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Abstract
In this paper, we define and study the Weinstein–Wigner transform and we prove its
inversion formula. Next, we introduce and study the Weinstein–Weyl transform Wσ

with symbol σ and we give an integral relation between it and the Weinstein–Wigner
transform. At last, we give criteria in terms of σ for boundedness and compactness of
the transform Wσ .

Keywords Weinstein–Wigner transform · Weinstein–Weyl transform · Inversion
formula · Boundedness and compactness

1 Introduction

The Weinstein operator �d
W ,α defined on R

d+1+ = R
d × (0,∞), by

�d
W ,α =

d+1∑

j=1

∂2

∂x2j
+ 2α + 1

xd+1

∂

∂xd+1
= �d + Lα, α > −1/2,

where �d is the Laplacian operator for the d first variables and Lα is the Bessel
operator for the last variable defined on (0,∞) by

Lαu = ∂2u

∂x2d+1

+ 2α + 1

xd+1

∂u

∂xd+1
.

The Weinstein operator �d
W ,α has several applications in pure and applied mathemat-

ics, especially in fluid mechanics [1,22].
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Very recently, many authors have been investigating the behaviour of the Wein-
stein transform (2.5) with respect to several problems already studied for the classical
Fourier transform. For instance, Heisenberg-type inequalities [16], Paley–Wiener
theorem [9], Uncertainty principles [11,17,19], multiplier Weinstein operator [18],
continuous wavelet transform [10], and so forth.

In the classical case, the Fourier–Wigner transform and the Weyl transform were
studied by Weyl [23] and Wong [24]. Recently, many authors have been investigating
the behaviour of this operators in many setting [5,6,8,12,15]. These Fourier-like trans-
formations are generalized in the context of differential-differences operators [2–4].
This paper is an attempt to fill this gap by generalizing these operators to theWeinstein
transform.

Using the harmonic analysis associated with the Weinstein operator (generalized
translation operators, generalized convolution, Weinstein transform, ...) and the same
idea as for the classical case, we define and study in this paper the Wigner trans-
forms and the Weyl transform associated with the Weinstein operator which we call
Weinstein–Wigner transform and Weinstein–Weyl transform.

This paper is organized as follows. In Sect. 2, we recall some properties of har-
monic analysis for the Weinstein operators. In Sect. 3, we define the Fourier–Wigner
transform V in the Weinstein setting, and we have established for it an inversion for-
mula. In last Section, we introduce and study the Weinstein–Weyl transformsWσ for
σ ∈ S∗(Rd+1 × R

d+1) and we prove they are compact operators from L2
α(Rd+1+ ) into

itself. Next, we define Wσ for σ ∈ L2
α(dμα ⊗ dμα), with 1 ≤ p ≤ 2 and we prove

the boundedness and compactness of these transforms on these spaces. In the last, we
define Wσ for σ ∈ S ′∗(Rd+1 × R

d+1).

2 Preliminaires

For all λ = (λ1, . . . , λd+1) ∈ C
d+1, the system

∂2u

∂x2j
(x) = −λ2j u(x), if 1 ≤ j ≤ d

Lαu(x) = −λ2d+1u(x),

u(0) = 1,
∂u

∂xd+1
(0) = 0,

∂u

∂x j
(0) = −iλ j , if 1 ≤ j ≤ d (2.1)

has a unique solution denoted by �d
α(λ, .), and given by

�d
α(λ, x) = e−i<x ′,λ′> jα(xd+1λd+1) (2.2)

where x = (x ′, xd+1), x ′
d = (x1, x2, . . . , xd), λ = (λ′, λd+1), λ′

d =
(λ1, λ2, . . . , λd) and jα is the normalized Bessel function of index α defined by



On the Weinstein–Wigner transform and Weinstein–Weyl… 3

jα(x) = �(α + 1)
∞∑

k=0

(−1)k x2k

2kk!�(α + k + 1)
.

The function (λ, x) �→ �d
α(λ, x) is called the Weinstein kernel and has a unique

extension to C
d+1 × C

d+1, and satisfied the following properties.

