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Abstract
We study the Cauchy problem for an evolution equation of Schrödinger type. The
Hamiltonian is the Weyl quantization of a real homogeneous quadratic form with
a pseudodifferential perturbation of negative order from Shubin’s class. We prove
that the propagator is a Fourier integral operator of Shubin type of order zero. Using
results for such operators and corresponding Lagrangian distributions, we study the
propagator and the solution, and derive phase space estimates for them.
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1 Introduction

In this article we study the propagator and solution to the Cauchy problem

{
∂t u(t, x) + i(qw(x, D) + pw(x, D))u(t, x) = 0, t > 0, x ∈ R

d ,

u(0, ·) = u0 ∈ S ′(Rd),
(CP)

where qw(x, D) is the Weyl quantization of a real homogeneous quadratic form on
T ∗

R
d and pw(x, D) is a pseudodifferential perturbation operatorwith complex-valued

Shubin type symbol p of negative order. Particular examples of interest are perturba-
tions to the free Schrödinger equation and the quantum harmonic oscillator.

The Shubin class �m , m ∈ R, introduced in [27], is defined as the space of all
functions a ∈ C∞(R2d) that satisfy estimates of the form

|∂α
x ∂

β
ξ a(x, ξ)| � (1 + |x | + |ξ |)m−|α+β|, (x, ξ) ∈ R

2d , α, β ∈ N
d .

Differently from Hörmander symbols, the elements of �m exhibit a symmetric behav-
ior in the decay with respect to x and ξ . An interesting example is the symbol
a(x, ξ) = |x |2 + |ξ |2 ∈ �2 for the harmonic oscillator operator. The theory of pseu-
dodifferential operators with symbols in the Shubin classes has been developed in
[27] and widely applied to the study of several classes of partial differential equations,
see e.g. [1–5,14,15,18,21,23,25,26,28]. Helffer and Robert [14,15] introduced Fourier
integral operators (FIOs) with Shubin type amplitudes and phase functions that are
generalized quadratic. Similar oscillatory integrals have been considered by Asada
and Fujiwara [1], see also [2].

Concerning the Cauchy problem (CP), the case when q(x, ξ) = |x |2 + |ξ |2 and
p = 0 is since longwell known, see e.g. [10,12,14].More generally, in the unperturbed
case p = 0, the solution operator to the equation (CP) is a metaplectic operator, see
e.g. [10]. Namely it is the unique one-parameter continuous group of metaplectic
operators μt , associated with the Hamiltonian flow χt = e2t F of q and chosen such
that μ0 = I , where F = J Q is the real 2d × 2d matrix determined by the symmetric
matrix Q defining q, q(x, ξ) = 〈(x, ξ), Q(x, ξ)〉, and the symplectic matrix

J =
(

0 Id
−Id 0

)
. (1.1)

We consider now the problem (CP) under the presence of a non-vanishing pertur-
bation p. Recently the problem has been studied in [8] assuming the symbol p belong
to a weighted modulation space of Sjöstrand type, whose elements are not necessarily
smooth, see also [9,30]. The authors proved that the equation (CP) admits a propaga-
tor given by the composition of a metaplectic operator and a Weyl pseudodifferential
operator with symbol in the same modulation space as p.

In this paperwe prove a similar statement in a different setting, namely the following
result.

Theorem 1.1 If δ > 0 and p ∈ �−δ then the Cauchy problem (CP) has a propagator
of the form μt aw

t (x, D) where at ∈ �0 for t � 0.
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With respect to [8] we assume more regularity on the symbol of the perturbation
and we obtain a stronger conclusion on the regularity of at . Moreover, the fact that
at is a Shubin symbol allows us to obtain additional results in terms of propagation
of singularities and phase estimates for the solution. For this we take advantage of
some recent results for a class of FIOs with quadratic phase functions and Shubin
amplitudes, cf. [6,7]. In these papers we proved phase space estimates for an FBI type
transform of the kernels of the operators, see [28] for similar estimates in a particular
case. We also proved that every operator in the class can be written as the composition
of a metaplectic operator and a pseudodifferential operator with Shubin symbol and
vice versa. As a byproduct of the analysis we derived a new notion of Lagrangian
distributions in the Shubin framework which generalizes the properties of the kernels
of FIOs.

Under the assumptions of Theorem 1.1 the propagator of (CP) belongs to this class
of FIOs for each t � 0. This opens up the possibility to study the singularities of solu-
tions to (CP) in detail, proving propagation results for Lagrangian type singularities
and phase space estimates for the solution, see Theorems 4.5 and 4.9 below.

The paper is organized as follows. In Sect. 2 we recall the technical tools for
our analysis, in particular aspects of pseudodifferential quantization, metaplectic and
symplectic analysis, Shubin type FIOs, and properties of an FBI type phase space
transform which is a fundamental tool. In Sect. 3 we construct a parametrix to (CP)
and prove that the propagator is a Shubin type FIO. Finally in Sect. 4 we study the
singularities of propagators and solutions to (CP) and deduce phase space estimates
for them.

2 Preliminaries onmicrolocal analysis in Shubin’s class

2.1 Basic notation

The gradient operator with respect to x ∈ R
d is denoted ∇x . The symbols S (Rd)

andS ′(Rd) denote the Schwartz space of rapidly decaying smooth functions and the
tempered distributions, respectively. The notation f (x) � g(x)means f (x) � Cg(x)
for some C > 0 for all x in the domain of f and of g. We write ( f , g) for the
sesquilinear pairing, conjugate linear in the second argument, between a distribution
f and a test function g, as well as the L2 scalar product if f , g ∈ L2(Rd). The
linear pairing of a distribution f and a test function g is written 〈 f , g〉. The symbols
Tx0u(x) = u(x−x0) andMξu(x) = ei〈x,ξ〉u(x), where 〈·, ·〉 denotes the inner product
on R

d , are used for translation by x0 ∈ R
d and modulation by ξ ∈ R

d , respectively,
applied to functions or distributions. For x ∈ R

d we use 〈x〉 := √
1 + |x |2, and

Peetre’s inequality is

〈x + y〉s � Cs 〈x〉s 〈y〉|s|, x, y ∈ R
d , Cs > 0, s ∈ R.

