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Abstract
First, we reconsider the magnetic pseudodifferential calculus and show that for a large
class of non-decaying symbols, their corresponding magnetic pseudodifferential oper-
ators can be represented, up to a global gauge transform, as generalizedHofstadter-like,
boundedmatrices.As a by-product,we prove aCalderón–Vaillancourt type result. Sec-
ond, wemake use of this matrix representation and prove sharp results on the spectrum
location when the magnetic field strength b varies. Namely, when the operators are
self-adjoint, we show that their spectrum (as a set) is at least 1/2-Hölder continuous
with respect to b in the Hausdorff distance. Third, when the magnetic perturbation
comes from a constant magnetic field we show that their spectral edges are Lipschitz
continuous in b. The same Lipschitz continuity holds true for spectral gap edges as
long as the gaps do not close.
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1 Introduction andmain results

1.1 The general setting

Let d ≥ 2 and if x ∈ R
d we denote 〈x〉 := (1 + |x |2)1/2. Let

BC∞(Rd) :=
{

f ∈ C∞(Rd;R) : sup
x∈Rd

|∂α f (x)| < ∞, ∀α ∈ N
d
0

}
.

We consider a magnetic field given by a 2-form B(x) = ∑
i, j Bi j (x) dxi ∧dx j with

Bi j = −B ji , Bi j ∈ BC∞(Rd) and ∂k Bi j + ∂ j Bki + ∂i B jk = 0, i.e. dB = 0. Since B
is closed, we may write B = dA for some (non unique) 1-form A. We will only work
with the so-called transverse gauge [10], defined as follows: for every x ′ ∈ R

d let

A j (x, x ′) := −
d∑

k=1

∫ 1

0
s(xk − x ′

k)B jk(x ′ + s(x − x ′)) ds,

and observe that B = dA(·, x ′) independently of x ′. Let �x,x ′ denote the oriented
segment linking x ′ with x . The 1-form A(·, 0) − A(·, x ′) is closed and

ϕ(x, x ′) :=
∫

�x,x ′
A(·, 0) − A(·, x ′) =

∫
�x,x ′

A(·, 0)

satisfies

∂x j ϕ(x, x ′) = A j (x, 0) − A j (x, x ′).

Using Stokes’ theorem we see that ϕ(x, x ′) equals the magnetic flux through the
oriented triangle having vertices at 0, x and x ′. We now list three important properties
of ϕ. For all x, x ′, y, z ∈ R

d and α, α′, β ∈ N
d
0 we have:

1. There exists a constant Cα,α′ such that

|∂α
x ∂α′

x ′ ϕ(x, x ′)| ≤ Cα,α′ |x ||x ′|; (1.1)

2. ϕ(x, x ′) = −ϕ(x ′, x);
3. If �(x, y, z) denotes the area of the triangle with vertices x, y, z ∈ R

d then the
map f : R3d → R given by

f(x, y, z) := ϕ(x, y) + ϕ(y, z) − ϕ(x, z)

is the magnetic flux through the triangle with vertices x, y, z and satisfies

|∂α
x ∂α′

y f(x, y, z)| ≤ Cα,α′�(x, y, z), (1.2)

for some constant Cα,α′ .
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Given such a ϕ we define the magnetic symbol class Mϕ(R3d) to be the set of all
functions on the form

ab(x, x ′, ξ) = eibϕ(x,x ′)a(x, x ′, ξ),

where b ∈ R and a ∈ C∞(R3d) is any function for which there exists M ≥ 0 such
that

|∂α
x ∂α′

x ′ ∂
β
ξ a(x, x ′, ξ)| ≤ Cα,α′,β〈x − x ′〉M , (1.3)

for every α, α′, β ∈ N
d
0 and some constant Cα,α′,β . Note that we allow a polynomial

growth in the “relative coordinate” direction x − x ′. We associate to each magnetic
symbol ab ∈ Mϕ(R3d) a magnetic pseudodifferential operator Op(ab) : S (Rd) →
S ′(Rd) given by

〈Op(ab) f , g〉 := 1

(2π)d

∫
R3d

eiξ ·(x−x ′)eibϕ(x,x ′)a(x, x ′, ξ) f (x ′)g(x) dx ′ dx dξ,

(1.4)

for f , g ∈ S (Rd). By (1.3) and (1.1) it follows that Op(ab) is well-defined. Note that
this is not the usual magnetic Weyl quantisation procedure [20,21], which associates
a Hörmander symbol [18,19] ã ∈ S0

0,0(R
2d) to the following operator

〈OpWb (ã) f , g〉 := 1

(2π)d

∫
R3d

eiξ ·(x−x ′)eibϕ(x,x ′)ã((x + x ′)/2, ξ) f (x ′)g(x) dx ′ dx dξ.

(1.5)

In Theorem 1.1 we will show that Op(ab) can be extended to a bounded operator
on L2(Rd), provided ab ∈ Mϕ(R3d). We immediately see that the magnetic Weyl
operators belong to our class of magnetic pseudodifferential operators. On the other
hand (see Remark 1.3 for more details), one can also prove that the opposite inclusion
holds, in the sense that given one of “our” bounded operators one can construct via the
magnetic Beals criterion [10,21] a magnetic Weyl symbol which generates the same
operator. Nevertheless, working with our class seems to be more convenient when one
shows that certain commutators can be extended to bounded operators on L2(Rd).

The first goal of our paper is to show that, up to a global unitary gauge transforma-
tion, any such object can be identified with a bounded generalized matrix acting on

2(Zd; L2(�)) where � := ] − 1/2, 1/2[d is the open unit d-hypercube.

The second goal is to study how their spectrum varies with b (as a set) when the
operators are self-adjoint.

1.2 Recent developments

Magnetic Schrödinger operators of the type Hb := ∑d
j=1(−i∂x j − bA j )

2 + V where
V is a scalar potential play a central role in both atomic and solid-state physics.
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When the magnetic field is long-range (i.e. it does not decay fast enough at infinity),
the corresponding magnetic potentials are no longer bounded perturbations and the
spectral analysis is more involved.

There is a substantial amount of literature dedicated to such operators, especially
on the problem of obtaining effective magnetic Hamiltonians. From the physics liter-
ature we only mention the pioneering works of Peierls [34] and Luttinger [26]. The
mathematical community became interested in the problem during the Eighties and
gradually put it on a firm mathematical foundation. The works by Nenciu [30], and
Helffer and Sjöstrand [15,16,35] were probably the first ones where the existence of
magnetic tight-binding models was rigorously established. Nenciu [31] then showed
that the resolvent (Hb − z)−1 can be seen as a twisted magnetic integral operator and
that the singular behaviour comes from a phase factor like eibϕ(x,x ′).

Moreover, it was observed [24,28] that in the presence of a non-constant magnetic
field, the usualWeyl pseudodifferential calculus based on theminimal coupling princi-
ple at the level of classical symbols does not lead to gauge invariant formulas. Iftimie,
Măntoiu and Purice [20–23] introduced the so-called magnetic Weyl pseudodifferen-
tial calculus in which they treated operators like in (1.5). The case m = ρ = δ = 0
was inherently more difficult, but in [21] they managed to prove a magnetic version of
the Calderón–Vaillancourt theorem and they also generalized the Beals criterion [2,6]
to the magnetic case.

Several aspects of spectral and scattering theory usingmagneticWeyl pseudodiffer-
ential calculus were analysed in [27,29]. Lein and De Nittis [13], Panati et al. [33], and
Freund and Teufel [14] developed a pseudodifferential calculus adapted for magnetic
Bloch systems and applied it to various problems coming from the space-adiabatic
perturbation theory.

A special class of results concerns the resolvent set stability ofmagneticSchrödinger
operators and theHausdorff regularity of the spectrumwhen b varies. Continuity of the
spectrum can be proved under quite general conditions on the Hamiltonians [1,3,4],
while more refined properties like the Lipschitz behaviour of spectral edges were first
proved by Bellissard [5] for discrete Hofstadter-like models [17]. Cornean, Purice and
Helffer [7–9,11,12] extended this to continuous magnetic Schrödinger operators, and
the magnetic Weyl calculus played a crucial role.

1.3 Main results

Recall that � = ]−1/2, 1/2[d and define:

H :=
⊕
γ∈Zd

L2(�) =
⎧⎨
⎩( fγ )γ∈Zd ⊂ L2(�) |

∑
γ∈Zd

‖ fγ ‖2L2(�)
< ∞

⎫⎬
⎭ ,

which is a Hilbert space when equipped with the inner product

〈( fγ ), (gγ )〉H :=
∑
γ∈Zd

〈 fγ , gγ 〉L2(�).
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Furthermore, for any b ∈ R, let Ub : L2(Rd) → H be given by

(Ub f )γ (·) := e−ibϕ(·+γ,γ )χ�(·) f (· + γ ), (1.6)

for all f ∈ L2(Rd), where χ� denotes the characteristic function on �. The operator
Ub is unitary and

[U∗
b ( fγ )γ∈Zd ](·) =

∑
γ∈Zd

eibϕ(·,γ )χ�(· − γ ) fγ (· − γ ).