(i) For all (λ, x) ∈ C
d+1 × C

d+1 we have

�d
α(λ, x) = �d

α(x, λ).

(ii) For all (λ, x) ∈ C
d+1 × C

d+1 we have

�d
α(λ,−x) = �d

α(−λ, x).

(iii) For all (λ, x) ∈ C
d+1 × C

d+1 we get

�d
α(λ, 0) = 1.

(iv) For all ν ∈ N
d+1, x ∈ R

d+1 and λ ∈ C
d+1 we have

∣∣∣Dν
λ�d

α(λ, x)

∣∣∣ ≤ ‖x‖|ν| e‖x‖‖Im λ‖

where Dν
λ = ∂ν/(∂λ

ν1
1 . . . ∂λ

νd+1
d+1 ) and |ν| = ν1 + . . . + νd+1. In particular, for all

(λ, x) ∈ R
d+1 × R

d+1, we have

∣∣∣�d
α(λ, x)

∣∣∣ ≤ 1. (2.3)

In the following we denote by

(i) −λ = (−λ′, λd+1)

(ii) C∗(Rd+1), the space of continuous functions on R
d+1, even with respect to the

last variable.
(iii) S∗(Rd+1), the space of the C∞ functions, even with respect to the last variable,

and rapidly decreasing together with their derivatives.
(iv) S∗(Rd+1×R

d+1), the Schwartz space of rapidly decreasing functions onR
d+1×

R
d+1 even with respect to the last two variables.

(v) L p
α(Rd+1+ ), 1 ≤ p ≤ ∞, the space of measurable functions f on R

d+1+ such
that

‖ f ‖α,p =
(∫

R
d+1+

| f (x)|p dμα(x)

)1/p

< ∞, p ∈ [1,∞),

‖ f ‖α,∞ = ess sup
x∈Rd+1+

| f (x)| < ∞,
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where dμα(x) is the measure on R
d+1+ = R

d × (0,∞) given by

dμα(x) = x2α+1
d+1

(2π)d22α�2(α + 1)
dx .

For a radial function ϕ ∈ L1
α(Rd+1+ ) the function ϕ̃ defined onR+ such that ϕ(x) =

ϕ̃(|x |), for all x ∈ R
d+1+ , is integrable with respect to the measure r2α+d+1dr , and we

have
∫

R
d+1+

ϕ(x)dμα(x) = aα

∫ ∞

0
ϕ̃(r)r2α+d+1dr , (2.4)

where

aα = 1

2α+ d
2 �(α + d

2 + 1)
.

The Weinstein transform generalizing the usual Fourier transform, is given for ϕ ∈
L1

α(Rd+1+ ) and λ ∈ R
d+1+ , by

FW ,α(ϕ)(λ) =
∫

R
d+1+

ϕ(x)�d
α(x, λ)dμα(x), (2.5)

We list some known basic properties of the Weinstein transform are as follows. For
the proofs, we refer [13,14].

(i) For all ϕ ∈ L1
α(Rd+1+ ), the function FW ,α(ϕ) is continuous on R

d+1+ and we have

∥∥FW ,αϕ
∥∥

α,∞ ≤ ‖ϕ‖α,1 . (2.6)

(ii) The Weinstein transform is a topological isomorphism from S∗(Rd+1) onto
itself. The inverse transform is given by

F−1
W ,αϕ(λ) = FW ,αϕ(−λ), for all λ ∈ R

d+1+ . (2.7)

(iii) Parseval formula: For all ϕ, φ ∈ S∗(Rd+1), we have

∫

R
d+1+

ϕ(x)φ(x)dμα(x) =
∫

R
d+1+

FW ,α(ϕ)(x)FW ,α(φ)(x)dμα(x).