We write -dx = (2π)−ddx for the dual Lebesgue measure, denote by Md1×d2(R) the
space of d1×d2 matrices with real entries, and by GL(d,R) ⊆ Md×d(R) the group of
invertible matrices. The orthogonal projection on a linear subspace Y ⊆ R

d is denoted
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πY . The symbolL (H) stands for the space of linear continuous operators on a Hilbert
space H .

2.2 An integral transform of FBI type

The following integral transform has been used extensively in [6,7] and is used also
in this article. For more information see [6].

Definition 2.1 Let u ∈ S ′(Rd) and let g ∈ S (Rd)\{0}. The transform u 
→ Tgu is
defined by

Tgu(x, ξ) = (2π)−d/2(u, TxMξ g), x, ξ ∈ R
d .

If u ∈ S (Rd) then Tgu ∈ S (R2d) by [13, Theorem 11.2.5]. The adjoint T ∗
g is

defined by (T ∗
g U , f ) = (U , Tg f ) for U ∈ S ′(R2d) and f ∈ S (Rd). When U is a

polynomially bounded measurable function we write

T ∗
g U (y) = (2π)−d/2

∫
R2d

U (x, ξ) TxMξ g(y) dx dξ,

where the integral is defined weakly so that (T ∗
g U , f ) = (U , Tg f )L2 for f ∈ S (Rd).

Proposition 2.2 ([13, Theorem 11.2.3]) Let u ∈ S ′(Rd) and let g ∈ S (Rd)\0. Then
Tgu ∈ C∞(R2d) and there exists N ∈ N such that

|Tgu(x, ξ)| � 〈(x, ξ)〉N , (x, ξ) ∈ R
2d .

We have u ∈ S (Rd) if and only if for any N � 0

|Tgu(x, ξ)| � 〈(x, ξ)〉−N , (x, ξ) ∈ R
2d .

The transform Tg is related to the short-time Fourier transform [13]

Vgu(x, ξ) = (2π)−d/2(u, MξTxg), x, ξ ∈ R
d ,

viz. Tgu(x, ξ) = ei〈x,ξ〉Vgu(x, ξ). If g, h ∈ S (Rd) then

T ∗
h Tgu = (h, g)u, u ∈ S ′(Rd),

and thus ‖g‖−2
L2 T ∗

g Tgu = u for u ∈ S ′(Rd) and g ∈ S (Rd)\0, cf. [13].
Finally we recall the definition of the Gabor wave front set which describes global

singularities of tempered distributions in phase space, cf. [18,25,26].

Definition 2.3 If u ∈ S ′(Rd) and g ∈ S (Rd)\0 then z0 ∈ T ∗
R
d\0 satisfies z0 /∈

WF(u) if there exists an open cone V ⊆ T ∗
R
d\0 containing z0, such that for any

N ∈ N there exists CV ,g,N > 0 such that |Tgu(z)| � CV ,g,N 〈z〉−N when z ∈ V .

The Gabor wave front set is hence a closed conic subset of T ∗
R
d\0. If u ∈ S ′(Rd)

then WF(u) = ∅ if and only if u ∈ S (Rd) [18, Proposition 2.4].
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2.3 Weyl pseudodifferential operators

We use pseudodifferential operators in the Weyl calculus with Shubin amplitudes
[21,27]. Recall that a ∈ C∞(RN1 × R

N2) is a Shubin amplitude of order m ∈ R,
denoted a ∈ �m(RN1 × R

N2), if it satisfies the estimates

|∂α
x ∂

β
ξ a(x, ξ)| � 〈(x, ξ)〉m−|α+β|, (α, β) ∈ N

N1 × N
N2 , (x, ξ) ∈ R

N1 × R
N2 .

(2.1)
We write �m = �m(R2d) and observe that

⋂
m∈R �m = S (R2d). The space �m is

a Fréchet space with respect to the seminorms that are the best constants hidden in
(2.1).

To a Shubin amplitude a ∈ �m one associates its pseudodifferential Weyl quanti-
zation, which is the operator aw(x, D) with Schwartz kernel

Ka(x, y) =
∫
Rd

ei〈x−y,ξ〉a ((x + y)/2, ξ) -dξ ∈ S ′(R2d) (2.2)

interpreted as an oscillatory integral. Then aw(x, D) is a continuous operator on
S (Rd) that extends uniquely to a continuous operator on S ′(Rd). If a ∈ S (R2d)

then aw(x, D) : S ′(Rd) → S (Rd) is continuous when S ′(Rd) is equipped
with its strong topology. Conversely, any continuous linear operator from S ′(Rd),
endowed with the strong topology, to S (Rd) may be represented as aw(x, D) for
some a ∈ S (R2d) [29].

For a ∈ S ′(R2d) and f , g ∈ S (Rd) we have

(aw(x, D) f , g) = (2π)−d/2(a,W (g, f )) (2.3)

where W (g, f ) is the Wigner distribution [10,13]

W (g, f )(x, ξ) = (2π)−d/2
∫
Rd

g(x + y/2) f (x − y/2) e−i〈y,ξ〉 dy ∈ S (R2d).

TheWeyl product a#b : �m1 ×�m2 → �m1+m2 is the continuous product (cf. [27])
on the symbol level corresponding to composition of operators:

(a#b)w(x, D) = aw(x, D)bw(x, D).

There is a scale of Sobolev spaces Qs(Rd), s ∈ R, defined by

Qs(Rd) = {u ∈ S ′(Rd) : vw
s (x, D)u ∈ L2(Rd)},

where vs(x, ξ) = 〈(x, ξ)〉s , which is adapted to the Shubin calculus. We have (cf. [27,
Corollary 25.2])

S (Rd) =
⋂
s∈R

Qs(Rd), S ′(Rd) =
⋃
s∈R

Qs(Rd). (2.4)
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The Weyl quantization of �m yields continuous maps

aw(x, D) : Qs(Rd) → Qs−m(Rd), s ∈ R, (2.5)

and the Qs → Qs−m operator norm of aw(x, D) can be estimated by a finite linear
combination of seminorms of a ∈ �m .

We use the description of Qs in terms of localization operators [21, Proposi-
tion 1.7.12]. Let ψ0 = π−d/4e−|x |2/2, x ∈ R

d . A localization operator Aa with
symbol a ∈ S ′(R2d) is defined by

(Aau, f ) = (a Tψ0u, Tψ0 f ), u, f ∈ S (Rd).