We say that an operator A on H is a generalized matrix of the operators
(Aγ,γ ′)γ,γ ′∈Zd ⊂ B(L2(�)) when:

A = {Aγ,γ ′ }γ,γ ′∈Zd , (A f )γ =
∑

γ ′∈Zd

Aγ,γ ′ fγ ′

for all f = ( fγ )γ∈Zd ∈ H . One may also see that A acts on 
2(Zd; L2(�)).
The Hausdorff distance between two compact sets X , Y ⊂ R is defined as:

dH(X , Y ) := max{sup
x∈X

dist(x, Y ), sup
y∈Y

dist(y, X)}.

We are now ready to state our main theorem.

Theorem 1.1 If ab ∈ Mϕ(R3d) with b ∈ [0, bmax] for some bmax > 0, then:

1. The operator Op(ab) in (1.4) extends to a bounded operator on L2(Rd) and for
each γ, γ ′ ∈ Z

d there exists Aγ γ ′,b ∈ B(L2(�)) such that (see (1.6))

UbOp(ab)U
∗
b = {eibϕ(γ,γ ′)Aγ γ ′,b}γ,γ ′∈Zd . (1.7)

Moreover, for every N ∈ N there exists a constant CN such that

‖Aγ γ ′,b‖ ≤ CN 〈γ − γ ′〉−N , (1.8)

and

‖Aγ γ ′,b − Aγ γ ′,b′ ‖ ≤ CN 〈γ − γ ′〉−N |b − b′|, for b, b′ ∈ [0, bmax], (1.9)

for all γ, γ ′ ∈ Z
d .

Additionally, if a(x, x ′, ξ) = a(x ′, x, ξ) then Op(ab) is self-adjoint and in this case:

2. The spectrum of Op(ab) is 1
2 -Hölder continuous in b on the interval [0, bmax], i.e.

there exists a constant C such that

dH(σ (Op(ab)), σ (Op(ab′))) ≤ C |b − b′|1/2, (1.10)

for all b, b′ ∈ [0, bmax].
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3. Assume that ϕ comes from a constant magnetic field, i.e. ϕ(x, x ′) = 1
2 x� Bx ′

where B is an antisymmetric matrix. If Eb denotes the maximum (minimum) of
σ(Op(ab)), then it is Lipschitz continuous in b on [0, bmax]. Furthermore, if eb

denotes an edge of a spectral gap which remains open when b varies in some
interval [b1, b2] ⊂ [0, bmax], then eb is Lipschitz continuous on [b1, b2].

Remark 1.2 The representation (1.7) justifies the name “generalized Hofstadter
matrix” [5,17]. In the “classical” Hofstadter-like setting one deals with a discrete
operator acting on 
2(Zd;C) where the matrix entries are complex numbers. In our
case they are bounded operators on L2(�). Furthermore, the matrix elements are
strongly localized around the diagonal as in (1.8). We also note that after rotating
Op(ab) with Ub, the only singular behaviour in b is left in the “Peierls”-like phase
eibϕ(γ,γ ′), since the entries Aγ γ ′,b are Lipschitz in b in the norm topology, see (1.9).
For nearest-neighbor Hofstadter-like operators it is known from the works of Bellis-
sard, Helffer–Sjöstrand and Nenciu that the spectrum is 1

2 -Hölder continuous and that
the exponent 1

2 is optimal in the sense that gaps of order |b − b′|1/2 may open in the
spectrum (for more details see [7,32] and references within).

Remark 1.3 Our class Mϕ(R3d) of symbols which obey (1.3) is more convenient to
work with, but it does not generate “more” operators than the “usual” magnetic Weyl
quantisation (1.5). Let us show that given any operator Op(ab) as in (1.4) one may find
a Hörmander symbol ã ∈ S0

0,0(R
2d) such that Op(ab) = OpWb (ã), where OpWb (ã) is as

in (1.5). In order to prove thisweuse theBeals criterion formagnetic pseudodifferential
operators [10,21]. Namely, let us denote Wk = Xk if k = 1, 2, . . . , d and Wk =
−i∂xk−d −bAk−d(·, 0) if k = d +1, . . . , 2d. Then we will show using Theorem 1.1(1)
that all the commutators of the form

[W j1, [W j2 , . . . , [W jm ,Op(ab)] . . .]],

j
 ∈ {1, 2, . . . , 2d}, m ≥ 1, can be extended to bounded operators on L2(Rd), hence
(1.5) holds due to the magnetic Beals criterion. We only show this for m = 1, the
general case follows by induction.

Indeed, integration by parts gives

〈[Xk,Op(ab)] f , g〉
= i

(2π)d

∫
R3d

eiξ ·(x−x ′)eibϕ(x,x ′)(∂ξk a)(x, x ′, ξ) f (x ′)g(x) dx ′ dx dξ,

which by Theorem 1.1(1) can be extended to a bounded operator on L2(Rd). Using
again integration by parts together with the fact that ∂x j ϕ(x, x ′) = A j (x, 0) −
A j (x, x ′)weobtain after a straightforward computation that the commutator [(−i∂x j −
bA j ),Op(ab)] is a magnetic pseudodifferential operator with magnetic symbol

eibϕ(x,x ′)(bA j (x ′, x) − bA j (x, x ′) − i(∂x j + ∂x ′
j
)
)
a(x, x ′, ξ) ∈ Mϕ(R3d).
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Here we see the advantage of allowing polynomial growth in x − x ′, because even
though A j (x, x ′) and A j (x ′, x) have a linear growth in |x − x ′| we can directly apply
Theorem1.1(1) and the commutator can be extended to a bounded operator on L2(Rd).

Remark 1.4 If it is possible to choose a vector potential A such that

|∂α
x A j (x)| ≤ Cα, (1.11)

for all multiindices α with |α| > 0, then every magnetic pseudodifferential operator
would correspond to a non-magnetic Weyl type pseudodifferential operator. In order
to show this we use the non-magnetic Beals criterion. First, note that the commutator
[−bA j (·),Op(ab)] is a magnetic pseudodifferential operator with magnetic symbol

eibϕ(x,x ′)b(A j (x ′) − A j (x))a(x, x ′, ξ).

By Theorem 1.1(1) the above commutator extends to a bounded operator in L2(Rd).
Using Remark 1.3 we obtain that [−i∂x j ,Op(ab)] extends to a bounded operator on
L2(Rd). After an induction argument we obtain that Op(ab) satisfies the classical
non-magnetic Beals criterion.

However, we note that (1.11) does not necessarily hold for the transverse gauge,
although the constant magnetic field obeys this condition. Furthermore, to obtain sharp
results on the behaviour of σ(Op(ab)) as the magnetic field strength varies, using the
non-magnetic Weyl quantisation is not convenient when one works with nonconstant
magnetic fields.

1.4 The structure of the paper

After this introduction, in Sect. 2 we prove Theorem 1.1(1) by regularizing our mag-
netic symbol and writing the corresponding magnetic pseudodifferential operator as
an integral operator with a smooth integral kernel. By rewriting in a clever way the
kernel of this operator we are able to construct the right hand side of (1.7) as a strong
limit of a regularized sequence of operators.

In Sect. 3 we prove Theorem 1.1(2) by adapting some ideas coming from geometric
perturbation theory and [11].

In Sect. 4 we prove Theorem 1.1(3) in the case when Eb is the maximum of the
spectrum. Finally, we show how to deal with inner gap edges.

2 Proof of Theorem 1.1(1)

For simplicity we assume that ab(x, x ′, ξ) = eibϕ(x,x ′)a(x, x ′, ξ) where a is a symbol
of Hörmander class S0

0,0(R
3d) i.e. M = 0 in (1.3). The proof can then be extended to

any M ≥ 0 (see Remark 2.7 for more details).
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2.1 Regularization of magnetic symbols

We begin by regularizing the symbol ab in order to write the corresponding magnetic
pseudodifferential operator as a generalized matrix of integral operators with smooth
integral kernels.

Lemma 2.1 Let ab ∈ Mϕ(R3d). For ε > 0 define ab,ε : R3d → C by

ab,ε(x, x ′, ξ) := ab(x, x ′, ξ)e−ε〈ξ〉

and Kb,ε : R2d → C by

Kb,ε(x, x ′) := 1

(2π)d

∫
Rd

eiξ ·(x−x ′)ab,ε(x, x ′, ξ) dξ.

