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Abstract
In this paper, we are interested by the perturbed operator

T (ε) := T0 + εT1 + ε2T2 + · · · + εk Tk + · · ·

where ε ∈ C, T0 is a closed densely defined linear operator on a separable Hilbert
spaceHwith domainD(T0) having isolated eigenvalues withmultiplicity onewhereas
T1, T2, . . . are linear operators onH having the same domainD ⊃ D(T0) and satisfy-
ing a specific growing inequality. The basic idea here is to investigate under sufficient
conditions the existence of Riesz bases of exponentials, where the exponents corre-
sponding as a sequence of eigenvalues of T (ε), can be developed as entire series of
ε. An application to a nonself-adjoint problem describing the radiation of a vibrating
structure in a light fluid is presented.

Keywords Eigenvalues · Elastic membrane · Families of exponentials ·
Isolated point · Riesz bases

1 Introduction andmain results

The concept of nonharmonic exponentials are originated from the celebrated work
of Paley and Wiener [14] where the authors studied the stability the trigonometric
system {eint }n∈Z under small perturbations of the integers. Much improvement has
been made subsequently by many mathematicians such as Pavlov in [15]. In fact,
his famous theorem on the Riesz basis property of exponential family open up many
problems as the problem of radiation of a vibrating structure in a light fluid initially
motivated by Filippi et al. [8]. This problem has been extensively studied in literature
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[2,5–7,10,11].Mainly in [2], the authors proved the existence of a sequence of complex
numbers (εn)n such that the family of exponentials associated to the eigenvalues of

the operator (I + εn K )−1 d2

dx2
forms a Riesz basis in L2

(
0, T

)
, for some T > 0. Here

K is the integral operator with kernel the Hankel function of the first kind and order
0.

It is clear here that the Riesz basis of exponentials given in [2] depends on the
sequence (εn)n and is not related to the exact eigenvalue problem considered in [8].

It is along this line of thoughts that we try to give some supplements to the results
developed in [2] in order to give a Riesz basis of exponentials where the exponents

coincide with the eigenvalues of the integro-differential operator (I + εK )−1 d2

dx2
, for

a fixed ε.
To this interest, we consider the following operator introduced by Sz-Nagy [13]:

T (ε) := T0 + εT1 + ε2T2 + · · · + εk Tk + · · · ,

verifying the following hypotheses:

(H1) T0 is closed densely defined linear operator on a separable Hilbert spaceH with
domain D(T0) ⊂ H.

(H2) The eigenvalues (λn)n∈N∗ of T0 are isolated and with multiplicity one.
(H3) The family of exponentials {eiλn t }∞1 forms a Riesz basis in L2(0, T ), for some

T > 0.
Let T1, T2, T3, . . . be linear operators on H having the same domain D and
satisfying the hypothesis:

(H4) D ⊃ D(T0) and there exist a, b, q > 0 and β ∈]0, 1] such that for all k ≥ 1

‖Tkϕ‖ ≤ qk−1(a‖ϕ‖ + b‖T0ϕ‖β‖ϕ‖1−β) for all ϕ ∈ D(T0). (1.1)

Before stating our main results, it is interesting to note that in order to prove the
stability of many problems and to show the existence of such bases, many authors
such as Feki et al. [6], Jeribi [9] and Sz-Nagy [13] studied the asymptotic behavior of
the spectrum and developed many approaches on the comportment of the eigenvalues.
Among this direction, we recall the following theorems developed in [6].

Theorem 1.1 [6, Theorem 2.1] Assume that the assumptions (H1) and (H4) hold.
Then for |ε| < 1

q , the series

∑

k≥0

εk Tkϕ

converges for all ϕ ∈ D(T0). If T (ε)ϕ denotes its limit, then T (ε) is a linear operator
with domain D(T0) and for |ε| < 1

q+βb , the operator T (ε) is closed. 
�
Let n ∈ N

∗. We denote by λn the eigenvalue number n of the operator T0, dn =
d(λn, σ (T0)\{λn}): the distance between λn and σ(T0)\{λn} and Cn = C(λn, rn): the
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circle with center λn and with radii rn = dn
2 . Since (T0 − z I )−1 is an analytic function

of z, ‖(T0 − z I )−1‖ is a continuous function of z. So, we denote by:

Mn := max
z∈Cn

‖(T0 − z I )−1‖

and

Nn := max
z∈Cn

‖T0(T0 − z I )−1‖ = max
z∈Cn

‖I + z(T0 − z I )−1‖.

