⊂ T ◦
R

n defined by

(x0, ξ
0) ∈ T ◦

R
n\Char(a) ⇔ a is microlocally M-elliptic at (x0, ξ

0). (25)

Theorem 3 For 0 ≤ δ < μ∗/μ∗, κ > [n/μ∗] + 1, m ∈ R, a(x, ξ) ∈ Sm
M,δ,κ and

u ∈ S ′(Rn), the following inclusions

W FFL p
s,M

(a(x, D)u) ⊂ W FFL p
s+m,M

(u) ⊂ W FFL p
s,M

(a(x, D)u) ∪ Char(a)

hold true for every s ∈ R and p ∈ [1,+∞].
The proof of Theorem 3 will be given in Sect. 7.3.

2.5 Linear PDE with non smooth coefficients

In this section we discuss the M-homogeneous Fourier–Lebesgue microlocal regular-
ity for linear PDE of the type

a(x, D)u :=
∑

〈α,1/M〉≤1

cα(x)Dαu = f (x), (26)

where Dα := (−i)|α|∂α , while the coefficients cα , as well as the source f in the right-
hand side, are assumed to have suitable local M-homogeneous Fourier–Lebesgue
regularity.1

Let (x0, ξ0) ∈ T ◦
R

n , p ∈ [1,+∞] and r > n
μ∗q +

[
n
μ∗

]
+1 (where q is the conju-

gate exponent of p) be given. We make on a(x, D) in (26) the following assumptions:

(i) cα ∈ FL p
r ,M,loc(x0) for 〈α, 1/M〉 ≤ 1;

(ii) aM (x0, ξ0) �= 0, where aM (x, ξ) := ∑
〈α,1/M〉=1

cα(x)ξα is the M-principal symbol of

a(x, D).

Arguing on continuity and M-homogeneity in ξ of aM (x, ξ), it is easy to prove that,
for suitable open neighborhood U ⊂ R

n of x0 and open M-conic neighborhood
ΓM ⊂ R

n\{0} of ξ0

aM (x, ξ) �= 0, for (x, ξ) ∈ U × ΓM . (27)

Theorem 4 Consider (x0, ξ0) ∈ T ◦
R

n, p ∈ [1,+∞] and q its conjugate exponent,

r > n
μ∗q +

[
n
μ∗

]
+ 1 and 0 < δ < μ∗/μ∗. Assume moreover that

1 + (δ − 1)

(
r − n

μ∗q

)
< s ≤ r + 1. (28)

1 Without loss of generality, we assume that derivatives involved in the expression of the linear partial
differential operator a(x, D) in the left-hand side of (26) have M-order not larger than one, since for any
finite set A of multi-indices α ∈ Z

n+ it is always possible selecting a vector M = (μ1, . . . , μn) ∈ R
n+ so

that 〈α, 1/M〉 ≤ 1 for all α ∈ A.
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Let u ∈ FL p

s−δ
(

r− n
μ∗q

)
,M,loc

(x0) be a solution of the equation (26), with given source

f ∈ FL p
s−1,M,mcl(x0, ξ0). Then u ∈ FL p

s,M,mcl(x0, ξ0), that is

W FFL p
s,M

(u) ⊂ W FFL p
s−1,M

( f ) ∪ Char(a). (29)

The proof of Theorem 4 is postponed to Sect. 7.4. We end up by illustrating a simple
application of Theorem 4.

Example. Consider the linear partial differential operator in R
2

P(x, D) = c(x)∂x1 + i∂x1 − ∂2x2 , (30)

where

c(x) := xk1
1

k1!
xk2
2

k2! e−a1x1e−a2x2 H(x1)H(x2), x = (x1, x2) ∈ R
2,

being H(t) = χ(0,∞)(t) the Heaviside function, k1, k2 some positive integers and
a1, a2 positive real numbers.

It tends out that c ∈ L1(R2) and a direct computation gives:

ĉ(ξ) = 1

(a1 + iξ1)k1+1(a2 + iξ2)k2+1 , ξ = (ξ1, ξ2) ∈ R
2.

Let us consider the vector M = (1, 2) and the related M-weight function 〈ξ 〉M :=
(1 + ξ21 + ξ42 )1/2.

For any p ∈ [1,+∞] and r > 2/q +3, 1
p + 1

q = 1, one easily proves, for a suitable
constant C = C(a1, a2, k1, k2, r)

〈ξ 〉r
M |̂c(ξ)| ≤ C

(1 + |ξ1|)k1+1−r (1 + |ξ2|)k2+1−2r
,

thus c ∈ FL p
r ,M (R2), provided that k1, k2 satisfy

k1 > r − 1/q and k2 > 2r − 1/q. (31)

Then, under condition (31), the symbol P(x, ξ) = ic(x)ξ1 − ξ1 + ξ22 of the operator
P(x, D) defined in (30) belongs to FL p

r ,M S1
M , cf. Definition 2.

Let us set Ω := R
2\R

2+. Since |P(x, ξ)|2 = c2(x)ξ21 + (−ξ1 + ξ22 )2, the char-
acteristic set of P is just Char(P) = Ω × {(ξ1, ξ2) ∈ R

2\{(0, 0)} : ξ1 = ξ22 }
(cf. Definition 6) or, equivalently, P is microlocally M-elliptic at a point (x0, ξ0) =
(x0,1, x0,2, ξ01 , ξ02 ) ∈ T ◦

R
2 if and only if

x0,1 > 0, x0,2 > 0 or ξ01 �= (ξ02 )2.
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Applying Theorem 4, for any such a point (x0, ξ0) we have

u ∈ FL p

s−δ
(

r− 2
q

)
,M,loc

(x0)

P(x, D)u ∈ FL p
s−1,M,mcl(x0, ξ0)

⇒ u ∈ FL p
s,M,mcl(x0, ξ

0),

as long as 0 < δ < 1/2 and 1 + (δ − 1)
(

r − 2
q

)
< s ≤ r + 1.

2.6 Quasi-linear PDE

In the last two sections, we consider few applications to the study of M-homogeneous
Fourier–Lebesgue singularities of solutions to certain classes of nonlinear PDEs.

Let us start with the M-quasi-linear equations. Namely consider

∑

〈α,1/M〉≤1

aα(x, Dβu)〈β,1/M〉≤1−ε Dαu = f (x), (32)

where aα = aα(x, Dβu) are given suitably regular functions of x and partial deriva-
tives of the unknown u with M-order 〈β, 1/M〉 less than or equal to 1− ε, for a given
0 < ε ≤ 1, and where the source f = f (x) is sufficiently smooth.

We define the M-principal part of the differential operator in the left-hand side of
(32) by

AM (x, ξ, ζ ) :=
∑

〈α,1/M〉=1

aα(x, ζ )ξα, (33)

where x, ξ ∈ R
n , ζ = (ζβ)〈β,1/M〉≤1−ε ∈ C

N , N = N (ε) := #{β ∈ Z
n+ :

〈β, 1/M〉 ≤ 1 − ε}. It is moreover assumed that aα is not identically zero for at
least one multi-index α with 〈α, 1/M〉 = 1.

Let us take a point (x0, ξ0) ∈ T ◦
R

n ; we make on the equation (32) the following
assumptions:

(a) for all α ∈ Z
n+ satisfying 〈α, 1/M〉 ≤ 1, the coefficients aα(x, ζ ) are locally

smooth with respect to x and entire analytic with respect to ζ uniformly in x ; that
is, for some open neighborhood U0 of x0

aα(x, ζ ) =
∑

γ∈ZN+

aα,γ (x)ζ γ , aα,γ ∈ C∞(U0), ζ ∈ C
N , (34)

where for any β ∈ Z
n+, γ ∈ Z

N+ and suitable cα,β > 0, sup
x∈U0

|∂β
x aα,γ (x)| ≤ cα,βλγ

and the expansion F1(ζ ) := ∑

γ∈ZN+
λγ ζ γ defines an entire analytic function;

(b) (32) ismicrolocally M -elliptic at (x0, ξ0), that is the M-principal part (33) satisfies,
for some ΓM M-conic neighborhood of ξ0,

AM (x, ξ, ζ ) �= 0, for (x, ξ) ∈ U0 × ΓM , ζ ∈ C
N . (35)
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Under the previous assumptions, we may prove the following

Theorem 5 Let p ∈ [1,+∞], r > n
μ∗q +

[
n
μ∗

]
+ 1, 1

p + 1
q = 1, 0 < ε ≤ 1 and

(x0, ξ0) ∈ T ◦
R

n be given, consider the quasi-linear M-homogeneous PDE (32),
satisfying assumptions (a) and (b). For any s such that

r + 1 + δ

(
r − n

μ∗q

)
− ε ≤ s ≤ r + 1, (36)

with
0 < δ ≤ ε

r − n
μ∗q

and 0 < δ <
μ∗
μ∗ , (37)

consider u ∈ FL p

s−δ
(

r− n
μ∗q

)
,M,loc

(x0) a solution to (32) with source term

f ∈ FL p
s−1,M,mcl(x0, ξ

0);

then u ∈ FL p
s,M,mcl(x0, ξ0).

Proof From (36) and the other assumptions on r , in view of Proposition 1 (see also [13,
Proposition 8]) and [13, Corollary 2], from u ∈ FL p

s−δ
(

r− n
μ∗q

)
,M,loc

(x0) it follows

that
Dβu ∈ FL p

s−δ
(

r− n
μ∗q

)
−1+ε,M,loc

(x0) ↪→ FL p
r ,M,loc(x0),

as long as 〈β, 1/M〉 ≤ 1 − ε, hence aα(·, Dβu)〈β,1/M〉≤1−ε ∈ FL p
r ,M,loc(x0) for

〈α, 1/M〉 ≤ 1.

Notice that conditions (37) ensure that δ belongs to the interval
]
0, μ∗

μ∗
[
as required

by Theorem 4, see Remark 4 below. Notice also that, for r satisfying the condition

required by Theorem 5, (δ − 1)
(

r − n
μ∗q

)
+ 1 < r + 1 + δ

(
r − n

μ∗q

)
− ε. Hence

the range of s in (36) is included in the range of s in the statement of Theorem 4.
Therefore, we are in the position to apply Theorem 4 to the symbol

Au(x, ξ) :=
∑

〈α,1/M〉≤1

aα(x, Dβu)〈β,1/M〉≤1−εξ
α, (38)

which is of the type involved in (26) and, in particular, is microlocally M-elliptic at
(x0, ξ0) in the sense of (27). This shows the result. ��
Remark 4 According to the proof, we underline that in the statement of Theorem 5 the
assumption (b) could be relaxed to the weaker assumption that the symbol (38) of the
linear operator, which is obtained by making explicit the expression of the operator in
the left-hand side of (32) at the given solution u = u(x), is microlocally M-elliptic at
(x0, ξ0) in the sense of (27).
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Concerning the assumptions (37) on δ, we note that μ∗
μ∗ ≤ ε

r− n
μ∗q

if and only if

r ≤ n
μ∗q + μ∗

μ∗ ε, otherwise ε
r− n

μ∗q
is strictly smaller than μ∗

μ∗ . Since 0 < ε ≤ 1 and

μ∗
μ∗ ≥ 1, in principle r > n

μ∗q +
[

n
μ∗

]
+ 1 could be either smaller or greater than

n
μ∗q + μ∗

μ∗ ε, therefore the two assumptions on δ in (37) cannot be unified.

Assuming in particular r > n
μ∗q + μ∗

μ∗ ε and taking, in the statement of Theorem 5,
s = r +1 and the best (that is biggest) amount of microlocal regularity of u, quantified
by δ = ε

r− n
μ∗q

, we obtain

f ∈ FL p
r ,M,mcl(x0, ξ

0) ⇒ u ∈ FL p
r+1,M,mcl(x0, ξ

0) (39)

for any solution u to the equation (32) belonging a priori to FL p
r+1−ε,M,loc(x0).

Assume now r ≤ n
μ∗q + μ∗

μ∗ ε and set again s = r + 1 in the statement of The-

orem 5; since ε
r− n

μ∗q
≥ μ∗

μ∗ , in this case the value ε
r− n

μ∗q
cannot be attained by

δ ∈
]
0, μ∗

μ∗
[
, and we get that (39) remains true for any solution belonging a priori

to FL p

r+1−δ
(

r− n
μ∗q

)
,M,loc

(x0) for any positive δ <
μ∗
μ∗ .

Remark 5 As in the case of linear PDEs (see e.g. Theorem 7), also in the framework
of quasi-linear PDEs the result of Theorem 5 can be stated for a M-homogeneous
quasi-linear equation of arbitrary positive order m, namely

∑

〈α,1/M〉≤m

aα(x, Dβu)〈β,1/M〉≤m−ε Dαu = f (x), (40)

with m > 0 and 0 < ε ≤ m. In this case, the range (36) of s will be replaced by

r + m + δ

(
r − n

μ∗q

)
− ε ≤ s ≤ r + m (41)

with δ satisfying (37), and the result becomes

f ∈ FL p
s−m,M,mcl(x0, ξ

0) ⇒ u ∈ FL p
s,M,mcl(x0, ξ

0)

for any solution u ∈ FL p

s−δ
(

r− n
μ∗q

)
,M,loc

(x0) of (40).

2.7 Nonlinear PDE

Let us consider now the fully nonlinear equation

F(x, Dαu)〈α,1/M〉≤1 = f (x), (42)
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where F(x, ζ ) is locally smooth with respect to x ∈ R
n and entire analytic in ζ ∈

C
N , uniformly in x . Namely, for N = #{α ∈ Z

n+ : 〈α, 1
M 〉 ≤ 1} and some open

neighborhood U0 of x0,

F(x, ζ ) =
∑

γ∈ZM+

cγ (x)ζ γ , cγ ∈ C∞(U0), ζ ∈ C
N , (43)

where for any β ∈ Z
n+, γ ∈ Z

N+ and some positive aβ , λγ ,
∑

γ∈ZN+
λγ ζ γ is entire analytic

in C
N and sup

x∈U0

|∂β
x cγ (x)| ≤ aβλγ .