Then the integral operator with kernel Kb,ε is a bounded operator on L2(Rd) and for
f ∈ S (Rd) we have

(Op(ab,ε) f )(x) =
∫
Rd

Kb,ε(x, x ′) f (x ′) dx ′. (2.1)

Proof The proof is a consequence of integration by parts, Schur–Holmgren lemma [19,
Lemma 18.1.12] and the identity

〈x〉2n =
∑
|α|≤n

Cαx2α, (2.2)

which holds for x ∈ R
d . Using Fubini’s theorem gives

〈Op(ab,ε) f , g〉 =
∫
R2d

Kb,ε(x, x ′) f (x ′)g(x) dx ′ dx

for f , g ∈ S (Rd) which proves (2.1). ��
Next we show that the operator Ab,ε := UbOp(ab,ε)U∗

b can be written as a gener-
alized matrix of integral operators on L2(�). In the following we underline variables
to indicate that they belong to �. By the definition of Ub, U∗

b and (2.1) we have that

(Ab,ε( fγ ′))γ (x)=
∑

γ ′∈Zd

∫
�

Kb,ε(x + γ, x ′ + γ ′)eib(ϕ(x ′+γ ′,γ ′)−ϕ(x+γ,γ )) fγ ′(x ′) dx ′,

(2.3)

for ( fγ ′) ∈ H . If for every γ, γ ′ ∈ Z
d we define

fγ,γ ′(x, x ′) := f(x + γ, γ ′, γ ) + f(x + γ, x ′ + γ ′, γ ′)
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and

Kγ,γ ′(x, x ′) := 1

(2π)d

∫
Rd

eiξ ·(x+γ−x ′−γ ′)eibfγ,γ ′ (x,x ′)e−ε〈ξ〉a(x + γ, x ′ + γ ′, ξ) dξ,

(2.4)

then we can use the identity

ϕ(x + γ, x ′ + γ ′) = −ϕ(x ′ + γ ′, γ ′) + ϕ(x + γ, γ ) + ϕ(γ, γ ′) + fγ,γ ′(x, x ′)

to write (2.3) as

(Ab,ε( fγ ′))γ (x) =
∑

γ ′∈Zd

eibϕ(γ,γ ′)
∫

�

Kγ,γ ′(x, x ′) fγ ′(x ′) dx ′.

This shows that the operator Ab,ε is a generalized matrix i.e.

Ab,ε = {eibϕ(γ,γ ′)Aγ γ ′,b,ε}γ,γ ′∈Zd , (2.5)

where the operators Aγ γ ′,b,ε are integral operators with kernel Kγ,γ ′ . The next step
in the proof is to construct operators Aγ γ ′,b, which are strong limits of Aγ γ ′,b,ε as
ε → 0.

2.2 Construction ofA��′,b

We rewrite the kernel of the operator Aγ γ ′,b,ε for each γ, γ ′ ∈ Z
d in a way that

allows us to take ε to zero. Before we construct the operators Aγ γ ′,b we note, as a
consequence of (1.2), that for every α, α′ ∈ N

d
0 there exists Cα,α′ such that

|∂α
x ∂α′

x ′ fγ,γ ′(x, x ′)| ≤ Cα,α′ 〈γ − γ ′〉 (2.6)

for all x, x ′ ∈ �̃ := [−π, π ]d .
The first step in the construction is to obtain a Fourier series (for each fixed ξ ) of

the function

�2 � (x, x ′) �→ a(x + γ, x ′ + γ ′, ξ)eibfγ,γ ′ (x,x ′)
,

for all γ, γ ′ ∈ Z
d . In order to circumvent the problem that this function is not neces-

sarily periodic let g ∈ C∞
0 (�̃) be such that 0 ≤ g ≤ 1 and g ≡ 1 on some open set

containing �. Then for every γ, γ ′ ∈ Z
d the function

�̃2 � (x, x ′) �→ g(x)g(x ′)a(x + γ, x ′ + γ ′, ξ)eibfγ,γ ′ (x,x ′)
, (2.7)
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can be extended to a periodic function in x, x ′ and hence has a Fourier series expansion.
Before we consider this expansion we note that for any α, α′, β ∈ N

d
0 Leibniz’s rule

and (2.6) gives the existence of a constant Cα,α′,β , not depending on b, satisfying

∣∣∣∣∂α
x ∂α′

x ′ ∂
β
ξ

(
g(x)g(x ′)a(x + γ, x ′ + γ ′, ξ)eibfγ,γ ′ (x,x ′)

)∣∣∣∣ ≤ Cα,α′,β〈γ − γ ′〉|α|+|α′|.

(2.8)

This is because the left hand side depends polynomially on b, therefore by the assump-
tion that b ∈ [0, bmax] it follows that the right hand side can be chosen independently
of b.

We would like to obtain an explicit decay in the summation variables m, m′ for the
Fourier series of (2.7). To avoid cumbersome notation we will annotate functions and
operators, within this section, which depend on the variables γ, γ ′, m, m′ ∈ Z

d with
a tilde accent. To obtain the aforementioned decay in the Fourier series we define for
every γ, γ ′, m, m′ ∈ Z

d the function

ãb(ξ) := (〈m〉〈m′〉)2d

(2π)2d

∫
�̃2

e−i(m·x+m′·x ′)g(x)g(x ′)a(x + γ, x ′ + γ ′, ξ)eibfγ,γ ′ (x,x ′) dx dx ′,

and use integration by parts together with (2.8) to obtain the estimate

|∂β
ξ ãb(ξ)| ≤ Cβ〈γ − γ ′〉4d , (2.9)

for all β ∈ N
d
0 . The Fourier series of the function in (2.7) then becomes

g(x)g(x ′)a(x + γ, x ′ + γ ′, ξ)eibfγ,γ ′ (x,x ′) =
∑

m,m′∈Zd

ei(m·x+m′·x ′)

(〈m〉〈m′〉)2d
ãb(ξ).

Since g ≡ 1 on � it follows that the kernels Kγ,γ ′ in (2.4) can be written as

Kγ,γ ′ (x, x ′) = 1

(2π)d

∑
m,m′∈Zd

1

(〈m〉〈m′〉)2d

∫
Rd

eiξ ·(x+γ−x ′−γ ′)ei(m·x+m′·x ′)ãb(ξ)e−ε〈ξ〉 dξ.

Since the function ãb only depends on ξ we can use the exponential factors eiξ ·x
and eiξ ·x ′

that appear in Kγ,γ ′ to write each Aγ γ ′,b,ε as a series of pseudodifferen-
tial operators. Specifically, if we for every γ, γ ′, m, m′ ∈ Z

d define the operators
Ãb,ε : C∞

0 (�) → S (Rd) by

(Ãb,εh)(x) := eim·xF−1
[
ei(∗)·(γ−γ ′)ãb(∗)e−ε〈∗〉F

(
eim

′·(·)h(·)
)
(∗)

]
(x),
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for all ε ≥ 0, then Fubini’s theorem implies that

(Aγ γ ′,b,εh)(x) =
∑

m,m′∈Zd

1

(〈m〉〈m′〉)2d
(Ãb,εh)(x), (2.10)

for all h ∈ C∞
0 (�) and ε > 0. Since Ãb,ε is well-defined even when ε = 0 we define

Aγ γ ′,b on C∞
0 (�) by

(Aγ γ ′,bh)(x) := (Aγ γ ′b,0h)(x) =
∑

m,m′∈Zd

1

(〈m〉〈m′〉)2d
(Ãb,0h)(x). (2.11)

We will later prove that Aγ γ ′,b,ε converges strongly to Aγ γ ′,b and use this to show
that Aγ γ ′,b satisfy Theorem 1.1.

2.3 Norm estimates: Proof of (1.8) and (1.9)

The aimof this section is to prove the following lemma, fromwhich both (1.8) and (1.9)
follow immediately.

Lemma 2.2 Suppose b, b′ ∈ [0, bmax]. Then for every N ∈ N there exists a constant
CN such that

‖Aγ γ ′,b,εh‖L2(�) ≤ CN 〈γ − γ ′〉4d−2N ‖h‖L2(�) (2.12)

and

‖(Aγ γ ′,b,ε − Aγ γ ′,b′,ε)h‖L2(�) ≤ CN 〈γ − γ ′〉4d+1−2N |b − b′|‖h‖L2(�), (2.13)

for all h ∈ C∞
0 (�) and all ε ∈ [0, 1].

From Lemma 2.2 it follows that Aγ γ ′,b extends to a bounded operator on L2(�).