Theorem 1.2 [6, Theorem 3.1] Assume that hypotheses (H1), (H2) and (H4) hold.
Let ϕn (respectively ϕ∗

n ) be an eigenvector of T0 (respectively T ∗
0 : the adjoint of T0)

associated to the eigenvalue λn (respectively λn) such that ‖ϕn‖ = ‖ϕ∗
n‖ and ϕ∗

n (ϕn) =
1. Then:

(i) For |ε| < 1
q+αn+rn Mnαn

, T (ε) will have a unique point of the spectrum in the
neighborhood of λn, and this point λn(ε) will be also with multiplicity one.

(ii) For |ε| < 1
q+αn+ω2

nrn Mnαn
, λn(ε) and the corresponding eigenvector ϕn(ε) can

be developed into an entire series of ε:

λn(ε) = λn + ελn,1 + ε2λn,2 + · · ·
ϕn(ε) = ϕn + εϕn,1 + ε2ϕn,2 + · · ·

and we have

|λn,i | ≤ ω2
nr2n Mnαn(q + αn + ω2

nrn Mnαn)i−1 f or all i ≥ 1

and

‖ϕn,i‖ ≤ ωnrn Mn(q + αn + ω2
nrn Mnαn)i for all i ≥ 1,

where ωn = ‖ϕn‖ and αn := aMn + bNβ
n M1−β

n . 
�
Based on the fact that in application to numerical analysis the basis is truncated,
we prove the existence of Riesz bases of exponentials in L2(0, T ) having the forms
{eiλn(ε)t }N

1 ∪{eiλn(εn)t }∞N+1 and {eiλn(ε)t }N
1 ∪{eiλn t }∞N+1 for |ε| enough small, N ∈ N

∗
and t ∈ (0, T ).

More precisely, we prove that:

Theorem 1.3 Suppose that the hypotheses (H1)–(H4) are satisfied. Then, there exist
a constant CN > 0 (N ≥ 1), a sequence of complex numbers (εn)n∈N∗ and two
sequences of eigenvalues {λn(ε)}n∈N∗ and {λn(εn)}n∈N∗ having the form

λn(ε) = λn + ελn,1 + ε2λn,2 + · · ·
λn(εn) = λn + εnλn,1 + ε2nλn,2 + · · ·



1002 H. Ellouz et al.

such that for |ε| ∈]0, CN [, the systems

(i) {eiλn(ε)t }N
1 ∪ {eiλn(εn)t }∞N+1

(ii) {eiλn(ε)t }N
1 ∪ {eiλn t }∞N+1

form Riesz bases in L2(0, T ). 
�
We point out here that Theorem 1.3 ameliorates Theorem 3.2 stated in [2]. In fact,

the first N vectors in the two bases are not depending on a sequence of complex
numbers (εn)n . Consequently, in application to numerical analysis after truncating the
basis, the exponential families given in Theorem 1.3 are related to the operator T (ε)

for a fixed ε; while, in [2, Theorem 3.2], the obtained Riesz basis is associated to
the eigenvalues of a sequence of operators (T (εn))n∈N∗ depending on the sequence
(εn)n∈N∗ .

In some applications, the verification of the hypothesis (H3) is quite hard. As
a tentative approach to grapple with such difficulty, we had the idea to generalize
Theorem 1.3 by assuming, instead of (H3), the following assumption:

(H3′) The family {ei f (λn)t }∞1 forms a Riesz basis in L2(0, T ) where T > 0 and f
is a H -lipschitz function, i.e.,

∃ H > 0 such that ∀x, y ∈ [c,+∞[, c > 0, | f (x) − f (y)| ≤ H |x − y|.

