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Abstract
In this paper we study the perturbation L = H + V , where H = − d2m

dx2m
+ x2m on

R, m ∈ N
∗ and V is a decreasing scalar potential. Let λk be the kth eigenvalue of H .

We suppose that the eigenvalues of L around λk can be written in the form λk + μk .
The main result of the paper is an asymptotic formula for fluctuation {μk} which is
given by a transformation of V . In the casem = 1 we recover a result on the harmonic
oscillator.

Keywords Averaging method · Pseudo-differential operator · Perturbation theory ·
Spectrum · Eigenvalue asymptotics
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1 Introduction andmain results

We consider in R the operator H defined by

H = − d2m

dx2m
+ x2m, m ∈ N

∗ (1.1)

We recall that H [1] is essentially self-adjoint in C∞
0 (R) with compact resolvent. Its

spectrum is the increasing sequence {λk}k≥0 of eigenvalues of finite multiplicity, such
as there exists a positive integer k0, for k ≥ k0, λk is simple and has the following
asymptotic expansion
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λ
1
m
k = 2π

T

(
k + 1

2

)
+ O(k−1) k → +∞ (1.2)

with

T =
∫ 1

−1
(1 − u2m)

1
2m −1

du = 1

m
B

(
1

2m
,

1

2m

)
(1.3)

where B is the beta function. Let V ∈ C
∞(R,R)which satisfies the following estimate

|V (n)(x)| ≤ Cn(1 + x2)
− s

2 , x ∈ R, n ∈ N, s ∈ R
∗+ − {1} (1.4)

Along this article we set

δ =
{
s i f 0 < s < 1
1 i f s > 1

(1.5)

Remark 1.1 So as not to burden our work, the case “s = 1”will be treated in a different
way, we will treat this case in another work.

The operator L = H + V is essentially self-adjoint with compact resolvent [2].
The Min-Max theorem [3] shows that the spectrum of L around λk can be written in
the form λk + μk . Our goal is to study the asymptotic behavior of the fluctuation μk

when k → +∞, by expressing it using a transformation of V . Our main result is

Theorem 1.2 (Main Theorem) μk has the asymptotic expansion

μk = 1

T

∫ 1

−1

V (yλ
1
2m
k )

(1 − y2m)1− 1
2m

dy + O(λ
−δ−1
2m

k ), ∀m ≥ 2

For m = 1, the case of the Harmonic Oscillator, the asymptotic behavior of μk is
given by

Theorem 1.3 μk = 1

π

∫ π
2

− π
2

V
(√

λk sin t
)
dt + O

(
λ

−δ+η
k

)

where η ∈]0, δ
2 [.

Many authors interested in this kind of problems, especially the case of the Har-
monic Oscillator [4,5]. The case m > 1 seems to us as not to have been treated yet.
Briefly recall the content of [4], the author studies the perturbation L = A+ B, where

A = 1

2

(
− d2

dx2
+ x2 − 1

)
, B(x) ∼ |x |−α

∑
m

am cosωmx

and he proved that μk has the following asymptotic expansion

μk ∼ k−( α
2 + 1

4 )Ṽ (
√
2k) + C√

2k
k → +∞
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Ṽ represents the “Radon Transform” of V . In recent works, we find in [6] a study of

D = − d2

dx2
+ x2 + q(x)

where real functions q, q ′ and x → ∫ x
0 q(s)ds are bounded. μk has the asymptotic

expansion

μk = 1

2π

∫ π

−π

q(
√

λksinθ) dθ + O(k
−1
3 ) as k → +∞ (1.6)

We notice that, in the case s < 1, the expansion (1.6) has the same main part as
shown in Theorem 1.3, even though we don’t need to suppose that x → ∫ x

0 q(s)ds
is bounded. In addition, if s ∈] 23 , 1[, we get a better estimate and the same goes for
s > 1 because η ∈]0, 1

2 [. We can also mention Pushnitski [7], who studied the case
where q ∈ C∞

0 (R). He proved that μk admits the next development in series

μk =
+∞∑
j=1

c jλ
− j
2

k λk → +∞ (1.7)

with some coefficients c j ∈ R, in particular c1 = 1
π

∫ +∞
−∞ q(x) dx , and c2 = 0.