In terms of the localization operator As := Avs , the space Qs(Rd) is the Hilbert
modulation space of all u ∈ S ′(Rd) such that Asu ∈ L2(Rd), equipped with the
norm ‖u‖Qs = ‖Asu‖L2 .

It is possible to express localization operators as pseudodifferential operators (cf.
[21, Section 1.7.2]) writing Aa = bw(x, D) where

b = π−de−|·|2 ∗ a. (2.6)

2.4 Metaplectic operators

We view T ∗
R
d ∼= R

d ×R
d as a symplectic vector space equipped with the canonical

symplectic form

σ((x, ξ), (x ′, ξ ′)) = 〈x ′, ξ 〉 − 〈x, ξ ′〉, (x, ξ), (x ′, ξ ′) ∈ T ∗
R
d . (2.7)

The real symplectic group Sp(d,R) ⊆ GL(2d,R) is the set of matrices that leaves σ

invariant. An often occurring symplectic matrix is J ∈ Sp(d,R) defined in (1.1).
The metaplectic group [12,20] Mp(d) is a group of unitary operators on L2(Rd),

which is a (connected) double covering of the symplectic group Sp(d,R). In fact
the two-to-one projection π : Mp(d) → Sp(d,R) has kernel is ±I . Each operator
μ ∈ Mp(d) is a homeomorphism onS and onS ′. The metaplectic covariance of the
Weyl calculus reads

μ−1aw(x, D) μ = (a ◦ χμ)w(x, D), a ∈ S ′(R2d), (2.8)

where μ ∈ Mp(d) and χμ = π(μ) (cf. [12, Theorem 215], [10]).

2.5 Fourier integral operators with Shubin amplitudes

In [7] we have introduced a class of Fourier integral operators (FIOs) with quadratic
phase functions and Shubin amplitudes. The space of Shubin type FIOs of orderm ∈ R

associated with χ ∈ Sp(d,R), denotedI m(χ), consists of those operatorsK whose
kernels admit oscillatory integral representations of the form
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Ka,ϕ(x, y) =
∫
RN

eiϕ(x,y,θ)a(x, y, θ) dθ, (x, y) ∈ R
2d ,

where a ∈ �m(R2d × R
N ). The phase function ϕ is a real quadratic form on R

2d+N

which parametrizes the twisted graph Lagrangian

�′
χ = {(x, y, ξ,−η) ∈ T ∗

R
2d : (x, ξ) = χ(y, η)} ⊆ T ∗

R
2d (2.9)

corresponding to χ ∈ Sp(d,R). (Cf. [7, Definitions 3.5 and 4.1].) We will not use this
representation here but merely recall the following result, see also [8, Theorem 1.3]
for a related result where certain modulation spaces are used as amplitudes.

Theorem 2.4 [7, Theorem 4.15] If χ ∈ Sp(d,R) and K ∈ I m(χ) then there exist
b ∈ �m such that for any μ ∈ Mp(d) such that χ = π(μ)

K = bw(x, D)μ = μ(b ◦ χ)w(x, D).

Conversely, for any b ∈ �m we have bw(x, D)μ ∈ I m(χ).

This means that FIOs inI m(χ) admit factorization into a pseudodifferential oper-
ator and a metaplectic operator corresponding to χ . The factorization is uniquely
determined by the order of arrangement. In particular I m(I ), where I ∈ GL(2d,R)

is the identity matrix, is the space of pseudodifferential operators with Shubin ampli-
tudes of order m ∈ R. A kernel of the form K1,ϕ , i.e. trivial amplitude, corresponds
to the operator Cϕμ where χ = π(μ) and Cϕ ∈ C\0 (cf. [7,19,20]). A fundamental
result for FIOs is the following composition theorem.

Theorem 2.5 [7, Proposition 4.10] Let χ j ∈ Sp(d,R) and suppose K j ∈ I m j (χ j ),
for j = 1, 2. Then K1K2 ∈ I m1+m2(χ1χ2).

We state the mapping properties of FIOs with respect to the Shubin–Sobolev spaces
Qs and the Gabor wave front set respectively.

Proposition 2.6 [7, Proposition 4.16 and Corollary 5.4] Suppose χ ∈ Sp(d,R) and
K ∈ I m(χ). Then K : Qs(Rd) → Qs−m(Rd) is continuous for all s ∈ R. For all
u ∈ S ′(Rd) we have WF(K u) ⊆ χWF(u).

3 Parametrix and propagator

Consider the initial value Cauchy problem associated with a real homogeneous
quadratic form q ∈ �2 defined by q(x, ξ) = 〈(x, ξ), Q(x, ξ)〉 where (x, ξ) ∈ R

2d

and Q ∈ M2d×2d(R) is symmetric, and a negative order complex-valued perturbation
p ∈ �−δ where δ > 0.

{
∂t u(t, x) + i(qw(x, D) + pw(x, D))u(t, x) = 0, t > 0, x ∈ R

d ,

u(0, ·) = u0 ∈ S ′(Rd).
(CP)
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3.1 The free evolution

We first discuss the solution operator (propagator) in the unperturbed case p = 0.
First we treat the propagator as a group on L2(Rd), then on Qs(Rd).

Thus we consider qw(x, D) as an unbounded operator in L2(Rd). The clo-
sure of −iqw(x, D) equipped with the domain S equals its maximal realization,
denoted Mq [19, pp. 425–26]. The closure generates a strongly continuous group
R � t 
→ e−i tqw(x,D) of unitary operators on L2. The group gives the unique solution
e−i tqw(x,D)u0 ∈ C([0,∞), L2) ∩ C1((0,∞), L2) for u0 ∈ D(Mq) ⊆ L2, see [22,
Theorem 4.1.3].

The propagator is a time-parametrized group of metaplectic operators, given for
t ∈ R by

e−i tqw(x,D) = μt ∈ Mp(d), t ∈ R (3.1)

(see e.g. [7,8,10,12,23]). In fact consider the one-parameter group of symplectic
matrices χt = e2t F ∈ Sp(d,R) where F = J Q ∈ M2d×2d(R). By the unique
path lifting theorem (cf. [12, Corollary 355]), there is a unique continuous lifting of
R � t 
→ χt ∈ Sp(d,R) into R � t 
→ μt ∈ Mp(d) such that π(μt ) = χt for t ∈ R

and μ0 = I . By [12, Corollary 355] μt satisfies (3.1).