(v) Plancherel formula: For all ϕ ∈ L2
α(Rd+1+ ), we have

∥∥FW ,αϕ
∥∥

α,2 = ‖ϕ‖α,2 . (2.8)

(vi) Plancherel Theorem: The Weinstein transform FW ,α extends uniquely to an
isometric isomorphism on L2

α(Rd+1+ ).
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(vii) Inversion formula: Let ϕ ∈ L1
α(Rd+1+ ) such that FW ,αϕ ∈ L1

α(Rd+1+ ), then we
have

ϕ(λ) =
∫

R
d+1+

FW ,αϕ(x)�d
α(−λ, x)dμα(x), a.e. λ ∈ R

d+1+ . (2.9)

Using relations (2.6) and (2.8) with Marcinkiewicz’s interpolation theorem [21] we
deduce that for every ϕ ∈ L p

α(Rd+1+ ) for all 1 ≤ p ≤ 2, the function FW ,α(ϕ) ∈
Lq

α(Rd+1+ ), q = p/(p − 1), and

∥∥FW ,αϕ
∥∥

α,q ≤ ‖ϕ‖α,p . (2.10)

By using the Weinstein kernel, we can also define a generalized translation, for a
function ϕ ∈ S∗(Rd+1) and y ∈ R

d+1+ the generalized translation τα
x ϕ is defined by

the following relation

FW ,α(τα
x ϕ)(y) = �d

α(x, y)FW ,α(ϕ)(y). (2.11)

Note that for ϕ ∈ L p
α(Rd+1+ ), 1 ≤ p ≤ ∞ and x ∈ R

d+1+ . Then τα
x ϕ belongs to

L p
α(Rd+1+ ) and we have

∥∥τα
x ϕ

∥∥
α,p ≤ ‖ϕ‖α,p . (2.12)

Proposition 2.1 Let ϕ ∈ L1
α(Rd+1+ ). Then for all x ∈ R

d+1+ ,

∫

R
d+1+

τα
x ϕ(y)dμα(y) =

∫

R
d+1+

ϕ(y)dμα(y). (2.13)

Proof The result comes from combination identities (2.9) and (2.11). ��

3 TheWeinstein–Wigner transform

TheWeinstein–Wigner transform is the mapping V defined on S∗(Rd+1)×S∗(Rd+1)

by

V(ϕ, ψ)(x, y) =
∫

R
d+1+

ϕ(λ)τα
x ψ(−λ)�d

α(y, λ)dμα(λ). (3.1)

Also, we can write V in terms of Weinstein transform of the product of ϕ and τα
x ψ as

follow

V(ϕ, ψ)(x, y) = FW ,α(ϕτ̃ α
x ψ)(y). (3.2)
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Proposition 3.1 (i) The Weinstein–Wigner transform V is a bilinear, continuous
mapping from S∗(Rd+1) × S∗(Rd+1) onto S∗(Rd+1 × R

d+1).
(ii) For all ϕ,ψ ∈ L2

α(Rd+1+ ), then V(ϕ, ψ) belongs to L2
α ∩ L∞

α (μα ⊗ μα), and we
have

‖V(ϕ, ψ)‖L∞
α (μα⊗μα) ≤ ‖ϕ‖α,2 ‖ψ‖α,2 , (3.3)

‖V(ϕ, ψ)‖L2
α(μα⊗μα) ≤ ‖ϕ‖α,2 ‖ψ‖α,2 . (3.4)

(iii) Let p ∈ [1, 2] and q such that 1
p + 1

q = 1. If (ϕ, ψ) ∈ Lq
α(Rd+1+ ) × L p

α(Rd+1+ ),

then V(ϕ, ψ) ∈ L∞
α (Rd+1+ ) × L∞

α (Rd+1+ ), and we have

‖V(ϕ, ψ)‖L∞
α (μα⊗μα) ≤ ‖ϕ‖α,2 ‖ψ‖α,2 . (3.5)

Proof (i) Let ϕ,ψ ∈ S∗(Rd+1). Consider the function � defined on R
d+1+ × R

d+1+
by

�(x, y) = ϕ(y)τα
x ψ(−y).

