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Abstract
We are interested in the asymptotic behavior, as t tends to +∞, of finite energy
solutions and entropy solutions un of nonlinear parabolic problems whose model is

⎧
⎪⎨

⎪⎩

ut − �pu + g(u)|∇u|p = μ in (0, T ) × �,

u(0, x) = u0(x) in �,

u(t, x) = 0 on (0, T ) × ∂�

(0.1)

where � ⊆ R
N is a bounded open set, N ≥ 3, u0 ∈ L1(�) is a nonnegative initial

data, while g : R �→ R is a real function in C1(R) which satisfies sign condition with
positive derivative and μ is a nonnegative measure independent on time which does
not charge sets of null p-capacity.

Keywords Asymptotic behavior · Natural growth term · Nonlinear parabolic
operators · Measure data · p-capacity

Mathematics Subject Classification 28A12 · 35B40 · 35B51 · 35R06

Résumé
Comportement asymptotique des solutions pour des opérateurs paraboliques non
linéaire avec un terme de croissance naturelle et une donnée mesure. Nous somme
interessés au comportement asymptotique, quant t tend vers+∞, des solutions énergé-
tiques finies et des solutions entropiques un des problèmes paraboliques non linéaires
dont le modèle est (0.1) où � ⊆ R

N est un ouvert borné, N ≥ 3, u0 ∈ L1(�) est
une donnée initiale non négative, tandis que g : R �→ R est une fonction réelle de
classe C1(R) qui satisfait la condition du signe avec une dérivée positive et μ est une
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mesure non négative indépendante du temps qui ne prend pas en charge les parties de
p-capacité nulle.
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1 Introduction

Let � ⊆ R
N be a bounded open set, N ≥ 3, this paper is devoted to the study of

the asymptotic behaviour of solutions for nonlinear parabolic equations (1.1) under
Leray–Lions assumptions and in the context of Entropy/Renormalized solutions with
measures: for a review on classical results, see for instance [1,55,98] (see also [36,39,
51,54,61,68,75] for more details). More recently, asymptotic behaviour of weak finite
energy solutions (weak solutions at least) was studied in [64] for a general class of
quasilinear parabolic problems with lower order term u|∇u|2 (depending on |∇u|) and
with L1-data, in [2,77] for Radon measure data without any natural growth term and
in [4,79,80,82] for existence and nonexistence results when μ is a general, possibly
singular, Radon measure. Let emphasize that the study of the asymptotic behavior
of solutions is strictly related to several comparison principles between subsolutions
and supersolutions inspired by [56], applied for Cauchy problems [75] and developed
for elliptic and parabolic viscous Hamilton–Jacobi equations in [28]. Moreover, if
we consider μ is a Radon measure which does not depend on time, we shall prove
that, under suitable assumptions, the entropy solutions, which exist and are unique
as in [48], of such problems converge to the stationary solution. In other words, we
investigate the asymptotic behavior, with respect to the time variable t , of finite energy
solutions and of entropy solutions for nonlinear parabolic equations

⎧
⎪⎨

⎪⎩

ut − �pu + g(u)|∇u|p = μ in (0, T ) × �,

u(0, x) = u0(x) in �,

u(t, x) = 0 in (0, T ) × ∂�

(1.1)

where μ does not depend on time (μ ∈ M0(�)) and T > 0. The dynamics of the
solutions of (1.1) is governed by two completing effects, namely those resulting from
the “p-Laplace” term −�pu and those corresponding to the “natural growth” term
g(u)|∇u|p. Our aim is to figure out whether one of the two terms effects rules the
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asymptotic behavior, according to the bounded Radon measureμ ∈ M0(�)when the
initial data u0 ∈ L1(�). Since the nonlinear term g(u)|∇u|p belongs to L1(Q), it acts
as an absorption term for nonnegative solutions. It is already known that Gagliardo–
Nirenberg estimates are used to get compactness results and large time behaviour on
the solutions u and its gradients∇u for q < qc = p− N

N+1 , and that the parabolic term

ut becomes element of Ls′
(0, T ; W −1,s′

(�)) for s′ = q
p−1 (see [51,54,77], we also

refer to [4,79] formore precise informations). In particular, if p ∈ (1, 2− 1
N+1 ) and the

initial data decays sufficiently regular like L2 or L1(�), the existence and uniqueness
of solutions can’t be established since, if p ≤ 2− 1

N+1 then
N p+p−N

N+1 ≤ 1, this implies
that, in order to obtain the existence of a solution for p close to 1, it is necessary to go
out of the framework of classical Sobolev spaces (see [47, Example 2.16] that can be
easily extended to the parabolic case). For the very singular measure (resp. the initial
singular data), there are two effective partsM0(Q) andMs(Q) (respectively,M0(�)

and Ms(�)), as already noticed in [34,53], and the picture is more complicated. In
this paper, we consider just elements μ in M0(�) (absolutely continuous measures
which does not depend on time), more precisely, if we consider a measure μ without
time variable t , i.e., there exits a bounded Radon measure ν on � such that, for every
Borel set B ⊆ � and 0 < t0, t1 < T , we have μ(B × (t0, t1)) = (t1 − t0)(B) (see
Theorems 2.2 and 2.3 ). Recall that problems with local quadratic term with respect
to the gradient (of the type g(u)|∇u|2) and for sufficiently smooth data (μ ∈ L1(Q))
and nonnegative initial datum, asymptotic behavior results have been proved in [64],
the case when μ is absolutely continuous with respect to the p-capacity and g = 0
is investigated in [81] and the case where μ is general, under extra linear conditions
on the operator and using duality solution u in L2(0, T ; H1

0 (�)), is treated in [82].
Finally in [83] problem (1.1) is studied under some assumptions adopted in the present
paper with g = 0, u0 lies in L1(�) and for changing-sign measure data (without sign
condition on μ). As already pointed out in this last paper, the extension to general
measure data and natural growth term seems to be not always possible. In order to
get compactness results stated in [2, Proposition 5.2], we assume for instance that
u(t, x) ∈ C(0, T ; L1(�))∩ Lq(0, T ; W 1,q

0 (�)), in this case solutions u(t, x) satisfies
the following estimates

‖u(t, x)‖Lm (Q) ≤ C, ∀1 ≤ m < p − 1 + p

N
, ∀(t, x) ∈ Q,

‖∇u(t, x)‖Ls (Q) ≤ C, ∀1 ≤ s < p − N

N + 1
, ∀(t, x) ∈ Q.

(1.2)

Thus the aim of our work is to investigate the link between capacities, asymptotic
behavior of entropy solutions u(t, x) as t tends to infinity and the term measure μ ∈
M0(�) which allows, or which is needed, to have solutions in some appropriate
sense. In fact, the main point is the relationship between the possibility to find a
limit function of the entropy solutions of problems (1.1) using stability properties of
these sequences, as they naturally arise, when one tries to solve (1.1) by comparing
the solutions u(t, x) with subsolutions and supersolutions. For example, letting ( fn)

and un
0 be the standard approximations of f and u0 constructed by convolution, and

consider the approximating problems
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{
(un)t − �pun + g(un)|∇un|p = μn in (0, T ) × �,

un(0, x) = un
0(x) in �, un(t, x) = 0 in (0, T ) × �,

(1.3)

where μn = fn − div(G) with G ∈ L p′
(�)N , we have to study the possibility to

find a solution of the corresponding elliptic problem as limit of a subsequence (un) of
solutions of (1.1) as t, n tend to infinity.We are going to see that, regardless of any other
assumption of g(s) except for (2.14)–(2.15), a compactness result on sequences (un)

is always available. On the other hand, if may happen that u and u are, respectively, a
subsolution and supersolution of (1.1), then u ≤ u ≤ u. Precisely, we prove that if u0
is assumed to be in L1(�), a necessary and sufficient condition to pass to the limit in
(1.3) and to get a solution of (1.1) is the sign condition of g(s) and the positiveness of
g′(s). In particular, ifμ0 ∈ M0(�) the assumption g′(s) > 0 implies that if u1, u2 are,
respectively, the subsolution and supersolution, then u1 ≤ u2 and the whole sequence
u(T , x) converges to v in L1(�) where v is the solution of the corresponding elliptic
(stationary) problem. Let us recall that this kind of comparison results of solutions
plays a crucial role in the existence theory for nonlinear equations with integrable
and measure data. As for elliptic initial boundary value problems, these calculations
are studied in [30] in the case of dual data μ ∈ H−1(�) (recall that μ ∈ H−1(�)

if and only if f = div(G) where G ∈ L2(�)N ) and natural term with quadratic
growth condition, these techniques have been adapted by [63] for parabolic problems.
Here we generalize these results to the case of measures under the assumptions that
the sequence (μn) converges to μ in what is called the narrow topology of measures
and satisfies a sort of decomposition result with respect to the elliptic (parabolic) p-
capacity, loosely speaking, the first part ofμ is an element of L1(�) and the second part
is a divergentiel form of vector fields of L p′

(�)N . These requirements are satisfied, for
instance, by elements ofM0(�) and also by approximations μn constructed through
convolution. Moreover, we present, in Appendix, an asymptotic result using a specific
approximation on the data, based on the notion of G-convergence of operators and
measure data in duality form, andwe prove that regularity of solutions and assumptions
on a, g and μ are actually necessary in some sense to get an asymptotic result since
the G-convergence of the data may be false if un is only assumed to converge to u in
L p(0, T ; W 1,p

0 (�)) without other convergence of the momenta. As consequence of
these remarks, we are led to the problem of finding a suitable definition of solutions of
(1.1) whichmay provide asymptotic behavior and stability properties at the same time,
and this is why we choose to set our results in the framework of the so-called entropy
solutions. Let us recall that the definition of entropy solutions was given in [38] in the
context of elliptic equations and then adapted to the parabolic problems in [94], while
in the theory of boundary value problemswithmeasure data it has often used in order to
get existence and uniqueness of solutions, see [24–27] for Sobolev spaces and [16,70]
for generalized Sobolev spaces (Orlicz spaces). Finally, an extension of this framework
has been given in [48] in the case of diffuse measure data and in [4,79] for singular
measures. We follow the approach of this last papers, using this notion of solutions,
when dealing with μ ∈ M0(�) and showing how the entropy formulation emphasize
the asymptotic behavior properties mentioned above by selecting sub, super and stable
entropy solutions. We would like to emphasize that the asymptotic results obtained
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in the present paper could be classified in the blowing-up, fractional or variational
inequality theories, see [5,8,86].

The paper is organized as follows. In Sect. 2 we state some basic notions and
tools. Section 3 is devoted to the parabolic problem in finite energy sense with a
smooth right-hand side and with absorbing lower order term, where in this case we
show comparison results with respect to the weak formulation. These results allow
us to obtain in, Theorem 3.1, an asymptotic behaviour result in L1(�) with finite
energy solutions for right-hand measures. In Sect. 4, we perform the analysis of the
parabolic problem (1.1) in entropy sense with again appropriate sub and super-entropy
solutions in determined spaces. By Comparison lemma and Potential analysis (“heat
Kernel techniques”) we deduce in, Theorem 4.4, a general asymptotic result of entropy
solutions for parabolic equations (1.1). Section 5 (Appendix) ends the paper with the
treatment of a model example of monotone operators with a specific “homogeneity”
by using G-convergence properties.

2 Preliminaries

As already outlined, the asymptotic behaviour of solutions to (1.1) is determined not
only by the exponent p of the nonlinear terms −�pu and |∇u|p but also by the sign
condition of g, size N and shape of the initial and source conditions. In the present
section, we attempt to describe this variety of different effects of this terms, imposing
particular Leray–Lions assumptions on a. In order to present our results in the most
transparent form, we divide this section into subsections.