Remark 3.1 Williamson’s symplectic diagonalization theorem (see e.g. [12, Theo-
rem 93]) implies that if Q ∈ M2d×2d(R) is (strictly) positive definite then there
exists a matrix χ ∈ Sp(d,R) such that

χ t Qχ =
(

� 0
0 �

)

where � = diag(λ1, . . . , λd) with λ j , j = 1, . . . , d, positive real numbers such that
± i λ j are eigenvalues of F . This gives

(q ◦ χ)(x, ξ) = 〈χ(x, ξ), Qχ(x, ξ)〉 =
d∑
j=1

λ j (x
2
j + ξ2j )

and thus

(q ◦ χ)w(x, D) =
d∑
j=1

λ j (x
2
j − ∂2j ) (3.2)

which is a weighted sum of one-dimensional harmonic oscillators. Pickingμ ∈ Mp(d)

such that χ = π(μ), and conjugating the equation ∂t u(t, x) + iqw(x, D)u(t, x) = 0
in the x variable with μ using (2.8), leads to the modified Hamiltonian (3.2). We will
not pursue this direction, however, since our main concern is to express our results
using χt ∈ Sp(d,R), and the relation between χ and χt is not transparent.

Next we fix s ∈ R and consider qw(x, D) as an unbounded operator in Qs(Rd). In
this case μt is in general no longer unitary but we still have the following result.
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Proposition 3.2 For s ∈ R the group R � t 
→ μt is a strongly continuous group of
operators on Qs(Rd) whose generator is a closed extension of −iqw(x, D), consid-
ered as an unbounded operator in Qs(Rd) with domain S (Rd).

Proof By [12, Prop. 400], μt is for fixed t ∈ R a homeomorphism on Qs . First we
prove a uniform bound for ‖μt‖L (Qs ) over −T � t � T where T > 0.

By (2.6) we have As = aw(x, D) where a(z) = π−d(e−|·|2 ∗ vs)(z) with z ∈ R
2d .

This implies a ∈ �s and a is elliptic by [26, Proposition 2.3]. Since ‖μt f ‖L2 = ‖ f ‖L2

for all t ∈ R and f ∈ L2 we obtain for u ∈ Qs using (2.8)

‖μt u‖Qs = ‖Asμt u‖L2

= ‖μtμ
−1
t aw(x, D)μt u‖L2

= ‖(a ◦ χt )
w(x, D)u‖L2

� ‖(a ◦ χt )
w(x, D)A−1

s ‖L (L2)‖Asu‖L2

= ‖(a ◦ χt )
w(x, D)A−1

s ‖L (L2)‖u‖Qs .

Indeed, by [21, Proposition 1.7.12] the inverse of As exists and A−1
s = bw(x, D)

where b ∈ �−s . We have

∣∣∂α(a ◦ χt )(z)
∣∣ � Cαe

2|t | ‖F‖(|s|+2|α|)〈z〉s−|α|, z ∈ R
2d , α ∈ N

2d . (3.3)

The set of symbols a ◦ χt ∈ �s is thus uniformly bounded over t ∈ [−T , T ]. Hence
(a◦χt )#b ∈ �0 is uniformly bounded over t ∈ [−T , T ]. By theCalderón–Vaillancourt
theorem (see e.g. [10, Theorem 2.73]) ‖(a ◦ χt )

w(x, D)A−1
s ‖L (L2) < ∞ uniformly

over t ∈ [−T , T ]. We have shown

sup
|t |�T

‖μt‖L (Qs ) < ∞, s ∈ R. (3.4)

Next let f ∈ S and write as above

As(μt − I ) f = μt (a ◦ χt )
w(x, D) f − aw(x, D) f

= μt (a ◦ χt − a)w(x, D) f + (μt − I )aw(x, D) f .

Since μt is unitary on L2 we obtain for |t | � 1

‖(μt − I ) f ‖Qs = ‖As(μt − I ) f ‖L2

� ‖(a ◦ χt − a)w(x, D) f ‖L2 + ‖(μt − I )aw(x, D) f ‖L2 .

We have a ◦ χt − a → 0 in �s+ν as t → 0 provided ν > 0. To wit, this follows from
the proof of [17, Proposition 18.1.2] modified from Hörmander to Shubin symbols.
This gives

lim
t→0

‖(a ◦ χt − a)w(x, D) f ‖L2

‖ f ‖Qs+ν

= 0.
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Combining with the known strong continuity of μt on L2 we have shown

lim
t→0

‖(μt − I ) f ‖Qs = 0, f ∈ S (Rd).

Finally, combining (3.4)with the fact thatS is dense in Qs we can use [11, Proposition
I.5.3] to conclude that μt is a strongly continuous group on Qs .

Consider finally the final statement of the proposition: The generator of the group
μt acting on Qs is a closed extension of −iqw(x, D), considered as an unbounded
operator on Qs(Rd) with domain S (Rd). This claim is a consequence of [22, Theo-
rem 1.2.4 and Corollary 1.2.5]. ��

Both sides of the equality (3.1) may thus be interpreted as a strongly continuous
group on Qs . The operators μt are not necessarily unitary if s �= 0. Due to (2.4) we
may allow u0 ∈ S ′(Rd). In fact for some s ∈ R we then have u0 ∈ Qs+2. The group
μt acting on Qs has a closed generator that is an extension of −iqw(x, D) considered
an unbounded operator in Qs(Rd) with domainS (Rd). Abusing notation we denote
also the generator by−iqw(x, D). It follows from [22, Definition 1.1.1] and (2.5) that
Qs+2 ⊆ D(qw(x, D)). Again [22, Theorem 4.1.3] implies that μt u0 is the unique
solution to (CP) in C([0,∞), Qs) ∩ C1((0,∞), Qs). We summarize:

Proposition 3.3 For s ∈ R the equation (CP) with p = 0 is solved uniquely by the
strongly continuous group of operators e−i tqw(x,D) = μt on Qs(Rd), and for each
t ∈ R it is an FIO in I 0(χt ). We have for u0 ∈ Qs+2 the unique solution

e−i tqw(x,D)u0 ∈ C([0,∞), Qs) ∩ C1((0,∞), Qs).