Then the Weinstein–Wigner transform V can be written as follow

V(ϕ, ψ)(x, y) = (I d ⊗ FW ,α)(�)(x, y),

where I d is the identity operator. Since the Weinstein transform is a topological
isomorphism from S∗(Rd+1) onto itself, therefore, we get the result.

(ii) According to the definition of the Weinstein–Wigner transform (3.1), Hölder’s
inequality and (2.12), we obtain the estimate (3.3).
The inequality (3.4) holds from the identity (3.2), the Plancherel formula (2.8),
Minkowski’s inequality for integrals [7, p. 186] and (2.12).

(iii) The result follows from the definition of the Weinstein–Wigner transform (3.1),
Hölder’s inequality and the inequality (2.12).

��
Proposition 3.2 Let ϕ,ψ ∈ S∗(Rd+1). Then for every ξ, λ ∈ R

d+1+ , we have

FW ,α ⊗ F−1
W ,α(V(ϕ, ψ))(ξ, λ) = �d

α(λ, ξ)ϕ(λ)FW ,α(ψ)(ξ).

Proof Put ϕ,ψ ∈ S∗(Rd+1). From the definition of the Weinstein–Wigner transform
(3.1) and (3.2) and according to Fubini’s theorem, we get

FW ,α ⊗ F−1
W ,α(V(ϕ, ψ))(ξ, λ) =

∫

R
d+1+

∫

R
d+1+

V(ϕ, ψ)(x, y)�d
α(ξ, x)�d

α(−λ, y)dμα(x)dμα(y)

=
∫

R
d+1+

(∫

R
d+1+

FW ,α(ϕτ̃ α
x ψ)(y)�d

α(−λ, y)dμα(y)

)
�d

α(ξ, x)dμα(x)

= ϕ(λ)

∫

R
d+1+

τα
x ψ(−λ)�d

α(ξ, x)dμα(x).
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Finally, by the expression of the generalized translation τα
x ϕ in term of the Weinstein

kernel (2.11), we obtain

FW ,α ⊗ F−1
W ,α(V(ϕ, ψ))(ξ, λ) = ϕ(λ)FW ,α(τα−λψ)(ξ) = �d

α(λ, ξ)ϕ(λ)FW ,α(ψ)(ξ).

��
Corollary 3.3 Let ϕ,ψ ∈ S∗(Rd+1). Then we have for all ξ, λ ∈ R

d+1+
∫

R
d+1+

FW ,α ⊗ F−1
W ,α(V(ϕ, ψ))(ξ, λ)dμα(λ) = FW ,α(ϕ)(ξ)FW ,α(ψ)(ξ).

∫

R
d+1+

FW ,α ⊗ F−1
W ,α(V(ϕ, ψ))(ξ, λ)dμα(ξ) = ϕ(λ)ψ(−λ).

Theorem 3.4 Let ψ ∈ L1
α(Rd+1+ ) ∩ L2

α(Rd+1+ ) such that c = ∫
R

d+1+
ψ(x)dμα(x) �= 0.

Then, we have for all ϕ ∈ L1
α(Rd+1+ ) ∩ L2

α(Rd+1+ )

FW ,α(ϕ)(y) = 1

c

∫

R
d+1+

V(ϕ, ψ)(x, y)dμα(x).

Proof According to the definition of the Weinstein–Wigner transform (3.1), Fubini’s
theorem and relation (2.13), we get

∫

R
d+1+

V(ϕ, ψ)(x, y)dμα(x) =
∫

R
d+1+

�d
α(y, t)ϕ(t)

(∫

R
d+1+

τα
x ψ(−t)dμα(x)

)
dμα(t)

= cFW ,α(ϕ)(y),

which completes the proof. ��
Corollary 3.5 Let ψ ∈ L1

α(Rd+1+ ) ∩ L2
α(Rd+1+ ) such that c = ∫

R
d+1+

ψ(x)dμα(x) �= 0.