So by an analogous reasoning, we get the following result:

Theorem 1.4 Suppose that the hypotheses (H1), (H2), (H3′) and (H4) are satisfied.
Then, there exist a positive constant CN > 0 (N ≥ 1), a sequence of complex numbers
(εn)n∈N∗ and two sequences of eigenvalues {λn(ε)}n∈N∗ and {λn(εn)}n∈N∗ having the
form

λn(ε) = λn + ελn,1 + ε2λn,2 + · · ·
λn(εn) = λn + εnλn,1 + ε2nλn,2 + · · ·

such that for |ε| ∈]0, CN [, the systems

(i) {ei f (λn(ε))t }N
1 ∪ {ei f (λn(εn))t }∞N+1

(ii) {ei f (λn(ε))t }N
1 ∪ {ei f (λn)t }∞N+1

form Riesz bases in L2(0, T ). 
�
Notice here that in [2] the authors proved the existence of a sequence of complex

numbers (εn)n∈N∗ such that the system {ei f (λn(εn))t }∞1 forms a Riesz basis in L2(0, T );
whereas, in Theorem 1.4 the given bases are associated to the eigenvalues of T (ε) for
a fixed ε since in application to numerical analysis the basis is truncated.

To show the importance of our results, we consider the problem of radiation of a
vibrating structure in a light fluid motivated by Filippi et al. in [8]. More precisely, we
consider the following operators



On a Riesz basis of exponentials related to a family of… 1003

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T0 : D(T0) ⊂ L2
(] − L, L[) −→ L2(

]− L, L[)

ϕ −→ T0ϕ(x) = d4ϕ

dx4

D(T0) = H2
0

(] − L, L[) ∩ H4
(] − L, L[),

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

B : D(B) ⊂ L2
(] − L, L[) −→ L2

(] − L, L[)

ϕ −→ Bϕ(x) = d2ϕ

dx2

D(B) = H2
0

(] − L, L[) ∩ H4
(] − L, L[)

and
⎧
⎪⎪⎨

⎪⎪⎩

K : L2(
]− L, L[) −→ L2(

]− L, L[)

ϕ −→ Kϕ(x) = i

2

∫ L

−L
H0(k|x − x ′|)ϕ(x ′)dx ′,

where H0 is the Hankel function of the first kind and order 0 and the following
eigenvalue problem: Find the values λ ∈ C for which there is a solution u ∈ H2

0

(] −
L, L[) ∩ H4

(] − L, L[), u �= 0 for the equation

T0u + εK (T0 − B) = λ(I + εK )u

where λ = ω2ρ1
T1

, ε = 2ρ0
ρ1

.
The contents of this paper are organized as follow: Sect. 2 is devoted to introduce

some basic definitions about Riesz basis and present its fundamental properties. In
Sect. 3, we prove that the families of exponentials associated to some eigenvalues of
the perturbed operator T (ε) form Riesz bases. In the last section, we apply the results
of Sect. 3 to a problem of radiation of a vibrating structure in a light fluid.

2 Preliminary results

In this section, we introduce some definitions and preliminary results that we will
need in the sequel to characterize the notion of basis, Riesz basis and Riesz basis of
exponential family.

Definition 2.1 [16] A sequence of vectors {ϕn}n∈N∗ in a separable Hilbert spaceH is
said to be a basis for H if to each vector x ∈ H there corresponds a unique sequence
of scalars {cn}n∈N∗ such that

x =
∞∑

n=1

cnϕn
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converges for the norm of H. 
�
Definition 2.2 [16] A basis {ϕn}n∈N∗ in a separable Hilbert spaceH is said to be Riesz
basis for H, if it is equivalent to an orthonormal basis; i.e., ϕn = Gen for all n ∈ N

∗
where {en}n∈N∗ is an orthonormal basis forH and G is a bounded invertible operator
onH. 
�
Definition 2.3 A set of vectors {ϕn}n∈N∗ is said to be ω-linearly independent if

∞∑

n=1

cnϕn = 0 �⇒ cn = 0 for all n.


�
Proposition 2.1 [3, Theorem 2.13] The two statements below are equivalent:

(i) {ϕn}n∈N∗ is a Riesz basis for a separable Hilbert space H.
(ii) {ϕn}n∈N∗ is ω-linearly independent and there exist numbers A, B > 0 such that

A‖ϕ‖2 ≤
∞∑

n=1

|〈ϕ, ϕn〉|2 ≤ B‖ϕ‖2 for all ϕ ∈ H.