2.1 Notations

Given a real Banach space V , we will denote by C∞(R; V ) the space of functions
u : R �→ V which are infinitely many times differentiable (according to the definition
of Fréchet differentiability in Banach spaces) and by C∞

c (R; V ) the space of func-
tions in C∞(R; V ) having compact support. For a, b in R, C∞

c ([a, b]; V ) will be the
space of restrictions to [a, b] of functions of C∞

c (R; V ) and C([a, b]; V ) the space of
continuous functions from [a, b] into V . Then for 1 ≤ p < +∞, L p(a, b; V ) is the
space of measurable functions u : [a, b] → V such that

‖u‖L p(a,b;V ) =
(∫ b

a
‖u‖p

V dt

) 1
p

< +∞,

while L∞(a, b; V ) is the space of measurable functions such that

‖u‖L∞(a,b;V ) = sup-ess
[a,b]

‖u‖V < +∞.

Of course both spaces are meant to be quotiented, as usual, with respect to the almost
everywhere equivalence. The reader can find a presentation of these topics in [46]. Let
us recall that, for 1 ≤ p ≤ ∞, L p(a, b; V ) is a Banach space, moreover if 1 ≤ p < ∞
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and V ′ (the dual space of V ) is separable, then the dual space of L p(a, b; V ) can be
identified with L p′

(a, b; V ′). Now, given a function u in L p(a, b; V ), it is possible to
define a time derivative of u in the space of vector valued distributions D′(a, b; V ),
which is the space of linear continuous functions from C∞

c (a, b) into V (see [97]). In
fact, the definition is the following

〈ut , ψ〉 = −
∫ b

a
uψt dt ∀ψ ∈ C∞

c (a, b)

where the equality is meant in V . If u belongs to C1(a, b; V ) this definition clearly
coincides with the Fréchet-derivative of u. In the following, when ut is said to belong
to the space Lq(a, b; Ṽ ) (Ṽ being a Banach space) this means that there exists a
function z in Lq(a, b; Ṽ ) ∩ D′(a, b; V ) such that

〈ut , ψ〉 = −
∫ b

a
uψt dt = 〈z, ψ〉 ∀ψ ∈ C∞

c (a, b).

Let u ∈ L p(a, b; V ) be such that ut belongs to L p′
(a, b; V ′), then u belongs to

C([a, b]; V ). This result also allows to deduce, for functions u and v enjoying these
properties, the integration by parts formula

∫ b

a
〈v, ut 〉dt +

∫ b

a
〈u, vt 〉dt = (u(b), v(b)) − (u(a), v(a)) (2.1)

where here 〈·, ·〉 is the duality between V and V ′. Note that (2.1) makes sense, its proof
relies on the fact thatC∞

c ([a, b]; V ) is dense in the space of functions u ∈ L p(a, b; V )

such that ut belongs to L p′
(a, b; V ′) endowed with the norm ‖u‖ = ‖u‖L p(a,b;V ) +

‖ut‖L p′
(a,b;V ′) together with the fact that (2.1) is true for u, v in C∞

c ([a, b]; V ). We
will see in the next section a possible extensions of these spaces in the context of
parabolic initial boundary value problemswith generalized divergence form operators.
Finally, for a real number r , we denote by r+ := max{r , 0} its positive part and by
r− := max{−r , 0} its negative part. The letterC will denote generic positive constants,
which do not depend on t and may vary from line to line during computations.

2.2 Capacity

The concept of capacity is indispensable to an understanding of local behavior prop-
erties of functions in a Sobolev space. In a sense, capacity takes the place of measure
in Egorov and Lusin type theorems for Sobolev functions. Various capacity estimates
also play a decisive role in studies of partial differential equations. We develop here
the variational connection with the elliptic (resp. parabolic) Sobolev spaces, in partic-
ular, we assume that u is p-admissible with respect to the measure μ if obtained by
dμ(x) = w(x)dx (resp. dμ(t, x) = w(t, x)dxdt) (we refer to [54,100] for elliptic
(p, μ)-capacity and [49,84] for parabolic (p, μ)-capacity).
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Definition 2.1 Suppose that K is a compact subset of �. Let

W0(K ,�) = {u ∈ C∞
c (�) : u ≥ 1 on K }

and define

capp,μ(K ,�) = inf
u∈W0(K ,�)

∫

�

|∇u|pdμ.

Further, if U ⊂ � is an open set

capp,μ(U ,�) = sup
K⊂U⊂�
K compact

capp,μ(K ,�),

and finally, for an arbitrary set E ⊂ �

capp,μ(E,�) = inf
E⊂U⊂�

U open

capp,μ(U ,�).

The number capp,μ(E,�)ν[0,∞] is called the (variational) (p, μ)-capacity of the
condenser (E,�), clearly capp,μ(E,�) < +∞ if E ⊂ �. There is no ambiguity in
having two different definitions for the (p, μ)-capacity of a condenser (K ,�) when
K is compact that they give the same number capp,μ(K ,�), see [54, Theorem 2.2].
Using an extension in time, we observe that the set W0(K ,�) in the definition above
can be replaced by the larger sets

{
W0(K , Q) = {u ∈ C∞

c (Q) : u ≥ 1 a.e. in K },
W (K , Q) = {u ∈ W : u ≥ 1 a.e. in K } (2.2)

where W = {u ∈ L p(0, T ; W 1,p
0 (�;μ) ∩ L2(�)), ut ∈ L p′

(0, T ; (W 1,p
0 (�;μ) ∩

L2(�))′)} endowed with its natural norm ‖u‖W = ‖u‖
L p

(
0,T ;W 1,p

0 (�;μ)
) +

‖ut‖L p′
(0,T ;(W 1,p

0 (�;μ)∩L2(�))′) without affecting capp,μ(K , Q). Indeed, let u ∈
W (K , Q); we may clearly assume that inf ∅ = +∞. Then choosing characteristic
function χK such that χK = 0 on Q\K and χK = 1 in neighborhood of K , if
ϕ ∈ C∞

0 (Q) is a sequence of smooth functions with compact support on Q such that
ϕ ≥ χK , then

capp,μ(K , Q) ≤
∫

Q
‖ϕ‖W (K ,Q). (2.3)

It is also useful to observe that if U ⊆ Q is an open set, the parabolic (p, μ)-capacity
is such that

capp,μ(U , Q) = inf {‖u‖W (K ,Q)}.
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Then for any Borel set B ⊆ Q, we can define

capp,μ(B, Q) = inf {capp,μ(U ), B ⊆ U ⊆ Q}.

Let us state some further results about parabolic p-capacity; the first one is the char-
acterization of the relationship between sets of zero parabolic capacity and sections
of the parabolic cylinder with both zero LN -measure sets and zero parabolic (p, μ)-
capacity sets, while the second one shows that any function in W (K , Q) admits a
capp-quasi continuous representative. Let us recall that a function u is called capp,μ-
quasi continuous if for every ε > 0 there exists an open set Fε , with capp(Fε) ≤ ε

and such that u|Q\Fε (the restriction of u to Q \ Fε) is continuous in Q \ Fε . As usual,
a property will be said to hold capp,μ-quasi everywhere if it holds everywhere except
on a set of zero capacity. The third one states that measures inM0(Q) which does not
depend on time coincides with measures in �.

Theorem 2.2 Let B be a Borel set in � and let t0 ∈ (0, T ). One has

capp,μ({t0} × B) = 0 if and only if meas �(B) = 0. (2.4)

Proof See [49, Theorem 2.15]. ��
Notice that, by virtue of Theorem 2.2, if a measure is concentrated on a section

{t0} × �, it does not charge sets of zero parabolic capacity if and only if it belongs to
L1(�).

Theorem 2.3 Let B ⊂ � be a Borel set, and 0 ≤ t0 < t1 ≤ T . Then we have

capp,μ((t0, t1) × B) = 0 if and only if capp,μ(B) = 0. (2.5)

Proof See [49, Theorem 2.16]. ��
Hence from now on, we shall identify measures in M0(Q) and M0(�) and for

more simplicity we will denotes capp instead of capp,μ and W instead of W (K , Q).

2.3 Leray–Lions operators

Let� be a bounded open subset ofRN , N ≥ 2, with smooth boundary, we will denote
by ∂� its lateral surface, p and p′ be two real numbers with 1

p + 1
p′ = 1. In what

follows, |ζ | and ζ · ζ ′ will denote respectively the Euclidean norm of a vector ζ ∈ R
N

and the scalar product between ζ and ζ ′ ∈ R
N . Let then a : � × R

N �→ R
N be a

Carathéodory function (i.e. measurable with respect to x for every fixed ζ in RN and
continuous with respect to ζ for almost every fixed x in �) such that the following
assumptions hold true

a(x, ζ ) · ζ ≥ α|ζ |p α > 0, (2.6)

|a(x, ζ )| ≤ β|ζ |p−1 β > 0, (2.7)
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(a(x, ζ ) − a(x, η)) · (ζ − η) > 0 (2.8)

for every ζ, η in R
N (ζ �= η) and almost every x in �. Thanks to (2.6)–(2.8),

it is possible to define on the space W 1,p
0 (�) and L p(0, T ; W 1,p

0 (�)) the oper-

ator A(u) = −div(a(x,∇u)), which then maps W 1,p
0 (�) into W −1,p′

(�)) and

L p(0, T ; W 1,p
0 (�) into L p′

(0, T ; W −1,p′
(�)where A is bounded and coercive. Given

f in L p′
(0, T ; W −1,p′

(�)) and u0 in L2(�), by a weak solution of
⎧
⎪⎨

⎪⎩

ut − div(a(x,∇u)) = f in Q := (0, T ) × �,

u = 0 on � := (0, T ) × ∂�,

u(0) = u0 in �,

(2.9)

we mean a function u in L p(0, T ; W 1,p(�)) which satisfies the equation (2.9) in the
sense of distributions, that is

−
∫

Q
uψtϕ dxdt +

∫

Q
a(x,∇u) · ∇ϕψ dxdt

=
∫ T

0
〈 f , ϕ〉ψ dt ∀ψ ∈ C∞

c (0, T ), ∀ϕ ∈ C∞
c (�) (2.10)

where 〈·, ·〉 denotes the duality betweenW 1,p
0 (�) andW −1,p′

(�). As a consequence of

equation (2.10) we deduce that ut (which initially only belongs toD′(0, T ; W 1,p
0 (�)))

in fact belongs to L p′
(0, T ; W −1,p′

(�)) and it follows that
∫ T

0
〈ut , v〉dt +

∫

Q
a(x,∇u) · ∇v dxdt =

∫ T

0
〈 f , v〉dt ∀v ∈ L p(0, T ; W 1,p

0 (�)).

Moreover from the injection result previouslymentioned, if p ≥ 2N
N+2 thenu belongs to

C([0, T ]; L2(�)), which gives a meaning to the initial condition u(0) (i.e. u(0) = u0
in L2(�)). Nevertheless, even if p < 2N

N+2 , it is possible to find a weak solution u of
(2.9) which belongs to C([0, T ]; L2(�)) as stated in the following classical result by
J. Leray and J.-Louis Lions.

Theorem 2.4 Let (2.6)–(2.8) hold true, and let f be in L p′
(0, T ; W −1,p′

(�)). Then
there exists a weak solution u in L p(0, T ; W 1,p

0 (�)) ∩ C([0, T ]; L2(�)) of problem
(2.9).

Proof See [61,62]. ��
Remark 2.5 The equation appearing in (2.9) can be considered both in the space of
vector valued distributions, as we said before in (2.10), and in the space of distributions
in Q, that is

−
∫

Q
u

∂ζ

∂t
dxdt +

∫

Q
a(x,∇u) · ∇ζ dxdt =

∫ T

0
〈 f , ζ 〉 ∀ζ ∈ C∞

c ((0, T ) × �).

(2.11)
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2.4 Entropy solutions

In order to obtain existence and asymptotic results, an entropy formulation is proposed,
it is very close to the one which has been introduced for the elliptic case in [38]. In
the case where a(x,∇u) does not depend on t , existence and uniqueness of entropy
solutions have been proved, using semigroup theory in [17], this formulation gives a
solution for problem (2.9) when f ∈ L1(Q).