Then, we have

(i) For all ϕ ∈ L1
α(Rd+1+ ) ∩ L2

α(Rd+1+ ) such that FW ,α(ϕ) ∈ L1
α(Rd+1+ ),

ϕ(z) = 1

c

∫

R
d+1+

�d
α(−y, z)

(∫

R
d+1+

V(ϕ, ψ)(x, y)dμα(x)

)
dμα(y).

(ii) For all ϕ ∈ L1
α(Rd+1+ ) ∩ L2

α(Rd+1+ ),

‖ϕ‖2α,2 = 1

c2

∫

R
d+1+

∣∣∣∣∣

∫

R
d+1+

V(ϕ, ψ)(x, y)dμα(x)

∣∣∣∣∣

2

dμα(y).
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4 TheWeinstein–Weyl transform

In this section, we introduce and study the Weinstein–Weyl transform.

4.1 Case I:� ∈ S∗(Rd+1 × R
d+1)

Let σ ∈ S∗(Rd+1 × R
d+1), we define the Weyl transform Wσ associated to the

Weinstein operators on S∗(Rd+1), by

Wσ (ϕ)(x) =
∫

R
d+1+

∫

R
d+1+

σ(y, z)�d
α(x, z)τα

x ϕ(−y)dμα(y)dμα(z), x ∈ R
d+1+ .

(4.1)

Theorem 4.1 Let σ ∈ S∗(Rd+1 × R
d+1). Then the Weinstein–Weyl transform is con-

tinuous from S∗(Rd+1) into itself.

Proof Let ϕ ∈ S∗(Rd+1). Since theWeinstein transform is a topological isomorphism
from S∗(Rd+1) onto itself, so according to relation (2.7), we have

τα
x ϕ(−y) =

∫

R
d+1+

�d
α(−x, t)�d

α(y, t)FW ,α(ϕ)(t)dμα(t), x, y ∈ R
d+1+ .

Then, by (4.1) and Fubini’s theorem, we get

Wσ (ϕ)(x) =
∫

R
d+1+

�d
α(x, z)

{ ∫

R
d+1+

�d
α(−x, t)FW ,α(ϕ)(t)

(∫

R
d+1+

σ(y, z)�d
α(y, t)dμα(y)

)
dμα(t)

}
dμα(z)

=
∫

R
d+1+

�d
α(x, z)

{ ∫

R
d+1+

�d
α(−x, t)FW ,α(ϕ)(t)

FW ,α(σ (., z))(t)dμα(t)

}
dμα(z).

Taking into account that the function (t, z) → FW ,α(σ (., z))(t) belongs toS∗(Rd+1×
R

d+1) and that the mapping ϕ → Hϕ given by,

Hϕ(t, z) = FW ,α(ϕ)(t)FW ,α(σ (., z))(t), t, z ∈ R
d+1+ ,

is continuous from S∗(Rd+1) to S∗(Rd+1 × R
d+1), and we have for all x ∈ R

d+1+ ,

Wσ (ϕ)(x) =
∫

R
d+1+

�d
α(x, z)

(∫

R
d+1+

�d
α(−x, t)Hϕ(t, z)dμα(t)

)
dμα(z)

= F−1
W ,α ⊗ FW ,α(Hϕ)(x, x).
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The result comes from the factF−1
W ,α⊗FW ,α is an isomorphism fromS∗(Rd+1×R

d+1)

onto itself. ��
Lemma 4.2 Let σ ∈ S∗(Rd+1 × R

d+1). Then, the function

h(x, y) =
∫

R
d+1+

�d
α(x, z)τα

x (σ (., z)) (−y)dμα(z) (4.2)

is defined on R
d+1+ × R

d+1+ and belongs to S∗(Rd+1 × R
d+1).

Proof We put the function H defined on R
d+1+ × R

d+1+ by

H(t, x) =
∫

R
d+1+

�d
α(x, z)FW ,α (σ (., z)) (t)dμα(z).

Then the function h can be written in the form

h(x, y) = τα
x

[
F−1

W ,α(H(., x))
]
(−y) = τα

x

[
(I d ⊗ F−1

W ,α)(H)(., x)
]
(−y).