Remark 1.4 Wewant to go further in studying the operator Hk,l = − d2k

dx2k
+ x2l , where

k, l ∈ N
∗, then by giving k the value of “1”, we’ll reach important results that have a

lot off applications in the field of physics, especially the quartic oscillator.

Our main tool is the averagingMethod ofWeinstein [8,9], whose origins go back to
the classical work on celestial mechanics [10]. Note that form ∈ N

∗−{1}, this method
cannot be used directly in this case because H , viewed as a Pseudo-differential operator

(OPD), doesn’t have a periodic flow, but the operator H
1
m does have this property, so

we start reducing ourselves to a perturbation (1.8) of the operator H
1
m

Lm = H
1
m + B, m ∈ N

∗ (1.8)

where B is an operator to be determined. We apply the Averaging Method, firstly we
replace B in perturbation (1.8) by the average

B = 1

T

∫ T

0
e−i t H

1
m Beit H

1
m dt (1.9)

where T is the period of the flow of H
1
m , T is given by (1.3) [11]. The main advantage

of this method is that B is a compact operator and Lm , Lm = H
1
m + B are almost

unitary equivalent, that means it exists a unitary operator U such as ULmU−1 − Lm

is compact. Note that Lm and Lm are also with compact resolvent. Using min-max

theorem, the parts of their spectrum around λ
1
m
k are respectively of the form λ

1
m
k + υk
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and λ
1
m
k + υk . Then we study υk by using a functional calculus of the operator H . We

begin by establishing the link between υk and μk .

Proposition 1.5

μk = mλ
1− 1

m
k υk + O(λ−1

k ), m ∈ N
∗

Using a functional calculus for H , we obtain

Proposition 1.6

mλ
1− 1

m
k υk = 1

T

∫ 1

−1

V (λ
1
2m
k y)

(1 − y2m)
1− 1

2m

dy + O(λ
−δ−1
2m

k )

The following proposition gives the relation between υk and υk

Proposition 1.7

υk = υk + O(λ
−δ+η
m + 2

m −2
k )

where η ∈]0,min(2,m − 1 + δ
2 )[

Remark 1.8 Note that form = 1, H has a periodic flow of period π , so we can directly
apply the Averaging Method to H .

This paper is organized as follows. The next section contains auxiliary fact con-
cerning the proprieties of Weyl pseudo-differential operators which are the main tool
in this article. In Sect. 3, we study the operator Lm and show the relation between μk

and υk by proving Proposition 1.5. The Sect. 4 is devoted to the functional calculus
for the operator H , and we establish Proposition 1.6. In the last section, we study the
relation between the spectrum of Lm and Lm and we prove Proposition 1.7. Finally,
we justify the asymptotic expansion given by Theorems 1.2 and 1.3

2 Weyl pseudo-differential operator

Let ρ ∈ [0, 1], q ∈ R. �
q
ρ(R × R) denote the space symbols associated with the

temperate weight function R2 : (x, ξ) → (1 + x2 + ξ2)
q
2 [15]. Precisely the space of

function a ∈ C∞(R2) satisfies ∀α, β ∈ N, ∃Cα,β > 0

∣∣∣∂α
x ∂

β
ξ a(x, ξ)

∣∣∣ ≤ Cα,β(1 + x2 + ξ2)
q−ρ(α+β)

2 (2.1)

We will use the standard Weyl quantization of the symbols. To be precise, if a ∈ �
q
ρ ,

then for u ∈ S(R) the operator associated is defined by :

opw(a)u(x) = 1

(2π)2

∫
R×R

ei〈x−y,ξ〉a
( x+y

2 , ξ
)
u(y)dydξ (2.2)

Let us now introduce the notion of asymptotic expansion.
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Definition 2.1 Let a j ∈ �
q j
ρ ( j ∈ N

∗), we suppose that q j is a decreasing sequence
tending towards −∞. We say that a ∈ C∞(R × R) has an asymptotic expansion and
we write

a ∼
∞∑
j=1

a j

if

a −
r−1∑
j=1

a j ∈ �qr
ρ ∀r ≥ 2

We use the notation Gq
ρ for the set of operators opw(a) if a ∈ �

q
ρ . In order to prove

our main results, we shall recall some well-known results [12–14].