Definition 2.6 For f ∈ L1(Q), u0 ∈ L1(�) and � an open bounded set of RN , we
define an entropy solution of (2.9) as a function u ∈ C(0, T ; L1(�)) such that for all
k > 0, Tk(u) ∈ L p(0, T ; W 1,p

0 (�)) and

∫

�

�k(u − ϕ)(T ) dx −
∫

�

�k(u0 − ϕ(0)) dx +
∫ T

0
〈ϕt , Tk(u − ϕ)〉 dt

+
∫

Q
a(x,∇u) · ∇Tk(u − ϕ) dxdt ≤

∫

Q
f Tk(u − ϕ) dxdt

(2.12)

where �k(s) = ∫ s
0 Tk(τ )dτ is the primitive of the truncation function Tk(s) for all

k > 0 and for every ϕ ∈ L p(0, T ; W 1,p
0 (�)) ∩ L∞(Q) ∩ C([0, T ]; L1(�)) such that

ϕt ∈ L p′
(0, T ; W −1,p′

(�)).

Then we have the following result.

Theorem 2.7 Let � be an open bounded set of RN , f ∈ L1(Q), u0 ∈ L1(�) and a
satisfies (2.6)–(2.8), then there exists one entropy solution of problem (2.9).

We consider now the nonlinear equation (1.1) with initial condition u0 in L1(�)

and right-hand side as a smooth measure μ on � which is absolutely continuous with
respect to the p-capacity associated with the operator −div(a(x,∇u)). We extend the
previous notion of entropy solution, which is a generalization of Definition 2.6, given
in [94]. To this end, we define

E = {ϕ ∈ L p(0, T ; W 1,p
0 (�)) ∩ L∞(Q)

such that ϕt ∈ L p′
(0, T ; W −1,p′

(�)) + L1(Q)}. (2.13)

According to [85], one has E ⊂ C([0, T ]; L1(�)).
Since we would like to have g(u)|∇u|p belongs to L1(Q) and |∇u| ∈ L p′

(Q), we
thus say that (1.1) is a nonlinear parabolic problem with lower order term depending
on |∇u| (with power-like nonlinearity with respect to |∇u|), we shall consider the
following assumptions on the real C1-function g(s)

g(s)s ≥ 0 ∀s ∈ R, (2.14)

g′(s) > 0 ∀s ∈ R, (2.15)

and we denote by u = u(t, x) the corresponding solutions to the parabolic problem
(1.1).
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Definition 2.8 Under hypothesis (2.6)–(2.8) and (2.14)–(2.15), if u0 ∈ L1(�), μ ∈
M0(�) and ( f ,−div(G)) is a decomposition of μ according to the p-capacity, an
entropy solution of (1.1) is a measurable function u such that

g(u)|∇u|p ∈ L1(Q) for all p > 1, (2.16)

Tk(u) ∈ L p(0, T ; W 1,p
0 (�)) for all k ≥ 0, (2.17)

t ∈ [0, T ] �→
∫

�

�k(u − ϕ)(t, x) dx

(2.18)

is (a.e. equal to) a continuous function, and for all k ≥ 0 and every ϕ ∈ E

∫

�

�k(u − ϕ)(T , x)dx −
∫

�

�k(u0(x) − ϕ(0, x))dx +
∫ T

0
〈ϕt , Tk(u − ϕ)〉dt

+
∫

Q
a(x,∇u) · ∇Tk(u − ϕ)dxdt +

∫

Q
g(u)|∇u|pTk(u − ϕ)dxdt

≤
∫

Q
f Tk(u − ϕ)dxdt +

∫

Q
G · ∇Tk(u − ϕ)dxdt .

(2.19)

Remark that in (2.19), we denote by 〈·, ·〉 the duality product between W −1,p′
(�)+

L1(�) and W 1,p
0 (�) ∩ L∞(�) and the definition chosen of entropy solutions uses an

inequality instead of an equality, this is a standard choice for entropy solutions because
it’s sufficient to obtain the uniqueness (in the case when a does not depend on u and
μ ∈ L1(Q) for example, see [94]), andmakes the proof of existence quite easier (there
is no need to prove the strong convergence of gradient of the approximate solutions).

3 Case of finite energy solutions (Results and comments)

In this section we state a comparison principle result for the first energy solutions
and an asymptotic behaviour theorem which allows us to reconstruct a limit function
from the knowledge of its parabolic extension. The proofs are sketched, since they
are partially identical to those given in [64,81] when the cases L p′

(0, T ; W −1,p′
(�)),

L1(Q) and measure as data are treated. Indeed as we said in the previous section
all relevant properties (for regular measures) can be extended to general (singular)
measures, see [82]. We begin with a potential theorem which will be used in the proof
of the main result, let us recall that p� denotes the Sobolev conjugate exponent of p,
that is p� = pN

N−p , and the limit function of functions u(t, x) in L1(�)will be denoted
as usual by v(x).

Theorem 3.1 Let μ ∈ M0(�) be a nonnegative measure independent of the variable t ,
u0 ∈ L1(�) be a nonnegative initial function, u(t, x) be the weak solution of problem
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(1.1) and v(x) the weak solution of the corresponding elliptic problem

{
− div(a(x,∇v)) + g(v)|∇v|p = μ in �,

v = 0 on ∂�.
(3.1)

Then

lim
T →+∞u(T , x) = v(x) in L1(�). (3.2)

Moreover, if μ ∈ M0(�) be independent on t and u0 ∈ L1(�) “without sign”
assumptions, the result holds true, at least, in L p�

(�).

Remark 3.2 (i) Recall that v is an entropy solution of the boundary value problem (3.1)
if v is finite a.e., its truncated function Tk(v) ∈ W 1,p

0 (�) and it holds
∫

�

a(x,∇v) · ∇Tk(v − ϕ)dx +
∫

�

g(v)|∇v|pdx ≤
∫

�

Tk(v − ϕ)dμ (3.3)

for every ϕ ∈ W 1,p
0 (�) ∩ L∞(�) and for all k > 0.

(ii) Observe that v(x) is a solution of (1.1) with itself as initial data, being v(x)

independent of t .
(iii) The convergence of solutions u(t, x) to v(x) could be stronger than the one
obtained under the assumptions of Theorem 3.1.
(iv) Thanks to the sign condition of μ and g we have both u(t, x) and v(x) are
nonnegative (it’s sufficient to take Tk(u−) as test function in (1.1) (resp. in (3.1)) and
using the sign of u0 to deduce that u−(t, x) = 0 a.e. in Q (resp. v−(x) = 0 a.e. in
�)).
(v) Depending on the regularity of the data, the convergence in norm to the stationary
solution can be improved, for example if μ ∈ Lq(�) with q > N

p , the convergence of
u(t, x) in (3.2) is at least ∗-weakly in L∞(�) and a.e. in �.

Now, let us state the following definition of subsolutions and supersolutions of
problem (1.1) that will be useful in the sequel to prove the comparison result cited
above.

Definition 3.3 We say that z ∈ L p(0, T ; W 1,p
0 (�)) is a subsolution (resp. w ∈

L p(0, T ; W 1,p
0 (�)) is a supersolution) of problem (1.1) if g(z)|∇z|p ∈ L1(Q) (resp.

g(w)|∇w|p ∈ L1(Q)) and

{
zt − �pz + g(z)|∇z|p ≤ μ in Q = (0, T ) × �,

z(0, x) ≤ u0(x) in �, z(t, x) ≤ 0 on (0, T ) × ∂�,
(3.4)

{
wt − �pw + g(w)|∇w|p ≥ μ in Q = (0, T ) × �,

w(0, x) ≥ u0(x) in �, w(t, x) ≥ 0 on (0, T ) × ∂�,
(3.5)
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in the weak sense, i.e., z(t, x) (resp. w(t, x)) satisfies

∫ T

0
〈zt , ϕ〉dt +

∫

Q
∇z · ∇ϕdxdt +

∫

Q
g(z)|∇z|pϕdxdt ≤

∫

Q
ϕdμ (3.6)

(

resp.
∫ T

0
〈wt , ϕ〉dt +

∫

Q
∇w · ∇ϕdxdt +

∫

Q
g(w)|∇w|pϕdxdt ≥

∫

Q
ϕdμ

)

(3.7)

for every ϕ ∈ L p(0, T ; W 1,p
0 (�)) ∩ L∞(Q) with ϕ ≥ 0 a.e. in Q.

According with results in literature, we are able to state and prove an (elliptic-
parabolic versions) of comparison lemma that will play a key role in the proof of
Theorem 3.1. It concerns the particular case for entropy sub and super solutions
with restriction on the sign of the data (nonnegative measures) and that imply the
uniqueness of solutions for problem (1.1) (i.e. solutions of (1.1) turn out to be, respec-
tively, subsolutions and supersolutions in the sense of Definition 3.3). Recall that
results about comparison principle for weak sub\super solutions of nonlinear elliptic–
parabolic problems with lower order terms was mainly devoted to cases in which
solutions are smooth (say for instance continuous) with lower order terms which has,
at most, a power growth with respect to the gradient; more specially for Hamiltonian
Carathéodory functions H(x, ζ ) : � × R

N �→ R (resp., H(t, x, ζ ) with respect to
the time variable t). Let us mention (in the elliptic framework) the pioneering work
of Barles and Murat [30, Theorem 1.1, Theorem 2.3 and Theorem 3.1] where general
structure conditions on the lower order term were given to ensure that the comparison
principle holds. Moreover, as it was observed on that paper, the method (called “lin-
earized” approach) relies on a change of unknown to reduce the problem to the former
good situation (transformed problem). Recall also that, in [30], see also [20,35], the
authors considers μ = 0 or μ ∈ H−1(�), in this cases, the proof consists in mak-
ing a change of variable u = ϕ(v) in the model equation where ϕ is a C2-function
in R with ϕ′ > 0 and proving that the transformed equation satisfies the structure
condition. This ideas was refined in [21] and a slightly improvement of the condition
of [30] is proved for data small enough. A different kind of comparison principle is
proved in [18] for lower order term with quadratic growth with respect the last vari-
able of the form g(u)|∇u|2 for some nonnegative continuous function g in (0,+∞).
In that paper, the authors imposed an integrability condition at zero (this result also
handles the case that g is singular); however, their techniques require strongly that
the lower order function and the differential operator do not depend on x and some
further extensions where done in [9–12]. We stress that, even when p = 2 and for
sufficiently smooth solutions, the comparison principle is not trivial without assuming
suitable assumptions, see [7,57] for 1 < p < 2. In the case p > 2, the comparison
principle is more difficult since the operator turns out to be nonlinear and degenerate.
There are a little results in the literature giving comparison principles when p > 2
(except, the new papers of T. Leonori and his co-authors in [63,65–67], and the paper
of A. Porretta [87] where some model examples are contained when the lower order
term has precisely the growth as |∇u|p). A rather general structure conditions on
the lower order functions which imply the comparison principle for weak solutions,
when p > 2, was alternatively used either the approach of Barles and Murat [30],
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based on a linearization principle coupled with change of variable v = ϕ(u) with
ϕ is a C3-monotone function such that ϕ′ �= 0, this approach mostly relying on the
linearization of the operator (it suggests to use the fundamental work [50] to get a
weight estimates on |∇u|p−2 for a useful linearization, and this is a key-point in order
to get the comparison principle). We refer the reader to [67] for a totally description of
this approach under general regularity conditions and for different issues. In this last
paper, different choices of lower order terms are considered which allow to observe
interesting phenomena compared with other possible choice of data, see [67, Theo-
rem 1.1, Theorem 1.2, Theorem 1.3]. Observe that, based on a “convexity” argument,
the result of [67, Theorem 1.3] applies in particular to the stationary case of (1.1) when
μ ≥ 0. Then, it is remarkable that conditions of [67] extends our limiting case |∇u|p

to the case |∇u|q with 1 ≤ q < p − 1, p − 1 ≤ q < p and q ≥ p. The proof of
[67, Theorem 1.1] follows the approach of [30] and can be applied, with care, to our
problem, on the other hand [67, Theorem 1.3] uses a “convexity” approach needed to
prove the stationary comparison Lemma 3.5 of problem (3.1). Finally, in order to deal
with problem (1.1), we are devoted a special attention to handle the elliptic case, so the
extension of time-dependent comparison principle can be easily deduced in the con-
text of parabolic operators. Note that, in this last framework, it is necessary to modify
the structure conditions given in [67, Sections 1,2] by using the ideas already men-
tioned and suggested by Barles and Murat at the end of their work [30, Section 3.3],
especially, the change of the structure condition using the conjugate exponent p′ and
the specific choice of “exponential-type” test functions in Taylor formula for both a
and the lower order term, and then it is easy to get similar results for problems like
(1.1). According to the stationary results, we stress that a version of comparison (and
a uniqueness as a byproduct) result specially devoted to the model problem