Since the function (t, x) → H(t, x) belongs to S∗(Rd+1 × R
d+1), so by the fact,

that the Weinstein transform is a topological isomorphism from S∗(Rd+1) onto itself,
we deduce that the function (I d ⊗ F−1

W ,α)(H) belongs to S∗(Rd+1 × R
d+1). In the

end, the result comes from the fact that for all f ∈ S∗(Rd+1 × R
d+1), the function

(x, y) → τα
x [ f (., x)] (−y) belongs to S∗(Rd+1 × R

d+1). ��
Theorem 4.3 Let σ ∈ S∗(Rd+1 × R

d+1), then we have the following results

(i) For all ϕ ∈ S∗(Rd+1),

Wσ (ϕ)(x) =
∫

R
d+1+

h(x, y)ϕ(y)dμα(y).

where h(x, y) is the kernel given by (4.2).
(ii) For all ϕ ∈ S∗(Rd+1) and 1 ≤ p, q < ∞ such that 1

p + 1
q = 1,

‖Wσ (ϕ)‖α,q ≤ ‖h‖Lq
α(μα⊗μα) ‖ϕ‖α,p .

(iii) For 1 ≤ p, q < ∞ such that q = p
p−1 , the operator Wσ can be extended to a

bounded operator from L p
α(Rd+1+ ) into Lq

α(Rd+1+ ). In particular Wσ is a compact
Hilbert–Schmidt operator from L2

α(Rd+1+ ) onto itself.

Proof (i) Let ϕ ∈ S∗(Rd+1). TheWeyl–Weinstein transform can be written as follow

Wσ (ϕ)(x) =
∫

R
d+1+

�d
α(x, z)

(∫

R
d+1+

τα
x ϕ(−y)σ (y, z)dμα(y)

)
dμα(z).
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Using Fubini’s theorem, and the following equality

∫

R
d+1+

τα
x ϕ(−y)σ (y, z)dμα(y) =

∫

R
d+1+

ϕ(y)τα
x (σ (., z)) (−y)dμα(y),

we deduce that

Wσ (ϕ)(x) =
∫

R
d+1+

h(x, y)ϕ(y)dμα(y).

(ii) Follows from (i) and the combination of Hölder’s inequality, and Lemma 4.2.
(iii) We deduce, from (ii) and the fact that the space S∗(Rd+1) is dense in L p

α(Rd+1+ ),
for all 1 ≤ p < ∞ that Wσ can be extended to a bounded operator from
L p

α(Rd+1+ ) into Lq
α(Rd+1+ ). Finally, we deduce by Lemma 4.2, that the kernel h

belongs to L2
α(μα ⊗ μα), henceWσ (ϕ) is a compact Hilbert–Schmidt operator.

��

4.2 Case II:� ∈ Lp˛(�˛ ⊗ �˛), p ∈ [1, 2]

In this section, we show that theWeyl–Weinstein transformwith symbol σ ∈ L p
α(μα⊗

μα), p ∈ [1, 2], is a compact operator. We denote by B(L2
α(Rd+1+ )) the C

∗-algebra of
bounded operators � from L2

α(Rd+1+ ) into itself, equipped with the norm

‖�‖ := sup
‖ϕ‖α,2=1

‖�(ϕ)‖α,2.

Let σ ∈ S∗(Rd+1 × R
d+1). We define the operator Kσ on S∗(Rd+1) × S∗(Rd+1), by

Kσ (ϕ,ψ)(z):=
∫

R
d+1+

∫

R
d+1+

σ(x, y)�d
α(z, y)V(ϕ,ψ)(x, y)dμα(x)dμα(y), z ∈ R

d+1+ .

(4.3)

Lemma 4.4 Let σ ∈ S∗(Rd+1 × R
d+1). For all ϕ,ψ ∈ S∗(Rd+1), we have

Kσ (ϕ,ψ)(0) := 〈Wσ (ψ), ϕ〉α,2,

where 〈., .〉α,2 is the inner product of L2
α(Rd+1+ ).