Theorem 2.2 (Calderon-Vailloncourt theorem) If a ∈ �0
0 then the operator op

w(a) is
bounded.

Proposition 2.3 (Compactness) If a ∈ �
q
ρ and q < 0, ρ ∈ [0, 1], then the operator

opw(a) is compact.

We will need the following proposition for the composition of pseudo-differential
operators.

Proposition 2.4 Let A ∈ Gp
ρ , B ∈ Gq

ρ , ρ ∈]0, 1], p and q ∈ R. Then the operator
AB ∈ Gp+q

ρ . Its Weyl symbol admits the following asymptotic behavior

c ∼
∑
j≥0

c j

In particular
c(x, ξ) − a(x, ξ).b(x, ξ) ∈ � p+q−2ρ

ρ

where

c j = 1

2 j

∑
α+β= j

(− 1)|β|

α!β! (∂α
ξ ∂β

x a)(∂α
x ∂

β
ξ b) (2.3)

a and b are respectively the Weyl symbol of A and B

In the next proposition we are giving an extension where the case “ρ = 0”, we have
the following result

Proposition 2.5 If A ∈ Gm
1 and (Bi )i∈{1,...p} is the set of operators such as Bi ∈ Gmi

0
then:

(i) The operator AB1 ∈ Gm+m1
0 , its Weyl symbol is giving by (2.3)

where c j ∈ �
m+m1− j
0

(ii) The commutator [A, B1] ∈ Gm+m1−1
0
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(iii) If A is elliptic and m > 0, then B1 . . . BP A
−m1+···+mp

m is bounded.

Proposition 2.6 (Functional calculus) Let A be an elliptic operator included in Gm
1 ,

its Weyl symbol admits the development a ∼ ∑
j≥0 a j . Then for any real number q we

have Aq ∈ Gmq
1 . Moreover, its weyl symbol admits the following asymptotic behavior

σAq ∼
+∞∑
j=0

σAq , j , σAq , j ∈ �
mq− j
1

where σAq ,0 = a0q , σAq ,1 = qa1.a
q−1
0 .

3 Reduction to a perturbation of H
1
m

If we translate H by a strictly positive constant, we can always assume that L is positive

and
∥∥H−1V

∥∥ < 1. We can reduce ourselves to a perturbation of H
1
m by writing

(H + V )
1
m = H

1
m + W

consequently

W = B + H
1
m (H−1V )

2
+∞∑
k=0

αk+2(H
−1V )

k

where

B = 1

m
H−(1− 1

m )V , αk =
1
m ( 1

m − 1) . . . ( 1
m − k + 1)

k! (3.1)

We can write

L
1
m − Lm = H

1
m (H−1V )

2
+∞∑
k=0

αk+2(H
−1V )

k
(3.2)

Since
∥∥H−1V

∥∥ < 1, the operator
∑+∞

k=0 αk+2(H−1V )
k
is bounded in L2(R). Using

the fact that, H−1 ∈ G−2m
1 , V ∈ G0

0 and (iii) Proposition 2.5, we obtain that the

operator (L
1
m − Lm)H2− 1

m is bounded. We deduce that there exists a constant c > 0
such that

− cH−2+ 1
m ≤ L

1
m − Lm ≤ cH−2+ 1

m (3.3)

According to the min-max theorem, we get

(λk + μk)
1
m = λ

1
m
k + υk + O

(
λ

−2+ 1
m

k

)
(3.4)
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Using the fact that {μk} is bounded and the Taylor’s formula for the function t →(
1 + μk

t

) 1
m , we obtain the estimate

μk = mλ
1− 1

m
k υk + O(λ−1

k ) (3.5)

This completes the proof of Proposition 1.5.

4 Functional calculus for the operator H and the asymptotic behavior
of �k

Recall that Lm is obtained by replacing B in Lm by B. Putting

V = 1

T

∫ T

0
W (t)dt, W (t) = e−i t H

1
m V eit H

1
m (4.1)

and From (3.1)

B = 1

m
H

−
(
1− 1

m

)
V (4.2)

We have the following proposition

Proposition 4.1 V ∈ G−δ
0 , and its Weyl symbol checks

σV − σV ,0 ∈ �−δ−1
0

where

σV ,0(x, ξ) = 1

T

∫ 1

−1

V (y.σ
1
2m
H )

(1 − y2m)
1− 1

2m

dy

and σH is the Weyl symbol of H .