3.2 Construction of a parametrix to the perturbed equation

We will now consider (CP) with a nonzero complex-valued perturbation p ∈ �−δ . As
a first step we note that the perturbation operator is bounded pw(x, D) : Qs(Rd) →
Qs+δ(Rd) and compact pw(x, D) : Qs(Rd) → Qs(Rd) [27, Proposition 25.4]. Per-
turbation theory (see e.g. [8], [11, Theorems III.1.3 and III.1.10]) gives the following
conclusion.

Let s ∈ R. The solution to (CP) for u0 ∈ Qs+2(Rd) is Ttu0 where

Tt = μtCt , t � 0. (3.5)

Here Ct is a strongly continuous semigroup of operators on Qs(Rd) with operator
norm estimate

‖Ct‖L (Qs ) � Met(ω+M‖pw(x,D)‖L (Qs )), t � 0, (3.6)

where M � 1, ω � 0, and

Ct = id +
∞∑
n=1

(−i)n
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
Pt1 · · · Ptn dtn · · · dt1
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with convergence in the L (Qs) norm. In this formula Pt = pw
t (x, D) = (p ◦

χt )
w(x, D). The integrals are Bochner integrals of operator-valued functions. The

propagator (3.5) is a strongly continuous semigroup of operators on Qs .
By [13, Corollary 11.2.6 and Lemma 11.3.3] the Qs norms for s � 0 are a family

of seminorms forS (Rd). Thus Ct : S → S is continuous.
We show thatCt is a pseudodifferential operator. First we use results in [8] to prove

that Ct has a pseudodifferential operator symbol in a space larger than �0. By [16,
Remark 2.18] we have

�−δ ⊆ �0
0 =

⋂
s�0

M∞,1
1⊗vs

(R2d)

where M∞,1
1⊗vs

denotes a Sjöstrand modulation space [13] with the weight vs(z), z ∈
R
2d , and where �0

0 denotes the space of smooth symbols whose derivatives are in L∞.
From [8, Theorem 4.1] it follows that Ct = cw

t (x, D) where

ct ∈
⋂
s�0

M∞,1
1⊗vs

= �0
0, t � 0. (3.7)

By duality cw
t (x, D) extends uniquely to a continuous operator on S ′(Rd).

The outcome of this argument is that the propagator (3.5) is of the form

Tt = μt c
w
t (x, D), t � 0. (3.8)

If u0 ∈ S ′(Rd) then u0 ∈ Qs+2 for some s ∈ R. Again, by [22, Theorem 4.1.3], Ttu0
is the unique solution to (CP) in C([0,∞), Qs) ∩ C1((0,∞), Qs).

Our objective is to improve (3.7) into

ct ∈ �0, t � 0, (3.9)

which implies that the propagator Tt is an FIO of order zero for all t � 0. This
improvement will prove Theorem 1.1.

The strategy to prove (3.9) is as follows. We first construct an FIO parametrix
{Kt }t�0 to the equation (CP), that is a family of operators {Kt }t�0, where Kt ∈
I 0(χt ) for t � 0, which satisfies

{
∂tKt u0 + i(qw(x, D) + pw(x, D))Kt u0 = g(t), t > 0,

K0u0 = u0, u0 ∈ S ′(Rd),
(3.10)

for a function g ∈ C([0,∞),S (Rd)). (The function g will turn out to depend on u0.)
We then prove thatKt − Tt = Rt is regularizing, which implies that Tt = Kt −Rt ∈
I 0(χt ) is an FIO.

Thus we start by proving the following result.

Theorem 3.4 The Cauchy problem (CP) admits an FIO parametrixKt ∈ I 0(χt ) for
t � 0 such that K0 = I .
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The proof is carried out in several steps.

Lemma 3.5 Let T > 0 and n � 1. The family of Weyl symbols

pt1# · · · #ptn ∈ �−δn, t j ∈ [0, T ], 1 � j � n,

is uniformly bounded in �−δn, and [0, T ]n � (t1, t2, . . . , tn) 
→ pt1# · · · #ptn ∈
�−(δ−ν)n is continuous for any ν > 0.

Proof We have

∣∣∂α
z pt (z)

∣∣ � Cαe
2t‖F‖(δ+2|α|)〈z〉−δ−|α|, z ∈ R

2d , α ∈ N
2d , (3.11)

which proves that pt ∈ �−δ uniformly over t ∈ [0, T ]. The estimates (3.11) combined
with the continuity of t 
→ ∂α

z pt (z) also show that

pt ∈ C([0, T ], �−δ+ν) (3.12)

if ν > 0. The result is thus a consequence of the continuity of the Weyl product on the
spaces �m (see e.g. [21, Theorem 1.2.16]). ��

Fix T > 0. For t ∈ [0, T ] we set bt,0 = 1, and for n � 1

bt,n = (−i)n
∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
pt1# · · · #ptn dtn · · · dt1. (3.13)

In particular, b0,n = 0 for n � 1. By Lemma 3.5, bt,n makes sense as an integral and
bt,n ∈ �−δn . From (2.3) it follows that integration commutes with the Weyl product
so that

bw
t,n(x, D) = (−i)n

∫ t

0

∫ t1

0
· · ·

∫ tn−1

0
Pt1 · · · Ptn dtn · · · dt1, n � 0.

Using (3.11), the recursion

bt,n = −i
∫ t

0
pt1#bt1,n−1dt1, n � 1, (3.14)

and induction, one shows

t 
→ bt,n ∈ C([0, T ], �−δn), n � 0. (3.15)

Hence ∣∣∂α
z bt,n(z)

∣∣ � Cα〈z〉−δn−|α|, α ∈ N
2d , 0 � t � T . (3.16)

We also have for n � 1

∣∣∂α
z ∂t bt,n(z)

∣∣ � Cα〈z〉−δn−|α|, α ∈ N
2d , 0 � t � T . (3.17)
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In fact (3.14) gives for n � 1 and t > 0

∂t bt,n = −i pt#bt,n−1. (3.18)

Hence (3.12) and (3.15) show that

t 
→ ∂t bt,n ∈ C([0, T ], �−δn+ν) (3.19)

provided ν > 0. (Note that the continuity extends to include the end points of the
interval [0, T ].) Lemma 3.5 and (3.16) imply that ∂t bt,n ∈ �−δn uniformly over
t ∈ [0, T ]. This proves (3.17). By differentiating (3.18) and using

∂t (pt (z)) = 〈(∇ p)(χt z), 2Fχt z〉 ∈ �−δ

we also obtain
∂2t bt,n ∈ �−δn (3.20)

uniformly over t ∈ [0, T ] for all n � 1.
We need the following technical result to sum the bt,n asymptotically.