Proof According to the definition of the Weinstein–Wigner transform (3.1) and (4.3),
we have
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Kσ (ϕ, ψ)(0) =
∫

R
d+1+

∫

R
d+1+

σ(x, y)V(ϕ, ψ)(x, y)dμα(x)dμα(y)

=
∫

R
d+1+

∫

R
d+1+

σ(x, y)

(∫

R
d+1+

ϕ(t)τα
x ψ(−t)�d

α(y, t)dμα(t)

)
dμα(x)dμα(y).

Then, applying Fubini’s theorem, we get

Kσ (ϕ, ψ)(0)=
∫

R
d+1+

ϕ(t)

(∫

R
d+1+

∫

R
d+1+

σ(x, y)τα
x ψ(−t)�d

α(y, t)dμα(x)dμα(y)

)
dμα(t).

Using the fact τα
x ψ(−t) = τα

t ψ(−x), then by the definition of the Weyl–Weinstein
transform (4.1), we obtain

Kσ (ϕ,ψ)(0) =
∫

R
d+1+

ϕ(t)Wσ (ψ)(t)dμα(t) = 〈Wσ (ψ), ϕ〉α,2.

��
Theorem 4.5 For 1 ≤ p ≤ 2, there exists a unique bounded operator

T : L p
α(μα ⊗ μα) −→ B(L2

α(Rd+1+ ))

σ �−→ Tσ

such that for all ϕ,ψ ∈ S∗(Rd+1),

〈Tσ (ψ), ϕ〉α,2 =
∫

R
d+1+

∫

R
d+1+

σ(x, y)V(ϕ, ψ)(x, y)dμα(x)dμα(y),

with

‖Tσ ‖ ≤ ‖σ‖L p
α (μα⊗μα).

Proof (i) First case: p = 2. Let σ ∈ S∗(Rd+1 ×R
d+1). For ψ ∈ S∗(Rd+1), we put

Tσ (ψ) = Wσ (ψ). (4.4)

By Lemma 4.4, we obtain

〈Tσ (ψ), ϕ〉α,2 = 〈Wσ (ψ), ϕ〉α,2 = Kσ (ϕ,ψ)(0)

=
∫

R
d+1+

∫

R
d+1+

σ(x, y)V(ϕ, ψ)(x, y)dμα(x)dμα(y).

Moreover, according to Hölder’s inequality and (3.4), we get

〈Tσ (ψ), ϕ〉α,2 ≤ ‖σ‖L2
α(μα⊗μα)‖ϕ‖α,2‖ψ‖α,2,



12 A. Saoudi

which implies that Tσ ∈ B(L2
α(Rd+1+ )) and

‖Tσ ‖ ≤ ‖σ‖L2
α(μα⊗μα). (4.5)

Next, we consider L2
α(μα ⊗ μα) and (σn)n∈N be a sequence in σ ∈ S∗(Rd+1 ×

R
d+1) such that ‖σn − σ‖L2

α(μα⊗μα) → 0 as n → 0. According to inequality
(4.5) we have, for all m, n ∈ N,

‖Tσm − Tσn ‖ ≤ ‖σm − σn‖L2
α(μα⊗μα)

≤ ‖σm − σ‖L2
α(μα⊗μα) + ‖σn − σ‖L2

α(μα⊗μα).

Consequently (Tσn )n∈N is a Cauchy sequence in B(L2
α(Rd+1+ )) which converges

to Tσ , moreover, by relation (4.5) the limit Tσ is independent of the choice of
(σn)n∈N and

‖Tσ ‖ = lim
n→∞ ‖Tσn ‖ ≤ lim

n→∞ ‖σn‖L2
α(μα⊗μα) ≤ ‖σ‖L2

α(μα⊗μα).

On the other hand, for all ϕ,ψ ∈ S∗(Rd+1), we have

〈Tσ (ψ), ϕ〉α,2 = lim
n→∞〈Tσn (ψ), ϕ〉α,2

= lim
n→∞

∫

R
d+1+

∫

R
d+1+

σn(x, y)V(ϕ, ψ)(x, y)dμα(x)dμα(y)

=
∫

R
d+1+

∫

R
d+1+

σ(x, y)V(ϕ, ψ)(x, y)dμα(x)dμα(y).