− �u + g(u)|∇u|2 = f in � (3.8)

where f belongs to H−1(�) and g : R �→ R is C1-function such that g(0) = 0,
g′(u) > 0 for all u ∈ R, see [30, Theorem 2.6 and Remark 2.7], was proved for
(weak) solutions u ∈ H1(�) such that g(u)|∇u|2 ∈ L1(�) using the convexity of the
function

∫ t
0 g(x)dx and a specific structure condition of the form

g′(u)|χ |2 − 1

2n
(2g(u)|χ | − z(u)χ |2 > 0 a.e. x ∈ �,

(3.9)

for all u ∈ R, for every χ ∈ R
n with χ �= 0, for some n > 0 and some continu-

ous function z : R �→ R such that exp
(
− 1

n

∫ t
0 z(s)ds

)
∈ L∞(R) ∩ L1(R) (these

conditions are satisfied, for instance, with z = 2g). By using this argument, an ellip-
tic comparison principle result has been proved by Leonori & Petitta, [64, Lemma
2.2], for unbounded entropy sub and supersolutions with no restrictions on the sign
of the datum and adapted to the parabolic case with general nonnegative data in [64,
Lemma 2.3] for problems of the form

ut − �u + u|∇u|2 = f in � (3.10)
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with L1-data that do not depend on time, while the lower order term satisfies a structure
condition as in (3.9). Their result is proved by looking for an inequality solved by the
difference between the bounded parts of the sub and supersolutions and by using the
linearization of the lower order term inspired by the ideas of [30]. Let us recall that
this is a typical approach for singular operators (i.e. p ≤ 2); however, it does not
seem that the case of general Leray–Lions operators (i.e. degenerate) can be treated
in such a nice way since the invertibility does not make sense for nonlinear operators.
An interesting particular case where a similar result may proved is the case where a
does not depend on the solution and satisfies

(a(x, ζ ) − a(x, η)) · (ζ − η) ≥ γ |ζ − η| γ > 0 (3.11)

for almost every x ∈ � and for all ζ , η in R
N (this is, for example, the case of the

p-Laplace operator for p ≥ 2), which can be extended to the model example

− div(a(x,∇u)) + g(u)|∇u|p = f (x) in � (3.12)

where g satisfies the assumptions (2.14)–(2.15). In this case the maximum principle
holds in W 1,p(�) ∩ L∞(�) provided that for some n > 0

∂b

∂v
− 1

n

∣
∣
∣
∣
∂b

∂ζ

∣
∣
∣
∣

p′

> 0 a.e. x ∈ �, ∀v ∈ R, ∀χ ∈ R
N (3.13)

where

⎧
⎨

⎩

a(x, ζ ) = ϕ′(v)a(x, ϕ′(v)∇v),

b(x, ζ ) = −ϕ′′

ϕ′ (v)a(x, ϕ′(v)∇v) · ∇v + 1

ϕ′(v)
g(ϕ(v))|ϕ′(v)∇v|p − f (x)

(3.14)

and v is the solution of the transformed equation obtained, for convenient, by change
of function u = ϕ(v) satisfying a structure condition, this equation has the form

− div
(
a(x, ϕ′(v)∇v)

) + b(x, ϕ′(v)∇v) = f in �. (3.15)

In this case the computations follows along the lines of those of [64, Theorem 1.2],
we just specify the choice of a specific test function using S(ϕ) = exp(−αϕ−k) for
some constants α > 0 and k > 0 where k depends only on p. This result allows us to
propose a different approach to prove Lemma 3.5 and to deduce a natural extension
to the parabolic case. We give now the comparison principle, proved in [67] as a main
result and stated here as a Lemma, which concern general Hamiltonian equations,
namely

− �pu + H(x, u,∇u) = F ∈ W −1,p′
(�) in �. (3.16)
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Lemma 3.4 Assume that H is a C1-function which satisfies growth conditions and
that F belongs to W −1,p′

(�). Assume moreover that, for every ε > 0, there exists Cε

which satisfies

H(x, s, ζ ) − (1 − ε)p−1H

(

x,
t + εk

1 − ε
,

η

1 − ε

)

≤ Cε |ζ − η|p−1 (1 + |ζ − η|) ∀s ≤ t (3.17)

for k > 0, x ∈ �, ζ , η ∈ R
N and for {s, t+εk

1−ε
} ∈ [−M, M] where M =

max
(‖u1‖L∞(�), ‖u2‖L∞(�)

)
. If u1 and u2 belong to W 1,p(�) ∩ L∞(�) and are,

respectively, a subsolution and a supersolution of (3.16) such that (u1 − u2)
+ ∈

W 1,p
0 (�), then

u1 ≤ u2 a.e. in �. (3.18)

Proof See [67, Theorem 1.3]. ��

Observe that condition (3.17) implies that H(x, s, ζ ) is nondecreasing in s; on the
other hand if H is independent of s, it implies that H(x, 0) ≤ 0. This later case applies
in particular to themodel problem (3.12) when f ∈ L1(�) and f is nonnegative.More
generality, Lemma 3.4 can be applied to the equation −�pu + g(u)|∇u|q = μ where
g is nondecreasing, μ ∈ M0(�) with μ ≥ 0 and q ∈ [p − 1, p] (see [67, Corollary
3.1], the limiting case q = p −1 is quite delicate but it is admitted since the properties
of the character g may give a contribution for this limit case). This choice, that has
been mainly inspired by [95], uses both an argument via linearization and a method
that exploits a sort of convexity of the Hamiltonian term with respect to the gradient.
Recall that the two approaches (i.e. [63] and [67]) are, in some sense, complementary
since the first one (“the linearization”) works in the case 1 < p ≤ 2 while the second
one (the “convexity”) deals with p ≥ 2. Of course, the only case in which both of
them are in force is when p = 2. The proof of the following lemma, except for its very
beginning and the use of a measure as data instead of just Lebesgue function is similar
to the proof of [67, Theorem 1.3] by assuming that g(u) ≥ 0 and there is no loss in
assumption the positivity of g. In fact, let us consider s0 := inf{s ∈ R : g(s) = 0};
if s0 > −∞, then s0 is a subsolution since μ ≥ 0 and so ũ1 := max(u1, s0) is still
a subsolution. Since g(u2) ≥ 0 implies u2 ≥ s0, it would still hold that ũ1 ≤ u2 at
∂�. Therefore, we could replace u1 with ũ1 for which g(̃u1) ≥ 0 and, by proving
u2 ≥ ũ1, we still deduce u2 ≥ u1. Thus, in the following, we can and we will assume
that g(u) ≥ 0 a.e. in �.

Lemma 3.5 Assume that μ ∈ M0(�) be a nonnegative measure. If u1, u2 belong to
W 1,p(�) ∩ L∞(�) and are, respectively, the entropy subsolution and supersolution
of problem

− div(a(x,∇u)) + g(u)|∇u|p = μ in �
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where g is a continuous nondecreasing function such that (2.14)–(2.15) holds and
such that (u1 − u2)

+ ∈ W 1,p
0 (�). Then

u1 ≤ u2 a.e. in �. (3.19)

In particular, (3.19) has at most one (entropy) solution in W 1,p
0 (�) ∩ L∞(�).

Proof 1st approach (Convexity method). Let us now explain how the proof of [63]
has to be modified in the present framework by following the ideas of [67, Theorem
1.3]. In order to do it, we recall the definitions of u1 and u2 in (3.1) and we focus on
the one related to the entropy subsolution u1, we consider uε

1 = (1 − ε)u1 − εk with
ε ∈ (0, 1) and k ≥ ‖u−

1 ‖L∞(�) (in order to get uε
1 ≤ u1) and wemultiply its inequality

by (1− ε)p−1. By taking into account its difference with the second inequality solved
by u2, we get

−div(a(x,∇uε
1)) + div(a(x,∇u2)) ≤ g(u2)|∇u2|p

−(1 − ε)p−1g

(
uε
1 + εk

1 − ε

) ∣
∣
∣
∣

∇uε
1

1 − ε

∣
∣
∣
∣

p

, (3.20)

recalling this inequality and defining mε = ess-sup�(uε
1 − u2). We want to conclude

that (uε
1 − u2 − k)+ = 0, then, we suppose, by contradiction, that mε > 0. Since

w = (uε
1 − u2 − k)+ belongs to W 1,p

0 (�) ∩ L∞(�), (uε
1 − u2 − k)+ can be used as a

test function in the above inequality, with k ∈ (0, mε), obtaining

∫

�

(
a(x,∇uε

1) − a(x,∇u2
)
) · ∇(uε

1 − u2 − k)+dx

≤
∫

�

(

g(u2)|∇u2|p − (1 − ε)p−1g

(
uε
1 + εk

1 − ε

) ∣
∣
∣
∣
|∇uε

1|
1 − ε

∣
∣
∣
∣

p)

(uε
1 − u2 − k)+dx .

(3.21)

Now, let us fix k > M = max(‖u1‖L∞(�), ‖u2‖L∞(�)). Then, for every s ≤ t we get
t ≥ −M , and so t < t+εk

1−ε
∈ [−M, M]. We assume g is nondecreasing and, without

loss of generality, to be positive. So that, for every ε > 0 and for any s ≤ t , we get

g(s) ≤ g(t) < g

(
t + εk

1 − ε

)

(3.22)

because −M ≤ t < t+εk
1−ε

(due to k > M). Then, we deduce that

g(u2)|∇u2|p − (1 − ε)p−1g

(
t + εk

1 − ε

) ( |∇uε
1|

1 − ε

)p

≤ g

(
t + εk

1 − ε

) [

|∇u2|p − |∇uε
1|p

1 − ε

]

. (3.23)
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Using a convexity argument (recall that p > 2), we obtain

|∇u2|p ≤ (1 − δ)

( |∇uε
1|

1 − δ

)p

+ δ

( |∇u2 − ∇uε
1|

δ

)p

∀δ ∈ (0, 1). (3.24)

Then, choosing δ > 0 such that

(1 − δ)p−1 = 1

1 − ε

and using the fact that g(s) ≥ 0 for all s ∈ R, we finally obtain

g

(
t + εk

1 − ε

) [

|∇u2|p − |∇uε
1|p

1 − ε

]

≤ Cε |∇u2 − ∇uε
1|p

≤ Cε |∇u2 − ∇uε
1|p−1(1 + |u2 − uε

1|). (3.25)

In order to estimate the right hand side, we have

∫

�

Cε |∇u2 − ∇uε
1|pdx

≤
∫

�

Cε

(
|∇u2|p−2∇u2 − |∇uε

1|p−2∇uε
1

)
· (∇u2 − ∇uε

1)dx

≤
∫

�

Cε

(
|∇u2|p−2∇u2 − |∇uε

1|p−2∇uε
1

)
· ∇(uε

1 − u2 − k)+dx

≤ Cε

∫

�

|∇(uε
1 − u2)|p−1(uε

1 − u2 − k)+dx

+Cε

∫

�

|∇(uε
1 − u2|p(uε

1 − u2 − ε)+dx . (3.26)

Using a classical inequality and young inequalities, we get

1

2

∫

�

|∇w|pdx ≤ Cε

∫

Ak

|w|pdx + Cε

∫

�

|∇w|pwdx (3.27)

where Ak = {x ∈ � : uε
1 − u2 ≥ k} ∩ {x ∈ � : ∇uε

1 �= ∇u2} and we still denote
by Cε possibly different constants depending on ε. Since w ≤ mε − k, by choosing
k sufficiently close to mε , the last term can be absorbed in the left-hand side and we
deduce

1

4

∫

�

|∇w|pdx ≤ Cε

∫

Aε

|w|pdx (3.28)
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which implies, by Poincaré-Sobolev inequality (where p� denotes the Sobolev conju-
gate of p if p < N or any number greater than p if p ≥ N )

‖w‖p
L p�

(�)
≤ Cε

∫

Ak

|w|pdx ≤ Cε‖w‖p
L p�

(�)
|Ak |1−

p
p� . (3.29)

Since |Ak | → 0 as k → mε , we conclude that (uε
1 − u2 − k)+ = 0 for some k < mε ,

getting a contradiction with the definition of mε . This concludes the verification of the
proof of [67, Theorem 1.3] with q = p.