Proof First we will study the Weyl symbol of the operator W (t). In order to apply
the Egorov’s theorem (Theorem IV-10 [15]) checks his assumptions. Using Proposi-

tion 2.6, the operator H
1
m ∈ G2

1 and σ
H

1
m
admits the following development

σ
H

1
m

∼
+∞∑
j=0

σ
H

1
m , j

σ
H

1
m , j

∈ �
2− j
1 (4.3)

where σ
H

1
m ,0

= (σH )
1
m , σ

H
1
m ,1

= 0

An elementary calculation shows that

∂α
x ∂

β
ξ σ

H
1
m , j

∈ L∞(R × R), α, β, j ∈ N, α + β + j > 2
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and
∂α
x ∂

β
ξ ϕ(t) ∈ L∞(R × R), α + β ≥ 1

uniformly with respect to t, where ϕ(t) denotes the Hamiltonian flow of σ
1
m
H . We recall

that ϕ(t) = (x(t), ξ(t)) is a solution of the system

(S)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx(t)
dt = ∂σ

1
m
H

∂ξ
= 2E

1
m −1ξ2m−1(t)

dξ(t)
dt = −∂σ

1
m
H

∂x = −2E
1
m −1x2m−1(t)

x(0) = x, ξ(0) = ξ

x2m(t) + ξ2m(t) = x2m + ξ2m = E (∗)

(∗) is the first integral of this system
Now we apply the Egorov’s theorem, this yields, for t ∈ R, W (t) is an (OPD), its

Weyl symbol admits the following development σW (t) ∼ ∑
j≥0 σW (t), j

σW (t), j =
∫ t

0
i−1

∑
α+β+l+k= j+1

0≤l≤ j−1

Cα,β(∂α
ξ ∂β

x σH1/m ,k)(∂
β
ξ ∂α

x σW ,l (τ )|ϕt−τdτ (4.4)

where

Cα,β = (1 − (−1)α+β)�(α, β)

in particular
σW (t),0(x, ξ) = Vox(t), σW (t),1(x, ξ) = 0 (4.5)

We start by determining the class of σV ,0 = 1
T

∫ T
0 V (x(t))dt . We can suppose that

x(0) > 0, dx(0)
dt > 0 as initial conditions, other cases are treated in the same way, for

now we must study the properties of the function x(t) on [0, T ]. From the system (S)
we get

dt = ± dx

2E
1
m −1(E − x2m)

1− 1
2m

(4.6)

By combining the fact that x(t) is a smooth periodic function of period T with (4.6),

we can ensure that the function x(t) reaches its maximum in t0, x(t0) = E
1
2m and its

minimum on t1, x(t1) = −E
1
2m .

For now we have

σV̄ ,0 = 1

T

[∫ t0

0
V (x(t))dt +

∫ t1

t0
V (x(t))dt +

∫ T

t1
V (x(t))dt

]
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We make the change of variable x(t) = u, obviously x(t) is increasing on [0, t0], we
get ∫ t0

0
V (x(t))dt = E1− 1

m

2

∫ E
1
2m

x

V (u)

(E − u2m)
1− 1

2m

du (4.7)

After the same calculation on [t0, t1] and [t1, T ] we obtain

σV ,0 = E1− 1
m

T

∫ E
1
2m

−E
1
2m

V (u)

(E − u2m)
1− 1

2m

du (4.8)

Now we apply the change of variable y = uE
−1
2m , we have

σV ,0 = 1

T

∫ 1

−1

V (yσ
1
2m
H )

(1 − y2m)
1− 1

2m

dy (4.9)

Let’s now determine the class to which σV ,0 belongs. Using (1.4) we get

∣∣∣σV ,0

∣∣∣ ≤ c
∫ 1

0

1

(1 + yσ
1
2m
H )

s

(1 − y2m)
1− 1

2m

dy (4.10)

We have 2 cases
1st case 0 < s < 1

∣∣σV̄ ,0

∣∣ ≤ c(1 + σ
1
2m
H )