Proof Let N ∈ N be arbitrary. From (2.10) and (2.11) it is clear that in order to
estimate (2.12) we have to estimate the norm of 〈γ − γ ′〉2N Ãb,ε for ε ∈ [0, 1].
Applying (2.2) together with integration by parts and Leibniz’s rule gives the existence
of a constant MN ∈ N and sequences (Cn)

MN
n=1 ⊂ C, (αn)

MN
n=1, (α

′
n)

MN
n=1, (βn)

MN
n=1 ⊂ N

d
0

not depending on h such that

〈γ − γ ′〉2N (Ãb,εh)(x)

=
MN∑
n=1

Cn xαnF−1
[
ei(∗)·(γ−γ ′)∂βn

(∗)[ãb(∗)e−ε〈∗〉]F
(
(·)α′

neim
′·(·)h(·)

)
(∗)

]
(x),

for all h ∈ C∞
0 (�) and ε ≥ 0.



318 H. D. Cornean et al.

In order to show (2.12) it only remains to obtain a suitable estimate of the norm of
the right hand side. By applying Parseval’s identity twice we obtain

〈γ − γ ′〉2N ‖Ãb,εh‖L2(�) ≤
MN∑
n=1

Cn‖∂βn
(∗)[ãb(∗)e−ε〈∗〉]‖L∞(Rd )

( ∫
�

|(x ′)α′
n h(x ′)|2 dx ′

)1/2

,

for all h ∈ C∞
0 (�) and ε ≥ 0. Since h ∈ C∞

0 (�) we have the bound |(x ′)α′
n h(x ′)| ≤

|h(x ′)| for all n = 1, . . . , MN . Combining this inequality with the estimate (2.9)
and the fact that any finite number of derivatives of e−ε〈·〉 is uniformly bounded for
ε ∈ [0, 1] gives the estimate

〈γ − γ ′〉2N ‖Ãb,εh‖L2(�) ≤ CN 〈γ − γ ′〉4d‖h‖L2(�),

for all h ∈ C∞
0 (�), ε ≥ 0 and some constant CN not depending on b. This completes

the proof of (2.12).
To prove (2.13) we need to subtract two functions as in (2.7) but with different

choices of b and obtain an estimate similar to (2.8). By (2.7) such a difference is given
by

g(x)g(x ′)a(x + γ, x ′ + γ ′, ξ)eib
′fγ,γ ′ (x,x ′)[ei(b−b′)fγ,γ ′ (x,x ′) − 1],

for b, b′ ∈ [0, bmax]. Using that for all y ∈ R we have

|eiy − 1| ≤ |y|, (2.14)

together with (2.6), (2.8) gives for anyα, α′, β ∈ N
d
0 the existence of a constantCα,α′,β

such that

∣∣∣∣∂α
x ∂α′

x ′ ∂
β
ξ

(
g(x)g(x ′)a(x + γ, x ′ + γ ′, ξ)eib

′fγ,γ ′ (x,x ′)[ei(b−b′)fγ,γ ′ (x,x ′) − 1]
)∣∣∣∣

≤ Cα,α′,β |b − b′|〈γ − γ ′〉|α|+|α′|+1. (2.15)

Note that when we use Leibniz’s rule on the left hand side every term will contain a
factor on the form (b − b′)n with n ∈ N and since b, b′ ∈ [0, bmax] we can absorb
the extra factors in the constant. By using (2.15) in calculations similar to those that
gave (2.9) we obtain

|∂β
ξ ãb(ξ) − ∂

β
ξ ãb′(ξ)| ≤ Cβ |b − b′|〈γ − γ ′〉4d+1,

for all β ∈ N
d
0 and somce constant Cβ . With this estimate the proof of (2.13) follows

the same way as the proof of (2.12). ��
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2.4 Strong convergence ofAb,�

In this section we prove that Aγ γ ′,b,ε converges strongly to Aγ γ ′,b as ε goes to zero
(cf. (2.11)). Furthermore, we construct an operator Hb as the generalized matrix with
entries eibϕ(γ,γ ′)Aγ γ ′,b. Using the strong convergence Aγ γ ′,b,ε → Aγ γ ′,b we prove
that Ab,ε in (2.5) converges strongly to Hb. Finally, we apply this to continuously
extend Op(ab) to an operator in B(L2(Rd)).

Lemma 2.3 For each γ, γ ′ ∈ Z
d the operators Aγ γ ′,b,ε converge strongly to Aγ γ ′,b

on C∞
0 (�).

Proof Suppose that h ∈ C∞
0 (�). From (2.10) and (2.11) it suffices to consider the

operators Ãb,ε − Ãb,0 for all γ, γ ′, m, m′ ∈ Z
d . Applying Parseval’s identity once

gives

‖(Aγ γ ′,b,ε − Aγ γ ′,b)h‖L2(�)

≤
∑

m,m′∈Zd

1

(〈m〉〈m′〉)2d
‖ãb(∗)(e−ε〈∗〉 − 1)F

(
eim

′·(·)h(·)
)
(∗)‖L2(�).

Using Parseval’s identity again shows that the L2-norm appearing on the right hand
side is bounded by a constant which is independent of m, m′ and ε. Therefore it is
enough to prove that this norm goes to 0 with ε for a fixed m and m′, which follows
by an application of Lebesgue’s dominated convergence theorem. ��

To construct the operators Hb we need the following general lemma on generalized
matrices of operators.

Lemma 2.4 Suppose that there exists a constant C and operators (Tγ,γ ′)γ,γ ′∈Zd ⊂
B(L2(�)) such that

‖Tγ,γ ′ f ‖L2(�) ≤ C‖ f ‖L2(�)

〈γ − γ ′〉2d
,

for every γ, γ ′ ∈ Z
d and f ∈ C∞

0 (�). Then T = {Tγ,γ ′ }γ,γ ′∈Zd is a bounded operator
on H with

‖T ‖ ≤
∑
γ∈Zd

C

〈γ 〉2d
.

Proof Let f ∈ {( fγ ) ∈ H | fγ ∈ C∞
0 (�)} and S : 
2(Zd) → 
2(Zd) an operator

with matrix elements

Sγ,γ ′ = C

〈γ − γ ′〉2d
.

Using a Schur–Holmgren estimate we get that S is bounded and ‖S‖ ≤ ∑
γ∈Zd

C
〈γ 〉2d .

Then:
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‖T f ‖2H =
∑
γ∈Zd

∥∥∥ ∑
γ ′∈Zd

Tγ,γ ′ fγ ′
∥∥∥2

L2(�)
≤

∑
γ∈Zd

( ∑
γ ′∈Zd

Sγ,γ ′ ‖ fγ ′ ‖L2(�)

)2

≤ ‖S‖2‖ f ‖2H .

Since T is linear and bounded on a dense set, it can be extended to the whole space
H . ��

By (1.8) and Lemma 2.4 we obtain that

Hb := {eibϕ(γ,γ ′)Aγ γ ′,b}γ,γ ′∈Zd

is a bounded operator on L2(Rd). Combining Lemma 2.4 with Lemma 2.2 also gives
the following corollary.

Corollary 2.5 The operators Ab,ε are uniformly bounded for ε ∈ ]0, 1].
Next we prove that Hb is the strong limit of Ab,ε as ε → 0.

Proposition 2.6 The operators Ab,ε converge strongly to Hb as ε goes to zero.

Proof First one shows the strong convergence for elements in the set

H ∞
0 := {( fγ ) ∈ H | fγ ∈ C∞

0 (�) and fγ �= 0 for only finitely many γ ∈ Z
d}

by using (2.12) and Lemma 2.3. Second one uses that H ∞
0 is dense in H , and that

the operators Ab,ε are uniformly bounded in ε to complete the proof. ��
Finally, we are ready to show that Op(ab) has a continuous extension on L2(Rd).

By Proposition 2.6 it follows that U∗
b HbUb is the strong limit of Op(ab,ε) and since

using Lebesgue’s dominated convergence theorem in the definition of Op(ab,ε) gives

lim
ε→0

〈Op(ab,ε) f , g〉 = 〈Op(ab) f , g〉,

for every f , g ∈ S (Rd) it follows that U∗
b HbUb is a continuous extension of Op(ab)

to L2(Rd).

Remark 2.7 Note that if we had used a general magnetic symbol like in (1.3) with
M ≥ 0 then the estimate in (2.8) would be on the form∣∣∣∣∂α

x ∂α′
x ′ ∂

β
ξ

(
g(x)g(x ′)a(x + γ, x ′ + γ ′, ξ)eibfγ,γ ′ (x,x ′)

)∣∣∣∣ ≤ Cα,α′,β〈γ − γ ′〉M+|α|+|α′|,

for x, x ′ ∈ �̃. Thus the Fourier coefficient obeys

|∂β
ξ ãb(ξ)| ≤ Cβ〈γ − γ ′〉4d+M ,

instead of (2.9). The subsequent part of the proof would then follow in exactly the
same way with only minor changes e.g. replacing 4d with 4d + M .
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3 Proof of Theorem 1.1(2)

In order to prove the second part of Theorem 1.1 we introduce the following notation.
Define

Vt :=
{

{(γ, γ ′) ∈ Z
2d | |γ − γ ′| < |t |−1/2}, t �= 0,

Z
d , t = 0.