The constants A and B are called lower and upper bounds of the Riesz basis.


�
The following perturbation result for Riesz basis due to O. Christensen (see [4,

Corollary 22.1.5]) will play a crucial role in our considerations.

Theorem 2.1 [4, Corollary 22.1.5]Let {ϕn}n∈N∗ be a Riesz basis of a separable Hilbert
space H with lower bound A and let {gn}n∈N∗ be a collection of vectors in H. If there
exists a positive constant R < A such that

∞∑

n=1

|〈 f , ϕn − gn〉|2 ≤ R‖ f ‖2, ∀ f ∈ H,

then {gn}n∈N∗ is a Riesz basis for H. 
�
Now,we state somebasic definitions thatwewill need to derive a precise description

of the concept of Riesz basis family of exponential developed by Pavlov [15].

Definition 2.4 [1] An entire function f (z) is said to be of exponential type if the
inequality

| f (z)| ≤ AeB|z|, ∀z ∈ C (2.1)

holds for some positive constants A and B. The smallest of constants B such that (2.1)
holds is said to be exponential type of f . 
�



On a Riesz basis of exponentials related to a family of… 1005

Definition 2.5 [1] The growth indicator of an exponential type function f , is a 2π -
periodic function on R, defined by the equality

h f (φ) = lim
r→∞ sup

1

r
ln | f (reiφ)|, φ ∈ [−π, π ].

The indicator diagram of f is a convex set G f such that

h f (φ) = sup
k∈G f

Re(ke−iφ), φ ∈ [−π, π ].


�
Definition 2.6 [1] An entire function f of exponential type is said to be a function of
the Cartwright class if

∫

R

max(ln | f (x)|, 0)
1 + x2

dx < +∞.

In particular, the function f of exponential type satisfying the condition

∫

R

| f (x)|2
1 + x2

dx < ∞

belongs to the Cartwright class. 
�
Remark 2.1 The indicator diagramof aCartwright class function is an interval [iα, iβ],
α ≤ β, of the imaginary axis. Its length is the width of indicator diagram (see [1,
p. 59–60]). 
�
Definition 2.7 [1, p. 101] An entire function of exponential type with simple zeros
{λn}∞1 and with the width of indicator diagram T is called a generating function of
exponential family {eiλn t }∞1 in L2(0, T ). 
�
Definition 2.8 [1, 1.27] An entire function of exponential type is said to be of sine
type if

(i) the zeros of f lie in a strip {z ∈ C such that |I mz| ≤ H} for some H > 0.
(ii) there exist h ∈ R and positive constants c1, c2 such that

c1 ≤ | f (x + ih)| ≤ c2, ∀x ∈ R.


�
We close this section by the following theorem obtained by Pavlov [15].

Theorem 2.2 [15] Let � := {λn}∞1 be a countable set of complex numbers.
The family {eiλn t }∞1 forms a Riesz basis in L2(0, T ) if and only if the following

conditions are satisfied:
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(i) The sequence {λn}∞1 lies in a strip parallel to the real axis:

sup
n≥1

|I mλn| < ∞.

(ii) The family {λn}∞1 is separated, i.e.,

δ(�) := inf
n �=m

|λn − λm | > 0.

(iii) The generating function of the family {eiλn t }∞1 on the interval (0, T ) satisfies the
Muckenhoupt condition

sup
I∈J

{
1

|I |2
∫

I
| f (x + ih)|2dx

∫

I
| f (x + ih)|−2dx

}
< ∞

for some h ∈ R, where J is the set of all intervals of the real axis. 
�

3 Proof of main results

The aim of this section is to prove that the families of exponentials form Riesz basis in
L2(0, T ), where the exponents coincide with some eigenvalues of the operator T (ε).

The proof of Theorem 1.3 is as follow:

Proof of Theorem 1.3 (i) Let n ∈ N
∗, N ≥ 1 and λn the eigenvalue number n of T0.