−s ∫ 1

0

1

ys(1 − y2m)
1− 1

2m

dy (4.11)

≤ c(1 + x2 + ξ2)
−s
2 (4.12)

2nd case 1 < s

We set σ
1
2m
H = a and we split the integral into two parts,

σV̄ ,0 ≤ c

√
2
2∫

0

(
1

1 + a2y2

)
s
2

1

(1 − y2m)
1− 1

2m

dy

+ c

1∫
√
2
2

(
1

1 + a2y2

) s
2

1

(1 − y2m)
1− 1

2m

dy (4.13)
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Since s > 1 we have

∫ √
2
2

0

(
1

1 + a2y2

) s
2

1

(1 − y2m)
1− 1

2m

dy ≤ c
∫ √

2
2

0

1

(1 + a2y2)
s
2
dy

After applying change both of variables y = u
1+u , and v = u

√
1 + a2,

we get ∫ √
2
2

0

(
1

1 + a2y2

) s
2

1

(1 − y2m)
1− 1

2m

dy ≤ c

1 + a

On the other side we have

∫ 1

√
2
2

(
1

1 + a2y2

) s
2 1

(1 − y2m)
1− 1

2m

dy ≤ c

(1 + a)s

∫ 1

√
2
2

1

(1 − y2m)
1− 1

2m

dy

≤ c

(1 + a)s

We obtain the following estimate

σV ,0 ≤ c(
1 + σ

1
2m
H

) ≤ c(1 + x2 + ξ2)
−1
2 . (4.14)

The same estimates hold for ∂α
x ∂

β
ξ σV ,0(x, ξ), α, β ∈ N.

From (4.12) and (4.14) we have

σV̄ ,0 ∈ �−δ
0 , for s ∈ R

∗+ − {1}

Combining (1.4), (4.4) and (4.5) we deduce that there exist c > 0 such that: for all
t ∈ [0, T ]

|σW (t) − Vox(t)| ≤ c (1 + x2 + ξ2)
−1
2 (1 + x2(t))

−s
2 (4.15)

by integrating (4.15) along the interval [0, T ] and following the same previous calcu-
lation we have

|σV − 1

T

∫ T

0
Vox(t) dt | ≤ c(1 + x2 + ξ2)

−1−δ
2 (4.16)

The same estimates hold for ∂α
x ∂

β
ξ σV (x, ξ), α, β ∈ N. Finally we conclude

σV − 1

T

∫ T

0
Vox(t) dt ∈ �−δ−1

0 (4.17)

��
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In the following we will use a functional calculus for the operator H , this allows us
to give the asymptotic behavior of υk . The functional calculus on (OPD) was studied
in the case where the functions are in the Hörmander class Sr1 (r ∈ R) see [15,16]. In
our work we are dealing with the case of the operator H plus a function in the class
Sr
1− 1

2m
. More precisely, the set of functions f ∈ C∞(R) such that for all k ∈ N, there

exist Ck ≥ 0 such that

∣∣∣ f (k)(x)
∣∣∣ ≤ Ck(1 + |x |)r−(1− 1

2m )k (4.18)

We recall that the main symbol of V is written

σV ,0 = f (σH ) (4.19)

where

f (x) = 1

T

∫ 1

−1

V (yx
1
2m )

(1 − y2m)
1− 1

2m

dy

a direct calculation shows that f ∈ S
− δ

2m

1− 1
2m

for s ∈ R
∗+ − {1}.

The operator f (H) is defined by a functional calculus of self-adjoint operators, then
the spectrum of f (H) is the sequence { f (λk)}k . We have the following proposition

Proposition 4.2 f (H) is an OPD included in G−δ
0 and its Weyl symbol admits the

following development

σ f (H) ∼
∑
j≥0

σ f (H),2 j

σ f (H),2 j =
3 j∑
k=2

d j,k

k! f (k)(σH ) ∀ j ≥ 1

where d j,k ∈ �
2mk−4 j
1 and σ f (H),2 j ∈ �

−δ− j
0 ,

in particular

σ f (H),0 = f (σH ) = σV ,0, σ f (H),1 = 0

Proof For studying f (H)We follow the same strategy in [16] , we will use the Mellin
transformation, this later consist of