Furthermore, for s, t ∈ R define

Hs
t,b := {ei(b+s)ϕ(γ,γ ′)Aγ γ ′,b}(γ,γ ′)∈Vt . (3.1)

If s or t is 0 then we omit them in the above notation. Recall that for this part of the
proof we assume

a(x, x ′, ξ) = a(x ′, x, ξ),

for all x, x ′, ξ ∈ R
d . This is a sufficient condition for Hs

t,b to be self-adjoint for every
s, t ∈ R and every b ∈ [0, bmax].

An important result [25, Chapter V-§4 Theorem 4.10] for proving Theorem 1.1(2)
is that if S and T are bounded and self-adjoint operators on a Hilbert space then

dH(σ (S), σ (T )) ≤ ‖S − T ‖. (3.2)

Our strategy to prove (1.10) is to show that there exists a constant C such that if
b0 ∈ [0, bmax] is arbitrary and δb satisfies b0 + δb ∈ [0, bmax] then

dH(σ (Hb0+δb), σ (H δb
b0 )) ≤ C |δb|, (3.3)

dH(σ (H δb
b0 ), σ (H δb

δb,b0)) ≤ C |δb|, (3.4)

dH(σ (H δb
δb,b0), σ (Hδb,b0)) ≤ C |δb|1/2, (3.5)

dH(σ (Hδb,b0), σ (Hb0)) ≤ C |δb|. (3.6)

Since |δb| ∈ [0, bmax] the triangle inequality would then imply (1.10). Note that the
constant C will depend on bmax. For the rest of this section let b0 ∈ [0, bmax] be
arbitrary and let δb be sufficiently small.

For the inequality (3.3) note that

Hb0+δb − H δb
b0 = {ei(b0+δb)ϕ(γ,γ ′)(Aγ γ ′,b0+δb − Aγ γ ′,b0)}γ,γ ′∈Zd .

Thus it follows from Lemma 2.4, (1.9) and (3.2) that there exists C not depending on
b0 or δb such that

dH(σ (Hb0+δb), σ (H δb
b0 )) ≤ ‖Hb0+δb − H δb

b0 ‖ ≤ C |δb|. (3.7)
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The proofs of (3.4) and (3.6) are similar hence we only do it for (3.4). Clearly,

H δb
b0 − H δb

δb,b0 = {ei(b0+δb)ϕ(γ,γ ′)Aγ γ ′,b0}(γ,γ ′)/∈Vδb ,

thus by defining Ṽδb = Z
d ∩ B|δb|−1/2(0) it follows from Lemma 2.4, (1.8) and (3.2)

that

dH(σ (H δb
b0 ), σ (H δb

δb,b0)) ≤ ‖H δb
b0 − H δb

δb,b0‖ ≤
∑

γ /∈Ṽδb

C〈γ 〉−2d . (3.8)

It is possible to find a constant C such that for all γ ∈ Z
d we have

〈γ 〉−2d ≤ C〈x〉−2d ,

for all x ∈ γ + �. If we dominate the sum in (3.8) by the integral of C〈x〉−2d and
switch to polar coordinates we obtain

dH(σ (H δb
b0 ), σ (H δb

δb,b0)) ≤
∑

γ /∈Ṽδb

C〈γ 〉−2d ≤ C
∫ ∞

|δb|−1/2

rd−1

〈r〉2d
dr ≤ C |δb|

for sufficiently small δb.

3.1 Strategy for the proof of (3.5)

The proof of (3.5) ismore involved than the other three estimates since it is not possible
in general to bound ‖H δb

δb,b0
− Hδb,b0‖ by a constant multiple of |δb|. Our strategy is

to prove the following two results:

Lemma 3.1 There exists a constant C > 0 such that if dist(z, σ (Hδb,b0)) > C |δb|1/2
then z ∈ ρ(H δb

δb,b0
).

Lemma 3.2 There exists a constant C > 0 such that if dist(z, σ (H δb
δb,b0

)) > C |δb|1/2
then z ∈ ρ(Hδb,b0).

Then (3.5) is a direct consequence of the following general lemma.

Lemma 3.3 Let T1, T2 be bounded operators on some Hilbert space and C > 0 a
constant. The following assertions are equivalent:

1. If dist(z, σ (Tj )) > C then z ∈ ρ(Tk), for j, k = 1, 2.
2. dH(σ (T1), σ (T2)) ≤ C.

Proof We first show by contradiction that (1) implies (2). Assume that dH(σ (T1),
σ (T2)) > C . Then either there exists some z such that dist(z, σ (T2)) > C and
z ∈ σ(T1), or there exists some z such that dist(z, σ (T1)) > C and z ∈ σ(T2). This
contradicts (1).

To show that (2) implies (1), let z be such that dist(z, σ (Tj )) > C . Then z cannot
belong to the spectrum of Tk without contradicting (2). ��
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In what follows we only prove Lemma 3.1 since the proof of Lemma 3.2 is similar
(cf. Remark 3.7).

The main idea behind the proof of Lemma 3.1 is showing that for every z ∈
ρ(Hδb,b0) there exists some bounded operator Sz such that

(H δb
δb,b0 − z)Sz = id+O

( |δb| 12
dist(z, σ (Hδb,b0))

)
. (3.9)

Then if the right hand side is invertible, z belongs to the resolvent set of H δb
δb,b0

.

3.2 Proof of Lemma 3.1

In order to construct the operator Sz let g, g̃ ∈ C∞
0 (Rd) and r > 0 satisfy:

1. g(x), g̃(x) ∈ [0, 1] for every x ∈ R
d .

2. supp g ⊂ Br (0) and supp g̃ ⊂ Br+2(0).
3. g̃ ≡ 1 on Br+1(0).
4.

∑
γ∈Zd g2(x − γ ) = 1 for every x ∈ R

d .

Furthermore, for any n ∈ Z
d define

gn,δb(x) := g(|δb|1/2x − n) and g̃n,δb(x) := g̃(|δb|1/2x − n)

and note the following properties:

(a) supp gn,δb ⊂ Br |δb|−1/2(n|δb|−1/2) and supp g̃n,δb ⊂ B(r+2)|δb|−1/2(n|δb|−1/2).
(b) |gn,δb(x) − gn,δb(y)| ≤ |δb|1/2Cg|x − y| for every x, y ∈ R

d .
(c) g̃n,δb(x)gn,δb(y) = gn,δb(y) whenever |x − y| ≤ |δb|−1/2.
(d) If for each n ∈ Z

d we define the set of r-neighbors to n by

Nr (n) := {n′ ∈ Z
d | 0 < |n − n′| < 2r},

then gn,δbgn′,δb ≡ 0 if n′ /∈ Nr (n)∪{n} and g̃n,δbg̃n′,δb ≡ 0 if n′ /∈ Nr+2(n)∪{n}.
(e) |γ ′′ − n|δb|−1/2|g̃n,δb(γ

′′) ≤ (r + 2)|δb|−1/2 g̃n,δb(γ
′′) for any n, γ ′′ ∈ Z

d .

For each n, γ ∈ Z
d define the scalars

g±
γ,n,δb := e±iδbϕ(γ,n|δb|−1/2)gn,δb(γ )

and the operator Wδb on B(H ) by

Wδb(R) :=
{ ∑

n∈Zd

g+
γ,n,δb Rγ,γ ′ g−

γ ′,n,δb

}
γ,γ ′∈Zd

,

for R ∈ B(H ).

Lemma 3.4 The operator Wδb is bounded with ‖Wδb‖ ≤ (vr + 1)1/2, where
vr := |Nr (n)| is independent of n.
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Proof Let f = ( fγ ) ∈ H be arbitrary and for every n ∈ Z
d let �n,δb ∈ H be given

by
(�n,δb)γ := g−

γ,n,δb fγ . (3.10)

Then ∑
n∈Zd

‖�n,δb‖2H =
∑
n∈Zd

∑
γ∈Zd

g2
n,δb(γ )‖ fγ ‖2L2(�)

= ‖ f ‖2H . (3.11)

Let R ∈ B(H ) be arbitrary. By the definition of Wδb we have

[Wδb(R) f ]γ =
∑
n∈Zd

g+
γ,n,δb(R�n,δb)γ ,

for any γ ∈ Z
d . Thus, if we write the norm of [Wδb(R) f ]γ in L2(�) as an inner

product with the previous expression we obtain the estimate

‖[Wδb(R) f ]γ ‖2L2(�)

≤
∑
n∈Zd

∑
n′∈Nr (n)∪{n}

1

2
gn,δb(γ )gn′,δb(γ )(‖(R�n,δb)γ ‖2L2(�)

+ ‖(R�n′,δb)γ ‖2L2(�)
)

≤ 1

2

∑
n∈Zd

(
(vr + 2)‖(R�n,δb)γ ‖2L2(�)

+
∑

n′∈Nr (n)

‖(R�n′,δb)γ ‖2L2(�)

)
,

where it suffices to sum n′ over the set Nr (n) ∪ {n} by (d).
For any n ∈ Z

d the second sum contains the term ‖(R�n,δb)γ ‖2
L2(�)

once for every
element in the set Nr (n). Hence we obtain

‖[Wδb(R) f ]γ ‖2L2(�)
≤ (vr + 1)

∑
n∈Zd

‖(R�n,δb)γ ‖2L2(�)
.