We have,

|eiλn(ε)t − eiλn t | = |eiλn t (ei(λn(ε)−λn)t − 1)|

= |eiλn t ||ei(λn(ε)−λn)t − 1|

≤ 2e|I mλn |t e−I m((λn(ε)−λn) t
2 )

∣∣∣∣sin
(

(λn(ε) − λn)
t

2

)∣∣∣∣ .

As the family {eiλn t }∞1 forms a Riesz basis in L2(0, T ), then Theorem 2.2 implies that
the sequence {λn}∞1 lies in a strip parallel to the real axis. Thus, there exists a positive
constant h such that

∀n ≥ 1, |I mλn| ≤ h where h := sup
n

|I mλn|.
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Consequently, we obtain

|eiλn(ε)t − eiλn t | ≤ 2eht e|I m((λn(ε)−λn) t
2 )|
[
sin2

(
Re

(
(λn(ε) − λn)

t

2

))

+ sinh2
(

I m

(
(λn(ε) − λn)

t

2

))] 1
2

≤ 2eht e|I m((λn(ε)−λn) t
2 )|
[ ∣∣∣∣sin

(
Re

(
(λn(ε) − λn)

t

2

))∣∣∣∣

+
∣∣∣
∣sinh

(
I m

(
(λn(ε) − λn)

t

2

))∣∣∣
∣

]

≤ 2eht e|I m((λn(ε)−λn) t
2 )|
[ ∣∣∣∣Re

(
(λn(ε) − λn)

t

2

)∣∣∣∣

+ sinh

∣∣∣
∣I m

(
(λn(ε) − λn)

t

2

)∣∣∣
∣

]

≤ 2eht e|I m((λn(ε)−λn) t
2 )|
[ ∣∣∣∣Re

(
(λn(ε) − λn)

t

2

)∣∣∣∣

+
∣∣∣∣I m

(
(λn(ε) − λn)

t

2

)∣∣∣∣ e|I m((λn(ε)−λn) t
2 )|
]

≤ 2eht e|I m((λn(ε)−λn)t)| |(λn(ε) − λn)t | . (3.1)

Furthermore, according to hypothesis (H2) the family {eiλn t }∞1 forms a Riesz basis
in L2(0, T ). Hence, Proposition 2.1 yields the existence of numbers A, B > 0 such
that

A‖u‖2 ≤
∞∑

n=1

|〈u, eiλn t 〉|2 ≤ B‖u‖2 ∀u ∈ L2(0, T ).

We set

CN = min
n∈[1,N ]

√
A

ηω2
nr2n Mnαnn

√
T tetr1,n + √

A(q + αn + ω2
nrn Mnαn)

where η2 = ∑∞
k=1

4
k2

and r1,n = rn + h.
Let n ∈ [1, N ]. It is easy to see that if |ε| ∈]0, CN [, we have

|ε| <
1

q + αn + ω2
nrn Mnαn

,

then it follows from Theorem 1.2 that the operator T (ε) admits a unique eigenvalue
with multiplicity one, denoted λn(ε), inside the circle Cn and we obtain

e|I m((λn(ε)−λn)t)| ≤ ernt . (3.2)
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Hence, Eqs. (3.1) and (3.2) yield

|eiλn(ε)t − eiλn t | ≤ 2ter1,n t |λn(ε) − λn| . (3.3)

Moreover, since |ε| < 1
q+αn+ω2

nrn Mnαn
Theorem 1.2 implies that λn(ε) can be devel-

oped as entire series of ε and we have

λn(ε) = λn + ελn,1 + ε2λn,2 + · · · (3.4)

where
|λn,i | ≤ ω2

nr2n Mnαn(q + αn + ω2
nrn Mnαn)i−1 ∀i ≥ 1. (3.5)

So, using Eqs. (3.3), (3.4) and (3.5), we get

‖eiλn (ε)t − eiλn t‖2 =
∫ T

0
|eiλn (ε)t − eiλn t |2dt

≤
∫ T

0

(

2tetr1,n
∞∑

i=1

|ε|i |λn,i |
)2

dt

≤
∫ T

0

(

2tetr1,n
∞∑

i=1

|ε|i ω2
nr2n Mnαn(q + αn + ω2

nrn Mnαn)i−1

)2

dt

≤
∫ T

0

(

2tetr1,n ω2
nr2n Mnαn |ε|

∞∑

i=0

(
|ε|
(

q + αn + ω2
nrn Mnαn

))i
)2

dt

≤
∫ T

0

(
2tetr1,n ω2

nr2n Mnαn |ε|
1 − |ε|(q + αn + ω2

nrn Mnαn)

)2

dt

<

∫ T

0

4A

η2n2T
dt

≤ 4A

η2n2 .