(1) To Study the operator (H − λ)−1

(2) To study the operator H−s using its Cauchy’s integral formula

H−s = 1

2π i

∫
�

λ−s(H − λ)−1dλ
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(3) Studying f (H) using the representation formula

f (H) = 1

2π i

∫ ρ+i∞

ρ−i∞
M[ f ](s)H−sds

where r < 0 and ρ < −r
we only change the construction of the (H −λ)−1-parametrix. We prove by induction
that the (H−λ)−1 is anOPDand itsWeyl symbol admits the developmentbλ ∼ ∑

b j,λ

where

⎧⎪⎪⎨
⎪⎪⎩

b0,λ = (σH − λ)−1

b2 j+1,λ = 0

b2 j,λ =
3 j∑
k=2

(−1)kd j,k .b
k+1
0,λ , d j,k ∈ �

2mk−4 j
1

��
Proof of Proposition 1.6 using Proposition 4.2 and (4.19) formula we conclude

σ f (H) − σV ,0 ∈ �−δ−1
0 (4.20)

by combining (4.20) and Proposition 4.1 we get

σV − σ f (H) ∈ �−δ−1
0 (4.21)

From (4.21) and Proposition 2.5 (iii) we deduce that the operator (V − f (H))H
δ+1
2m

is bounded. We can write

1

m
H

1
m −1(V − f (H)) =

[
Lm − (H

1
m + 1

m H
1
m −1 f (H))

]

Finally we get that the operator [L̄m − (H
1
m + 1

m H
1
m −1 f (H))]H1+ δ

2m − 1
2m is also

bounded. According to min-max theorem we have

υk = 1

m
λ

1
m −1
k f (λk) + O

(
λ

−
(
1+ δ

2m − 1
2m

)
k

)
(4.22)

Then

mλ
1− 1

m
k υk = 1

T

∫ 1

−1

V
(
λ

1
2m
k y

)
(1 − y2m)

1− 1
2m

dy + O(λ
−δ−1
2m

k ) (4.23)

��
Remark 4.3 We note that from (1.4) we have the following estimate

λ

1
m −1
k f (λk) = O(λ

−δ
2m + 1

m −1
k )
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5 The relation between the spectrum of Lm and Lm

Proof of Proposition 1.7 To establish Proposition 1.7, we need to prove the next result

Proposition 5.1 There exists a skew-symmetric operator Q ∈ G−(2m−2+δ)
0 such as the

operator (eQLme−Q − Lm)H
δ−η
m +2− 2

m is bounded, where η ∈]0, 2[.
Proof The Q operator is built using the Q1 and Q2 operators as follows

Q = Q1 + Q2 (5.1)

where

Q1 = i

mT
H

1
m −1

∫ T

0
(T − t)W (t)dt

and

Q2 = − 1

2T

∫ T

0
(T − t)

∫ t

0

[
1

m
H

1
m −1W (t),

1

m
H

1
m −1W (r)

]
drdt

Before starting the proof we could make sure that

[
Q1, H

1
m

]
= 1

m
H

1
m −1(V − V )

[
Q2, H

1
m

]
= −1

2

[
Q1,

1

m
H

1
m −1V

]
− V (5.2)

where V = 1
2T i

∫ T
0

∫ t
0

[
1
m H

1
m −1W (t), 1

m H
1
m −1W (r)

]
drdt

We notice AdQ.Lm = [Q, Lm]. The differential equation

{
dX
dt = [Q, X ]
X(0) = Lm

(5.3)

has a unique solution
X(t) = et ADQ .Lm = etQLme

−t Q

From (5.2) and (5.3) we get

eQLme
−Q − Lm =

{
−V + 1

2m

[
Q2, H

1
m −1V

]}

+ 1

2m

{[
Q, H

1
m −1V

]
+ 1

2

[
Q,

[
Q1,H

1
m −1V

]]}

+ 1

2

{[
Q,

[
Q2,

1

m
H

1
m −1V

]]
−

[
Q, V

]}

+
∑
n≥2

(AdQ)n

(n + 1)!
[
Q, H

1
m

]
+

∑
n≥2

(AdQ)n

(n + 1)!
[
Q,

1

m
H

1
m −1V

]