Lemma 3.6 Let T > 0 and at,n ∈ C([0, T ], �mn ) where (mn)n∈N is a decreasing
sequence tending to −∞ as n → ∞. Assume that ∂t at,n ∈ �mn uniformly over t ∈
[0, T ] for every n ∈ N. Then there exists a symbol function t 
→ at ∈ C([0, T ], �m0)

such that for every N ∈ N\0 we have

at −
N∑

n=0

at,n ∈ C([0, T ], �mN+1).

We write at ∼
∞∑
n=0

at,n .

The proof is a variant of the proof of [27, Proposition 3.5] and other similar results
for symbols depending on a parameter. The essential modification of the standard
proof to obtain continuity is to use

∣∣∂α
z

(
at+s,n(z) − at,n(z)

)∣∣ � |s| sup
0�θ�1

∣∣∂α
z ∂t at+θs,n(z)

∣∣ .

We omit further details except for the statement that the symbol at is constructed as

at =
∞∑
n=0

ψnat,n (3.21)

where ψ0(z) = 1, and for n � 1, ψn(z) = ψ(z/rn) where ψ ∈ C∞(R2d), ψ(z) = 0
for |z| � 1, ψ(z) = 1 for |z| � 2, and (rn)n�1 a sufficiently rapidly increasing
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sequence of positive reals. This shows that we can extend Lemma 3.6 to take into
account also higher order derivatives with respect to t by modifying the constants rn .

Applying Lemma 3.6 to the sequences (bt,n)n�0 defined in (3.13) and (∂t bt,n)n�1
simultaneously, and using (3.15)–(3.17), (3.19) and (3.20) we obtain bt ∈ C([0, T ],
�0) ∩ C1([0, T ], �−δ) such that

bt ∼
∞∑
n=0

bt,n, ∂t bt ∼
∞∑
n=1

∂t bt,n .

Note that bw
0 (x, D) = I .

Lemma 3.7 For T > 0 we have

rt = ∂t bt + i pt#bt ∈ C([0, T ],S (R2d)).

Proof Let N ∈ N\0. By (3.18) and Lemma 3.6 we have

∂t bt + i
N∑

n=1

pt#bt,n−1 = ∂t bt −
N∑

n=1

∂t bt,n ∈ C([0, T ], �−δ(N+1)).

On the other hand we also observe that

i pt#bt − i
N∑

n=1

pt#bt,n−1 = i pt#

(
bt −

N−1∑
n=0

bt,n

)
∈ C([0, T ], �−δ(N+1)+ν)

again using Lemma 3.6 and (3.12). Since N > 0 is arbitrary the claim follows. ��
Proof of Theorem 3.4 Weyl quantization of Lemma 3.7 gives

∂t b
w
t (x, D) = −i pw

t (x, D) bw
t (x, D) + rw

t (x, D), t � 0.

For u0 ∈ S ′(Rd) we define K0u0 = u0 and for t > 0

vt = Kt u0 = μt b
w
t (x, D)u0 ∈ S ′(Rd).

For t > 0 we have

i∂tvt = i∂t
(
μt b

w
t (x, D)u0

)
= qw(x, D)vt + μt

(
pw
t (x, D) bw

t (x, D) + irw
t (x, D)

)
u0

= qw(x, D)vt + pw(x, D)vt + iμt r
w
t (x, D)u0. (3.22)

If we set
g(t) = μt r

w
t (x, D)u0
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it remains to show g ∈ C([0,∞),S (Rd)). Writing

g(t + s) − g(t) = μt+s
(
rw
t+s(x, D) − rw

t (x, D)
)
u0 + μt (μs − I ) rw

t (x, D)u0

the latter claim is a consequence of Proposition 3.2, Lemma 3.7, (2.5), and the fact
that by (2.4) u0 ∈ Qm for some m ∈ R. We have thus shown that Kt is a parametrix
to (CP). ��

3.3 The propagator to the perturbed equation as an FIO

In order to show (3.9) it remains to connect the parametrix with the solution operator
(3.8) (cf. the proof of [14, Proposition 3.1.1]). Let u0 ∈ S ′(Rd). Then for some s ∈ R

we have u0 ∈ Qs+2(Rd) ⊆ D
(
qw(x, D) + pw(x, D)

)
where qw(x, D) + pw(x, D)

is considered an unbounded operator in Qs(Rd).

Lemma 3.8 If T > 0 then

t 
→ μt r
w
t (x, D)u0 ∈ C([0, T ], Qs), (3.23)

t 
→ vt ∈ C([0, T ], Qs), and (3.24)

t 
→ ∂tvt ∈ C((0, T ), Qs). (3.25)

Proof Property (3.23) is a consequence of Proposition 3.2, Lemma 3.7 and (2.5).
Lemma 3.6 gives bt ∈ C([0, T ], �0). Hence property (3.24) follows from Proposi-
tion 3.2 and (2.5).

Finally we show (3.25). From (3.22) we obtain for t > 0

∂tvt = −iqw(x, D)μt b
w
t (x, D)u0 − i pw(x, D)μt b

w
t (x, D)u0 + μt r

w
t (x, D)u0.

In order to prove (3.25) we must show

t 
→ pw(x, D)μt b
w
t (x, D)u0 ∈ C((0, T ), Qs), (3.26)

t 
→ qw(x, D)μt b
w
t (x, D)u0 ∈ C((0, T ), Qs) (3.27)

by virtue of (3.23). Claim (3.26) is a consequence of (3.24), p ∈ �−δ and (2.5).
Finally claim (3.27) is a consequence of q ∈ �2, (2.5) and Proposition 3.2. ��

From Lemma 3.8 we may conclude that

t 
→ Kt u0 ∈ C([0, T ], Qs) ∩ C1((0, T ), Qs).