Let the equation (42) be microlocally M-elliptic at (x0, ξ0) ∈ T ◦
R

n , that is the
linearized M-principal symbol AM (x, ξ, ζ ) := ∑

〈α,1/M〉=1

∂ F
∂ζα

(x, ζ )ξα satisfies

∑

〈α,1/M〉=1

∂ F

∂ζα

(x, ζ )ξα �= 0 for (x, ξ) ∈ U0 × ΓM , (44)

for ΓM a suitable M-conic neighborhood of ξ0.

Theorem 6 Assume that equation (42) is microlocally M-elliptic at (x0, ξ0) ∈ T ◦
R

n.

For 1 ≤ p ≤ +∞, r > n
μ∗q +

[
n
μ∗

]
+ 1, 0 < δ <

μ∗
μ∗ , let u ∈ FL p

M,r+1,loc(x0) be a

solution to (42), satisfying in addition

∂x j u ∈ FL p
M,r+1−δ(r− n

μ∗q ),loc(x0), j = 1, . . . , n. (45)

If moreover the forcing term satisfies

∂x j f ∈ FL p
r ,M,mcl(x0, ξ

0), j = 1, . . . , n, (46)

we obtain
∂x j u ∈ FL p

r+1,M,mcl(x0, ξ
0), j = 1, . . . , n. (47)

Proof For each j = 1, . . . , n, we differentiate (42) with respect to x j finding that ∂x j u
must solve the linearized equation

∑

〈α,1/M〉≤1

∂ F

∂ζα

(x, Dβu)〈β,1/M〉≤1Dα∂x j u = ∂x j f − ∂ F

∂x j
(x, Dβu)〈β,1/M〉≤1. (48)

From Theorems 2 and [13, Corollary 2], u ∈ FL p
M,r+1,loc(x0) yields that

∂ F

∂ζα

(·, Dβu)β·1/M≤m ∈ FL p
M,r ,loc(x0).
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Because of hypotheses (45), (46), for each j = 1, . . . , n, Theorem 4 applies to ∂x j u,
as a solution of the equation (48) (which is microlocally M-elliptic at (x0, ξ0) in view
of (44)), taking s = r + 1. This proves the result. ��
Lemma 2 For every M ∈ R

n+, s ∈ R, 1 ≤ p ≤ +∞, assume that u, ∂x j u ∈
FL p

s,M (Rn) for all j = 1, . . . , n. Then u ∈ FL p
s+ μ∗

μ∗ ,M
(Rn). The same is still

true if the Fourier–Lebesgue spaces FL p
s,M (Rn), FL p

s+ μ∗
μ∗ ,M

(Rn) are replaced by

FL p
s,M,mcl(x0, ξ0), FL p

s+ μ∗
μ∗ ,M,mcl

(x0, ξ0) at a given point (x0, ξ0) ∈ T ◦
R

n.

Proof Let us argue for simplicity in the case of the spacesFL p
s,M (Rn), the microlocal

case being completely analogous.
Notice that u ∈ FL p

s+ μ∗
μ∗ ,M

(Rn) is equivalent to 〈D〉μ∗/μ∗
M u ∈ FL p

s,M (Rn). By

using the known properties of the Fourier transform, we may rewrite 〈D〉μ∗/μ∗
M u in the

form

〈D〉μ∗/μ∗
M u = 〈D〉μ∗/μ∗−2

M u +
n∑

j=1

Λ j,M (D)(Dx j u),

where Λ j,M (D) is the Fourier multiplier with symbol 〈ξ 〉μ∗/μ∗−2
M ξ

2μ j −1
j , that is

Λ j,M (D)v := F−1
(
〈ξ 〉μ∗/μ∗−2

M ξ
2μ j −1
j v̂

)
, j = 1, . . . , n.

Since 〈ξ 〉μ∗/μ∗−2
M ξ

2μ j −1
j ∈ S

μ∗/μ∗−μ∗/μ j
M , the result follows at once from Proposi-

tion 1. ��
As a straightforward application of the previous lemma, the following consequence

of Theorem 6 can be proved.

Corollary 1 Under the same assumptions of Theorem 6 we have that u ∈
FL p

r+1+ μ∗
μ∗ ,M,mcl

(x0, ξ0).

Remark 6 Notice that if
(

r − n
μ∗q

)
δ ≥ 1 then any u ∈ FL p

r+1,M,loc(x0) rightly

satisfies (45).
Thus ∂x j u ∈ FL p

r+1− μ∗
μ j

,M,loc
(x0) ↪→ FL p

M,r+1−δ(r− n
μ∗q ),loc(x0) being μ∗/μ j ≤

1 ≤
(

r − n
μ∗q

)
δ for each j = 1, . . . , n. Notice that for r > n

μ∗q + μ∗
μ∗ we can

find δ∗ ∈]0, μ∗/μ∗[ such that
(

r − n
μ∗q

)
δ ≥ 1: it suffices to choose an arbitrary

δ∗ ∈ [ 1
r− n

μ∗q
,

μ∗
μ∗ [ . Hence, applying Theorem 6 with such a δ∗ we conclude that if

r > n
μ∗q + μ∗

μ∗ and the right-hand side f of equation (42) obeys to condition (46) at a

point (x0, ξ0) ∈ T ◦
R

n , then every solution u ∈ FL p
r+1,M,loc(x0) to such an equation

satisfies condition (47); in particular u ∈ FL p
r+1+ μ∗

μ∗ ,M,mcl
(x0, ξ0).
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3 Dyadic decomposition

In the followingwewill provide a useful characterization of M-homogeneous Fourier–
Lebesgue spaces, based on a quasi-homogenous dyadic partition of unity.

Namely for fixed K ≥ 1 we set

CM,K
−1 := {

ξ ∈ R
n : |ξ |M ≤ K

}
,

CM,K
h := {ξ ∈ R

n : 1

K
2h−1 ≤ |ξ |M ≤ K2h+1}, h = 0, 1, . . . .

(49)

It is clear that the crowns (shells) CM,K
h , for h ≥ −1, provide a covering of R

n . For the
sequel of our analysis, a fundamental property of this covering is that the number of
overlapping crowns does not increase with the index h; precisely there exists a positive
number N0 = N0(K ) such that

CM,K
p ∩ CM,K

q = ∅, for |p − q| > N0. (50)

Consider now a real-valued function Φ = Φ(t) ∈ C∞([0,+∞[) satisfying

0 ≤ Φ(t) ≤ 1, ∀ t ≥ 0,

Φ(t) = 1 for 0 ≤ t ≤ 1

2K
, Φ(t) = 0 for t > K ,

(51)

and define the sequence {ϕh}+∞
h=−1 in C∞(Rn) by setting for ξ ∈ R

n

ϕ−1(ξ) := Φ(|ξ |M ), ϕh(ξ) := Φ

( |ξ |M

2h+1

)
− Φ

( |ξ |M

2h

)
, h = 0, 1, . . . . (52)

It is easy to check that the sequence {ϕh}∞h=−1 defined above enjoys the following
properties:

suppϕh ⊆ CM,K
h , for h ≥ −1; (53)

∞∑

h=−1

ϕh(ξ) = 1, for all ξ ∈ R
n; (54)

∞∑

h=−1

uh = u, with convergence in S ′(Rn), (55)

where it is set uh := ϕh(D)u, for h ≥ −1.
As a consequence of (50), for any fixed ξ ∈ R

n the sum in (54) reduces to a finite
number of terms independently of the choice of ξ itself. Namely, for some positive



1198 G. Garello et al.

integers N0 independent of ξ and h0 = h0(ξ) ≥ −1, we have

∞∑

h=−1

ϕh(ξ) ≡
h0+N0∑

h=h̃0

ϕh(ξ), where h̃0 = h̃0(ξ) := max{−1, h0 − N0}. (56)

The sequence {ϕh}+∞
h=−1 above introduced is referred to as a M-homogeneous

dyadic partition of unity, and the expansion in the left-hand side of (55) will be
called M-homogeneous dyadic decomposition of u ∈ S ′(Rn); in the homogeneous
case M = (1, . . . , 1), such a decomposition reduces to the classical Littlewood–Paley
decomposition of u, cf. for example [1].

Proposition 2 For M = (μ1, . . . , μn) ∈ R
n+, s ∈ R and p ∈ [1. + ∞], a distribution

u ∈ S ′(Rn) belongs to the space FL p
s,M if and only if

ûh ∈ L p(Rn), for all h ≥ −1, (57)

and +∞∑

h=−1

2shp‖ûh‖p
L p < +∞. (58)

Under the above assumptions,

( +∞∑

h=−1

2shp‖ûh‖p
L p

)1/p

(59)

provides a norm in FL p
s,M equivalent to (9).

For p = +∞, condition (58) (as well as the norm (59)) must be suitably modified.

Proof Let us first observe that the M-weight 〈·〉M is equivalent to 2h on the support
of ϕh ; indeed

1 ≤ 〈ξ 〉M ≤ (1 + K 2)1/2, for ξ ∈ suppϕ−1 ;
1

2K
2h ≤ 〈ξ 〉M ≤ (1 + 4K 2)1/22h, for ξ ∈ suppϕh and h ≥ 0,

(60)

being K the positive constant involved in (51).
For p ∈ [1,+∞[, it is enough arguing on smooth functions u ∈ S(Rn) in view of

density of S(Rn) in FL p
s,M . For ξ ∈ R

n , from (54), (56) we derive

∞∑

h=−1

|̂uh(ξ)|p ≡
h0+N0∑

h=h̃0

ϕh(ξ)p |̂u(ξ)|p ≤ |̂u(ξ)|p ≡
⎛

⎝
h0+N0∑

h=h̃0

ϕh(ξ)|̂u(ξ)|
⎞

⎠
p

≤ CN0,p

h0+N0∑

h=h̃0

ϕh(ξ)p |̂u(ξ)|p ≡ CN0,p

∞∑

h=−1

|̂uh(ξ)|p,

(61)
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where h0 = h0(ξ), h̃0 = h̃0(ξ) are the integers in (56) and CN0,p > 1 depends only
on N0 and p. Hence, multiplying each side of (61) by 〈ξ 〉sp

M , making use of (60) and
integrating on R

n , it yields

1

Cs,p,K

∞∑

h=−1

2shp‖ûh‖p ≤ ‖u‖p
FL p

s,M
≤ Cs,p,K

∞∑

h=−1

2shp‖ûh‖p,

for a suitable constant Cs,p,K > 1 depending only on s, p and K . This proves the
statement of Proposition 2, for 1 ≤ p < +∞.

In the absence of the density of S(Rn) in FL∞
s,M , let us now argue directly. Thus

for arbitrary u ∈ FL∞
s,M and every h ≥ −1, writing

ûh = ϕh

〈·〉s
M

〈·〉s
M û, (62)

we get ûh ∈ L∞(Rn), since 〈·〉s
M û ∈ L∞(Rn) and, in view of (60) and (53),

2sh
∣∣∣∣
ϕh(ξ)

〈ξ 〉s
M

∣∣∣∣ ≤ Cs,K , ∀ ξ ∈ R
n, (63)

where the constant Cs,K depends only on s and K . From (62) and (63)

2sh |̂uh(ξ)| ≤ Cs,K ‖u‖FL∞
s,M

, ∀ ξ ∈ R
n, h ≥ −1,

follows at once and implies (58) with p = +∞.
Conversely, let us suppose that u ∈ S ′(Rn) satisfies (57), (58). From (50), (55) and

(60) we get for an arbitrary � ≥ −1 and every ξ ∈ CM,K
� :

|〈ξ 〉s
M û(ξ)| ≤

+∞∑

h=−1

|〈ξ 〉s
M ûh(ξ)| =

�+N0∑

h=�−N0

|〈ξ 〉s
M ûh(ξ)| ≤ Cs,K

�+N0∑

h=�−N0

2sh |̂uh(ξ)|

≤ Cs,K (2N0 + 1) sup
h≥−1

2sh‖ûh‖L∞ ,

noticing that u belongs to FL∞
s,M and satisfies

‖u‖FL∞
s,M

≤ Cs,K (2N0 + 1) sup
h≥−1

2sh‖ûh‖L∞ .

The proof is complete. ��
Remark 7 Arguing along the same lines followed in the proof of estimates (63), one
can prove the following estimates for the derivatives of functions ϕh : for all ν ∈ Z

n+
a positive constant Cν exists such that

|Dν
ξ ϕh(ξ)| ≤ Cν2

−h〈ν,1/M〉, ∀ ξ ∈ R
n, h = −1, 0, 1, . . . . (64)
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Notice also that, in view of (60), estimates (64) can be stated in the equivalent form

|Dν
ξ ϕh(ξ)| ≤ Cν〈ξ 〉−〈ν,1/M〉

M , ∀ ξ ∈ R
n, h = −1, 0, 1, . . . .

Along the same arguments of Bony [2], one can show the following

Proposition 3 Let M = (μ1, . . . , μn) ∈ R
n+ and p ∈ [1. + ∞].

(i) For s ∈ R, let {uh}+∞
h=−1 be a sequence of distributions uh ∈ S ′(Rn) satisfying the

following conditions:

(a) there exists a constant K ≥ 1 such that

supp ûh ⊆ CM,K
h , for all h ≥ −1 ;

(b)
+∞∑

h=−1

2shp‖ûh‖p
L p < +∞ (65)

(with obvious modification for p = +∞).