To complete the proof of proposition we need the following lemma
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Lemma 5.2
Q1 ∈ G−(2m+2−δ)

0 and V , Q2 ∈ G−(4m−4+2δ−2η)
0

where η ∈]0, 2[

Proof Using Proposition 2.5 (i) we can prove in analog way of Proposition 4.1 that

Q1 ∈ G−(2m+2−δ)
0 . Now let’s determine the class of V , we can write

V = 1

2T i

∫ T

0
[S(t), B(t)]dt

where

S(t) = 1

m
H

1
m −1W (t), B(t) =

∫ t

0
S(r)dr

let’s start by clarifying the class of the operator
∫ T
0 S(t)B(t)dt . For now we are inter-

ested in the operator S(t)B(t), its Weyl symbol ct is given in [15] by

ct (x, ξ) = 1

π2

∫
e−2i(rρ−ωτ)σS(t)(x+ω, ξ+ρ)σB(t)(x+r , ξ+τ)dρdωdτdr . (5.4)

We split the oscillator integral ct into two parts c(1)
t and c(2)

t , then we use the cutoff
functions

ω1,ε(x, ξ, ω, τ, r , ρ) = χ

[
ω2 + ρ2 + r2 + τ 2

ε(1 + x2 + ξ2)
η
2

]
and ω2,ε = 1 − ω1,ε

where χ ∈ C∞
0 (R), χ ≡ 1 in [−1, 1], χ ≡ 0 in R\] − 2, 2[, R = ω2 + ρ2 + r2 + τ 2,

ε > 0 and η > 0. Let’s consider

d j (x, ξ, ω, τ, r , ρ) = ω j,ε(x, ξ, ω, τ, r , ρ)σS(t)(x + ω, ρ + ξ)σB(t)(x + r , ρ + ξ)

(5.5)
c(1)
t (resp c(2)

t ) the integral obtained in (5.4) by replacing the amplitude by d1 (resp d2 )
Study of c(2)

t

On the support of d2 we have R ≥ ε(1 + x2 + ξ2)
η
2 . We make an integration by parts

using the operator

M = 1

2i R
(−ρ∂r − r∂ρ + τ∂ω + ω∂τ )

We have for all k ∈ N

c(2)
t = 1

π2

∫
e−2i(rρ−ωτ)(t M)

kd2 dρ dω dτ dr



Harmonic oscillator perturbed by a decreasing scalar… 155

then we obtain for all k > 0

∣∣∣c(2)
t

∣∣∣ ≤ Ck(1 + x2 + ξ2)
−ηk
4

Uniformly with respect to t ∈ [0, T ]
Study of c(1)

t
On the support of d1 we have

c(1)
t (x, ξ) = 1

π2

∫
R≤2ε(1+x2+ξ2)

η
2
e−2i(rρ−ωτ)σS(t)(x + ω, ξ + ρ)

× σB(t)(x + r , ξ + τ)ω1,εdρdωdτdr (5.6)∫ T

0

∣∣∣c(1)
t

∣∣∣dt ≤ c
∫
R≤2ε(1+x2+ξ2)

η
2
dρdωdτdr

∫ T

0

∣∣σS(t)(x + ω, ξ + ρ)
∣∣dt

×
∫ T

0

∣∣σS(t)(x + r , ξ + τ)
∣∣dt (5.7)

By using (4.4) and (1.4) we can deduce for all α, β ∈ N

∣∣∣∂α
x ∂

β
ξ σS(t)(x, ξ)

∣∣∣ ≤ cα,β(1 + x2 + ξ2)
−(m−1)

(1 + x2(t))
−s
2

by integrating along the interval [0, T ] and following the same reasoning in Proposi-
tion 4.1 we get

∣∣∣∣∂α
x ∂

β
ξ

∫ T

0
σS(t)(x, ξ)dt

∣∣∣∣ ≤ cα,β(1 + x2 + ξ2)
−(2m−2+δ)

2 (5.8)

From (5.7) and (5.8) we have

∫ T

0

∣∣∣c(1)
t

∣∣∣dt ≤ c
∫
R≤2ε(1+x2+ξ2)