2nd approach (Linearized method). The idea of the proof is to make the change
of function u = ϕ(v) where ϕ is a C2-function in R with ϕ′ > 0. Using y

ϕ′(v)
where

y ∈ W 1,p
0 (�)∩ L∞(�) as a test function in the variational formulation of (3.1) yields

the equation

−div(ϕ′(v)a(x, ϕ′(v)∇v)) − ϕ′′(v)

ϕ′(v)
a(x, ϕ′(v)∇v) · ∇v

+ 1

ϕ′(v)
g(ϕ(v))|ϕ′(v)∇v|p = 0. (3.30)

We now have to choose a function ϕ such that (3.30) is true and satisfying the structure
condition of Lemma 3.4. Since

⎧
⎨

⎩

a(x, ζ ) = ϕ′(v)a(x, ϕ′(v)ζ ),

b(x, ζ ) = −ϕ′′(v)

ϕ′(v)
a(x, ϕ′(v)ζ ) · ζ + 1

ϕ′(v)
g(ϕ(v))|ϕ′(v)ζ |p.

(3.31)

It is sufficient to prove that for some n > 0

∂b

∂v
− 1

n

∣
∣
∣
∣
∂b

∂ζ

∣
∣
∣
∣

p′

> 0 with
1

p
+ 1

p′ = 1. (3.32)

We actually use the function ϕ defined by

ϕ(v) = − 1

A
log

(

e−k Av + 1

k

)

(3.33)

where we first fix A > 0 and then choose k > 0 large enough (recall that u1 and u2
are assumed to be bounded). Thus we only need the range of ϕ to cover [−M, M]
with M = max

(‖u1‖L∞(�), ‖u2‖L∞(�)

)
. This is the case if k large enough, and more

precisely if k > eM A. We compute ∂b
∂v
, by setting χ = ϕ′(v)ζ , to get

⎧
⎨

⎩

a(x, ζ ) = ϕ′(v)a(x, χ),

b(x, ζ ) = −ϕ′′(v)

ϕ′(v)
a(x, χ) · ζ + 1

ϕ′(v)
g(ϕ(v))|χ |p.

(3.34)
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Then, we have

∂b

∂v
(x, ζ ) = −

(
ϕ′′

ϕ′

)′
(v)a(x, χ) · ζ − ϕ′′(v)

ϕ′(v)2
g(ϕ(v))|χ |p

+g′(ϕ(v))|χ |p + p
ϕ′′

ϕ′ ζ g(ϕ(v))|χ |p−1

= −
(

ϕ′′

ϕ′

)

(v)a(x, χ) · ζ − ϕ′′(v)

ϕ′(v)2
g(ϕ(v))|χ |p

+pχ
ϕ′′

ϕ′(v)2
g(ϕ(v))|χ |p−1

−
(

ϕ′′

ϕ′

)

(v)a(x, χ)ζ + g′(ϕ(v))|χ |p

+ ϕ′′(v)

ϕ′(v)2

[
pχg(ϕ(v))|χ |p−1 − g(ϕ(v))|χ |p

]
. (3.35)

In order to obtain an expression in the “old” variable u = ϕ(v), it is convenient to
introduce the function ω defined by

ω = ϕ′ ◦ ϕ−1, i.e., ω(u) = ω(ϕ(v)) = ϕ′(v). (3.36)

After some straightforward computations, see [30, page 86], this formula becomes

∂b

∂v
(x, ζ ) = 1

ω(u)

{
− ω′′(u)a(x, χ) · χ

+ω′(u)
[

pχg(u)|χ |p−1 − g(u)|χ |p
] }

+ g′(u)|χ |p. (3.37)

An analogous computation yields

∂b

∂ζ
(x, ζ ) = pg(u)|χ |p−1 − 2

ω′(u)

ω(u)
χ. (3.38)

Since u = ϕ(v) = − 1
A log

(
e−k Av + 1

k

)
and ω(u) = ϕ′(v), we have

ω(u) = k − eAu . (3.39)

In order to compare u1 and u2, which both belong to L∞(�) with ‖ui‖L∞(�) ≤ M
for i = 1, 2, it is enough to prove that, for some n > 0

∂b

∂v
−

∣
∣
∣
∣
∂b

∂ζ

∣
∣
∣
∣

p′

> 0 a.e. x ∈ �, ∀u ∈ R, |u| ≤ M, ∀χ ∈ R
N . (3.40)
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Again using the fact that u1 and u2 belong to L∞(�), we get the estimate

[
pχg(u)|χ |p−1 − g(u)|χ |p

]
= pg(u)|χ |p − g(u)|χ |p = (p − 1)g(u)|χ |p > 0

(3.41)

if χ �= 0, g > 0 and p > 1, this coincides with conditions of the result of [67] for
p > 1 but with g nonincreasing (in order to use the convexity property of g). Therefore
assumption of [63, Theorem 1.2] is fulfilled and the proof is complete. ��

Finally, recall that, in order to prove the comparison principle in Lemmas 3.5, dif-
ferent techniques have been developed. Let us mention, among the others, the results
that have been proved by using the monotone “rearrangement” technique (see for
instance [23] and references cited therein) or by means of “viscosity” solutions (see
[22,40] and their references). Our second problem, that have been mainly inspired by
[74,88], see also [90], and used in [64,87–89] to get some regularity results on elliptic
and parabolic problems with absorption, uses an argument via “Hopf” transformation.
Recall that in that papers, which extends the results for “absolutely continuous” mea-
sures to more general “singular” measures, the authors give an alternative proof of
existence and uniqueness for large/explosive solutions, i.e., solutions which blow up
uniformly at the boundary, as well as to solve nonlinear equations (with absorption)
in unbounded domains using the notion of elliptic–parabolic capacity. This kind of
phenomena due to absorption terms has been investigated for semilinear evolution
problems of the form

{
ut − �u + |u|r−1u = μ in (0, T ) × �,

u(t, x) = 0 on (0, T ) × ∂�, u(t, x) = u0 in �,

which does not always have a solution for any measure μ on Q and any initial data
u0 ∈ L1(�) or in Mb(�), see [90]. Again, under the assumption that g ∈ L1(R) it
is possible to prove the existence of a solution for any measure u0 as singular initial
data, more precisely

{
ut − �pu + g(u)|∇u|p = f in (0, T ) × �,

u(t, x) = 0 on (0, T ) × ∂�, u(t, x) = u0 in �,

where u0 = ur
0 + us

0 with ur
0 ∈ L1(�) and us

0 is concentrated on a set of zero p-
capacity (i.e. us

0 = u0 � E with meas(E)=0), for example, μs can be considered
as δx0(x) in space dimension N ≥ 2, see [90, Section 6], but the result should be
justified rigorously. The case where the p-Laplace operator is replaced by a nonlinear
divergence type operator has been proved in [34] (see also references therein for more
details about these topics), recall that in that papers the authors interested just on
compactness results but not on asymptotic results. Based on these ideas and on the
comparison result of Lemma 3.5, wewill show that the same change of variable cannot
be done, but it can be replaced with the use of “exponential-type” test functions, whose
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Fig. 1 The diagram of the change of unknown

role is again to get rid of the natural growth term. Now, if μ is a nonnegative measure
in M0(�) and g : R �→ R is a continuous nonincreasing function, non identically
zero, satisfying (2.14)–(2.15), the last proof of Lemma 3.5 can be properly adapted
to the case of nondegenerate parabolic equations (1.1) set in W and the computations
follow along the lines of those above. Here we propose another method to prove the
comparison principle for parabolic problems (1.1) showing how the entropy solutions
emphasize a (determined) exponential formulation by performing the “Hopf-Cole”
transformation of (1.1) by means of “exponential” test functions and a “standard”
change of unknown. More precisely, we will show thatw1 ≤ w2 a.e. in Q wherewi =
ψ(ui ), i = 1, 2, obtained by change of variable function ψ that we will specify later.

Lemma 3.6 Let u1
0, u2

0 ∈ L1(�) such that 0 ≤ u1
0 ≤ u2

0 and let μ ∈ M0(�) be a
nonnegative measure, g satisfies (2.14)–(2.15). If u1 and u2 belong to W ∩ L∞(Q)

and are, respectively, the subsolution and supersolution of problem (1.1). Then

u1 ≤ u2 a.e. in Q ∀t ∈ (0, T ). (3.42)

Proof We start by considering the change of unknown w = ψ(u) where ψ : R �→ R

is defined by

ψ(s) = (p − 1)

[

ln S − ln

(∫ +∞

s
e

−G(τ )
β(p−1) dτ

)]

with

S =
∫ +∞

0
e− G(τ )

β(p−1) dτ, G(s) =
∫ s

0
g(τ )dτ. (3.43)

Observe that ψ is a C1-function satisfying

⎧
⎪⎪⎨

⎪⎪⎩

(p − 1)ψ ′′(s) = ψ ′(s)2 − ψ ′(s)g(s)

β
,

ψ(0) = 0 and ψ ′(0) = p − 1

S
.

(3.44)

We show that elementary computations lead to the comparison principle result for
solutions of (1.1), the main tool we are going to use is the existence of a transformed
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problem satisfied by w = ψ(u). Precisely, let

ã(x, s, ζ ) = ψ ′(ρ(s))p−1a

(

x,
ζ

ψ ′(ρ(s))

)

where

ρ = ψ−1 is a continuous increasing function.

Since ψ ′ and ρ are continuous, ã is a Carathéodory function on � ×R×R
N �→ R

N

and satisfies
ã(x, s, ζ ) = ψ ′(ρ(s))p−1a

(

x,
ζ

ψ ′(ρ(s))

)

· ζ

= ψ ′(ρ(s))pa

(

x,
ζ

ψ ′(ρ(s))

)

· ζ

ψ ′(ρ(s))

≥ αψ ′(ρ(s))p
∣
∣
∣
∣

ζ

ψ ′(ρ(s))

∣
∣
∣
∣

p

= α|ζ |p, (3.45)

and

|̃a(x, s, ζ )| =
∣
∣
∣
∣ψ

′(ρ(s))p−1a

(

x,
ζ

ψ ′(ρ(s))

)∣
∣
∣
∣ ≤ β|ζ |p−1. (3.46)

Now, remark that by assumption (2.8)

(̃a(x, s, ζ ) − ã(x, s, η)) (ζ − η)

=
(

ψ ′(ρ(s))p−1a

(

x,
ζ

ψ ′(ρ(s))

)

−ψ ′(ρ(s))p−1a

(

x,
η

ψ ′(ρ(s))

))

(ζ − η)

= ψ ′(ρ(s))p
(

a

(

x,
ζ

ψ ′(ρ(s))

)

−a

(

x,
η

ψ ′(ρ(s))

)) (
ζ

ψ ′(ρ(s))
− η

ψ ′(ρ(s))

)

> 0

since ψ ′(ρ(s))p > 0. This means that ã satisfies assumptions (2.6)–(2.8) with the
same constants α and β. Let us look for the function H̃ of the form

H̃(x, s, ζ ) = ã(x, s, ζ ) · ζ

[

1 − g(ρ(s))

βψ ′(ρ(s))

]

+ ψ ′(ρ(s))p−1g(ρ(s))

∣
∣
∣
∣

ζ

ψ ′(ρ(s))

∣
∣
∣
∣

p

,

observe that

H̃(x, s, ζ ) ≥ α|ζ |p + ψ ′(ρ(s))p−1g(ρ(s))

∣
∣
∣
∣

ζ

ψ ′(ρ(s))

∣
∣
∣
∣

p

− g(ρ(s))

ψ ′(ρ(s))
|ζ |p = α|ζ |p.