(ii) Second case p = 1. Let σ ∈ S∗(Rd+1 × R
d+1) and consider the the operator Tσ

defined by (4.4). Then, according to Hölder’s inequality and the estimate (3.3),
we have for all ϕ,ψ ∈ S∗(Rd+1),

|〈Tσ (ψ), ϕ〉α,2| ≤ ‖σ‖L1
α(μα⊗μα)‖V(ϕ, ψ)‖L∞

α (μα⊗μα)

≤ ‖σ‖L1
α(μα⊗μα)‖ϕ‖α,2‖ψ‖α,2.

which implies that Tσ ∈ B(L2
α(Rd+1+ )) and

‖Tσ ‖ ≤ ‖σ‖L1
α(μα⊗μα).

Next, in a similar way to the proof of (i), we obtain the result for p = 1.
(iii) For 1 < p < 2, the result comes from the cases p = 1, 2 and the Riesz–Thorin

theorem [20], which complete the proof.
��

Theorem 4.6 Let p ∈ [1, 2] and σ ∈ L p
α(μα ⊗ μα). Then Tσ is a compact operator

from L2
α(Rd+1+ ) into itself.
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Proof Let p ∈ [1, 2], σ ∈ L p
α(μα ⊗μα) and (σn)n∈N be a sequence in σ ∈ S∗(Rd+1×

R
d+1) such that limn→0 ‖σn −σ‖L2

α(μα⊗μα) = 0. From Theorem 4.5, we have ‖Tσm −
Tσn ‖ ≤ ‖σm − σn‖L2

α(μα⊗μα). Hence, Tσn converges to Tσ in B(L2
α(Rd+1+ )) and the

result comes by Theorem 4.3 (iii). ��

4.3 Case III: � ∈ S ′∗(Rd+1 × R
d+1)

In this section, we denote by S ′∗(Rd+1) the topological dual of the space of S∗(Rd+1)

and S ′∗(Rd+1 × R
d+1) the topological dual of the space of S∗(Rd+1 × R

d+1).
For σ ∈ S ′∗(Rd+1 × R

d+1) and ψ ∈ S∗(Rd+1), we define the Weinstein–Weyl
transform on S∗(Rd+1), by

(Wσ (ψ)) (ϕ) = σ (V(ϕ, ψ)) , ϕ ∈ S∗(Rd+1), (4.6)

where V is the Weinstein–Wigner transform given by (3.1).
It follows from Proposition 3.1 (i) that Wσ defined in (4.6) belongs to S∗(Rd+1).
Now, we denote by σh the element of S ′∗(Rd+1 × R

d+1) defined by

σh(G) =
∫

R
d+1+

∫

R
d+1+

G(x, y)h(x, y)dμα(x)dμα(y), (4.7)

where h is a slowly increasing function defined on R
d+1+ × R

d+1+ .

Proposition 4.7 Let σ1 ∈ S ′∗(Rd+1 × R
d+1), given by the function equal to 1 and ψ

a function in S∗(Rd+1). Then, we have

Wσ1(ψ) = cδ,

where c is the constant given in Theorem 3.4 and δ is the Dirac distribution at 0.

Proof According to relations (4.6) and (4.7), we have for all ϕ ∈ S∗(Rd+1),

(Wσ1(ψ)
)
(ϕ) = σ1 (V(ϕ, ψ)) =

∫

R
d+1+

(∫

R
d+1+

V(ϕ, ψ)(x, y)dμα(x)

)
dμα(y),

then, by Theorem 3.4, we obtain

(Wσ1(ψ)
)
(ϕ) = σ1 (V(ϕ, ψ)) =

∫

R
d+1+

FW ,α(ϕ)(y)dμα(y).

Applying the inversion formula of the Weinstein transform (2.9), we finish the proof.
��
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