η
2

(1 + (x + ω)2 + (ξ + ρ)2)
−(2m−2+δ)

2

× (1 + (x + r)2 + (ξ + τ)2)
−(2m−2+δ)

2 dρdωdτdr

On the support ofd1, for ε small enough and sinceη ∈]0, 2[, there are positive constants
c, c′,C,C ′ such that

⎧⎨
⎩

c(1 + x2 + ξ2)
1
2 ≤ (1 + (x + ω)2 + (ρ + ξ)2)

1
2 ≤ C(1 + x2 + ξ2)

1
2

c′(1 + x2 + ξ2)
1
2 ≤ (1 + (x + r)2 + (τ + ξ)2)

1
2 ≤ C ′(1 + x2 + ξ2)

1
2

It follows that

∫ T

0
c(1)
t dt ≤ C(1 + x2 + ξ2)−(2m−2+δ)

∫
R≤2ε(1+x2+ξ2)

η
2
dρdωdτdr (5.9)
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Finally ∫ T

0
c(1)
t dt ≤ c(1 + x2 + ξ2)−(2m−2+δ)+η (5.10)

At the end by denoting σ the Weyl symbol of the operator
∫ T

0
S(t)B(t)dt ,

we have

|σ | ≤
∫ T

0

∣∣∣c(1)
t

∣∣∣dt +
∫ T

0

∣∣∣c(2)
t

∣∣∣dt
≤ C

[
(1 + x2 + ξ2)

−ηk
4 + (1 + x2 + ξ2)

−(2m−2+δ−η)
]

≤ C(1 + x2 + ξ2)
−(2m−2+δ−η)

We obtain the same estimates for ∂α
x ∂

β
ξ σ (x, ξ), we prove by the same way that Q2

∈ G−(4m−4+δ−2η)
0 ��

We return to the proof of Proposition 5.1, since V ∈ G0
0, V ∈ G−δ

0 , Q1, Q ∈
G−(2m−2+δ)

0 and V , Q2 ∈ G−(4m−4+2δ−2η)
0 , by using Proposition 2.5 we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥∥{
−V + 1

2m

[
Q2, H

1
m −1V

]}
H2− 2

m + δ−η
m

∥∥∥ ≤ C∥∥∥∥
{[

Q, H
1
m −1V

]
+ 1

2

[
Q,

[
Q1, H

1
m −1V

]]}
H2− 2

m + δ
m

∥∥∥∥ ≤ C∥∥∥{
1
2

[
Q,

[
Q2, H

1
m −1V

]]
−

[
Q, V

]}
H4− 4

m + 2δ−2η
m

∥∥∥ ≤ C∥∥∥∥(ADQ)n
[
Q, H

1
m

]
H2− 2

m + δ
m

∥∥∥∥ ≤ C‖Q‖n−2 (n ≥ 2)∥∥∥∥(ADQ)n
[
Q, H

1
m −1V

]
H2− 2

m + δ
m

∥∥∥∥ ≤ C‖Q‖n−2

From what precedes we deduce that (eQLme−Q − Lm)H
δ−η
m +2− 2

m is bounded. ��
Come back to the proof of Proposition 1.7. We deduce from Proposition 5.1 that

there exists a constant c > 0 such that

−cH
−δ+η
m + 2

m −2 ≤ eQLme
−Q − Lm ≤ cH

−δ+η
m + 2

m −2

According to the min-max theorem

υk = υk + O(λ
−δ+η
m + 2

m −2
k ) (5.11)

To have a good estimate, let us specify the best choice of η. Combining Remark 4.3,
(5.11) and Proposition 5.1, we choose

η ∈]0,min(2,m − 1 + δ
2 )[ (5.12)

��
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Now we prove Theorems 1.2 and 1.3. It is enough to combine Propositions 1.5, 1.6
and 1.7 we deduce

μk = 1

T

∫ 1

−1

V (yλ
1
2m
k )

(1 − y2m)1− 1
2m

dy + O(λ
−δ−1
2m

k ), ∀m ≥ 2

and for m = 1 (harmonic oscillator case)

μk = 1

π

∫ π
2

− π
2

V
(√

λk sin t
)
dt + O(λ

−δ+η
k ),

where η ∈]0, δ
2 [.
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