(3.47)
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Being u = ρ(w) and ∇u = ∇w
ψ ′(ρ(s)) , it transforms into the following relation between

a and ã

ã(x, w,∇w) = ψ ′(u)p−1a(x,∇u), (3.48)

this means (in the sense of distributions) that

−div(̃a(x, w,∇w))

= −div(ψ ′(u)p−1a(x,∇u))

= −ψ ′(u)p−1div(a(x,∇u)) − (p − 1)ψ ′(u)p−2ψ ′′(u)a(x,∇u) · ∇u

= ψ(u)p−1 [
μ − ut − g(u)|∇u|p] − ψ ′(u)pa(x,∇u) · ∇u

+ψ ′(u)p−1g(u)

β
a(x,∇u) · ∇u

= μψ ′(u)p−1 − ψ ′(u)p−1ut − ψ ′(u)p−1g(u)|∇u|p

−ã(x, w,∇w) · ∇w

[

1 − g(u)

βψ ′(u)

]

= μψ ′(u)p−1 − ψ ′(u)p−1ut − H̃(x, w,∇w)

= μψ ′(ρ(w))p−1 − ψ ′(ρ(w))p−2ψ ′(u)ut − H̃(x, w,∇w)

= μψ ′(ρ(w))p−1 − ψ ′(ρ(w))p−2wt − H̃(x, w,∇w). (3.49)

We found that w is a solution in W ∩ L∞(Q) solving

⎧
⎪⎨

⎪⎩

ψ ′(ρ(w))p−2wt − div(̃a(x, w,∇w)) + H̃(x, w,∇w)

= μψ ′(ρ(w))p−1 in (0, T ) × �,

wn(t, x) = 0 on (0, T ) × ∂�, wn(0, x) = ψ ′(u0(x)) = w0(x) in �.

(3.50)

Indeed, one can fix η ∈ W ∩ L∞(Q) and use η

ψ ′(u)p−1 = η

ψ ′(ρ(w))p−1 as test function
to find that

∫ t

0

〈

ψ ′(ρ(w))p−2wt ,
η

ψ ′(ρ(w))p−1

〉

dt (A)

+
∫

Q

ã(x, w,∇w) · ∇η

ψ ′(ρ(w))p−1 dxdt (B)

− (p − 1)
∫

Q

ã(x, w,∇w) · ∇w

[ψ ′(ρ(w))p−1]2 ψ ′(ρ(w))p−2ψ ′′(ρ(w))ρ′(w)ηdxdt (C)

+
∫

Q

H̃(x, w,∇w)

ψ ′(ρ(w))p−1 ηdxdt (D)

=
∫

Q
μηdxdt . (E)
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Precisely, the term [(C) + (D)] is equal to (were we recall the definition of H̃ )

η

[ψ ′(ρ(w))p−1]2ψ ′(ρ(w))

×
[

ã(x, w,∇w) · ∇w

[

−ψ ′(ρ(w))p + g(ρ(w))ψ ′(ρ(w))p−1

β

]

+ ψ ′(ρ(w))p−1ψ ′(ρ(w))H̃(x, w,∇w)

]

and after simplification of equal terms

[(C) + (D)]

= η

[ψ ′(ρ(w))p−1]2ψ ′(ρ(w))

[

ψ ′(ρ(w))2p−1g(ρ(w))

∣
∣
∣
∣

∇w

ψ ′(ρ(w))

∣
∣
∣
∣

p

+ψ ′(ρ(w))̃a(x, w,∇w) · ∇w

+ψ ′(ρ(w))pg(ρ(w))

∣
∣
∣
∣

∇w

ψ ′(ρ(w))

∣
∣
∣
∣

p

− g(ρ(w))̃a(x, w,∇w) · ∇w

β

]

.

By assumptions on ã, the term in square brackets is nonnegative, this implies that

the term [(C) + (D)] is nonnegative if η is nonnegative.

We want to show that u1 ≤ u2 a.e. in Q when u1, u2 are defined as in Figure 1. Thus,
as just proved, we are able to choose η = (u1 − u2)

+ (which is nonnegative ) as a test
function in the difference between the weak formulations solved by w1 and w2 to get

∫ t

0

〈
(w1)t

ψ ′(ρ(w1))
, (u1 − u2)

+
〉

dt +
∫

Q

(
ã(x, w1,∇w1)

ψ ′(ρ(w1))p−1 − ã(x, w2,∇w2)

ψ ′(ρ(w2))p−1

)

· ∇(u1 − u2)
+dxdt

≤
∫

Q
μ(u1 − u2)

+dxdt,

(3.51)

this implies (recall the definition of ã and the fact that ut = wt
ψ ′(u)

= wt
ψ ′(ρ(w))

)

∫ t

0
〈(u1 − u2)t , (u1 − u2)

+〉dt +
∫

Q
(a(x,∇u1) − a(x,∇u2)) · ∇(u1 − u2)

+dxdt

≤
∫

Q
μ(u1 − u2)

+dxdt .

(3.52)

Now, if μ is sufficiently small, we apply the integration by parts and (2.8) obtaining

∫

�

|(u1 − u2)
+|2(t)

2
dx ≤

∫

�

|(u1 − u2)
+|2(0)

2
dx (3.53)
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and so, since (u1 − u2)
+(0) = 0, it follows that for every fixed 0 ≤ t ≤ T

u1(t, x) ≤ u2(t, x) a.e. in Q. (3.54)

��

Proof of Theorem 3.1 We check that the result is true in the case where μ ∈ M0(�)

and u0 smooth; let us fix p, p� such that p > 1 and p∗ = N p
N−p , and let us consider,

as in the previous proof, the structure of the change of variable

w(t, x) = ψ(u(t, x)) = (p − 1)

[

ln S − ln
∫ +∞

s
e− G(τ )

β(p−1) dτ

]

with G(s) =
∫ s

0
g(τ )dτ (3.55)

whereψ−1 : R �→ R is a continuous function defined onR and satisfying (ψ−1)′(s) >

0 for any s ∈ R. Let w be the solution of the following associated problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ ′(ρ(w))p−2wt − div(̃a(x, w,∇w))

+H̃(x, w,∇w) = μψ ′(ρ(w))p−1 in (0, T ) × �,

w(0, x) = ψ(u0(x)) in �,

w(t, x) = 0 on (0, T ) × ∂�.

(3.56)

Since g is increasing, then g /∈ L1(R) and so e− G(s)
β(p−1) ∈ L1(R), therefore the func-

tional function s �→ ψ(s) is an increasing continuous function on R; in particular it is
a bijection over the real axis and it is well-defined. So by Leray–Lions theorem there
exists a unique variational solution w ∈ L p(0, T ; W 1,p

0 (�)) ∩ C(0, T ; L2(�)) such
that wt ∈ L p(0, T ; W −1,p′

(�)) and w(t, x) = 0, that is

∫ T

0
〈ψ ′(ρ(w))p−2wt , ϕ〉dt +

∫

Q
ã(x, w,∇w) · ∇ϕdxdt

+
∫

Q
H̃(x, w,∇w)ϕ =

∫

Q
ψ ′(ρ(w))p−1ϕdμ

for allϕ ∈ L p(0, T ; W 1,p
0 (�))∩L∞(Q)∩C(0, T ; L1(�))withϕt ∈ L p′

(0, T ; W −1,p′

(�)). Let us define un andwn as solutions of the following initial boundary value prob-
lems

⎧
⎪⎨

⎪⎩

(un)t − div(a(x, un)) + g(un)|∇un|p = μ in (0, T ) × �,

un(x, 0) = un
0(x) = min(nv(x), u0) in �,

un(t, x) = 0 on (0, T ) × ∂�,

(3.57)
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ ′(ρ(wn))p−2(wn)t − div(̃a(x, wn,∇wn))

+H̃(x, wn,∇wn) = μ′(ρ(wn))
p−1 in (0, T ) × �,

wn(0, x) = ψ(un
0(x)) in �,

wn(t, x) = 0 on (0, T ) × ∂�.

(3.58)

Recall that, since un andwn are inC(0, T ; L1(�)), then un(0, x) andwn(0, x) belong
to L1(�) and are well defined. Moreover by virtue of the asymptotic results of [64,81]
and the decomposition ofμ, i.e.,μ = f −div(G)where f ∈ L1(�) andG ∈ L p′

(�)N

wehaveun(t, x) converges, as t tends to+∞, tov(x) ∈ L p�
(�).Now, usingproperties

of ψ (recalling that ψ is a Lipschitz continuous function), we get

lim
t→+∞ψ(un(t, x)) = ψ(v(x)) in L p�

(�). (3.59)

Up to subsequences

wn(t, x) → w(x) a.e. in Q (3.60)

being w(x) solution of the corresponding elliptic problem of (3.58). Now, since
un(t, x) ≤ u(t, x) and wn(t, x) ≤ w(t, x) then by using the proof of Lemma 3.6
with test functions ϕ = (w − wn), we deduce

∫

�

|(w − wn)|2(t)dx ≤
∫

�

|(w0 − wn
0 )|2(0)dx, (3.61)

then there exists ε > 0 such that for n large enough

⎧
⎪⎨

⎪⎩

‖w − wn‖L2(�) ≤ ε

2
,

‖w − ψ(v(x))‖L2(�) ≤ ε

2
+ ‖ψ(un) − ψ(v(x))‖L2(�) ≤ ε,

(3.62)

and then up to subsequences and using the fact that ϕ is continuous

ψ(un(t, x)) → ψ(v(x)) a.e. in Q, un(t, x) → v(x) a.e. in Q (3.63)

then u(t, x) = v(x) a.e. in Q. Thanks to the classical results of Potential theory, see
[41,81], and under suitable assumptions on the data, that is, 0 ≤ u(t, x) ≤ ũ(t, x)

where ũ(t, x) is the heat potential (which coincides with supersolutions) associated to
the problem

{
ũt − div(a(x, ũ)) + g(̃u)|∇ũ|p = μ in RN × (0, T ),

ũ(0, x) = ũ0(x) in RN (3.64)

where ũ0 is the trivial extension of u0 at 0 outside �, provided that ũ(t, x) converges
to ṽ(x) in L1(�)where ṽ(x) is the solution of the corresponding elliptic heat equation.
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Due to the Vitali’s lemma and the unicity of the limit, we deduce that u(t, x) converges
to v(x) in L1(�). ��

4 Case of entropy solutions (Main result and proof)

In this section, we will prove an asymptotic behaviour result which concern entropy
solutions of problems (1.1) in the case where the term measure does not depend
on time. First observe that entropy solutions of problems (1.1) are solutions of the
corresponding elliptic problem.

Proposition 4.1 Let μ ∈ M0(�) be independent on time and let v be the entropy
solution of the elliptic problem (3.1). Then v is the unique solution of the parabolic
problem (1.1) with u0 = v, in the entropy sense introduced in Definition 2.8, for any
fixed T > 0.