Then u =
+∞∑

h=−1
uh ∈ FL p

s,M , where the series is convergent in S ′(Rn). Moreover,

for some positive constant Cs,p,K depending only on s, p, K ,

‖u‖FL p
s,M

≤ Cs,p,K

( +∞∑

h=−1

2shp‖ûh‖p
L p

)1/p

, (66)

(ii) If s > 0, the same result stated in (i) is still valid when a distribution sequence
{uh}+∞

h=−1 satisfies the condition (b) and

(a’) there exists a constant K ≥ 1 such that

supp ûh ⊆ BM,K
h := {ξ ∈ R

n : |ξ |M ≤ K2h+1}, for all h ≥ −1,

instead of (a) (notice that BM,K
−1 ≡ CM,K

−1 ).

4 Proof of Theorem 1

Following closely the arguments in Coifmann–Meyer [3], see also Garello–Morando
[7], one proves that every zero order symbol in FL p

r ,M S0
M,δ(N ) can be expanded into

a series of “elementary terms”.

Lemma 3 For p ∈ [1,+∞], r > n
μ∗q (being q the conjugate exponent of p), N > n+1

positive integer and δ ∈ [0, 1], let a(x, ξ) ∈ FL p
r ,M S0

M,δ(N ). Then there exist a
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sequence {ck}k∈Zn ⊂ R+ satisfying
∑

k∈Zn
ck < +∞ such that

a(x, ξ) =
∑

k∈Zn

ckak(x, ξ), (67)

with absolute convergence in L∞(Rn × R
n).

More precisely for each k ∈ Z
n

ak(x, ξ) =
+∞∑

h=−1

dk
h (x)ψk

h (ξ), (68)

with suitable sequences {dk
h }+∞

h=−1 inFL1∩FL p
r ,M and {ψk

h }+∞
h=−1 in C∞

0 (Rn), obeying
for some positive constants C, H and K > 1 the following conditions:

(a) ‖dk
h‖FL1 ≤ H , ‖dk

h‖FL p
r ,M

≤ H2
hδ

(
r− n

μ∗q

)

for all h = −1, 0, . . . ;

(b) suppψk
h ⊆ CM,K

h , h = −1, 0, . . . ;
(c) |∂αψk

h (ξ)| ≤ C2−〈α,1/M〉h, ∀ ξ ∈ R
n, |α| ≤ N.

In view of (50) and condition (b) above, the expansions in the right-hand side of (68)
has only finitely many nonzero terms at each point (x, ξ). Conditions (a)-(c) above
also imply that ak(x, ξ) defined by (68) belongs to FL p

r ,M S0
M,δ(N ) for each k ∈ Z

n .
A symbol of the form (68) will be referred to as an elementary symbol.

The proof of Theorem 1 follows the same arguments as in [9]. Without loss of
generality, we may reduce to prove the statement of the theorem in the case of a
symbol a(x, ξ) ∈ FL p

r ,M S0
M,δ(N ). Also, because of Lemma 3, it will be enough to

show the result in the case when a(x, ξ) is an elementary symbol, namely

a(x, ξ) =
+∞∑

h=−1

dh(x)ψh(ξ),

where the sequences {dh}+∞
h=−1 and {ψh}+∞

h=−1 obey the assumptions (a)–(c).
In view of Lemma 3 there holds

a(x, D)u(x) =
+∞∑

h=−1

dh(x)uh(x), ∀ u ∈ S(Rn), (69)

where
uh := ψh(D)u, h = −1, 0, . . . . (70)

Let {ϕ�}�≥−1 be an M-homogeneous dyadic partition of unity; thenwemaydecompose
(69) as follows

a(x, D)u(x) =
+∞∑

h=−1

+∞∑

�=−1

dh,�(x)uh(x) = T1u(x) + T2u(x) + T3u(x), (71)
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where it is set

T1u(x) :=
+∞∑

h=N0−1

h−N0∑

�=−1

dh,�(x)uh(x), (72)

T2u(x) :=
+∞∑

h=−1

h+N0−1∑

�=�h

dh,�(x)uh(x) (�h := max{−1, h − N0 + 1}), (73)

T3u(x) :=
+∞∑

�=N0−1

�−N0∑

h=−1

dh,�(x)uh(x), (74)

with sufficiently large integer N0 > 0, and

dh,� := ϕ�(D)dh, h, � = −1, 0, . . . . (75)

The proof of Theorem 1 follows from combining the following continuity results
concerning the different operators T1, T2, T3.

Henceforth, the following general notationwill be adopted: for every pair of Banach
spaces X ,Y , wewill write ‖T ‖X→Y tomean the operator normof every linear bounded
operator T from X into Y .

Lemma 4 For all s ∈ R, T1 extends to a linear bounded operator

T1 : FL p
s,M → FL p

s,M (76)

and there exists a positive constant C = Cs,p such that

‖T1‖FL p
s,M →FL p

s,M
≤ C sup

h≥−1
‖dh‖FL1 (77)

Proof Taking N0 > 0 sufficiently large, we find a suitable T > 1 such that

supp d̂h,�uh ⊆ CM,T
h , for − 1 ≤ � ≤ h − N0 and h ≥ N0 − 1.

Then in view of Proposition 3 (i), for every s ∈ R a positive constant C = Cs,p exists
such that

‖T1u‖p
FL p

s,M
≤ C

∑

h≥N0−1

2shp

∥∥∥∥∥

h−N0∑

�=−1

d̂h,�uh

∥∥∥∥∥

p

L p

;

on the other hand

h−N0∑

�=−1

d̂h,�uh = (2π)−n
h−N0∑

�=−1

d̂h,� ∗ ûh = (2π)−n
h−N0∑

�=−1

ϕ�d̂h ∗ ûh
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hence Young’s inequality yields

∥∥∥∥∥

h−N0∑

�=−1

d̂h,�uh

∥∥∥∥∥
L p

≤ (2π)−n

∥∥∥∥∥

h−N0∑

�=−1

ϕ�d̂h

∥∥∥∥∥
L1

‖ûh‖L p

and, in view of (54),

∥∥∥∥∥

h−N0∑

�=−1

ϕ�d̂h

∥∥∥∥∥
L1

=
∫ h−N0∑

�=−1

ϕ�(ξ)|d̂h(ξ)|dξ ≤
∫

|d̂h(ξ)|dξ = ‖d̂h‖L1 .

Combining the preceding estimates and thanks to Lemma 3 and Proposition 2 we get

‖T1u‖p
FL p

s,M
≤ C

(
sup

h≥−1
‖dh‖FL1

)p∑

h≥N0−1

2shp|ûh |p
L p

≤ C

(
sup

h≥−1
‖dh‖FL1

)p

‖u‖p
FL p

s,M
.

This ends the proof of lemma. ��

Lemma 5 For all s > (δ − 1)
(

r − n
μ∗q

)
, T2 extends to a linear bounded operator

T2 : FL p
s,M → FL p

s+(1−δ)
(

r− n
μ∗q

)
,M

(78)

and there exists a positive constant C = CN0,p,r ,s such that

‖T2‖FL p
s,M →FL p

s+(1−δ)
(

r− n
μ∗q

) ≤ C sup
h≥−1

2
−δ

(
r− n

μ∗q

)
h‖dh‖FL p

r ,M
. (79)

Proof Taking N0 > 0 sufficiently large, we find a suitable T > 1 such that

supp d̂h,�uh ⊆ {ξ : |ξ |M ≤ T 2h+1}, for �h ≤ � ≤ h + N0 − 1, h ≥ −1 (80)

and where �h := max{−1, h − N0 + 1}. From Proposition 3 (ii), for s > (δ −
1)

(
r − n

μ∗q

)
we get

‖T2u‖p
FL p

s+(1−δ)
(

r− n
μ∗q

)
,M

≤ C
∑

h≥−1

2

(
s+(1−δ)

(
r− n

μ∗q

))
hp

∥∥∥∥∥∥

h+N0−1∑

�=�h

d̂h,�uh

∥∥∥∥∥∥

p

L p

;
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and again from Young’s inequality

∥∥∥∥∥∥

h+N0−1∑

�=�h

d̂h,�uh

∥∥∥∥∥∥
L p

≤ (2π)−n
h+N0−1∑

�=�h

‖̂dh,� ∗ ûh‖L p ≤ (2π)−n
h+N0−1∑

�=�h

‖̂dh,�‖L p‖ûh‖L1 ;

thus, since the number of indices � such that �h ≤ � ≤ h + N0 − 1 is bounded
independently of h one has

‖T2u‖p
FL p

s+(1−δ)
(

r− n
μ∗q

)
,M

≤ C
∑

h≥−1

2

(
s+(1−δ)

(
r− n

μ∗q

))
hp

⎛

⎝
h+N0−1∑

�=�h

‖̂dh,�‖L p‖ûh‖L1

⎞

⎠
p

≤ CN0,p

∑

h≥−1

2

(
s+(1−δ)

(
r− n

μ∗q

))
hp‖ûh‖p

L1

h+N0−1∑

�=�h

‖̂dh,�‖p
L p

= CN0,p

∑

h≥−1

2shp 2− n
μ∗q hp‖ûh‖p

L1 2
rhp2

−δ
(

r− n
μ∗q

)
hp

h+N0−1∑

�=�h

‖̂dh,�‖p
L p .

Notice also that Hölder’s inequality yields

‖ûh‖L1 =
∫

CM,K
h

|ûh(ξ)|dξ ≤ ‖ûh‖L p

(∫

CM,K
h

dξ

)1/q

≤ C‖ûh‖L p2
nh

μ∗q ,

hence

2− nhp
μ∗q ‖ûh‖p

L1 ≤ C‖ûh‖p
L p .

Moreover, for a suitable constant CN0 > 0 depending only on N0,

2h ≤ CN02
�, for �h ≤ � ≤ h + N0 − 1.

Hence we get

2rhp2
−δ

(
r− n

μ∗q

)
hp

h+N0−1∑

�=�h

‖d̂h,�‖p
L p

≤ CN0,r ,p2
−δ

(
r− n

μ∗q

)
hp

h+N0−1∑

�=�h

2r�p‖d̂h,�‖p
L p

≤ C̃N0,r ,p2
−δ

(
r− n

μ∗q

)
hp‖dh‖p

FL p
r ,M

≤ C̃N0,r ,p H p,
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where

H := sup
h≥−1

2
−δ

(
r− n

μ∗q

)
h‖dh‖FL p

r ,M
, (81)

and, in view of Proposition 2,

‖T2u‖p
FL p

s+(1−δ)
(

r− n
μ∗q

)
,M

≤ C̃N0,r ,p H p
+∞∑

h=−1

2shp‖ûh‖p
L p ≤ ĈN0,p,r ,s H p‖u‖p

FL p
s,M

.

This ends the proof of Lemma 5. ��

Remark 8 Since for 0 ≤ δ ≤ 1 and r > n
μ∗q we have s + (1 − δ)

(
r − n

μ∗q

)
≥ s,

as an immediate consequence of Lemma 5, we get the boundedness of T2 as a linear
operator T2 : FL p

s,M → FL p
s,M .

Lemma 6 For all s < r , T3 extends to a linear bounded operator

T3 : FL p

s+(δ−1)
(

r− n
μ∗q

)
,M

→ FL p
s,M (82)

and there exists a positive constant C = Cs,p,r such that

‖T3‖FL p

s+(δ−1)
(

r− n
μ∗q

)
,M

→FL p
s,M

≤ C sup
h≥−1

2
−δ

(
r− n

μ∗q

)
h‖dh‖FL p

r ,M
. (83)

Moreover for 0 ≤ δ < 1 and arbitrary ε > 0, T3 extends to a linear bounded operator

T3 : FL p
ε+δr−(δ−1) n

μ∗q ,M → FL p
r ,M (84)

and there exists a positive constant C = Cr ,p,ε such that:

‖T3‖FL p
ε+δr−(δ−1) n

μ∗q ,M
→FL p

r ,M
≤ C sup

h≥−1
2
−δ

(
r− n

μ∗q

)
h‖dh‖FL p

r ,M
. (85)

Proof Let us prove the first statement. For N0 > 0 sufficiently large we have

supp d̂h,�uh ⊆ CT
� , for � ≥ N0 − 1, −1 ≤ h ≤ � − N0.
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Hence Proposition 3 and Young’s inequality imply, for finite p ≥ 1,

‖T3u‖p
FL p

M
≤ C

+∞∑

�=N0−1

2s�p

∥∥∥∥∥

�−N0∑

h=−1

d̂h,�uh

∥∥∥∥∥

p

L p

= C
+∞∑

�=N0−1

2s�p

∥∥∥∥∥

�−N0∑

h=−1

d̂h,� ∗ ûh

∥∥∥∥∥

p

L p

≤ C
+∞∑

�=N0−1

2s�p

(
�−N0∑

h=−1

‖̂dh,�‖L p‖ûh‖L1

)p

= C
+∞∑

�=N0−1

(
�−N0∑

h=−1

2(s−r)�2r�‖̂dh,�‖L p‖ûh‖L1

)p

(86)
(with obvious modifications in the case of p = +∞); on the other hand, condition (a)
and Proposition 2 yield

+∞∑

�=−1

2r�p‖d̂h,�‖p
L p ≤ H2

δ
(

r− n
μ∗q

)
ph

, for h ≥ −1,

hence

2r�‖d̂h,�‖L p ≤ H2
δ
(

r− n
μ∗q

)
h
, for � ≥ −1, (87)

where H is the constant in (81).
Combining (86), (87) and using Bernstein’s inequality

2− n
μ∗q h‖ûh‖L1 ≤ C‖ûh‖L p (88)

we get

‖T3u‖FL p
M

≤ C H p
+∞∑

�=N0−1

(
�−N0∑

h=−1

2(s−r)�2
δ
(

r− n
μ∗q

)
h‖ûh‖L1

)p

= C H p
+∞∑

�=N0−1

(
�−N0∑

h=−1

2(s−r)(�−h)2(s−r)h2
δ
(

r− n
μ∗q

)
h
2

n
μ∗q h2− n

μ∗q h‖ûh‖L1

)p

= C H p
+∞∑

�=N0−1

(
�−N0∑

h=−1

2(s−r)(�−h)2

(
s+(δ−1)

(
r− n

μ∗q

))
h
2− n

μ∗q h‖ûh‖L1

)p

≤ C H p
+∞∑

�=N0−1

(
�−N0∑

h=−1

2(s−r)(�−h)2

(
s+(δ−1)

(
r− n

μ∗q

))
h‖ûh‖L p

)p

.