By summing over γ ∈ Z
d , and applying the boundedness of R together with (3.11)

we obtain

‖Wδb(R) f ‖2H ≤ (vr + 1)
∑

n∈Zd

‖R�n,δb‖2H ≤ (vr + 1)‖R‖2‖ f ‖2H ,

which completes the proof. ��
We will show that the operator Wδb((Hδb,b0 − z)−1) acts as Sz in (3.9). To show

this we need the following result.

Lemma 3.5 Let f ∈ H and z ∈ ρ(Hδb,b0) be arbitrary. For each γ ∈ Z
d define the

scalar

xγ :=
∑
n∈Zd

g̃n,δb(γ )‖((Hδb,b0 − z)−1�n,δb)γ ‖L2(�),
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where �n,δb is given by (3.10). Then x = (xγ ) ∈ 
2(Zd) with

‖x‖
2(Zd ) ≤ (vr+2 + 1)1/2

dist(z, σ (Hδb,b0))
‖ f ‖H .

Proof By using similar arguments as in the proof of Lemma 3.4 we obtain

‖x‖2

2(Zd )

≤ (vr+2 + 1)
∑
γ∈Zd

∑
n∈Zd

‖((Hδb,b0 − z)−1�n,δb)γ ‖2L2(�)

≤ (vr+2 + 1)‖ f ‖2H
dist(z, σ (Hδb,b0))

2 ,

where we have used the well-known equality

‖(T − z)−1‖ = 1

dist(z, σ (T ))
,

which holds for T normal and z ∈ ρ(T ). ��
We are now ready to verify (3.9).

Lemma 3.6 There exists a constant C such that for all z ∈ ρ(Hδb,b0) the operator

Tz = (H δb
δb,b0 − z)Wδb((Hδb,b0 − z)−1) − id

is bounded on H with

‖Tz‖ ≤ C |δb|1/2
dist(z, σ (Hδb,b0))

.

Proof To shorten our notation we write

Rδb,z := (Hδb,b0 − z)−1.

In order to prove this result we want to obtain the following decomposition

(H δb
δb,b0 − z)Wδb(Rδb,z) = R1 + R2 + R3 (3.12)

where

R1 :=
{ ∑

γ ′′∈Zd

eiδbϕ(γ,γ ′′)[Hδb,b0 − z]γ,γ ′′ [W (1)
δb,γ ]γ ′′,γ ′

}
γ,γ ′∈Zd

,

R2 :=
{ ∑

γ ′′∈Zd

[Hδb,b0 − z]γ,γ ′′ [W (2)
δb,γ ]γ ′′,γ ′

}
γ,γ ′∈Zd

,

R3 :=
{ ∑

γ ′′∈Zd

[Hδb,b0 − z]γ,γ ′′ [W (3)
δb,γ ]γ ′′,γ ′

}
γ,γ ′∈Zd

,



326 H. D. Cornean et al.

for some suitable operators W (1)
δb,γ , W (2)

δb,γ , W (3)
δb,γ . To finish the proof wewill then show

that R3 = id and that

max{‖R1‖, ‖R2‖} ≤ C |δb|1/2
dist(z, σ (Hδb,b0))

, (3.13)

for some constant C .
We start by constructing the operators W (1)

δb,γ , W (2)
δb,γ , W (3)

δb,γ . Since

H δb
δb,b0 − z = {eiδbϕ(γ,γ ′)[Hδb,b0 − z]γ,γ ′ }(γ,γ ′)∈Vδb ,

and [Hδb,b0 −z]γ,γ ′ = 0 whenever |γ −γ ′| ≥ |δb|−1/2 these operators must be chosen
such that for arbitrary γ ′, γ ′′ ∈ Z

d we have

[Wδb(Rδb,z)]γ ′′,γ ′ = [W (1)
δb,γ ]γ ′′,γ ′ + e−iδbϕ(γ,γ ′′)([W (2)

δb,γ ]γ ′′,γ ′ + [W (3)
δb,γ ]γ ′′,γ ′)

whenever |γ − γ ′′| < |δb|−1/2. By (d) and the identity

eiδb(ϕ(γ,γ ′′)+ϕ(γ ′′,n|δb|−1/2)) = eiδbϕ(γ,n|δb|−1/2)(1 + eiδbf(γ,γ ′′,n|δb|−1/2) − 1),

which hold for all γ, γ ′′ ∈ Z
d , it is possible to verify that defining

W (1)
δb,γ :=

{ ∑
n∈Zd

eiδbϕ(γ ′′,n|δb|−1/2)(gn,δb(γ
′′) − gn,δb(γ ))g̃n,δb(γ

′′)(Rδb,z)γ ′′,γ ′ g−
γ ′,n,δb

}
γ ′′,γ ′∈Zd

,

W (2)
δb,γ :=

{ ∑
n∈Zd

eiδbϕ(γ,n|δb|−1/2)(eiδbf(γ,γ ′′,n|δb|−1/2) − 1)gn,δb(γ )g̃n,δb(γ
′′)(Rδb,z)γ ′′,γ ′ g−

γ ′,n,δb

}
γ ′′,γ ′∈Zd

,

W (3)
δb,γ :=

{ ∑
n∈Zd

eiδbϕ(γ,n|δb|−1/2)gn,δb(γ )g̃n,δb(γ
′′)(Rδb,z)γ ′′,γ ′ g−

γ ′,n,δb

}
γ ′′,γ ′∈Zd

,

gives the desired decomposition of (3.12).
By using the definition of W (3)

δb,γ it follows that R3 = id. To achieve estimate (3.13)
let f = ( fγ ) ∈ H be arbitrary. Our strategy is to bound the quantity ‖(R j f )γ ‖L2(�),
j = 1, 2, by a product of an operator in B(
2(Zd)) and a vector in 
2(Zd).
Let S : 
2(Zd) → 
2(Zd) be the integral operator with kernel

S(γ, γ ′) = |γ − γ ′|‖[Hδb,b0 − z]γ,γ ′ ‖L2(�),

and let x = (xγ ) ∈ 
2(Zd) be given as in Lemma 3.5, i.e.

xγ :=
∑
n∈Zd

g̃n,δb(γ )‖((Hδb,b0 − z)−1�n,δb)γ ‖L2(�).

By (b) and the triangle inequality we get

‖(R1 f )γ ‖L2(�) ≤ |δb|1/2(Sx)γ ,
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and from (e), (2.6) and (2.14) we obtain

‖(R2 f )γ ‖L2(�) ≤ Cr |δb|1/2(Sx)γ ,

for some appropriate constant Cr . From (1.8) and a Schur–Holmgren type result for

2(Zd) it follows that S is bounded. By Lemma 3.5 we thus obtain the bound (3.13)
for both R1 and R2. ��
Proof of Lemma 3.1 Since H δb

δb,b0
is self-adjoint it suffices to consider only real values

of z. Suppose that x ∈ R with dist(x, σ (Hδb,b0)) > 2C |δb|1/2 and choose δ0 > 0
such that z ∈ ρ(Hδb,b0) whenever |z − x | < δ0. For any δ ∈ R with 0 < |δ| < δ0 we
define zδ = x + iδ. By Lemmas 3.4 and 3.6 we have the estimates

‖Wδb((Hδb,b0 − zδ)
−1)‖ ≤ (vr + 1)1/2

dist(zδ, σ (Hδb,b0))
≤ (vr + 1)1/2

dist(x, σ (Hδb,b0))
,

and

‖Tzδ‖ ≤ C |δb|1/2
dist(zδ, σ (Hδb,b0))

<
1

2
,

for all 0 < |δ| < δ0. Using these estimates together with Lemma 3.6 gives

(H δb
δb,b0 − zδ)

−1 = Wδb((Hδb,b0 − zδ)
−1)(id+Tzδ )

−1

and that (H δb
δb,b0

− zδ)
−1 is bounded uniformly for such δ. Factorizing

H δb
δb,b0 − x = (id+iδ(H δb

δb,b0 − zδ)
−1)(H δb

δb,b0 − zδ),

and choosing δ sufficiently small concludes the proof. ��
Remark 3.7 If we define the operator W̃δb on B(H ) by

W̃δb(R) :=
{ ∑

n∈Zd

g−
γ,n,δb Rγ,γ ′ g+

γ ′,n,δb

}
γ,γ ′∈Zd

,

and interchange the roles of H δb
δb,b0

and Hδb,b0 it is possible to repeat the proofs of
Lemmas 3.4, 3.5, 3.6 and 3.1 to obtain the result in Lemma 3.2.