Proof First of all, let us suppose that u0, v ∈ L2(�); we have to check that v is an
entropy solution of problem (1.1), to do that we can use the variational formulation
(2.19) and choosing Tk(v − ϕ) as test function to obtain

∫ T

0
〈vt , Tk(v − ϕ)〉dt +

∫

Q
a(x,∇v) · ∇Tk(v − ϕ)dxdt

+
∫

Q
g(v)|∇v|pTk(v − ϕ)dxdt ≤

∫

Q
Tk(v − ϕ)dμ. (4.1)

Through the integration by parts, we have

∫ T

0
〈vt , Tk(v − ϕ)〉dt

=
∫

�

�k(v − ϕ)(T )dx −
∫

�

(u0 − ϕ(0))dx +
∫ T

0
〈ϕt , Tk(v − ϕ)〉dt

=
∫

�

(u0 − ϕ(0))dx + ω(k) (4.2)

where �k(s) indicates the primitive function of Tk(s) and ω(k) denotes a nonnegative
quantity which vanishes as k diverges, while

∫

Q
Tk(v − ϕ)dμ =

∫

Q
(v − ϕ)dμ + ω(k). (4.3)

Using [47, Theorem 2.33, Theorem 10.1], we deduce

∫

Q
a(x,∇v) · ∇Tk(v − ϕ)dxdt +

∫

Q
g(v)|∇v|pTk(v − ϕ)dxdt

=
∫

Q
vdλk(x)dt (4.4)



Asymptotic behavior of solutions for nonlinear parabolic… 1317

where λk is a diffuse measure inM0(�)which converges toμ in the narrow topology
of measures, see [91,92]. Thus, recalling that v is bounded continuous, and using the
dominated convergence theorem, we get

∫

Q
a(x,∇v) · ∇Tk(v − ϕ)dxdt +

∫

Q
g(v)|∇v|pTk(v − ϕ)dxdt

=
∫

Q
vdμ + ω(k). (4.5)

Gathering together all these facts, we have that v is an entropy solution of (1.1) having
itself as initial data. ��

Proposition 4.1 allows us to deduce that the entropy solution u of problem (1.1)
belongs to C(0, T ; L1(�)) for any fixed T > 0. Indeed w = u − v uniquely solves
problem (1.1) with u0 − v as initial datum and μ = 0 in the entropy sense, and so
w ∈ C(0, T ; L1(�)), this is due to a result of [85] since w turns out to be an entropy
solution in the sense of the definition given in [94]. Therefore, as we said before, for
fixed μ and u0 ∈ L1(�) one can uniquely determine u and v, solutions of the above
problems defined for any time T > 0. Let us give the following definition relative to
the sub/super solutions formulated as in Definition 2.8.

Definition 4.2 A function u ∈ C(0, T ; L1(�)) is an entropy supersolution of (1.1) if
g(u)|∇u|p ∈ L1(Q) for every p > 1, Tk(u) ∈ L p(0, T ; W 1,p

0 (�)) for all k > 0 and
if

∫

�

�k(u − ϕ)(T )dx −
∫

�

�k(u0 − ϕ(0))dx

+
∫ T

0
〈ϕt , Tk(u − ϕ)〉

W−1,p′
(�),W 1,p

0 (�)
dt

+
∫

Q
a(x,∇u) · ∇Tk(u − ϕ)dxdt +

∫

Q
g(u)|∇u|pTk(u − ϕ)dxdt

≥
∫

Q
Tk(u − ϕ)dμ (4.6)

for any ϕ ∈ L p(0, T ; W 1,p
0 (�)) ∩ L∞(Q) ∩ C(0, T ; L1(�)) with ϕt ∈ L p′

(0, T ;
W −1,p′

(�)), while u is an entropy subsolution if −u is an entropy supersolution
solution.

By Lemma 3.6, we easily deduce the following result.

Lemma 4.3 Let u and u be, separately, an entropy supersolution and an entropy sub-
solution of problem (1.1) and let u be the unique entropy solution of the same problem.
Then u ≤ u ≤ u. In addition, if u and u are continuous with values in L1(�), then we
have that u(t, x) ≤ u(t, x) ≤ u(t, x) a.e. in � for every fixed t.

Proof Observe that, if the function u (resp. u) is a limit of regular solutions of
approximating problems (1.3) with smooth data μn = fn − div(G), where fn
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is a sequence of smooth functions that converges to f in L1(�), and initial data
un(0, x) = ũn

0 = min(un
0, u) (resp. un(0, x) = ũn

0 = max(un
0, u)). Thanks to the sta-

bility results of [48,94], we have u ≤ ũ (resp. ũ ≤ u) where ũ is an entropy solution of
problem (1.1) with u(0, x) = ũ(0) = u0 (resp. u(0, x) = ũ(0) = u0) as initial data.
Therefore, by Lemma 3.6, we get u(t, x) ≤ u(t, x) ≤ u(t, x) for every fixed t > 0. ��

Now we can state our main result.

Theorem 4.4 Let μ ∈ M0(Q) be independent on time t, let u(t, x) be an entropy
solution of problem (1.1) with u0 ∈ L1(�) as initial data, and let v(x) be the entropy
solution of the corresponding elliptic problem (3.1). Then

lim
T →+∞u(T , x) = v(x) in L1(�). (4.7)

Remark 4.5 It is also expected that u(T , x) converges toward a renormalized solution
with a correction in the form of extra definition resulting from μ, this remark is
supported by what is already known from renormalized solutions in the theory of
nonlinear parabolic problems with measures, see [2,3,47,71,77,78] and references
therein.

Proof of Theorem 4.4 We split the proof in few steps.
Step 1. The case u0 = 0 and μ ≥ 0. It can be easily seen that, for a parameter

τ > 0, both u(t, x) and uτ (t, x) = u(t + τ, x) are entropy solutions of problem (1.1)
with, respectively, 0 and u(τ, x) ≥ 0 as initial datum. Moreover from Lemma 4.3 we
deduce that u(t + τ, x) ≥ u(t, x) for t, τ > 0. On the other hand, recall that u is
a monotone nondecreasing function in t and so it converges to a function ṽ almost
everywhere in � and in L1(�), using also Proposition 4.1 we get u(t, x) ≤ v(x).
Recalling that u is obtained as limit of regular solutions with smooth data μn , we can
define uτ

n as the solutions of

⎧
⎪⎨

⎪⎩

uτ
n(t, x)t − div(a(x,∇uτ

n)) + g(uτ
n)|∇uτ

n |p = μn in (0, 1) × �,

uτ
n(0, x) = un(τ, x) in �,

uτ
n = 0 on (0, 1) × ∂�.

(4.8)

We take advantage of the change of variable τ = T −t to deduce that u solves a similar
nonlinear parabolic problem. In particular if μ ≥ 0, g satisfies (2.14)–(2.15) and by
classical comparison results one has that u(t, x) is decreasing in time. Moreover, by
comparison principle, we have that un is increasing with respect to n and, again by
the comparison result of Lemma 4.3, we have that, for fixed t ∈ (0, 1)

uτ (0, x) ≤ uτ (t, x) = u(τ + t, x) ≤ u(τ + 1, x) = uτ+1(0, x), (4.9)

uτ (1, x) ≤ uτ (t, x) = u(τ + t, x) ≤ u(τ, x) = uτ−1(1, x), (4.10)

and so its limit ũ does not depend on time and is solution of elliptic problem (3.1).
This concludes using a similar argument that the limit of uτ does not depend on time.
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Thus, using uτ
n (which also does not depend on time) in (4.8) and integrating by parts,

we obtain

∫

�

�n(u
n − ϕ)(1)dx −

∫

�

�n(un − ϕ)(0)dx

+
∫ 1

0
〈ϕt , Tk(un − ϕ)〉

W−1,p′
(�),W 1,p

0 (�)
dt

+
∫

Q
a(x,∇un) · ∇Tk(un − ϕ)dxdt

+
∫

Q
g(un)|∇un|pTk(un − ϕ)dxdt ≤

∫

Q
Tk(un − ϕ)dμ. (4.11)

It follows from the passage to the limit on n, using monotone convergence theorem
that

∫

�

�n(w(x) − ϕ(1))dx −
∫

�

�k(w(x) − ϕ(0))dx

+
∫ 1

0
〈ϕt , Tk(w − ϕ)〉

W−1,p′
(�),W 1,p

0 (�)
dt

+
∫ 1

0
〈wt , Tk(w − ϕ)〉

W−1,p′
(�),W 1,p

0 (�)
dt = 0 (4.12)

and so w(x) = v(x). If μ has no sign we can reason separately with μ+ and μ−
obtaining (4.12) and then using the formulation (4.2) to conclude (see Step.4). If v

is the entropy solution of problem (3.1), we proved in Proposition 4.1 that v is also
the entropy solution of the initial boundary value problem (1.1) with v itself as initial
datum. Therefore, by comparison Lemma 4.3, if 0 ≤ u0 ≤ v, we have that the solution
u(t, x) of (1.1) converges to v in L1(�) as t tends to infinity; using the fact that u(t, x)

is an entropy solution for parabolic problem with homogeneous initial data, while v

is a nonnegative entropy solution with itself as initial data.
Step 2. The case u0 = λv, λ > 1, and μ ≥ 0. Now, let us take uλ(t, x) the solution

of problem (1.1) with u0 = λv as initial datum for some λ > 1 and again μ ≥ 0.
Hence, since λv does not depend on time, we have that it is an entropy solution of the
parabolic problem (1.1). Using the fact that v is a subsolution of the same problem, we
found that v(x) ≤ uλ(t, x) ≤ λv(x) a.e. in� for all positive time t (applying again the
comparison Lemma 4.3). In order to get uλ(t + τ, x) ≤ uλ(t, x) for all t, τ > 0 a.e. in
�, we use the fact that the datumμ does not depend on time and we apply the compar-
ison result also between uλ(t + τ, x), which is the solution with u0 = uλ(τ, x) where
τ is a positive parameter, and uλ(t, x) the solution with u0 = λv as initial data. Which
yields, by virtue of this finalmonotonicity result, that there exists a function v ≥ v such
that uλ(t, x) converges to v a.e. in� as t tends to infinity. Clearly v does not depend on
t and we can develop the same argument used before to prove the passage to the limit
in the approximating entropy formulation, and so, by uniqueness, we can obtain that
v = v. So, we have proved that the result holds for the solution starting from u0 = λv
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as initial datum with λ > 1 and μ ≥ 0. Since we proved before that the result holds
true also for the solution starting from u0 = 0, then, again applying the comparison
argument, we can conclude in the same way that the convergence to v holds true for
solutions starting from u0 such that 0 ≤ u0 ≤ λv as initial datum for fixed λ > 1.

Step 3. The case 0 ≤ u0 ∈ L1(�) and μ ≥ 0. In order to deal with this case, we
adapt a suitable idea of [99] (called Harnack inequality). Namely, ifμ �= 0, then v > 0
(which implies that λv tends to +∞ in � as λ diverges). Without loss of generality
we can suppose μ �= 0 (the case μ ≡ 0 is the easier one and it can be proved as in
[81]). Let us denote, henceforth, by u0,λ the monotone nondecreasing family (with
respect to λ) of functions such that u0,λ = min(u0, λv). Indeed, we have, as before
for every fixed λ > 1, uλ(t, x), the entropy solution of problem (1.1) with u0,λ as
initial datum, converges to v a.e. in � as t tends to infinity. As a consequence of the
standard compactness argument, we also have that Tk(uλ(t, x)) converges to Tk(v)

weakly in W 1,p
0 (�) as t diverges and for every fixed k > 0. Therefore, thanks to

Lebesgue theorem, we can easily check that u0,λ converges to u0 in L1(�) as λ tends
to infinity. We claim that, using a stability result for entropy/renormalized solutions
of the nonlinear problem (1.1), see [3,78], that Tk(uλ(t, x)) converges to Tk(u)(t, x)

strongly in L p(0, T ; W 1,p
0 (�)) as λ tends to infinity. Because zλ = u − uλ solves the

problem (1.1) with u0 − u0,λ as initial datum, then zλ turns out, see [48,94], to be a
renormalized/entropy solution of the same problem, so that

∫

�

�k(u − uλ)(t)dx ≤
∫

�

�k(u0 − u0,λ)dx (4.13)

for every k, t > 0 . Dividing the above inequality by k and passing to the limit as k
tends to 0, we obtain

‖u(t, x) − uλ(t, x)‖L1(�) ≤ ‖u0(x) − u0,λ(x)‖L1(�) (4.14)

for every t > 0. We then deduce

‖u(t, x) − v(x)‖L1(�) ≤ ‖u(t, x) − uλ(t, x)‖L1(�) + ‖uλ(t, x) − v(x)‖L1(�).