From Proposition 3.2 combined with bt ∈ C([0, T ], �0) and (2.5) we obtainKt u0 ∈
Qs+2 ⊆ D

(
qw(x, D)+ pw(x, D)

)
for t > 0. Since [0, T ] � t 
→ Kt u0 solves (3.10)

with u0 ∈ Qs+2(Rd), it is a classical solution according to [22, Definition 4.2.1].
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Assembling the knowledge from (3.8) and Theorem 3.4 gives the following con-
clusion. The map t 
→ (Kt − Tt )u0 solves the equation

{
∂t (Kt − Tt )u0 + i(qw(x, D) + pw(x, D))(Kt − Tt )u0 = μt rw

t (x, D)u0, t > 0,
(K0 − T0)u0 = 0

and
t 
→ (Kt − Tt )u0 ∈ C([0, T ], Qs) ∩ C1((0, T ), Qs).

Combining (3.23) in Lemma 3.8 with [22, Corollary 4.2.2] gives, invoking (3.8),

Rt u0 := (Kt − Tt )u0 =
∫ t

0
Tt−sμsr

w
s (x, D)u0 ds

= μt

∫ t

0
μ−sc

w
t−s(x, D)μsr

w
s (x, D)u0 ds.

Lemma 3.9 For t > 0 the kernel of the operator μ−tRt belongs toS (R2d).

Proof By [29, Eq. (50.17) p. 525 and Theorem 51.6] the conclusion follows if we can
show that the operator

∫ t

0
μ−sc

w
t−s(x, D)μsr

w
s (x, D) ds

is continuousS ′(Rd) → S (Rd) whenS ′(Rd) is equipped with its strong topology
[24, Section V.7]. By Proposition 3.2 and (3.6), intersected over s � 0, it suffices to
show that rw

t (x, D) : S ′(Rd) → S (Rd) is continuous uniformly over t ∈ [0, T ],
when S ′(Rd) is equipped with the strong topology.

Let Kt ∈ S (R2d) denote the kernel of rw
t (x, D). According to (2.2) Kt and rt are

related by the composition of a linear change of variables and partial inverse Fourier
transform. These are continuous operators on S (R2d) and thus Lemma 3.7 implies
Kt ∈ C([0, T ],S (R2d)).

We use the seminorms on g ∈ S (Rd)

‖g‖α,β = sup
x∈Rd

∣∣xα∂βg(x)
∣∣ , α, β ∈ N

d .

Let u ∈ S ′(Rd) and α, β ∈ N
d . We have

‖rw
t (x, D)u‖α,β = sup

x∈Rd

∣∣〈xα∂β
x Kt (x, ·), u〉∣∣ = sup

g∈B
|〈g, u〉| , (3.28)

where
B = {xα∂β

x Kt (x, ·) ∈ S (Rd), x ∈ R
d} ⊆ S (Rd).

Let γ, κ ∈ N
d be arbitrary. We have

sup
g∈B

‖g‖γ,κ = sup
x,y∈Rd

∣∣∣xα yγ ∂β
x ∂κ

y Kt (x, y)
∣∣∣ = ‖Kt‖(α,γ ),(β,κ) < ∞
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where the latter seminorm bound is uniform over t ∈ [0, T ]. Thus B ⊆ S (Rd) is
a bounded set which implies that u 
→ supg∈B |〈g, u〉| is a seminorm on S ′(Rd)

endowed with the strong topology.
Since α, β ∈ N

d are arbitrary, (3.28) combined with [24, Theorem V.2] thus prove
the claim that rw

t (x, D) : S ′(Rd) → S (Rd) is continuous uniformly over t ∈ [0, T ],
when S ′(Rd) is equipped with the strong topology. ��

Combining Lemma 3.9 with the fact that an operator has kernel in S (R2d) if and
only if its Weyl symbol belongs to the same space, we obtain

Rt = μt a
w
t (x, D)

where at ∈ S (R2d) and t � 0. This gives finally

Tt = Kt − Rt = μt
(
bw
t (x, D) − aw

t (x, D)
)
, t � 0,

which, in viewof (3.8), implies that ct = bt−at ∈ �0 which is the sought improvement
to (3.7). Thus (3.9) has at long last been proved. This means that we have finally
obtained our main result Theorem 1.1, which can be alternatively phrased: If δ > 0
and p ∈ �−δ then the Cauchy problem (CP) has an FIO propagator Tt ∈ I 0(χt ) for
t � 0.

4 Singularities of the solutions

In this section we will discuss propagation of singularities under equation (CP). The-
orem 1.1 and Proposition 2.6 give the following result.

Proposition 4.1 Let Tt ∈ I 0(e2t F ) be the propagator to Cauchy problem (CP). If
u0 ∈ S ′(Rd) then for t � 0

WF(Ttu0) ⊆ e2t FWF(u0).

Remark 4.2 This result can also be seen as a consequence of [19, Proposition 2.2], and
[25, Theorem 5.1] combined with (3.7).

A more refined concept of singularities are (Shubin) �-Lagrangian distributions
[7] which we now explain. A Lagrangian linear subspace � ⊆ T ∗

R
d is a space of

dimension d on which the restriction of σ vanishes. If � is Lagrangian then so is χ�

for each χ ∈ Sp(d,R). An example of a Lagrangian is �0 = R
d × {0}, and all other

Lagrangians may be obtained by application of elements χ ∈ Sp(d,R) to �0 [7].
A Lagrangian � ⊆ T ∗

R
d may be parametrized in the form

� = {(X , AX + Z) ∈ T ∗
R
d , X ∈ Y , Z ∈ Y⊥} ⊆ T ∗

R
d (4.1)

where Y ⊆ R
d is a linear subspace and A ∈ Md×d(R) is a symmetric matrix that

leaves Y invariant, see [23]. It then automatically leaves Y⊥ invariant so can be written
A = AY + AY⊥ where AY = πY AπY and AY⊥ = πY⊥ AπY⊥ .
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Note that the subspaceY ⊆ R
d is uniquely determined by�, but thematrix A is not.

In fact AY is uniquely determined, but AY⊥ can be any matrix such that Y ⊆ Ker AY⊥
and AY⊥ leaves Y⊥ invariant.