4 Proof of Theorem 1.1(3)

In this part of the proof we adopt the notation in (3.1). Recall that we now assume that
B is a constant magnetic field. Thus ϕ is bilinear and

ϕ(x, y) + ϕ(y, z) = ϕ(x, z) + ϕ(x − y, y − z), (4.1)

for all x, y, z ∈ R
d .
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4.1 Regularity of extremal spectral values

Let b0, b0 + δb ∈ [0, bmax] for an arbitrary b0 and sufficiently small δb. We only
consider the case when Eb is the maximum of the spectrum, the case when Eb is the
minimum is similar. By (3.3) there exists a constant C such that

|Eb0+δb − sup σ(H δb
b0 )| ≤ dH

(
σ(Hb0+δb), σ (H δb

b0 )
) ≤ C |δb| (4.2)

and by the triangle inequality and (4.2) we get

|Eb0+δb − Eb0 | ≤ |Eb0+δb − sup σ(H δb
b0 )| + | sup σ(H δb

b0 ) − Eb0 |
≤ C |δb| + | sup σ(H δb

b0 ) − sup σ(Hb0)|.

Thus, it only remains to prove the following lemma.

Lemma 4.1 There exists some constant C such that

sup σ(H δb
b0 ) ≤ sup σ(Hb0) + C |δb|, (4.3)

sup σ(Hb0) ≤ sup σ(H δb
b0 ) + C |δb|, (4.4)

hence

| sup σ(H δb
b0 ) − sup σ(Hb0)| ≤ C |δb|.

Before we prove this proposition we consider the fundamental solution to the heat
equation, as it is an essential part of the proof. The fundamental solution is given by

G(y, y′, t) = 1

(4π t)d/2 e
−|y−y′|2/4t (4.5)

which is symmetric in the spatial coordinates and by semi-group theory satisfies

G(y, y′′, 2t) =
∫
Rd

G(y, y′, t)G(y′, y′′, t) dy′. (4.6)

By letting y = y′′ we get that
∫
Rd

|G(y, y′, t)|2 dy′ = G(y, y, 2t) = 1

(8π t)d/2 . (4.7)

To simplify our notation we define the linear functional �γ,γ ′,t by

�γ,γ ′,t f :=
∫
Rd

f (y′)G(γ, y′, t)G(y′, γ ′, t) dy′.
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By (4.1), (4.5) and (4.6) we get

�γ,γ ′,t (e
iδbϕ(γ,·)eiδbϕ(·,γ ′))

= �γ,γ ′,t

(
eiδbϕ(γ,γ ′)

(
eiδbϕ(γ−·,·−γ ′) − 1 + 1

))

= eiδbϕ(γ,γ ′)G(γ, γ ′, 2t) + eiδbϕ(γ,γ ′)�γ,γ ′,t
(
eiδbϕ(γ−·,·−γ ′) − 1

)
= eiδbϕ(γ,γ ′)

(
1

(8π t)d/2 + 1

(8π t)d/2

(
e−|γ−γ ′|2/8t − 1

))

+ eiδbϕ(γ,γ ′)�γ,γ ′,t
(
eiδbϕ(γ−·,·−γ ′) − 1

)
.

Rearranging the above equation gives for any δb ∈ R and γ, γ ′ ∈ Z
d

eiδbϕ(γ,γ ′) = (8π t)d/2�γ,γ ′,t (e
iδbϕ(γ,·)eiδbϕ(·,γ ′)) − eiδbϕ(γ,γ ′)

[(
e−|γ−γ ′|2/8t − 1

)

+ (8π t)d/2�γ,γ ′,t
(
eiδbϕ(γ−·,·−γ ′) − 1

)]

= I − eiδbϕ(γ,γ ′)[II + III], (4.8)

where

I := (8π t)d/2�γ,γ ′,t (e
iδbϕ(γ,·)eiδbϕ(·,γ ′)),

II := e−|γ−γ ′|2/8t − 1,

III := (8π t)d/2�γ,γ ′,t
(
eiδbϕ(γ−·,·−γ ′) − 1

)
.

Proof of Lemma 4.1 Recall that for a self-adjoint operator T on a separable Hilbert
space we have

sup
‖x‖=1

〈T x, x〉 = sup σ(T ). (4.9)

To show the first inequality, let f ∈ H with ‖ f ‖H = 1. By using (4.8) we get

〈H δb
b0 f , f 〉H =

∑
γ,γ ′∈Zd

eiδbϕ(γ,γ ′)eib0ϕ(γ,γ ′)〈Aγ γ ′,b0 fγ ′ , fγ 〉L2(�)

=
∑

γ,γ ′∈Zd

(I − eiδbϕ(γ,γ ′)[II + III])eib0ϕ(γ,γ ′)〈Aγ γ ′,b0 fγ ′ , fγ 〉L2(�).

(4.10)
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We first consider the series involving I. Since G(y′, γ, t) = G(γ, y′, t) we can define
�δb,y′,t ∈ H by

(�δb,y′,t )γ := eiδbϕ(y′,γ )G(y′, γ, t) fγ ,

to get

∑
γ,γ ′∈Zd

Ieib0ϕ(γ,γ ′)〈Aγ γ ′,b0 fγ ′ , fγ 〉L2(�)

= (8π t)d/2
∫
Rd

∑
γ∈Zd

〈(Hb0�δb,y′,t )γ , (�δb,y′,t )γ 〉L2(�) dy′

= (8π t)d/2
∫
Rd

〈Hb0�δb,y′,t ,�δb,y′,t 〉H dy′

≤ sup σ(Hb0)(8π t)d/2
∫
Rd

∑
γ∈Zd

|G(y′, γ, t)|2‖ fγ ‖2L2(�)
dy′

= sup σ(Hb0),

where we in the inequality have used (4.9) and in the last equality (4.7).
Note that by this and since the left hand side of (4.10) is real it follows that the

series involving II and III must be real.
Next we note that

II ≤
∣∣∣∣e−|γ−γ ′|2/8t − 1

∣∣∣∣ ≤ |γ − γ ′|2
8t

.

We now consider III. The antisymmetry of the matrix B in the magnetic field ϕ and
the coordinate change x = y′ − (γ + γ ′)/2 implies that

�γ,γ ′t (ϕ(γ − ·, · − γ ′))

=
∫
Rd

ϕ(γ − y′, y′ − γ ′)G(γ, y′, t)G(y′, γ ′, t) dy′

= 1

(4π t)d

∫
Rd

ϕ
(γ − γ ′

2
− x, x + γ − γ ′

2

)
e− 1

4t (| γ−γ ′
2 −x |2+|x+ γ−γ ′

2 |2) dx

= 0,

where the last equality comes from the fact that ϕ is antisymmetric and the exponential
factor is symmetric in x and γ−γ ′

2 . Using this together with the inequality

|eiδbx − 1 − iδbx | ≤ |δbx |2,
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which holds for x ∈ R, gives that

�γ,γ ′,t (e
iδbϕ(γ−·,·−γ ′) − 1)

≤ ∣∣�γ,γ ′,t (e
iδbϕ(γ−·,·−γ ′) − 1) − iδb�γ,γ ′,t (ϕ(γ − ·, · − γ ′))

∣∣
≤ (δb)2�γ,γ ′,t (|ϕ(γ − ·, · − γ ′)|2).

Since ϕ(γ − y′, y′ − γ ) = ϕ(γ − y′ + γ ′ − γ ′, y′ − γ ′) = ϕ(γ − γ ′, y′ − γ ′) and

|ϕ(γ − γ ′, y′ − γ ′)|2 ≤ C |γ − γ ′|2|y′ − γ ′|2

it follows that

(δb)2�γ,γ ′,t (|ϕ(γ − ·, · − γ ′)|2) ≤ C(δb)2|γ − γ ′|2�γ,γ ′,t (|y′ − γ ′|2).

Using that |y′ − γ ′|2 ≤ |γ − y′|2 + |y′ − γ ′|2 and changing to polar coordinates
implies

C(δb)2|γ − γ ′|2
∫
Rd

G(γ, y′, t)G(y′, γ ′, t)|y′ − γ ′|2 dy′ ≤ C(δb)2|γ − γ ′|2 t

td/2 .