(4.15)

Now, from the fact that the estimate in (4.14) is uniform in t for every fixed ε, we can
choose λ, large enough, and reads as follows

‖u(t, x) − uλ(t,x)‖L1(�) ≤ ε

2
(4.16)

for every t > 0. Indeed, as a consequence of the result proved above, there exists t
such that

‖uλ(t, x) − v(x)‖L1(�) ≤ ε

2
for every t > t, (4.17)
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which in turn concludes the proof of the result in the case of nonnegative data μ and
initial datum u0.

Step 4. The case where μ ∈ M0(�) is independent on t and u0 ∈ L1(�) without
sign assumptions. We consider again the function z(t, x) = u(t, x) − v(x); thanks to
Proposition 4.1 it turns out to solve problem (1.1) with u0−v as initial data andμ = 0,
and so, if either u0 ≤ v or u0 ≥ v then the result is true since z(t, x) tends to zero in
L p�

(�), as t diverges, thanks towhatwe proved above (the same does not seem towork
in the case of convergence in L1(�) because of technical difficulties that arise if trying
to generalize comparison Lemma 3.6). Now, if u⊕ and u� solve problem (1.1) with,
respectively, max(u0, v) and min(u0, v) as initial data, then, by a consequence of the
comparison result, we have u�(t, x) ≤ u(t, x) ≤ u⊕(t, x) a.e. in � for any t , which
concludes the proof, at least in L p�

(�), since the result holds true for both u⊕ and u�.��
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5 Appendix (In connection with G-convergence)

In this section, we shall study, following an idea of [81], the connection between the G-
convergence of a sequence (uτ )τ>0 and the asymptotic behaviour of the corresponding
solutions uτ (t, x) relative to the operators A : u �→ div(a(x, uτ )τ>0)whenuτ (0, x) =
uτ
0(x) = 0 in �. We prove a convergence result for entropy solutions of a nonlinear

parabolic problemwith nonnegativemeasureμ ∈ M0(�)withμ �= 0 using the theory
of G-convergence [6,19,42,72,76,81]. To this aim, let us consider the following initial
boundary value problem

{
(uτ )t − div(a(x, uτ )) + g(uτ )|uτ |p = μτ in Q = (0, T ) × �,

uτ (0, x) = 0 in �, uτ (t, x) = 0 on (0, T ) × ∂�
(5.1)

where T > 0 is any positive constant and μ ∈ M0(�) (μ �= 0) is a Radon measure
with bounded variation which does not charge the sets of zero p-capacity and which
does not depend on the time variable t (in accordance with the definition given in
Theorem 2.3).

Theorem 5.1 Let μτ ∈ M0(�) be a measure such that μτ �= 0. Let uτ (t, x) (τ > 0)
be the entropy solution of parabolic problem (5.1) corresponding to μτ and vτ (x) the
entropy solution of the following corresponding elliptic problem

{
− div(a(x, vτ )) + g(vτ )|vτ |p = μτ in �,

uτ = 0 on ∂�.
(5.2)
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Then, we have

lim
τ→∞ lim

T →∞uτ (t, x) = lim
τ→∞vτ (x) = +∞ a.e. in �.

Proof First, note that uτ (0, x) = uτ
0(x) = 0 (this condition is essential in order to

deal with some difficulties) and suppose that μ ∈ W −1,p′
(�) (independent of time),

we have

μ ∈ W −1,p′
(�) if and only if μ = −div(G) with G ∈ L p′

(�)N . (5.3)

Then for μ = μτ where

μτ =
{

τμ if f = 0,

τ f − div(G) if f = 0

with f ≥ 0 ∈ L1(�) and G ∈ L p′
(�)N . We have

∫ T

0
〈(uτ )t , ϕ〉dt +

∫

Q
a(x,∇uτ ) · ∇ϕdxdt +

∫

Q
g(uτ )|∇uτ |pϕdxdt

= τ

∫

Q
G · ∇ϕdxdt (5.4)

for every ϕ ∈ L p(0, T ; W 1,p
0 (�)) ∩ L∞(Q) such that ϕt ∈ L p′

(0, T ; W −1,p′
(�))

and ϕ(T , x) = 0. Hence, for ϕ = uτ , (5.4) becomes

∫ T

0
〈(uτ )t , uτ 〉dt +

∫

Q
a(x,∇uτ ) · ∇uτ dxdt +

∫

Q
g(uτ )|∇uτ |puτ dxdt

= τ

∫

Q
G · ∇uτ dxdt . (5.5)

Moreover, by (2.6) we have

∫ T

0
〈(uτ )t , uτ 〉dt + α

∫

Q
|∇uτ |pdxdt +

∫

Q
g(uτ )|∇uτ |puτ dxdt

≤ τ

∫

Q
G · ∇uτ dxdt ≤ τ‖G‖L p′

(�)N ‖∇uτ‖L p(Q)N

(5.6)

and then, using the integration by parts and assumptions (2.14) (recall that uτ
0(0) = 0)

we get

∫

�

[uτ (T )]2
2

dx + α

∫

Q
|∇uτ |pdxdt ≤ τ‖G‖L p′

(�)N ‖∇uτ‖L p(Q)N . (5.7)
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Now, since uτ �= 0 and the fact that the first term is nonnegative, we can divide the
above expression by τ‖∇u‖L p(Q)N , getting

1

τ

(∫

Q
|∇uτ |pdxdt

) p−1
p =

(∫

Q

∣
∣
∣
∣
∣
∇

(
uτ

τ
1

p−1

)∣
∣
∣
∣
∣

p

dxdt

) p−1
p

≤ ‖G‖L p′
(�)N .

(5.8)

Therefore, we have that uτ

τ
1

p−1
is bounded in L p(0, T ; W 1,p

0 (�)), and so there exist a

function u ∈ L p(0, T ; W 1,p
0 (�)) and a subsequence, such that, up to subsequences,

uτ

τ
1

p−1
weakly converges in L p(0, T ; W 1,p

0 (�)) (and then a.e.) to u as τ tends to infinity.

So, it is enough to prove that u > 0 almost everywhere on Q to conclude the proof.
To this aim, for every τ > 0, let us define

aτ (x, ζ ) = 1

τ
a

(
x, τ

1
p−1 ζ

)
(for the p–Laplacian, we have aτ ≡ a) (5.9)

and then we can easily check that such an operator satisfies assumptions (2.6)–(2.8)
(with the same constants α and β). Now, uτ

τ
1

p−1
satisfies the parabolic problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ
1

p−1

(
uτ

τ
1

p−1

)

t
− div

(

aτ

(

x,∇( uτ

τ
1

p−1
)

))

+g

(

τ
1

p−1

(
uτ

τ
1

p−1

)) ∣
∣
∣
∣τ

1
p−1 ∇

(
uτ

τ
1

p−1

)∣
∣
∣
∣

p

= μ in (0, T ) × �,

uτ

τ
1

p−1
(0, x) = 0 in �,

uτ

τ
1

p−1
(t, x) = 0 on (0, T ) × ∂�

(5.10)

in a variational sense. Indeed, for every ϕ ∈ L p(0, T ; W 1,p
0 (�)) ∩ L∞(Q) such that

ϕt ∈ L p′
(0, T ; W −1,p′

(�)) and ϕ(T , x) = 0, we have

∫ T

0
〈(uτ )t , ϕ〉 dt +

∫

Q
aτ

(

x,∇
(

uτ

τ
1

p−1

))

· ∇ϕdxdt +
∫

Q
g(uτ )|∇uτ |pϕdxdt

=
∫

Q
G · ∇ϕdxdt . (5.11)

Moreover, thanks to [6, Theorem 3.1], we have that the family of operators (aτ ) G-
converges in the class of Leray–Lions operators, that is, there exists a Carathéodory
function a satisfying assumptions (2.6)–(2.8), and a sequence of indices τk = τ(k)

(called τ again) such that

aτ (x,∇uτ ) −→
G-converges

a(x,∇uτ ). (5.12)
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So, because of that, being u the weak limit of uτ

τ
1

p−1
in L p(0, T ; W 1,p

0 (�)), we get

that

a

(

x,∇
(

uτ

τ
1

p−1

))

⇀
τk→∞a(x,∇u) weakly in L p′

(Q)N . (5.13)

Therefore, using this result in (5.10), we have

∫ T

0
〈ut , ϕ〉dt +

∫

Q
a(x,∇u) · ∇ϕdxdt +

∫

Q
g(u)|∇u|pϕdxdt =

∫

Q
G · ∇ϕdxdt

(5.14)

for every ϕ ∈ L p(0, T ; W 1,p
0 (�)) ∩ L∞(Q) such that ϕt ∈ L p′

(0, T ; W −1,p′
(�))

and ϕ(T , x) = 0; and so, u is a variational solution of problem

⎧
⎪⎨

⎪⎩

ut − div(a(x,∇u)) + g(u)|∇u|p = μ in (0, T ) × �,

u(0, x) = 0 in �,

u(t, x) = 0 on (0, T ) × ∂�.

(5.15)

Then, recalling thatμ �= 0 andusing a suitableHarnack type result adapted to parabolic
inequalities [99], we deduce that u(t, x) > 0 a.e. on Q. Now, ifμ ∈ M0(�), we have

μτ =
{

τμ if f = 0,

τ f − div(G) if f �= 0

where f ∈ L1(�) a nonnegative function and G ∈ L p′
(�)N (see [26]), we can

suppose, without loss of generality, that uτ = τχE − div(G) for a suitable set E ⊆ �

of positive measure; indeed, f , being nonidentically zero, it turns out to be strictly
bounded away from zero on a suitable E ⊆ �, and so there exists a constant C such
that f ≥ CχE , and then, once we proved our result for such a μτ , we can easily prove
the statement by applying again a comparison argument. Now, reasoning analogously
as above we deduce that uτ

τ
1

p−1
solves the parabolic problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ
1

p−1

(
uτ

τ
1

p−1

)

t
− div

(

aτ

(

x,∇( uτ

τ
1

p−1
)

))

+g

(

τ
1

p−1

(
uτ

τ
1

p−1

)) ∣
∣
∣
∣τ

1
p−1 ∇

(
uτ

τ
1

p−1

)∣
∣
∣
∣

p

= χB − 1
τ
div(G) in Q,

uτ

τ
1

p−1
(0, x) = 0 in �,

uτ

τ
1

p−1
(t, x) = 0 on (0, T ) × ∂�

(5.16)
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Moreover

χB − 1

τ
div(G) −→ χB stronly in W −1,p′

(�) as τ → ∞. (5.17)

Therefore, since the G-convergence is stable under such type of convergence of data,
we have, that the weak limit u of uτ

τ
1

p−1
in L p(0, T ; W 1,p

0 (�)) solves

⎧
⎪⎨

⎪⎩

ut − div(a(x,∇u)) + g(u)|∇u|p = χB in Q = (0, T ) × �,

u(0, x) = 0 in �,

u(t, x) = 0 on (0, T ) × ∂�,

(5.18)

and so we deduce, as above, that u(t, x) > 0 a.e. on Q = (0, T ) × �, which implies
that uτ goes to infinity as τ and T tends to infinity and then we conclude the result of
Theorem 5.1. ��
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