The last quantity above is the general term of the discrete convolution of the sequences

b := {2(s−r)k}k≥N0−1, c := {2
(

s+(δ−1)
(

r− n
μ∗q

))
k‖ûk‖L p }k≥N0−1.
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Since b ∈ �1, for s < r , discrete Young’s inequality and Proposition 2 yield

‖T3u‖p
FL p

M
≤ C H p‖b‖�1‖c‖�p ≤ C̃ H p

∑

�≥−1

2

(
s+(δ−1)

(
r− n

μ∗q

))
�p‖û�‖p

L p

≤ Ĉ H p‖u‖FL p

s+(δ−1)
(

r− n
μ∗q

)
,M

.

This proves the first continuity property (82) together with estimate (83).
Let us now prove the second statement of Lemma 6, so we assume that δ ∈ [0, 1[.

For an arbitrary ε > 0 similar arguments to those used above give the following
estimate

‖T3u‖p
FL p

r ,M
≤ C

+∞∑

�=N0−1

2r�p

∥∥∥∥∥

�−N0∑

h=−1

d̂h,� ∗ ûh

∥∥∥∥∥

p

L p

≤ C
+∞∑

�=N0−1

2r�p

(
�−N0∑

h=−1

‖̂dh,�‖L p‖ûh‖L1

)p

= C
+∞∑

�=N0−1

(
�−N0∑

h=−1

2−εh2εh2r�‖̂dh,�‖L p‖ûh‖L1

)p

≤ C
+∞∑

�=N0−1

(
�−N0∑

h=−1

2−εhq

)p/q (
�−N0∑

h=−1

2εhp2r�p‖̂dh,�‖p
L p‖ûh‖p

L1

)

≤ Cε,p

+∞∑

�=N0−1

�−N0∑

h=−1

2εhp2r�p‖̂dh,�‖p
L p‖ûh‖p

L1

= Cε,p

+∞∑

h=−1

2εhp
∑

�≥h+N0

2r�p‖̂dh,�‖p
L p‖ûh‖p

L1 ,

(89)
where in the last quantity above the summation index order was interchanged.

Again from condition (a) and Proposition 2

∑

�≥h+N0

2r�p‖̂dh,�‖p
L p ≤ Cr ,p‖dh‖FL p

r ,M
≤ Cr ,p H p2

δ
(

r− n
μ∗q

)
hp

,

with H defined in (81). Using the above to estimate the right-hand side of (89),
Bernstein’s inequality (88) and Proposition 2 we obtain



1208 G. Garello et al.

‖T3u‖p
FL p

r ,M
≤ Cr ,ε,p H p

+∞∑

h=−1

2εhp2
δ
(

r− n
μ∗q

)
hp‖ûh‖p

L1

≤ Cr ,ε,p H p
+∞∑

h=−1

2

(
ε+δr−(δ−1) n

μ∗q

)
hp‖ûh‖p

L p

≤ Cr ,p,ε H p‖u‖p
FL p

ε+δr−(δ−1) n
μ∗q ,M

.

This completes the proof of the continuity (84) together with estimate (85). ��

Remark 9 Let us collect some observations concerning Lemma 6.
We first notice that for s < r the boundedness of T3 as a linear operator T3 :

FL p
s,M → FL p

s,M follows as an immediate consequence of (82), since FL p
s,M ↪→

FL p

s+(δ−1)
(

r− n
μ∗q

)
,M

for δ and r under the assumptions of Lemma 6.

Regarding the second part of Lemma 6 (see (84)), we notice that the Fourier-
Lebesgue esponent ε + δr − (δ −1) n

μ∗q , with any positive ε, is a little more restrictive

than the one that should be recovered from the exponent s + (δ −1)
(

r − n
μ∗q

)
, in the

first part of the Lemma, in the limiting case as s → r .

Notice eventually that when 0 < ε < (1−δ)
(

r − n
μ∗q

)
is considered in the second

part of the statement of Lemma 6, then ε + δr − (δ − 1) n
μ∗q < r . Hence we get the

boundedness of T3, as a linear operator T3 : FL p
r ,M → FL p

r ,M , as long as 0 ≤ δ < 1,
as an immediate consequence of the boundedness (84).

5 Calculus for pseudodifferential operators with smooth symbols

In this section we investigate the properties of pseudodifferential operators with M-
homogeneous smooth symbols introduced in Sect. 2.3.

At first notice that, despite M-weight (3) is not smooth inR
n , for an arbitrary vector

M = (μ1, . . . , μn) ∈ R
n+, one can always find an equivalent weight which is also a

smooth symbol in the class S1
M .

More precisely, in view of [11, Proposition 2.9], the following proposition holds
true.

Proposition 4 For any vector M = (μ1, . . . , μn) ∈ R
n+ there exists a symbol π =

πM (ξ) ∈ S1
M , independent of x,which is equivalent to the M-weight (3), in the sense

that a positive constant C exists such that

1

C
πM (ξ) ≤ 〈ξ 〉M ≤ CπM (ξ), ∀ ξ ∈ R

n . (90)

In view of the subsequent analysis, it is worth noticing that in the case when the vector
M has positive integer components, in Proposition 4 we can take πM (ξ) = 〈ξ 〉M .
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5.1 Symbolic calculus in SmM,ı,�

The symbolic calculus can be developed for classes Sm
M,δ,κ , thus pseudodifferential

operators with symbol in Sm
M,δ,κ form a self-contained sub-algebra of the algebra of

operators with symbols in Sm
M,δ , for m ∈ R, κ > 0 and 0 ≤ δ < μ∗/μ∗. The main

properties of symbolc calculus are summarized in the following result.

Proposition 5 (i) For m, m′ ∈ R, κ > 0 and δ, δ′ ∈ [0, 1], consider a(x, ξ) ∈ Sm
M,δ,κ ,

b(x, ξ) ∈ Sm′
M,δ′,κ , θ, ν ∈ Z

n+. Then

∂θ
ξ ∂ν

x a(x, ξ) ∈ Sm−〈θ,1/M〉+δ〈ν,1/M〉
M,δ,κ , (ab)(x, ξ) ∈ Sm+m′

M,max{δ,δ′},κ . (91)

(ii) Let {m j }+∞
j=0 be a sequence of real numbers satisfying:

m j > m j+1, j = 0, 1, . . . and lim
j→+∞ m j = −∞ (92)

and {a j }+∞
j=0 be a sequence of symbols a j (x, ξ) ∈ S

m j
M,δ,κ for each integer j ≥ 0.

Then there exists a unique (up to a remainder in S−∞) symbol a(x, ξ) ∈ Sm0
M,δ,κ

such that
a −

∑

j<N

a j ∈ Sm N
M,δ,κ , for all integers N > 0. (93)

(iii) Let a(x, ξ) and b(x, ξ) be two symbols as in (i), and assume that 0 ≤ δ′ < μ∗/μ∗.
Then the product c(x, D) := a(x, D)b(x, D) is a pseudodifferential operator with
symbol c(x, ξ) = (a�b)(x, ξ) ∈ Sm+m′

M,δ′′,κ , where δ′′ := max{δ, δ′}; moreover this
symbol satisfies

a�b −
∑

|α|<N

(−i)|α|

α! ∂α
ξ a ∂α

x b ∈ Sm+m′−(1/μ∗−δ′/μ∗)N
M,δ′′,κ , for all integers N > 0.

(94)

Proof (i): From estimates (16), (17), it is very easy to check that for any multi-index
θ ∈ Z

n+

a(x, ξ) ∈ Sm
M,δ,κ implies ∂θ

ξ a(x, ξ) ∈ Sm−〈θ,1/M〉
M,δ,κ ;

hence we can limit the proof of (i) to θ = 0 and an arbitrary ν ∈ Z
n+, ν �= 0.

Let α, β ∈ Z
n+ be arbitrary multi-indices and assume, for the first, that 〈β, 1/M〉 �=

κ; if 〈ν + β, 1/M〉 �= κ , we then get

|∂α
ξ ∂β

x

(
∂ν

x a
)
(x, ξ)| ≤ Cν,α,β〈ξ 〉m−〈α,1/M〉+δ(〈ν+β,1/M〉−κ)+

M

≤ Cν,α,β〈ξ 〉m−〈α,1/M〉+δ〈ν,1/M〉+δ(〈β,1/M〉−κ)+
M ,

(95)

in view of (16) and the sub-additivity inequality (x + y)+ ≤ x+ + y+.
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Assume now that 〈ν + β, 1/M〉 = κ; then

|∂α
ξ ∂β

x

(
∂ν

x a
)
(x, ξ)| ≤ Cν,α,β〈ξ 〉m−〈α,1/M〉

M log(1 + 〈ξ 〉δM ), (96)

in view of (17). Since 〈ν +β, 1/M〉 = κ and 〈β, 1/M〉 �= κ imply 〈β, 1/M〉 < κ and
〈ν, 1/M〉 > 0 , then

log(1 + 〈ξ 〉δM ) ≤ Cν,β〈ξ 〉δ〈ν,1/M〉
M ≡ Cν,β〈ξ 〉δ〈ν,1/M〉+δ(〈β,1/M〉−κ)+

M ,

which, combined with (96), leads again to (95).
Assume now that 〈β, 1/M〉 = κ . Since also 〈ν, 1/M〉 > 0, from (16) we get

|∂α
ξ ∂β

x

(
∂ν

x a
)
(x, ξ)| ≤ Cν,α,β〈ξ 〉m−〈α,1/M〉+δ(〈ν+β,1/M〉−κ)+

M

≤ C ′
ν,α,β〈ξ 〉m−〈α,1/M〉+δ〈ν,1/M〉

M log(1 + 〈ξ 〉δM ),

because (〈ν + β, 1/M〉 − κ)+ = 〈ν + β, 1/M〉 − κ = 〈ν, 1/M〉 and we also use the
trivial inequality

log 2 ≤ log(1 + 〈ξ 〉δM ), ∀ ξ ∈ R
n . (97)

The preceding calculations show that ∂ν
x a(x, ξ) ∈ Sm+δ〈ν,1/M〉

M,δ,κ .
Similar trivial, while overloading, arguments can be used to prove the second state-

ment of (i) concerning the product of symbols.
(ii) It is known from the symbolic calculus in classes Sm

M,δ , cf. [10, Proposition 2.3],

that for a sequence of symbols {a j }+∞
j=0, obeying the assumptions made in (ii), there

exists a(x, ξ) ∈ Sm0
M,δ , which is unique up to a remainder in S−∞, such that

a −
∑

j<N

a j ∈ Sm N
M,δ, for all integers N > 0. (98)

It remains to check that a(x, ξ) actually belongs to Sm0
M,δ,κ , namely its derivatives

satisfy inequalities (16), (17). In view of (98), for any positive integer N , the symbol
a(x, ξ) can be represented in the form

a(x, ξ) = aN (x, ξ) + RN (x, ξ), (99)

where aN := ∑
j<N

a j e RN ∈ Sm N
M,δ .

Since lim
j→+∞ m j = −∞, for all α, β ∈ Z

n+ an integer Nα,β > 0 can be found such

that

m Nα,β + δ〈β, 1/M〉 ≤ m0 + δ(〈β, 1/M〉 − κ)+, if 〈β, 1/M〉 �= κ,

m Nα,β + δκ ≤ m0, if 〈β, 1/M〉 = κ,
(100)

hence let a be represented in form (99) with N = Nα,β (from the above inequalities
Nα,β can be chosen independent of α, as a matter of fact). Since {m j } is decreasing,
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from a j ∈ S
m j
M,δ,κ for every j ≥ 0, we deduce at once that aNα,β ∈ Sm0

M,δ,κ . As for the

remainder RNα,β , from RNα,β ∈ S
m Nα,β

M,δ , inequalities (100) and (97), we deduce

|∂α
ξ ∂β

x RNα,β (x, ξ)| ≤ Cα,β〈ξ 〉m Nα,β
−〈α,1/M〉+δ〈β,1/M〉

M

≤
{

C ′
α,β〈ξ 〉m0−〈α,1/M〉+δ(〈β,1/M〉−κ)+

M , if 〈β, 1/M〉 �= κ,

C ′
α,β〈ξ 〉m0−〈α,1/M〉

M log(1 + 〈ξ 〉δM ), if 〈β, 1/M〉 = κ.

From (99) with N = Nα,β and estimates above, we deduce

|∂α
ξ ∂β

x a(x, ξ)| ≤ |∂α
ξ ∂β

x aNα,β (x, ξ)| + |∂α
ξ ∂β

x RNα,β (x, ξ)|

≤
{

C ′′
α,β〈ξ 〉m0−〈α,1/M〉+δ(〈β〉−κ)+

M , if 〈β, 1/M〉 �= κ,

C ′′
α,β〈ξ 〉m0−〈α,1/M〉

M log(1 + 〈ξ 〉δM ), if 〈β, 1/M〉 = κ

and, because of the arbitatriness of α and β, this shows that a ∈ Sm0
M,δ,κ .