Thus we have shown that

III = (8π t)d/2�γ,γ ′,t (e
iδbϕ(γ−·,·−γ ′) − 1) ≤ Ctd/2(δb)2|γ − γ ′|2 t

td/2

= C(δb)2|γ − γ ′|2t .

Next we define the integral operator S̃ : 
2(Zd) → 
2(Zd) by

(S̃x)γ =
∑

γ ′∈Zd

|γ − γ ′|2‖Aγ γ ′,b0‖xγ ′ ,

which by a Schur–Holmgren type result is a bounded operator.
By inserting the previous estimates for I, II and III in (4.10) and using that S̃ ∈

B(
2(Zd)) we obtain

〈H δb
b0 f , f 〉H ≤ sup σ(Hb0) + C

[
1

t
+ (δb)2t

]

Choosing t = 1/|δb| finishes the proof of (4.3).
To show the second inequality (4.4), note that by complex conjugation of (4.8) we

obtain
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〈Hb0 f , f 〉H =
∑

γ,γ∈Zd

eib0ϕ(γ,γ ′)〈Aγ γ ′,b0 fγ ′ , fγ 〉L2(�)

=
∑

γ,γ∈Zd

e−iδbϕ(γ,γ ′)ei(b0+δb)ϕ(γ,γ ′)〈Aγ γ ′,b0 fγ ′ , fγ 〉L2(�)

=
∑

γ,γ ′∈Zd

(I − e−iδbϕ(γ,γ ′)[II + III])ei(b0+δb)ϕ(γ,γ ′)〈Aγ γ ′,b0 fγ ′ , fγ 〉L2(�),

thus the proof of (4.4) is analogue to the proof of (4.3). ��

4.2 Regularity of gap edges

Assume that the spectrum of Hb has a gap i.e. σ(Hb) = σ1∪σ2 where sup σ1 < inf σ2,
which does not closewhen b varies in some interval [b1, b2] ⊂ [0, bmax].Wewill show
that eb = inf σ2 is Lipschitz continuous in [b1, b2]. The proof for sup σ1 is similar.

Without loss of generality, up to a translation in energy,we can assume thatσ(Hb) ⊂
]−∞, 0[ for allb ∈ [b1, b2]. Let usfix someb0 ∈ ]b1, b2[ and consider small variations
δb such that b0 + δb ∈ [b1, b2]. By the fact that the gap does not close, and if |δb|
is small enough, we are able to choose a contour C around σ2 (with σ1 exterior to
C ) which is independent of δb such that the distance between C and the spectrum of
Hb0+δb remains positive, uniformly on δb. We define the operator

Tb := i

2π

∫
C

z(Hb − z)−1 dz,

whose spectrum equals σ2 ∪ {0} and hence inf σ(Tb) = eb. Therefore it is enough to
show that the infimum of the spectrum of Tb is Lipschitz continuous in b. We will do
this in three steps. In what follows, C denotes a generic positive constant.

4.2.1 Step 1

Consider the operator H δb
b0

which is defined as in (1.7) but with Aγ γ ′,b0 instead of
Aγ γ ′,b0+δb, all other phases being left unchanged. From (3.7) we have

‖Hb0+δb − H δb
b0 ‖ ≤ C |δb|.

Standard perturbation theory arguments imply that if |δb| is small enough then C is
at a positive distance from the spectrum of H δb

b0
and moreover

∥∥∥Tb0+δb − i

2π

∫
C

z(H δb
b0 − z)−1 dz

∥∥∥ ≤ C |δb|.

Due to (3.2), it follows that the difference between eb0+δb and the infimum of the
spectrum of i

2π

∫
C z(H δb

b0
− z)−1 dz must be of order δb.
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4.2.2 Step 2

Let T̃ δb
b0

be defined as

[T̃ δb
b0 ]γ,γ ′ := eiδbϕ(γ,γ ′)[Tb0 ]γ,γ ′ . (4.11)

In what follows we will prove the estimate

∥∥∥T̃ δb
b0 − i

2π

∫
C

z(H δb
b0 − z)−1 dz

∥∥∥ ≤ C |δb|, (4.12)

which when combined with Step 1 and (3.2) gives

|eb0+δb − inf σ(T̃ δb
b0 )| ≤ C |δb|. (4.13)

The rest of Step 2 is dedicated to the proof of (4.12). We start with a technical
result.

Lemma 4.2 Let z ∈ C and let b = b0 + δb as above. Seen as an operator in H =

2(Zd; L2(�)), the resolvent (Hb − z)−1 is also written

(Hb − z)−1 = {[(Hb − z)−1]γ,γ ′ }γ,γ ′∈Zd with matrix elements

[(Hb − z)−1]γ,γ ′ ∈ B(L2(�)).

For every N ∈ N there exists a constant CN independent of b and z such that

‖[(Hb − z)−1]γ,γ ′ ‖ ≤ CN 〈γ − γ ′〉−N .

Proof Let k ∈ {1, 2, . . . , d} and consider the family of unitary operators Vk(t) ∈
B(H ) given by

(Vk(t) f )γ := eiγk t fγ .

The operator Yk,b(t) := Vk(t)HbVk(t)∗ is isospectral with Hb and

Vk(t)(Hb − z)−1Vk(t)
∗ = (

Yk,b(t) − z
)−1

. (4.14)

Using (1.7) and (1.8), together with the identity

[Yk,b(t)]γ,γ ′ = ei(γk−γ ′
k )t [Hb]γ,γ ′ ,

it follows that the map R � t �→ Yk,b(t) is infinitely many times differentiable in the
norm topology. In particular,

[Y ( j)
k,b (0)]γ,γ ′ = i j (γk − γ ′

k)
j [Hb]γ,γ ′ , j ≥ 1.
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By standard arguments one now shows that the map R � t �→ (
Yk,b(t) − z

)−1 is also
differentiable and

d

dt
(Yk,b(t) − z

)−1 = −(Yk,b(t) − z
)−1

Y
′
k,b(t)(Yk,b(t) − z

)−1
.

By induction one proves that the resolvent of Yk,b(t) is infinitely many times differ-

entiable. Given N , one can express dN

dt N (Yk,b(t) − z
)−1|t=0 in terms only depending

on (Hb − z)−1 and Y ( j)
k,b (0) with 1 ≤ j ≤ N . Now going back to (4.14) we see that by

fixing a pair γ, γ ′ and after differentiating N times at t = 0 we have:

iN (γk − γ ′
k)

N [(Hb − z)−1]γ,γ ′ =
[
dN

dt N
(Yk,b(t) − z

)−1|t=0

]
γ,γ ′

.

Since the right hand side is uniformly bounded in k, γ and γ ′, the proof is completed
by noticing that 〈γ − γ ′〉 grows like maxk |γk − γ ′

k |. ��
Define Sδb(z) to be given by:

[Sδb(z)]γ,γ ′ := eiδbϕ(γ,γ ′)[(Hb0 − z)−1]γ,γ ′ .

Since both Hb0 − z and (Hb0 − z)−1 are strongly localized near the diagonal we
get

[(H δb
b0 − z)Sδb(z)]γ,γ ′′ =

∑
γ ′∈Zd

eiδbϕ(γ,γ ′′)eiδbϕ(γ−γ ′,γ ′−γ ′′)[Hb0 − z]γ,γ ′ [(Hb0 − z)−1]γ ′,γ ′′

= [id+O(δb)]γ,γ ′′

and for sufficiently small |δb| we obtain

(H δb
b0 − z)−1 = Sδb(z)(id+O(δb))−1 = Sδb(z) + O(δb)

uniformly in z ∈ C . By using this identity it follows that

i

2π

∫
C

z(H δb
b0 − z)−1 dz = i

2π

∫
C

z Sδb(z) dz + O(δb) = T̃ δb
b0 + O(δb)

which finishes the proof of (4.12).

4.2.3 Step 3

Due to (4.13) it is enough to prove that

| inf σ(T̃ δb
b0 ) − eb0 | ≤ C |δb|.
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We observe that when δb = 0 we have T̃ 0
b0

= Tb0 , hence the above inequality is the
same as

| inf σ(T̃ δb
b0 ) − inf σ(T̃ 0

b0)| ≤ C |δb|.

We also observe that the family T̃ δb
b0

defined in (4.11) is of the same type as the

one we introduced in (1.7), where eibϕ(γ,γ ′) is replaced with eiδbϕ(γ,γ ′) and Aγ γ ′,b
is replaced with [Tb0 ]γ,γ ′ . These operators are strongly localized in 〈γ − γ ′〉 due to
Lemma 4.2. Thus we may apply the result about the Lipschitz continuity in b of the
“global” infimum of the spectrum which we have already studied in the first part of
Theorem 1.1(3), hence concluding the proof.
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