On the other hand, for each eigenvalue λn of T0, we fix εn ∈ C such that

|εn| ∈
]
0,

√
A

ηω2
nr2n Mnαnn

√
T tetr1,n + √

A(q + αn + ω2
nrn Mnαn)

[
,

where η2 = ∑∞
k=1

4
k2

and r1,n = rn + h.
As for all n ≥ 1 we have

|εn| <
1

q + αn + ω2
nrn Mnαn

,
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so making the same reasoning as the above, we get

‖eiλn(εn)t − eiλn t‖2 <
4A

η2n2 , for all n ≥ N + 1.

If we set

R :=
∞∑

n=1

‖eiλn(ε)t − eiλn t‖2,

we can easily see that R < A. Now, let f ∈ L2(0, T ) and fn ∈ {eiλn(ε)t }N
1 ∪

{eiλn(εn)t }∞N+1. Then, we have

∞∑

n=1

∣
∣
∣
〈

f , eiλn t − fn
〉∣∣
∣
2 =

N∑

n=1

∣
∣
∣
〈

f , eiλn t − eiλn(ε)t
〉∣∣
∣
2 +

∞∑

n=N+1

∣
∣
∣
〈

f , eiλn t − eiλn(εn)t
〉∣∣
∣
2

=
N∑

n=1

∣
∣
∣∣
∣

∫ T

0
f (t)

(
eiλn t − eiλn(ε)t

)
dt

∣
∣
∣∣
∣

2

+
∞∑

n=N+1

∣∣
∣
∣
∣

∫ T

0
f (t)

(
eiλn t − eiλn(εn)t

)
dt

∣∣
∣
∣
∣

2

≤
N∑

n=1

(∫ T

0
| f (t)|

∣
∣
∣eiλn t − eiλn(ε)t

∣
∣
∣ dt

)2

+
∞∑

n=N+1

(∫ T

0
| f (t)|

∣
∣∣eiλn t − eiλn(εn)t

∣
∣∣ dt

)2

≤
N∑

n=1

∫ T

0
| f (t)|2 dt

∫ T

0

∣∣
∣eiλn t − eiλn(ε)t

∣∣
∣
2

dt

+
∞∑

n=N+1

∫ T

0
| f (t)|2 dt

∫ T

0

∣
∣∣eiλn t − eiλn(εn)t

∣
∣∣
2

dt

≤ ‖ f ‖2
⎛

⎝
N∑

n=1

∥
∥
∥eiλn(ε)t − eiλn t

∥
∥
∥
2 +

∞∑

n=N+1

∥
∥
∥eiλn(εn)t − eiλn t

∥
∥
∥
2

⎞

⎠

= R‖ f ‖2.

Consequently, using Theorem 2.1, the system { fn}n∈N∗ forms a Riesz basis in
L2(0, T ). Hence, the family {eiλn(ε)t }N

1 ∪ {eiλn(εn)t }∞N+1 forms a Riesz basis in
L2(0, T ). This achieves the proof of the first item.

(i i) To prove the second item, it suffices to choose the same constant CN and the
result follows immediately from Theorem 2.1. 
�

We end this section with the following proof of Theorem 1.4.
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Proof of Theorem 1.4 (i) Let n ∈ N
∗, N ≥ 1 and λn the eigenvalue number n of T0.

We have

|ei f (λn(ε))t − ei f (λn)t | = |ei f (λn)t (ei( f (λn(ε))− f (λn))t − 1)|.

On the other hand, since f is a H -lipschitz function, we obtain

|ei f (λn(ε))t − ei f (λn)t | ≤ t | f (λn(ε)) − f (λn)|

≤ t H |λn(ε) − λn| .