The topological space of �-Lagrangian distributions of order m ∈ R with respect
to a Lagrangian � ⊆ T ∗

R
d is a subspace denoted Im� (Rd ,�) ⊆ S ′(Rd) [7, Defini-

tion 6.3]. By [7, Corollary 6.12] this space can be defined as follows.

Definition 4.3 A distribution u ∈ S ′(Rd) satisfies u ∈ Im� (Rd ,�) if there exist
χ ∈ Sp(d,R) that maps χ : Rd × {0} → � isomorphically, and a ∈ �m(Rd) such
that u = μa where μ ∈ Mp(d) satisfies π(μ) = χ .

By [7, Proposition 6.7] we have WF(u) ⊆ � when u ∈ Im� (Rd ,�). Kernels of
FIOs are �-Lagrangian distributions associated with the twisted graph Lagrangian
(2.9) of χ in T ∗

R
2d [7, Theorem 7.2]. We have the following result on the action of

FIOs on �-Lagrangian distributions.

Theorem 4.4 [7, Theorem 6.11] Suppose χ ∈ Sp(d,R), K ∈ I m′
(χ) and let � ⊆

T ∗
R
d be a Lagrangian. Then

K : Im� (Rd ,�) → Im+m′
� (Rd , χ�)

is continuous.

As a consequence we obtain the following result which can be seen as a refinement
of Proposition 4.1.

Theorem 4.5 Suppose δ > 0 and p ∈ �−δ . Let Tt ∈ I 0(e2t F ) be the propagator to
Cauchy problem (CP), let � ⊆ T ∗

R
d be a Lagrangian and let u0 ∈ Im� (Rd ,�). Then

for all t � 0
Ttu0 ∈ Im� (Rd , e2t F�).

4.1 Phase space estimates on the solutions

In this final section we derive phase space estimates for the propagator and solutions
to (CP). The estimates for the propagator will be relative to the underlying twisted
graph Lagrangian (2.9) of a symplectic matrix χ ∈ Sp(d,R). For this purpose we
adapt the integral transform Tg (cf. Definition 2.1) to a matrix χ ∈ Sp(d,R) and to a
Lagrangian � ⊆ T ∗

R
d respectively, see [7, Section 5 and Proposition 6.14].

Definition 4.6 We define the following phase factor adjusted versions of the transform
Tg where g ∈ S (Rd)\0.
(1) If χ ∈ Sp(d,R) and u ∈ S ′(R2d) then

T χ
g⊗gu(z, ζ ) = e− i

2 (〈z,ζ 〉+σ(χ(z2,−ζ2),(z1,ζ1)))Tg⊗gu(z, ζ ), (z, ζ ) ∈ T ∗
R
2d .
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(2) If � ⊆ T ∗
R
d is a Lagrangian parametrized by Y ⊆ R

d and A ∈ Md×d(R) as in
(4.1) and u ∈ S ′(Rd) then

T �
g u(x, ξ) = e

−i
(
〈πY⊥ x,ξ〉+ 1

2 〈x,Ax〉
)
Tgu(x, ξ), (x, ξ) ∈ T ∗

R
d .

We have the following characterization of the kernels of FIOs (cf. [7, Theorem 5.2]
and [28]).

Proposition 4.7 Let K ∈ S ′(R2d), χ ∈ Sp(d,R) and g ∈ S (Rd)\0. Then K is the
kernel of an FIO in I m(χ) if and only if the estimates

|L1 · · · LkT χ
g⊗gK (z, ζ )| � (1 + dist((z, ζ ),�′−χ ))m−k (1 + dist((z, ζ ),�′

χ ))−N ,

hold for all k, N ∈ N, where (z, ζ ) ∈ T ∗
R
2d and L j = 〈a j ,∇z,ζ 〉 with a j ∈ �′

χ for
j = 1, 2, . . . , k.

Wealso have the following phase space characterization of Lagrangian distributions
[7, Proposition 6.14].

Proposition 4.8 Let � ⊆ T ∗
R
d be a Lagrangian parametrized by Y ⊆ R

d and
A ∈ Md×d(R) as in (4.1), and let V ⊆ T ∗

R
d be a subspace transversal to �. A

distribution u ∈ S ′(Rd) satisfies u ∈ Im� (Rd ,�) if and only if for any g ∈ S (Rd)\0
and for any k, N ∈ N we have

∣∣∣L1 · · · LkT �
g u(x, ξ)

∣∣∣ � (1 + dist((x, ξ), V ))m−k (1 + dist((x, ξ),�))−N ,

with (x, ξ) ∈ T ∗
R
d , where L j = 〈b j ,∇x,ξ 〉 are first order differential operators with

b j ∈ �, j = 1, . . . , k.

Applying Propositions 4.7 and 4.8 to Theorems 1.1 and 4.5 respectively, we obtain
the following phase space estimates for the propagator Tt and the solution to (CP),
see also [8,28] for related results in different symbol classes. Note that our regularity
assumptions allow for a precise estimate also of the derivatives of the propagator and
solutions.

Theorem 4.9 Let δ > 0, p ∈ �−δ , g ∈ S (Rd)\0, χt = e2t F , and denote by Tt ∈
I 0(χt ), t � 0, the propagator to the Cauchy problem (CP).

(1) The kernel Kt of the propagator Tt satisfies the estimates for t � 0

|L1 · · · LkT χt
g⊗gKt (z, ζ )| � (1 + dist((z, ζ ),�′−χt

))−k (1+dist((z, ζ ),�′
χt

))−N ,

(z, ζ ) ∈ T ∗
R
2d ,

for all k, N ∈ N, where L j = 〈a j ,∇z,ζ 〉 with a j ∈ �′
χt

for j = 1, 2, . . . , k.
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(2) Suppose � ⊆ T ∗
R
d is a Lagrangian and set �t = χt�. If u0 ∈ Im� (Rd ,�) then

the solution Ttu0 to (CP) satisfies for t � 0, k, N ∈ N and (x, ξ) ∈ T ∗
R
d

∣∣∣L1 · · · LkT �t
g (Ttu0)(x, ξ)

∣∣∣ � (1 + dist((x, ξ), Vt ))
m−k

(1 + dist((x, ξ),�t ))
−N ,

where L j = 〈b j ,∇x,ξ 〉 are first order differential operators with b j ∈ �t , j =
1, . . . , k and Vt is a subspace transversal to �t .
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