(iii) By still referring to the symbolic calculus in classes Sm
M,δ , cf [10, Proposition

2.5], it is known that the product of two pseudodifferential operators a(x, D) and
b(x, D) with symbols like in the statement (iii) is again a pseudodifferential operator
c(x, D) = a(x, D)b(x, D) with symbol c(x, ξ) = (a�b)(x, ξ) ∈ Sm+m′

M,δ′′ , if 0 ≤ δ′ <

μ∗/μ∗; moreover, such a symbol satisfies

c(x, ξ)−
∑

|α|<N

(−i)|α|

α! ∂α
ξ a(x, ξ)∂α

x b(x, ξ) ∈ Sm+m′−(1/μ∗−δ′/μ∗)N
M,δ′′ , N ≥ 1. (101)

To end up, it sufficient applying statements (i) and (ii) above to the sequence {ck}+∞
k=0

of symbols

ck(x, ξ) :=
∑

|α|=k

(−i)k

α! ∂α
ξ a(x, ξ)∂α

x b(x, ξ), k = 0, 1, . . . .

From statement (i) it is immediately seen that ck(x, ξ) ∈ Sm+m′−(1/μ∗−δ′/μ∗)k
M,δ′′,κ for all

integers k ≥ 0. Since the sequence {mk}+∞
k=0 of ordersmk := m+m′−(1/μ∗−δ′/μ∗)k

is decreasing, in view of 0 ≤ δ′ < μ∗/μ∗, it follows from (ii) that a symbol c̃(x, ξ) ∈
Sm+m′

M,δ′′,κ exists such that the same as (101) holds true with c̃(x, ξ) instead of c(x, ξ);
moreover, from uniqueness of c(x, ξ) (up to a symbol in S−∞), it also follows that
c̃(x, ξ) − c(x, ξ) ∈ S−∞, hence the symbol c(x, ξ) actually belongs to Sm+m′

M,δ′′,κ . ��

5.2 Parametrix of an elliptic operator with symbol in SmM,ı,�

In order to perform the analysis of local and microlocal propagation of singularities
of PDE on M-Fourier–Lebesgue spaces, cf. Sect. 7, this section is devoted to the
construction of the parametrix of a M-elliptic operator with symbol in Sm

M,δ,κ .
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Wefirst recall the notion of M-elliptic symbol, we are going to deal with, see [9,10].

Definition 7 We say that a(x, ξ) ∈ Sm
M,δ , or the related operator a(x, D), is M-elliptic

if there are constants c0 > 0 and R > 1 satisfying

|a(x, ξ)| ≥ c0〈ξ 〉m
M , ∀ (x, ξ) ∈ R

2n, |ξ |M ≥ R. (102)

Proposition 6 For m ∈ R, κ > 0 and 0 ≤ δ < μ∗/μ∗, let the symbol a(x, ξ) ∈ Sm
M,δ,κ

be M-elliptic. Then there exists b(x, ξ) ∈ S−m
M,δ,κ such that b(x, D) is a parametrix of

the operator a(x, D), i.e.

b(x, D)a(x, D) = I + l(x, D), a(x, D)b(x, D) = I + r(x, D), (103)

where I is the identity operator and l(x, D), r(x, D) are pseudodifferential operators
with symbols l(x, ξ), r(x, ξ) ∈ S−∞.

Proof The proof follows the standard arguments employed in construcing the
parametrix of an elliptic operator, see e.g. [5].

The first step consists to define a symbol b0(x, ξ) to be the inverse of a(x, ξ), for
sufficiently large ξ , that is

b0(x, ξ) := 〈ξ 〉−m
M F

(〈ξ 〉−m
M a(x, ξ)

)
, (104)

with some function F = F(z) ∈ C∞(C) satisfying F(z) = 1/z for |z| ≥ c0 andwhere
c0 is the positive constant from (102). From the symbolic calculus in the framework of
S∞

M,δ (cf. [10]), it is easily shown that b0(x, ξ) ∈ S−m
M,δ and ρ1(x, ξ) := (a�b0)(x, ξ)−

1 ∈ Sm−(1/μ∗−δ/μ∗)
M,δ , where, according to the notation introduced in Proposition 5-(iii),

a�b0 stands for the symbols of the product a(x, D)b0(x, D).
Then an operator b(x, D) satisfying the second identity in (103) (that is a right-

parametrix of a(x, D)) is defined as b(x, D) := b0(x, D)ρ(x, D) and where ρ(x, D)

is givenby theNeumann-type seriesρ(x, D) =
+∞∑
j=0

ρ
j
1 (x, D);more precisely,ρ(x, D)

is the pseudodifferential operator with symbol associated to the sequence of symbols
ρ j (x, ξ) ∈ S−(1/μ∗−δ/μ∗) j

M,δ recursively defined by

ρ0 := 1 and ρ j := ρ1�ρ j−1, for j = 1, 2, . . . . (105)

Since the sequence of orders −(1/μ∗ − δ/μ∗) j tends to −∞, once again in view of
the symbolic calculus in S∞

M,δ (cf. [10]), a symbol ρ(x, ξ) ∈ S0
M,δ such that

ρ −
∑

j<N

ρ j ∈ S−(1/μ∗−δ/μ∗)N
M,δ , for all integers N ≥ 1, (106)

is defined uniquely, up to symbols in S−∞.
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One can finally show that b(x, D), constructed as above, is a (two sided) parametrix
of a(x, D), see e.g. [5, Ch. 4] for more details.

In view of Proposition 5, to end up it is sufficient to show that the symbol
b0(x, ξ) ∈ S−m

M,δ , defined in (104), actually belongs to S−m
M,δ,κ , that is its derivatives

satisfy estimates (16), (17). Since these estimates only require a more specific behav-
ior of x−derivatives, compared to a generic symbol in S∞

M,δ , we may reduce to check

their validity for x−derivatives alone. Because 〈ξ 〉−m
M a(x, ξ) ∈ S0

M,δ,κ , we are going

to only treat the case of a symbol a(x, ξ) ∈ S0
M,δ,κ .

For an arbitrary nonzero multi-index β �= 0, from Faà di Bruno’s formula, we first
recover

|∂β
x b0(x, ξ)| ≤

|β|∑

k=1

Ck

∑

β1+···+βk=β

|∂β1

x a(x, ξ)| . . . |∂βk

x a(x, ξ)|, (107)

where Ck is a suitable positive constant depending only on k ≥ 0 (notice that the
function F is bounded in C together with all its derivatives), and where, for each
integer k satisfying 1 ≤ k ≤ |β|, the second sum in the right-hand side above is
extended over all systems {β1, . . . , βk} of nonzero multi-indices β j ( j = 1, . . . , k)
such that β1 + · · · + βk = β.

To apply estimates (16), (17), different cases must be considered separately.
Let us first assume that 〈β, 1/M〉 �= κ . Since a ∈ S0

M,δ,κ , we have

|∂β j

x a(x, ξ)| ≤ C j 〈ξ 〉δ(〈β j ,1/M〉−κ)+
M or |∂β j

x a(x, ξ)| ≤ C j log(1 + 〈ξ 〉δM ), (108)

for all integers 1 ≤ k ≤ |β| and 1 ≤ j ≤ k, according to whether 〈β j , 1/M〉 �= κ or
〈β j , 1/M〉 = κ , and suitable constants C j > 0.

If 〈β, 1/M〉 < κ then 〈β j , 1/M〉 < κ for all j = 1, . . . , k and every 1 ≤ k ≤ |β|,
and

|∂β
x b0(x, ξ)| ≤ Cβ ≡ Cβ〈ξ 〉δ((〈β,1/M〉−κ)+

M

follows at once from (107) and (108), with suitable Cβ > 0.
Assume now 〈β, 1/M〉 > κ , so that, for a given integer 1 ≤ k ≤ |β| and an

arbitrary system {β1, . . . , βk} of multi-indices satisfying β1 + · · · + βk = β, it could
be either 〈β j , 1/M〉 �= κ or 〈β j , 1/M〉 = κ for different indices j = 1, . . . , k; up to a
reordering of its elements, let {β1, . . . , βk} be split into the sub-systems {β1, . . . , βk′ }
and {βk′+1, . . . , βk} (for an integer k′ with 1 ≤ k′ < k) such that 〈β j , 1/M〉 �= κ for
all 1 ≤ j ≤ k′ and 〈β�, 1/M〉 = κ for all k′ + 1 ≤ � ≤ k.2 In such a case, from (107)
and (108) we get

|∂β
x b0(x, ξ)| ≤

|β|∑

k=1

Ck

∑

β1+···+βk=β

〈ξ 〉δ{(〈β1,1/M〉−κ)++···+(〈βk′
,1/M〉−κ)+}

M

× (
log(1 + 〈ξ 〉δM )

)k−k′
.

(109)

2 Of course when k = 1 then only 〈β1, 1/M〉 ≡ 〈β, 1/M〉 > κ can occur.
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Under the previous assumptions, it can be shown that

(〈β1, 1/M〉 − κ)+ + · · · + (〈βk′
, 1/M〉 − κ)+ ≤ (〈β ′, 1/M〉 − κ)+,

where we have set β ′ := β1 + · · · + βk′
. Suppose 〈β ′, 1/M〉 ≤ κ (thus (〈β ′, 1/M〉 −

κ)+ = 0); since 〈β, 1/M〉 > κ , we have

〈ξ 〉δ{(〈β1,1/M〉−κ)++···+(〈βk′
,1/M〉−κ)+}

M

(
log(1 + 〈ξ 〉δM )

)k−k′

≤ 〈ξ 〉δ(〈β ′,1/M〉−κ)+
M

(
log(1 + 〈ξ 〉δM )

)k−k′ ≡ (
log(1 + 〈ξ 〉δM )

)k−k′

≤ cβ,k,k′ 〈ξ 〉δ(〈β,1/M〉−κ)
M ≡ cβ,k,k′ 〈ξ 〉δ(〈β,1/M〉−κ)+

M .

(110)

Suppose now 〈β ′, 1/M〉 > κ (hence (〈β ′, 1/M〉 − κ)+ = 〈β ′, 1/M〉 − κ). Since
〈β, 1/M〉 > 〈β ′, 1/M〉, we get

〈ξ 〉δ{(〈β1,1/M〉−κ)++···+(〈βk′
,1/M〉−κ)+}

M

(
log(1 + 〈ξ 〉δM )

)k−k′

≤ 〈ξ 〉δ(〈β ′,1/M〉−κ)+
M

(
log(1 + 〈ξ 〉δM )

)k−k′

≡ 〈ξ 〉δ(〈β ′,1/M〉−κ)
M

(
log(1 + 〈ξ 〉δM )

)k−k′

≤ cβ,β ′,k,k′ 〈ξ 〉δ{(〈β ′,1/M〉−κ)+(〈β,1/M〉−〈β ′,1/M〉)}
M

= cβ,β ′,k,k′ 〈ξ 〉δ(〈β,1/M〉−κ)
M ≡ cβ,β ′,k,k′ 〈ξ 〉δ(〈β,1/M〉−κ)+

M .

(111)

In the boarder cases of a system {β1, . . . , βk} where either 〈β j , 1/M〉 �= κ for all j
or 〈β j , 1/M〉 = κ for all j ,3 all preceding arguments can be repeated, by formally
taking k′ = k in (110) or β ′ = 0 and k′ = 0 in (111) respectively; thus we end up with
the same estimates as above. Using (110), (111) in the right-hand side of (109) leads
to

|∂β
x b0(x, ξ)| ≤ Cβ〈ξ 〉δ((〈β,1/M〉−κ)+

M .

��

5.3 Continuity of pseudodifferential operators with symbols in SmM,ı,�

Throughout the rest of this section, we assume that M ∈ R
n+ has all integer compo-

nents. The Fourier-Lebesgue continuity of pseudodifferential operators with symbols
in Sm

M,δ,κ is recovered as a consequence of Theorem 1.
Taking advantage from growing estimates (16), (17), we first analyze the relations

between smooth local symbols of type Sm
M,δ,κ and symbols of limited Fourier–

Lebesgue smoothness introduced in Sect. 2.2.

Proposition 7 For M = (μ1, . . . , μn) ∈ N
n, m ∈ R, δ ∈ [0, 1] and κ > 0, let the

symbol a(x, ξ) ∈ Sm
M,δ,κ satisfy the localization condition (19) for some compact set

3 Notice that, under 〈β, 1/M〉 > κ , this second case can only occur when k ≥ 2.
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K ⊂ R
n. The for all integers N ≥ 0 and multi-indices α ∈ Z

n+ there exists a postive
constant Cα,N ,K such that:

〈η〉N
M |∂α

ξ â(η, ξ)| ≤ Cα,N ,K〈ξ 〉m−〈α,1/M〉+δ(N−κ)+
M , if N �= κ, (112)

〈η〉N
M |∂α

ξ â(η, ξ)| ≤ Cα,N ,K〈ξ 〉m−〈α,1/M〉
M log(1 + 〈ξ 〉δM ), if N = κ, (113)

where â(η, ξ) is the partial Fourier transform of a(x, ξ) with respect to x:

â(η, ξ) := â(·, ξ)(η), ∀ (η, ξ) ∈ R
2n .

Proof For an arbitrary integer N ≥ 0 we estimate

〈η〉N
M ≤ CN

∑

〈β,1/M〉≤N

|ηβ |, ∀ η ∈ R
n, (114)

with some positive constant CN > 0 (independent of M), hence for any α ∈ Z
n+

〈η〉N
M |∂α

ξ â(η, ξ)| ≤ CN

∑

〈β,1/M〉≤N

|ηβ∂α
ξ â(η, ξ)| = CN

∑

〈β,1/M〉≤N

| ̂∂β
x ∂α

ξ a(η, ξ)|

= CN

∑

〈β,1/M〉≤N

∣∣∣∣
∫

K
e−iη·x∂β

x ∂α
ξ a(x, ξ)dx

∣∣∣∣ ≤ CN

∑

〈β,1/M〉≤N

∫

K
|∂β

x ∂α
ξ a(x, ξ)|dx .

Thus, we end up by using estimates (16), (17) under the integral sign above. ��
Remark 10 Notice that estimates (113) are satisfied only when κ > 0 is an integer
number.