To prove the first item, we set

CN = min
n∈[1,N ]

√
A

ηω2
nr2n Mnαnn

√
T t H + √

A(q + αn + ω2
nrn Mnαn)

where η2 = ∑∞
k=1

1
k2

and let |ε| ∈]0, CN [.
So making the same reasoning as the one in Theorem 1.3 with

|εn| ∈
]
0,

√
A

ηω2
nr2n Mnαnn

√
T t H + √

A(q + αn + ω2
nrn Mnαn)

[
f or all n ≥ 1,

we get the desired result.
(i i) To prove (i i), it suffices to choose the same constant CN and to apply Theorem

2.1. 
�

4 Application to a problem of radiation of a vibrating structure in a
light fluid

We consider an elastic membrane lying in the domain −L < x < L of the plane
z = 0. The two half-spaces z < 0 and z > 0 are filled with gas. The membrane is
excited by a harmonic force F(x)e−iωt .

Now, let us consider the following boundary value problem:

(
d4

dx4
− mω2

D

)
u(x) − iρ0

∫ L

−L
H0(k|x − x ′|)

(
ω2

D
− 1

m

(
d4

dx4
− d2

dx2

))
u(x ′)dx ′ = F(x)

D
, (4.1)

for all x ∈] − L, L[ where u designates the displacement of the membrane such that
u(x) = ∂u(x)

∂x = 0 for x = −L and x = L and H0 is the Hankel function of the first
kind and order 0; while the mechanical parameters of the membrane are E the Young
modulus, ν the Poisson ratio, m the surface density, h the thickness of the membrane
and D:= Eh3

12(1−ν2)
the rigidity and the fluid is characterized by ρ0 the density, c the

sound speed and k:= ω
c the wave number.
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The problem (4.1) satisfy the following system:

(
d4

dx4
− mω2

D

)
u(x) = 1

D
(F(x) − P(x)) for all x ∈] − L, L[,

where

u(x) = ∂u(x)

∂x
= 0 for x = −L and x = L,

P(x) = lim
η→0+(p(x, η) − p(x,−η))

and

p(x, z) = −sgn zi
ρ0

2

∫ L

−L
H0(k

√
(x − x ′)2 + z2)

(
ω2 − D

m

(
d4

dx4
− d2

dx2

))
u(x ′)dx ′,

for z < 0 or z > 0, where p denotes the acoustic pressure in the fluid.
Among this direction, we consider the following operator:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T0 : D(T0) ⊂ L2
(] − L, L[) −→ L2

(] − L, L[)

ϕ −→ T0ϕ(x) = d4ϕ

dx4

D(T0) = H2
0

(] − L, L[) ∩ H4
(] − L, L[).

Now, we state a straightforward but useful result from [11]:

Lemma 4.1 [11, Lemmas 3.1, 3.2 and 3.4] The following assertions hold:

(i) T0 is a self-adjoint operator with dense domain.
(ii) The injection from D(T0) into L2

(] − L, L[) is compact.
(iii) The resolvent set of T0 is not empty. In fact, 0 ∈ ρ(T0).
(iv) The spectrum of T0 is constituted only of point spectrums which are positive,

denumerable and of which the multiplicity is one and which have no finite limit
points and satisfies

0 < λ1 ≤ λ2 ≤ · · · ≤ λn → +∞.

Further,
(

(2n + 1)π

4L

)4

≤ λn ≤
(

(2n + 3)π

4L

)4

,

i.e.,

λn ∼+∞
(nπ

2L

)4
.


�
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Remark 4.1 It follows from Lemma 4.1(ii) and (iii) that the operator T0 has a compact
resolvent. Since T0 is self-adjoint, then let

T0ϕ =
∞∑

n=1

λn〈ϕ, ϕn〉ϕn

be its spectral decomposition, where λn = αn4 is the nth eigenvalue of T0 associated
to the eigenvector ϕn(x) = μe

4√λn x + ηe− 4√λn x + θei 4√λn x + δe−i 4√λn x . 
�
Consequently, we define the operator B by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B = T
1
2
0 : D(B) ⊂ L2

(] − L, L[) −→ L2
(] − L, L[)

ϕ −→ Bϕ(x) = d2ϕ

dx2

D(B) =
{

ϕ ∈ L2
(] − L, L[) such that

∞∑

n=1

λn|〈ϕ, ϕn〉|2 < ∞
}

.