As a consequence of Proposition 7 we get the proof of Theorem 2

Proof of Theorem 2 For κ satisfying (18), consider the estimates (112), (113) of â(η, ξ)

with N = N∗ := [n/μ∗]+1. For sure, estimates (113) cannot occur, since N∗ is smaller
than κ , whereas estimates (112) reduce to

|∂α
ξ â(η, ξ)| ≤ Cα,N∗,K〈ξ 〉m−〈α,1/M〉

M 〈η〉−N∗
M , ∀ (η, ξ) ∈ R

n . (115)

On the other hand, the left inequality in (6) yields

〈η〉−N∗
M ≤ C〈η〉−μ∗ N∗ , ∀ η ∈ R

n,

from which, 〈·〉−N∗
M ∈ L1(Rn) follows, since μ∗N∗ > n. Then integrating in R

n
η both

sides of (115) leads to

‖∂α
ξ a(·, ξ)‖FL1 ≤ C̃α,N ,K〈ξ 〉m−〈α,1/M〉

M , ∀ ξ ∈ R
n, (116)
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which are just estimates (11).
For an arbitrary integer r > 0, we consider again estimates (112), (113) of â(η, ξ)

with N = Nr := r + [n/μ∗] + 1. Notice that from (18)

Nr − κ < Nr − [n/μ∗] − 1 = r , hence (Nr − κ)+ ≤ r+ = r .

Then (112), (113) lead to

〈η〉r
M |∂α

ξ â(η, ξ)| ≤ Cα,Nr ,K〈η〉−N∗
M 〈ξ 〉m−〈α,1/M〉+δr

M , if Nr �= κ,

〈η〉r
M |∂α

ξ â(η, ξ)| ≤ Cα,Nr ,K〈η〉−N∗
M 〈ξ 〉m−〈α,1/M〉

M log(1 + 〈ξ 〉δM ), otherwise,

where N∗ = [n/μ∗] + 1 as before. Then using the trivial estimate

log(1 + 〈ξ 〉δM ) ≤ Cr 〈ξ 〉δr
M , ∀ ξ ∈ R

n (117)

and integrating in R
n
η both sides of inequalities above gives

‖∂α
ξ a(η, ξ)‖FL1

r ,M
≤ Cα,Nr ,K〈ξ 〉m−〈α,1/M〉+δr

M , ∀ ξ ∈ R
n, (118)

which are nothing else estimates (12) with p = 1 (so q = +∞). Together with (116),
estimates above prove that a(x, ξ) ∈ FL1

r ,M Sm
M,δ(N ), for all integer numbers r > 0

and N > 0 arbitrarily large.
Then applying to a(x, ξ) the result of Theorem 1 with p = 1 and an arbitrary

integer r > 0 shows that a(x, D) fulfils the boundedness in (20) with p = 1.
Now we are going to prove that the same symbol a(x, ξ) also belongs to the class

FL∞
r ,M (N ) with an arbitrary integer number r > n/μ∗ and N > 0 arbitrarily large,

so as to apply again Theorem 1 to a(x, D) with p = +∞. To do so, it is enough
considering once again estimates (112) for â(η, ξ) with an arbitrary integer N ≡ r >

κ; noticing that, under the assumption (18),

r − κ < r − n/μ∗, hence (r − κ)+ ≤ (r − n/μ∗)+ = r − n/μ∗,

estimates (112) just reduce to

‖∂α
ξ a(·, ξ)‖FL∞

r ,M
≤ Cα,r ,K〈ξ 〉m−〈α,1/M〉+δ(r−n/μ∗)

M , ∀ ξ ∈ R
n, (119)

which are exactly estimates (12) with p = +∞ (the number of ξ−derivatives which
these estimates apply to can be chosen here arbitrarily large). So, as announced before,
Theorem 1 can be applied to make the conclusion that the boundedness property (20)
holds true for a(x, D) with p = +∞ and an arbitrary integer r > κ , and this shows
that a(x, D) also exhibits the boundedness in (20) with p = +∞.

To recover (20) with an arbitrary summability exponent 1 < p < +∞ it is then
enough to argue by complex interpolation through Riesz-Thorin’s Theorem. ��
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Remark 11 Let us remark that assumption (19) on the x support of the symbol a(x, ξ)

amounts to say that the continuous prolongement of a(x, D) onFL p
s+m,M takes values

in FL p
s,M only locally, see the next Definition 8.

6 Decomposition ofM-Fourier–Lebesgue symbols

As in the preceding Sect. 5, we will assume later on that vector M = (μ1, . . . , μn)

has strictly positive integer components.
For m, r ∈ R, p ∈ [1,+∞], δ ∈ [0, 1], we set

FL p
r ,M Sm

M,δ :=
∞⋂

N=1

FL p
r ,M Sm

M,δ(N )

and FL p
r ,M Sm

M := FL p
r ,M Sm

M,0. In order to develop a regularity theory of M-elliptic
linear PDEs with M-homogeneous Fourier–Lebesgue coefficients, in the absence of
a symbolic calculus for pseudodifferential operators with Fourier–Lebesgue symbols
(in particular the lack of a parametrix of an M-elliptic operator with non smooth coeffi-
cients), following the approach of Taylor [23, §1.3],we introduce here a decomposition
of a M-Fourier–Lebesgue symbol a(x, ξ) ∈ FL p

r ,M Sm
M as the sum of two terms: one

is a M-homogeneous smooth symbol in Sm
M,δ and the other is still a Fourier–Lebesgue

symbol of lower order, decreased from m by a positive quantity proportional to δ,
where 0 < δ < 1 is given, while arbitrary.

Such a decomposition is made by applying to the symbol a(x, ξ) a suitable “cut-
off” Fourier multiplier, “splitting in the frequency space the (nonsmooth) coefficients
of a(x, ξ) as a sum of two contributions”.

Let us first consider a C∞−function φ such that φ(ξ) = 1 for 〈ξ 〉M ≤ 1 and

φ(ξ) = 0 for 〈ξ 〉M > 2.With a given ε > 0, we set φ(ε
1
M ξ) := φ(ε

1
m1 ξ1, . . . , ε

1
mn ξn)

and let φ(ε
1
M D) denote the associated Fourier multiplier.

The following M-homogeneous version of [23, Lemma 1.3.A], shows the behavior

of φ(ε
1
M D) on M-homogeneous Fourier–Lebesgue spaces.

Lemma 7 Let p ∈ [1,+∞] and ε > 0 be arbitrarily fixed.

(i) For every β ∈ Z
n+ and r ∈ R, the Fourier multiplier Dβφ(ε

1
M D) extends as a

bounded linear operator Dβφ(ε
1
M D) : FL p

r ,M → FL p
r ,M and there is a positive

constant Cβ , independent of ε, such that:

‖Dβφ(ε
1
M D)u‖FL p

r ,M
≤ Cβε−〈β, 1

M 〉‖u‖FL p
r ,M

, ∀ u ∈ FL p
r ,M ; (120)

(ii) For all r ∈ R and t ≥ 0, the Fourier multiplier I −φ(ε
1
M D) (where I denotes the

identity operator) extends as a bounded linear operator I −φ(ε
1
M D) : FL p

r ,M →
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FL p
r−t,M and there exists a constant Ct > 0, independent of ε, such that:

‖u − φ(ε
1
M D)u‖FL p

r−t,M
≤ Ctε

t‖u‖FL p
r ,M

, ∀ u ∈ FL p
r ,M ; (121)

(iii) If r > n
μ∗q , where 1

p + 1
q = 1, and β ∈ Z

n+, then Dβφ(ε1/M D) and I − φ(ε
1
M D)

extend as bounded linear operators Dβφ(ε1/M D), I − φ(ε
1
M D) : FL p

r ,M →
FL1 and there are constants Cr ,β and Cr , independent of ε, such that:

‖Dβφ(ε1/M D)u‖FL1 ≤ Cr ,βε
−
(
〈β,1/M〉−(r− n

μ∗q )
)

+‖u‖FL p
M,r

,

if 〈β, 1/M〉 �= r − n
μ∗q ,

‖Dβφ(ε1/M D)u‖FL1 ≤ Cr log1/q(1 + ε−1)‖u‖FL p
M,r

,

if 〈β, 1/M〉 = r − n
μ∗q ,

‖u − φ(ε
1
M D)u‖FL1 ≤ Crε

r− n
μ∗q ‖u‖FL p

r ,M
, ∀ u ∈ FL p

r ,M .

(122)

Proof (i): From the properties of function φ, one can readily show that for any β ∈ Z
n+

there exists a constant Cβ > 0 such that:

|ξβφ(ε
1
M ξ)| ≤ Cβε−〈β,1/M〉, ∀ ξ ∈ R

n, ∀ ε ∈]0, 1].

Then estimate (120) follows at once from Hölder’s inequality.
(ii): Similarly as for (i), for t ≥ 0, one can find a positive constant Ct such that:

∣∣〈ξ 〉−t
M (1 − φ(ε1/Mξ))

∣∣ ≤ Ctε
t , ∀ ξ ∈ R

n, ∀ ε ∈]0, 1],

then estimate (121) follows once again from Hölder’s inequality.

(iii): The extension of Dβφ(ε
1
M D) and I − φ(ε

1
M D) as linear bounded operators

from FL p
r ,M to FL1 follows at once from a combination of the continuity properties

stated in (i), (ii) and the fact that the spaceFL p
r ,M is imbedded intoFL1 when r > n

μ∗q .
For 〈β, 1/M〉 < r − n

μ∗q , we directly have

‖Dβφ(ε1/M D)u‖FL1 =
∫

|ξβ |φ(ε1/Mξ)|̂u(ξ)|dξ,

and 0 ≤ φ ≤ 1 implies |ξβ |φ(ε1/Mξ) ≤ 〈ξ 〉〈β,1/M〉
M . Combining the above and since

〈·〉〈β,1/M〉−r
M ∈ Lq as r − 〈β, 1/M〉 > n

μ∗q , Hölder’s inequality yields

‖Dβφ(ε1/M D)u‖FL1 ≤ Cr ,β,p‖u‖FL p
r ,M

,
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whereCr ,β,p :=
(∫ 1

〈ξ〉(r−〈β,1/M〉)q
M

dξ

)1/q

. The above formula is (122)1 for 〈β, 1/M〉 <

r − n
μ∗q .

For 〈β, 1/M〉 > r − n
μ∗q , we first write

‖Dβφ(ε1/M D)u‖FL1 =
∥∥∥∥∥ξβ

+∞∑

h=−1

φ(ε1/Mξ )̂uh

∥∥∥∥∥
L1

, (123)

where, for every integer h ≥ −1,we set ûh = ϕhû, being {ϕh}∞h=−1 the dyadic partition
of unity introduced in Sect. 3.

Since φ(ε1/Mξ )̂uh ≡ 0, as long as the integer h ≥ 0 satisfies 2ε−1 < 1
K 2h−1 (that

is h > log2(4K/ε)), cf. (49), (51), from (123), 0 ≤ φ ≤ 1,

|ξβ | ≤ |ξ |〈β,1/M〉
M ≤ CK ,β2

h〈β,1/M〉, for ξ ∈ CM,K
h , (124)

with a constant CK ,β > 0 independent of h, and Hölder’s inequality, it follows

‖Dβφ(ε1/M D)u‖FL1 ≤
[log2(4K/ε)]∑

h=−1

∫

CM,k
h

|ξβ |φ(ε1/Mξ)|̂uh(ξ)|dξ

≤ CK ,β

[log2(4K/ε)]∑

h=−1

2h〈β,1/M〉
∫

CM,k
h

|̂uh(ξ)|dξ

= CK ,β

[log2(4K/ε)]∑

h=−1

2hσ

∫

CM,k
h

2−h n
μ∗q 2hr |̂uh(ξ)|dξ

≤ CK ,β

[log2(4K/ε)]∑

h=−1

2hσ

⎛

⎜⎜⎝

∫

CM,k
h

2−h n
μ∗

⎞

⎟⎟⎠

1/q

‖2hr ûh‖L p

≤ CK ,β,n,p

[log2(4K/ε)]∑

h=−1

2hσ ‖2hr ûh‖L p ,

(125)

where we used
∫

CM,k
h

dξ ≤ C∗,K ,n2
h n

μ∗ , for a constant C∗,K ,n independent of h, and

it is set CK ,β,n,p := CK ,βC1/q
∗,K ,n and σ := 〈β, 1/M〉 − (r − n

μ∗q ). Hence, we use
discrete Hölder’s inequality with conjugate exponents (p, q) and the characterization
of M-homogeneous Fourier–Lebesgue spaces provided by Proposition 2 to end up
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with

‖Dβφ(ε1/M D)u‖FL1 ≤ CK ,β,n,p

⎛

⎝
[log2(4K/ε)]∑

h=−1

2hσq

⎞

⎠
1/q

‖u‖FL p
r ,M

, (126)

and

[log2(4K/ε)]∑
h=−1

2hσq = 2σq([log2(4K/ε)])
[log2(4K/ε)]∑

h=−1
2−σq([log2(4K/ε)]−h)

≤ (4K/ε)σqCσ,q = CK ,σ,qε−σq ,

(127)

where Cσ,q := ∑
j≥0

2−σq j is convergent, as σ > 0, and CK ,σ,q := 4K Cσ,q is indepen-

dent of ε. Inequality (122)1 for 〈β, 1/M〉 > r − n
μ∗q follows from combining (126),

(127).
To prove (122)2, we repeat the arguments leading to (123)–(126)where 〈β, 1/M〉 =

r − n
μ∗q (that is σ = 0), use discrete Hölder’s inequality and Proposition 2, to get:

‖Dβφ(ε1/M D)u‖FL1 ≤ CK ,r ,n,p

[log2(4K/ε)]∑

h=−1

‖2hr ûh‖L p

≤ C̃K ,r ,n,p

⎛

⎝
[log2(4K/ε)]∑

h=−1

1

⎞

⎠
1/q

‖u‖FL p
r ,M

= C̃K ,r ,n,p
(
2 + [

log2(4K/ε)
])1/q ‖u‖FL p

r ,M

≤ C ′
K ,r ,n,p log

1/q(1 + ε−1)‖u‖FL p
r ,M

.

(128)

The proof of inequality (122)3 follows along the same arguments used above. We
resort once again to Proposition 2 and Hölder’s inequality to get

‖(I − φ(ε1/M D))u‖FL1 = ‖(1 − φ(ε1/M ·))̂u‖L1 =
∥∥∥∥∥(1 − φ(ε1/M ·))

∞∑

h=−1

ûh

∥∥∥∥∥
L1

≤
∑

h>log2
(

1
2Kε

)
‖(1 − φ(ε1/M ·))̂uh‖L1

≤
∑

h>log2
(

1
2Kε

)

∥∥∥∥
(1 − φ(ε1/M ·))χh

〈·〉r
M

∥∥∥∥
Lq

‖〈·〉r
M ûh‖L p

where for an integer h ≥ −1, χh is the characteristic function of CM,K
h and we use

(1 − φ(ε1/M ·))ϕh ≡ 0 for K2h+1 ≤ 1/ε, cf. (49), (51). Arguing as in the proof of
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Proposition 2 yields

‖〈·〉r
M ûh‖L p ≤ Cr ,p2

rh‖ûh‖L p , ∀ h ≥ −1,

with positive constant Cr ,p depending only on r and p. Using again the properties of
functions φ and ϕh’s, we also get, for any h ≥ −1,

∥∥∥∥
(1 − φ(ε1/M ·))χh

〈·〉r
M

∥∥∥∥
q

Lq

=
∫

CM,K
h

∣∣∣∣
(1 − φ(ε1/Mξ))

〈ξ 〉r
M

∣∣∣∣
q

dξ ≤
∫

CM,K
h

1

〈ξ 〉rq
M

dξ

≤ Cr ,q2
−rhq

∫

CM,K
h

dξ ≤ Cr ,p,μ∗,K ,n2
h(−rq+n/μ∗)

(with obvious modifications in the case of q = ∞, that is p = 1); here and later on,
Cr ,p,μ∗,K ,n will denote some positive constant, depending only on r , p, μ∗, K and
the dimension n, that may be different from an occurrence to another.

Using the above inequalities in the previous estimate of the L1−norm of (1 −
φ(ε1/M ·))̂u, together with Hölder’s inequality and Proposition 2, we end up with

‖(I−φ(ε1/M D))u‖FL1 ≤ Cr ,p,μ∗,K ,n

∑

h>log2
(

1
2Kε

)
2h(−r+ n

μ∗q ) 2rh‖ûh‖L p

≤ Cr ,p,μ∗,K ,n

⎛

⎜⎜⎝
∑

h>log2
(

1
2Kε

)
2h(−rq+n/μ∗)

⎞

⎟⎟⎠

1/q ⎛

⎝
∑

h≥−1

2rhp‖ûh‖p
L p

⎞

⎠
1/p

≤ Cr ,p,μ∗,K ,n

(
1

2K ε

)−r+ n
μ∗q

(
∑

�>0

2�(−rq+n/μ∗)
)1/q

‖u‖FL p
M,r

≤ Cr ,p,μ∗,K ,nε
r− n

μ∗q ‖u‖FL p
M,r

,

since the geometric series
∑
�>0

2�(−rq+n/μ∗) is convergent for r > n
μ∗q . ��

Remark 12 As already noticed in the proof of the above Lemma 7, for r > n
μ∗q the

continuity of the operator Dβφ(ε
1
M D) from FL p

r ,M to FL1 readily follows from the

continuity of the same operator inFL p
r ,M and the validity of the continuous imbedding

of FL p
r ,M into FL1; combining the above with the inequality (120) also gives the

following continuity estimate

‖Dβφ(ε
1
M D)u‖FL1 ≤ Cβε−〈β, 1

M 〉‖u‖FL p
r ,M

, ∀ u ∈ FL p
r ,M .

Notice however that inequalities (122)1,2 provide an improvement of the continuity

estimate above, as they give a sharper control of the norm of Dβφ(ε
1
M D), with respect

to ε, as a linear bounded operator in L(FL p
r ,M ;FL1).
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Remark 13 In the case of r > n
μ∗q , applying statement (ii) of Lemma 7 with 0 ≤ t <

r − n
μ∗q and taking account of FL p

r ,M ⊂ FL1, with continuous imbedding, yields
that

‖u − φ(ε
1
M D)u‖FL1 ≤ Ctε

t‖u‖FL p
r ,M

, ∀ u ∈ FL p
r ,M , (129)

holds true with some positive constant Ct , independent of ε. Notice, however, that the
endpoint case t = r − n

μ∗q (corresponding to statement (iii) of Lemma 7) cannot be
reached by treating it along the same arguments used to prove statement (ii) above;

indeed, in general, FL p
n

μ∗q ,M is not imbedded in FL1 (that is 〈·〉− n
μ∗q /∈ Lq ).

Let a(x, ξ) belong to FL p
r ,M Sm

M and take δ ∈]0, 1]; we define

a#(x, ξ) :=
∞∑

h=−1

φ(2− hδ
M Dx )a(x, ξ)ϕh(ξ), (130)

and set
a�(x, ξ) := a(x, ξ) − a#(x, ξ). (131)

As a consequence of Lemma 7, one can prove the following result, which will play a
fundamental role in the analysis made in Sect. 7.4.

Proposition 8 For r > n
μ∗q and m ∈ R, let a(x, ξ) ∈ FL p

r ,M Sm
M and take an arbitrary

δ ∈]0, 1]. Then

a#(x, ξ) ∈ Sm
M,δ,κ ,

where κ = r − n
μ∗q ; moreover a�(x, ξ) ∈ FL p

r ,M S
m−δ

(
r− n

μ∗q

)

M,δ .

Proof For arbitrary α, β ∈ Z
n+, from Leibniz’s rule we get

‖Dβ
x Dα

ξ a#(·, ξ)‖FL1

≤
∑

ν≤α

(
α

ν

) +∞∑

h=−1

‖Dβ
x φ(2− δh

M D)Dα−ν
ξ a(·, ξ)‖FL1 |Dν

ξ ϕh(ξ)|

=
∑

ν≤α

(
α

ν

) h0+N0∑

h=h̃0

‖Dβ
x φ(2− δh

M D)Dα−ν
ξ a(·, ξ)‖FL1 |Dν

ξ ϕh(ξ)|,

(132)

where, for every ξ ∈ R
n , the integers N0 > 0 (independent of ξ ), h0 = h0(ξ) ≥ −1

and h̃0 = h̃0(ξ) are the same as considered in (50), (56).
On the other hand, because r > r

μ∗q , applying to u = Dα−ν
ξ a(·, ξ) the inequalities

(122)1,2 with ε = 2−hδ and using estimates (12) and (64), we get for h ≥ −1 and
ξ ∈ CM,K

h
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‖Dβ
x φ(2− δh

M D)Dα−ν
ξ a(·, ξ)‖FL1 ≤ Cr ,β2

hδ(〈β,1/M〉−κ)+‖Dα−ν
ξ a(·, ξ)‖FL p

M,r

≤ Cr ,α,β,ν〈ξ 〉m−〈α−ν,1/M〉+δ(〈β,1/M〉−κ)+
M , if 〈β, 1/M〉 �= κ,

‖Dβ
x φ(2− δh

M D)Dα−ν
ξ a(·, ξ)‖FL1 ≤ Cr log

1/q(1 + 2hδ)‖Dα−ν
ξ a(·, ξ)‖FL p

M,r

≤ Cr ,α,ν log
1/q(1 + 〈ξ 〉δM )〈ξ 〉m−〈α−ν,1/M〉

M

≤ Cr ,α,ν log(1 + 〈ξ 〉δM )〈ξ 〉m−〈α−ν,1/M〉
M , if 〈β, 1/M〉 = κ,

and

|Dνϕh(ξ)| ≤ Cν〈ξ 〉−〈ν,1/M〉
M ,

with suitable positive constants Cr ,β , Cr ,α,β,ν , Cr , Cr ,α,ν , Cν independent of h. Then
summing the above inequalities over all h’s such that h̃0 ≤ h ≤ h0 + N0, from (132)
it follows that

‖Dβ
x Dα

ξ a#(·, ξ)‖FL1 ≤ Cα,β〈ξ 〉m−〈α,1/M〉+δ(〈β,1/M〉−κ)+
M , if 〈β, 1/M〉 �= κ,

‖Dβ
x Dα

ξ a#(·, ξ)‖FL1 ≤ Cα,β〈ξ 〉m−〈α,1/M〉
M log(1 + 〈ξ 〉δM ), if 〈β, 1/M〉 = κ,

(133)
from which a#(x, ξ) ∈ Sm

M,δ,κ follows at once, recalling that FL1 is imbedded in the
space of bounded continuous functions in R

n .
As regards to symbol a�(x, ξ) defined in (131), applying inequalities (121) with

t = 0, together with estimates (12) and (64), and using similar arguments as above,
for all integers h ≥ −1 and ξ ∈ CM,K

h we find

‖Dα
ξ a�(·, ξ)‖FL p

r ,M

≤
∑

ν≤α

h0+N0∑

h=h̃0

(
α

ν

)
‖(I − φ(2−hδ/M D))(Dα−ν

ξ a(·, ξ))‖FL p
r ,M

|Dνϕh(ξ)|

≤
∑

ν≤α

h0+N0∑

h=h̃0

Cα,ν‖Dα−ν
ξ a(·, ξ)‖FL p

r ,M
|Dνϕh(ξ)|

≤
∑

ν≤α

h0+N0∑

h=h̃0

C ′
α,ν〈ξ 〉m−〈α−ν,1/M〉

M 〈ξ 〉−〈ν,1/M〉
M ≤ Cα〈ξ 〉m−〈α,1/M〉

M ,

with positive constants Cα,ν , C ′
α,ν , Cα independent of h; similarly, replacing (12) with

(11) and (121) with (122)3 (with ε = 2−hδ) in the above estimates, we find
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‖Dα
ξ a�(·, ξ)‖FL1

≤
∑

ν≤α

h0+N0∑

h=h̃0

(
α

ν

)
‖(I − φ(2−hδ/M D))(Dα−ν

ξ a(·, ξ))‖FL1 |Dνϕh(ξ)|

≤
∑

ν≤α

h0+N0∑

h=h̃0

Cα,ν2
−hδ

(
r− n

μ∗q

)

‖Dα−ν
ξ a(·, ξ)‖FL p

r ,M
|Dνϕh(ξ)|

≤
∑

ν≤α

h0+N0∑

h=h̃0

C ′
α,ν〈ξ 〉−δ

(
r− n

μ∗q

)

M 〈ξ 〉m−〈α−ν,1/M〉
M 〈ξ 〉−〈ν,1/M〉

M

≤ Cα〈ξ 〉m−δ
(

r− n
μ∗q

)
−〈α,1/M〉

M ,

where the numerical constants involved above are independent of h. The above inequal-

ities yields a�(x, ξ) ∈ FL p
r ,M S

m−
(

r− n
μ∗q

)

M,δ , because of the arbitrariness of h and that

the CM,K
h ’s cover R

n . ��

7 Microlocal properties

In order to study the microlocal propagation of weighted Fourier–Lebesgue sin-
gularities for PDEs, this section is devoted to define local/microlocal versions of
M-Fourier–Lebesgue spaces as well as M-homogeneous smooth symbols previously
introduced in Sects. 3, 5, and to collect some basic tools and a few results needed at
this purpose.

7.1 Local andmicrolocal function spaces

While the main focus of this paper is on M-homogeneous Fourier–Lebesgue spaces,
in this section we define general scales of function spaces, where themicrolocal propa-
gation of singularities of pseudodifferential operators with M-homogeneous symbols,
as defined in Sect. 5, will be then studied.

Let us consider a one-parameter family {Xs}s∈R of Banach spaces Xs , s ∈ R, such
that

S(Rn) ⊂ Xt ⊂ Xs ⊂ S ′(Rn), with continuous embedding, (134)

for arbitrary s < t . Following Taylor [23], we say that {Xs}s∈R is a M-microlocal scale
provided that there exists a constant κ0 > 0 such that for all m ∈ R, δ ∈ [0, 1[, κ > κ0
and a(x, ξ) ∈ Sm

M,δ,κ satisfying (19) for some compactK ⊂ R
n , the pseudodifferential

operator a(x, D) extends to a linear bounded operator

a(x, D) : Xs+m → Xs, ∀ s ∈ R. (135)
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In view of Theorem 2, it is clear that for every p ∈ [1,+∞] the M-homogeneous
Fourier–Lebesgue spaces {FL p

s,M }s∈R constitute a M-microlocal scale, according
to definition above; in this case the threshold κ0 considered above is given by κ0 =
[n/μ∗]+1. Other examples of M-microlocal spaces are provided by M-homogeneous
Sobolev and Hölder spaces studied in [10].4

In order to allow the microlocal analysis performed in subsequent Sect. 7.2, the
following local and microlocal counterparts of spaces Xs , s ∈ R, are given.

Definition 8 Let s ∈ R, x0 ∈ R
n and ξ0 ∈ R

n\{0}. We say that a distribution u ∈
S ′(Rn) belongs to the local space Xs,loc(x0) if there exists a function φ ∈ C∞

0 (Rn),
satisfying φ(x0) �= 0, such that

φu ∈ Xs . (136)

We say that u ∈ S ′(Rn) belongs to the microlocal space Xs,mcl(x0, ξ0) provided that
there exist a function φ ∈ C∞

0 (Rn), satisfying φ(x0) �= 0, and a symbol ψ(ξ) ∈ S0
M ,

satisfying ψ(ξ) ≡ 1 on ΓM ∩ {|ξ |M > ε0} for suitable M-conic neighborhood ΓM ⊂
R

n\{0} of ξ0 and 0 < ε0 < |ξ0|M , such that

ψ(D)(φu) ∈ Xs . (137)

Under the same assumptions as above, we also write

x0 /∈ Xs − singsupp (u) and (x0, ξ
0) /∈ W FXs (u) (138)

respectively.