In the remaining part of this section, we consider the following operator:

⎧
⎪⎪⎨

⎪⎪⎩

K : L2
(] − L, L[) −→ L2

(] − L, L[)

ϕ −→ Kϕ(x) = i

2

∫ L

−L
H0(k|x − x ′|)ϕ(x ′)dx ′,

and the following eigenvalue problem:
Find the values λ(ε) ∈ C for which there is a solution ϕ ∈ H2

0

(]− L, L[)∩ H4
(]−

L, L[), ϕ �= 0 for the equation

T0ϕ + εK (T0 − B)ϕ = λ(ε)(I + εK )ϕ (4.2)

where λ = mω2

D and ε = 2ρ0
m .

In view of [12, chapter 9, section 4], λ is the eigenvalue and ϕ is the eigenvector.
Note that λ and ϕ each depend on the value of ε. So, we designate by λ := λ(ε)

and ϕ := ϕ(ε).
For |ε| < 1

‖K‖ , the operator I + εK is invertible. Then, the problem (4.2) become:

Find the values λ(ε) ∈ C for which there is a solution ϕ ∈ H2
0

(]− L, L[)∩ H4
(]−

L, L[), ϕ �= 0 for the equation

(I + εK )−1T0ϕ + ε(I + εK )−1K (T0 − B)ϕ = λ(ε)ϕ. (4.3)

The problem (4.3) is equivalent to:
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Find the values λ(ε) ∈ C for which there is a solution ϕ ∈ H2
0

(]− L, L[)∩ H4
(]−

L, L[), ϕ �= 0 for the equation

(
d4

dx4
− εK

d2

dx2
+ ε2K 2 d2

dx2
+ · · · + (−1)nεn K n d2

dx2
+ · · ·

)
ϕ = λ(ε)ϕ.

We denote by Tn := (−1)n K n d2

dx2
where D(Tn) = H2(] − L, L[), for all n ≥ 1.

In the sequel we shall need the following results:

Proposition 4.1 [5, Proposition 4.1]

(i) There exist positive constants a, b, q > 0 and β ∈ [ 1
2 , 1

]
such that for all

ϕ ∈ D(T0) and for all k ≥ 1, we have

‖Tkϕ‖ ≤ qk−1(a‖ϕ‖ + b‖T0ϕ‖β‖ϕ‖1−β).

(ii) For |ε| < 1
‖K‖ , the series

∑
k≥0 εk Tkϕ converges for allϕ ∈ D(T0). If we designate

its sum by T (ε)ϕ, we define a linear operator T (ε) with domain D(T0). For
|ε| < 1

‖K‖(1+β)
, the operator T (ε) is closed.


�
Proposition 4.2 The family {ei 4√λn t }n forms a Riesz basis in L2

(]0, 4L[). 
�

Proof It follows from [2, Theorem 4.1] that the family {ei
√

μn t }∞1 forms a Riesz basis

in L2(]0, 4L[). Further, as B = T
1
2
0 then μn = √

λn is the nth eigenvalue of B.

Consequently, the system {ei 4√λn t }∞1 forms a Riesz basis in L2(]0, 4L[). 
�
The main result of this section is formulated as follow:

Theorem 4.1 There exist a positive constant CN > 0 (N ≥ 1), a sequence of complex
numbers (εn)n∈N∗ and two sequences of eigenvalues {λn(εn)}n∈N∗ and {λn(ε)}n∈N∗
of T (ε) having the form

λn(εn) = λn + εnλn,1 + ε2nλn,2 + · · ·
λn(ε) = λn + ελn,1 + ε2λn,2 + · · ·

such that for |ε| ∈]0, CN [, the systems

(i) {ei 4√|λn(ε)|t }N
1 ∪ {ei 4√|λn(εn)|t }∞N+1

(ii) {ei 4√|λn(ε)|t }N
1 ∪ {ei 4√λn t }∞N+1

form Riesz bases in L2(]0, 4L[). 
�
Proof The result follows immediately fromTheorem 1.4, Lemma 4.1 and Propositions
4.1 and 4.2. 
�
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