In the case X s ≡ FL p
s,M , it is clear that Definition 8 reduces to Definition 5.

It can be easily proved that Xs − singsupp (u) is a closed subset of R
n and is called

the Xs−singular support of the distribution u, whereas W FXs (u) is a closed subset
of T ◦

R
n , M − conic with respect to the ξ variable, and is called the Xs−wave front

set of u. The previous notions are natural generalizations of the classical notions of
singular support and wave front set of a distribution introduced by Hörmander [15],
see also [16].

Let π1 be the canonical projection of T ◦
R

n onto R
n , that is π1(x, ξ) = x . Arguing

as in the classical case, one can prove the following.

Proposition 9 if u ∈ Xs,mcl(x0, ξ0), with (x0, ξ0) ∈ T ◦
R

n, then, for anyϕ ∈ C∞
0 (Rn),

such that ϕ(x0) �= 0, ϕu ∈ mclXs,mcl(x0, ξ0). Moreover, we have:

Xs − singsupp(u) = π1(W FXs (u)).

7.2 Microlocal symbol classes

We introduce now microlocal counterparts of the smooth symbol classes given in
Definitions 3, 4 and studied in Sect. 5.

4 Actually for M-homogeneous Sobolev and Hölder spaces, the continuity property (135) is extended to all
pseudodifferential operators with symbol in Sm

M,δ
, without the need of the more restrictive decay conditions

in Definition 4 and of the locality condition (19), see [10, Theorem 3.3 and Corollary 3.4].
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Definition 9 letU be an open subset ofRn andΓM ⊂ R
n\{0} an open M-conic set. For

m ∈ R, δ ∈ [0, 1] and κ > 0; we say that a ∈ S′(R2n) belongs to Sm
M,δ (resp. to SM,δ,κ )

microlocally on U × ΓM if a| U×ΓM ∈ C∞(U × ΓM ) and for all α, β ∈ Z
n+ there

exists Cα,β > 0 such that (14) (resp. (16), (17)) holds true for all (x, ξ) ∈ U × ΓM .
We will write in this case a ∈ mclSm

M,δ(U × ΓM ) (resp. a ∈ mclSm
M,δ,κ (U × ΓM )).

For (x0, ξ0) ∈ T ◦
R

n , we set

mclSm
M,δ (,κ)(x0, ξ

0) :=
⋃

U , ΓM

mclSm
M,δ (,κ)(U × ΓM ), (139)

where the union in the right-hand side is taken over all of the open neighborhoods
U ⊂ R

n of x0 and the open M-conic neighborhoods ΓM ⊂ R
n\{0} of ξ0.

With the above stated notation, we say that a ∈ S ′(Rn) is microlocally regularizing
on U × ΓM if a| U×ΓM ∈ C∞(U × ΓM ) and for every μ > 0 and all α, β ∈ Z

n+ a
positive constant Cμ,α,β > 0 is found in such a way that:

|∂α
ξ ∂β

x a(x, ξ)| ≤ Cμ,α,β(1 + |ξ |)−μ, ∀ (x, ξ) ∈ U × ΓM . (140)

Let us denote by mclS−∞(U × ΓM ) the set of all microlocally regularizing symbols
on U × ΓM . For (x0, ξ0) ∈ T ◦

R
n , we set:

mclS−∞(x0, ξ
0) :=

⋃

U , ΓM

mclS−∞(U × ΓM ) ; (141)

it is easily seen that mclS−∞(U ×ΓM ) = ⋂
m>0 mclS−m

M,δ(U ×ΓM ) for all δ ∈ [0, 1]
and M ∈ N

n , and a similar identity holds for mclS−∞(x0, ξ0).
It is immediate to check that symbols inmclSm

M,δ(U×ΓM ),mclSm
M,δ(x0, ξ0)behave

according to the same rules of “global” symbols, collected in Proposition 5. More-
over Sm

M,δ (,κ) ⊂ mclSm
M,δ (,κ)(U × ΓM ) ⊂ mclSm

M,δ (,κ)(x0, ξ0) hold true, whenever

(x0, ξ0) ∈ T ◦
R

n ,U is an open neighborhood of x0 and ΓM is an open M-conic neigh-
borhood of ξ0. A slight modification of the arguments used to prove Proposition 6,
see also [10, Proposition 4.4], leads to the following microlocal counterpart.

Proposition 10 (Microlocal parametrix) Assume that 0 ≤ δ < μ∗/μ∗ and κ > 0 and
let a(x, ξ) ∈ Sm

M,δ,κ be microlocally M-elliptic at (x0, ξ0) ∈ T ◦
R

n. Then there exist

symbols b(x, ξ), c(x, ξ) ∈ S−m
M,δ,κ such that

c(x, D)a(x, D) = I + l(x, D) and a(x, D)b(x, D) = I + r(x, D), (142)

and l(x, ξ), r(x, ξ) ∈ mclS−∞(x0, ξ0).

Thenotion ofmicrolocal M-ellipticity, aswell as the characteristic set, seeDefinition 6,
can be readily extended to non-smooth M-homogeneous symbols (as, in principle, it
only needs that the symbol a(x, ξ) be a continuous function, at least for sufficiently
large ξ ); in particular, microlocally M-elliptic symbols inFL p

r ,M Sm
M , with sufficiently
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large r > 0, must be considered later on. For a symbol a(x, ξ) ∈ FL p
r ,M Sm

M , with

r > n
μ∗q , p ∈ [1,+∞] and 1

p + 1
q = 1, for every 0 < δ ≤ 1 let the symbol a#(x, ξ)

and a�(x, ξ) be defined as in (130), (131).
The following result can be proved along the same lines of the proof of [10, Propo-

sition 7.3].

Proposition 11 If a(x, ξ) ∈ FL p
r ,M Sm

M , m ∈ R, is microlocally M-elliptic at

(x0, ξ0) ∈ T ◦
R

n, then a#(x, ξ) ∈ Sm
M,δ,κ (with κ as in the statement of Proposi-

tion 8) is also microlocally M-elliptic at (x0, ξ0) for any 0 < δ ≤ 1.

7.3 Microlocal continuity and regularity results

Let {Xs}s∈R be a M-microlocal scale as defined in Sect. 7.1. The following microlocal
counterpart of the boundedness property (135) and microlocal Xs−regularity follow
along the same lines of the proof of [10, Theorem 5.4 and Theorem 6.1].

Proposition 12 For 0 ≤ δ < μ∗/μ∗, κ > κ0, m ∈ R and (x0, ξ0) ∈ T ◦
R

n, assume
that a(x, ξ) ∈ S∞

M,δ ∩ mclSm
M,δ,κ (x0, ξ0). Then for all s ∈ R

u ∈ Xs+m,mcl(x0, ξ
0) ⇒ a(x, D)u ∈ Xs,mcl(x0, ξ

0). (143)

Proposition 13 For 0 ≤ δ < μ∗/μ∗, κ > κ0, m ∈ R, let a(x, ξ) ∈ Sm
M,δ,κ be

microlocally M-elliptic at (x0, ξ0) ∈ T ◦
R

n. Then for all s ∈ R

u ∈ S ′(Rn) and a(x, D)u ∈ Xs,mcl(x0, ξ
0) ⇒ u ∈ Xs+m,mcl(x0, ξ

0). (144)

Resorting on the notions of M-homogeneous wave front set of a distribution and
characteristic set of a symbol, the results of the above propositions can be also restated
in the following

Corollary 2 For 0 ≤ δ < μ∗/μ∗, κ > κ0, m ∈ R, a(x, ξ) ∈ Sm
M,δ,κ and u ∈ S ′(Rn),

the following inclusions

W FXs (a(x, D)u) ⊂ W FXs+m (u) ⊂ W FXs (a(x, D)u) ∪ Char(a)

hold true for every s ∈ R.

As particular case of Corollary 2 we obtain the result in Theorem 3

7.4 Proof of Theorem 4

This section is devoted to the proof of Theorem 4 concerning the microlocal prop-
agation of Fourier–Lebesgue singularities of the linear PDE (26). As it will be seen
below, the statement of Theorem 4 can be deduced as an immediate consequence of a
more general result concerning a suitable class of pseudodifferential operators.
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Since the coefficients cα in the equation (26) belong to FL p
r ,M,loc(x0), it fol-

lows that the localized symbol aφ(x, ξ) := φ(x)a(x, ξ) belongs to the symbol class
FL p

r ,M S1
M := FL p

r ,M S1
M,0, for some function φ ∈ C∞

0 (Rn) supported on a suffi-
ciently small compact neighborhood of x0 and satisfying φ(x0) �= 0 (see Definition 2);
moreover, by exploiting the M-homogeneity in ξ of the M-principal part of a(x, ξ), the
localized symbol aφ(x, ξ) amounts to be microlocally M-elliptic at (x0, ξ0) according
to Definition 6.

It is also clear that, by a locality argument, for any u ∈ S ′(Rn)

aφ(x, D)u = aφ(x, D)(ψu), (145)

where ψ ∈ C∞
0 (Rn) is some cut-off function, depending only on φ, that satisfies

0 ≤ ψ ≤ 1, and ψ ≡ 1, on suppφ. (146)

It tends out that only the identity (145) will be really exploited in the subsequent
analysis; thus the symbol of a differential operator of the type considered in (26), with
point-wise local M-homogeneous Fourier–Lebesgue coefficients, can be replacedwith
any symbol a(x, ξ) of positive order m and local Fourier–Lebesgue coefficients at
some point x0, namely

aφ(x, ξ) ∈ FL p
r ,M Sm

M , for some φ ∈ C∞
0 (Rn) satisfying φ(x0) �= 0, (147)

so that the related pseudodifferential operator a(x, D) be properly supported: while
locality does not hold for a general symbol in FL p

r ,M Sm
M (unless it is a polynomial in

ξ variable ), identity (145) is still true whenever a(x, D) is properly supported (see [1]
for the definition and properties of a properly supported operator). For shortness here
below we write a(x, ξ) ∈ FL p

r ,M Sm
M (x0) to mean that condition (147) is satisfied by

a(x, ξ).

Theorem 7 For (x0, ξ0) ∈ T ◦
R

n, p ∈ [1,+∞] and r > n
μ∗q +

[
n
μ∗

]
+ 1, where q is

the conjugate exponent of p, let a(x, ξ) ∈ FL p
r ,M Sm

M (x0) be, microlocally M-elliptic

at (x0, ξ0) with positive order m, such that a(x, D) is properly supported. For all

0 < δ < μ∗/μ∗ and m + (δ − 1)
(

r − n
μ∗q

)
< s ≤ r + m we have

u ∈ FL p

s−δ
(

r− n
μ∗q

)
,M,loc

(x0),

and a(x, D)u ∈ FL p
s−m,M,mcl(x0, ξ

0)

⇒ u ∈ FL p
s,M,mcl(x0, ξ

0). (148)

Proof Let us set f := a(x, D)u for u ∈ FL p

s−δ
(

r− n
μ∗q

)
,M,loc

(x0). Since a(x, D) is

properly supported, suitable smooth functions φ ∈ C∞
0 (Rn) and ψ satisfying (145)

and (146) can be found, supported on such a sufficiently small neighborhood of x0
that ψu ∈ F L p

s−δ
(

r− n
μ∗q

)
,M

and aφ(x, ξ) ∈ FL p
r ,M Sm

M , cf. Definition 8 and (147).
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Following the decomposition method illustrated in Sect. 6, for 0 < δ < μ∗/μ∗ let

a#
φ(x, ξ) ∈ Sm

M,δ,κ and a�
φ(x, ξ) ∈ FL p

r ,M S
m−δ

(
r− n

μ∗q

)

M,δ be defined as in (130), (131),
with aφ instead of a and where κ = r − n

μ∗q , hence u satisfies the equation

a#
φ(x, D)(ψu) = φ f − a�

φ(x, D)(ψu).

Becausea�
φ(x, ξ) ∈ FL p

r ,M S
m−δ

(
r− n

μ∗q

)

M,δ ,ψu ∈ FL p

s−δ
(

r− n
μ∗q

)
,M

, whereas f (so also

φ f ) belongs to FL p
s−m,M,mcl(x0, ξ0) (cf. Proposition 9), for the range of s belonging

as prescribed in the statement of Theorem 7 (notice in particular that from 0 < δ <

μ∗/μ∗ ≤ 1 even the endpoint s = r + m is allowed), one can apply Theorem 1 to
find

a#
φ(x, D)(ψu) ∈ FL p

s−m,M,mcl(x0, ξ
0) ;

hence, because κ > [n/μ∗]+1, applying Theorem 3 to a#
φ(x, ξ) yields thatψu, hence

u, belongs to FL p
s,M,mcl(x0, ξ0), which ends the proof. ��

It isworth noticing that the result of Theorem7 can be restated in terms of characteristic
set of a symbol and Fourier–Lebesgue wave front set of a distribution as in the next
result.

Proposition 14 Let r , m, p, s and δ satisfy the same conditions as in Theorem 7. Then
for a(x, ξ) ∈ FL p

r ,M Sm
M and u ∈ FL p

s−δ
(

r− n
μ∗q

)
,M

we have

W FFL p
s,M

(u) ⊂ W FFL p
s−m,M

(a(x, D)u) ∪ Char(a).

The statement of Theorem 7, as well as Proposition 14, applies in particular to the
linear PDE (26) considered at the beginning of this section, thus Theorem 4 is proved.
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