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Abstract
We construct a family of frames describing the norm and seminorm of the space
Hs(Rd). We also characterise Besov spaces modeled on L2(Rd). Our work is inspired
by the discrete orthonormal Stockwell transform introduced by R.G. Stockwell, which
provides a time-frequency localised version of the Fourier basis of L2([0, 1]). This
approach is a hybrid between Gabor and Wavelet frames. We construct explicit and
computable examples of these frames, discussing their properties and comparing them
with the existing literature.
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Mathematics Subject Classification 42C15 · 42C40 · 46E35

1 Introduction

The discretisation of function spaces is an interesting problem both from a pure and
applied perspective. One of the leading ideas is that the smoothness or regularity must
be characterised via decay or sparsity properties of the associated discrete expansions.
For example, it is well known that Hs([0, 1]) can be characterised by the decay proper-
ties of the Fourier coefficients. Similarly, Sobolev spaces Hs(R), and more generally
inhomogeneous Besov spaces, can be described using suitable wavelet expansions,
see for example [10]. See [6,7,12–15,18,21,24] for other discrete time-frequency tech-
niques and representations of function spaces related to our research.
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Here, we focus on the Stockwell frames associated to a dyadic partition of the
frequency domain. In [2], the Stockwell frames were first introduced in connection
to the so called α-partitioning, see e.g. [14]. It is well known that α-partitioning and
α-modulation spaces with α = 1, i.e. with pure dyadic scaling factor 2 j , j ∈ Z, lead
to wavelet analysis and Sobolev spaces, see [13,14]. In particular, it can be shown that
wavelets can be used to characterise these spaces, see [10]. Hence, we investigate the
conditions underwhich our Stockwell frame characterises Sobolev spaces representing
their norms and seminorms and also show how to characterise Besov spaces. We
introduce a dyadic partition of the frequency domain with a fixed number of possible
directions at any scale, similarly to what it is usually done with multi-dimensional
wavelets,which is suited for both Sobolev andBesov spaces.Our theory can even cover
a wider class of decomposition spaces, see [5,27] and reference therein. In particular,
we later introduce a parameter δ which regulates the number of directions we have at
each step of the decomposition and describes the different partitions associated with
it. This captures the case of finite directions described above while also allowing the
number of directions to grow; in this way, one obtains partitions related with different
kind of parabolic molecules, see Remark 7 below. We also show that, in some cases,
the Stockwell frame detects higher regularity than wavelets. In particular, it is known
that Hs(R), s < 1

2 can be characterised using Haar wavelets. Our frame associated
with the characteristic function improves the result to s < 1.

The paper is organised as follows. In Sect. 2 we introduce the concept of admissible
multi-dimensional partition; roughly, a dyadic partition which covers the whole of R

d

(seen as frequency space) and has the uniformly finite intersection property, and a
finite number of possible directions in frequency, see Definition 2.1 below. Giving a
suitable function ϕ, we define the following system of functions

ϕ•,λ = Tλϕ(x), ϕ j,k,λ(x) = T2− jλ

⎛
⎝ 1

2 jd/2

∑
η∈Z j,k

e2π i ηtϕ(x)

⎞
⎠ , (1)

depending on a certain number of suitable parameters. The parameter λ represents
the space translation, j represents the (parabolic) scaling, while the parameter k the
“direction” as we shall show later on. For example, when d = 1, we have just two
admissible directions k = ± and we can set

Z j,+ = 2 j , . . . , 2 j+1 − 1 and Z j,− = −2 j+1 + 1, . . . ,−2 j . (2)

It is worth explaining why we choose (1) as a candidate to be an L2-frame.
Consider dimension d = 1 and let Z j,± be as in (2). In [1] it is proved that the so

called DOST-functions,

Pj,k,τ (t) = T τ

2 j

1

2 j/2

∑
η∈Z j,k

e2π i ηt , j ∈ N, τ = 0, . . . , 2 j − 1, k = ±,

P•(t) = 1,

(3)
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form an orthonormal basis of L2([0, 1]); these functions (3) were first introduced
in [25] as a discretisation of the S-transform, defined in [26]. This basis was further
studied byWang and Orchard [28] and then extended to dimension d = 2 by Drabycz,
Stockwell,Mitchell, Brown, Lauzon and Frayne [31], see also [11]. A first step into the
direction of the Stockwell frame development was done by Yan and Zhu [30], where
the authors studied general and flexible tiling in time-frequency space in dimension
d=1. See also [28] for a numerical perspective and [17,23,29] for a more abstract
analysis of the S-transform.

Then, the naive idea of the definition of the Stockwell frames comes from the
interpretation of Gabor frames

Tλ

(
e2π imtϕ(t)

)
, λ ∈ νZ,m ∈ Z,

as the uniform translation of
{
e2π imt

}
m∈Z, the usual Fourier basis of L2([0, 1]),

localised via a window function ϕ. Using the DOST basis instead of the Fourier one,
and a natural non-stationary translation, we are led exactly to the system of functions
defined in (1). Notice that the non-stationary translation is related to the frequency
parameter j . Roughly, we refine the space translation as the frequency increases.

In Sect. 3, we study the system of functions (1) in detail. In particular we prove our
main result, Theorem 3.2, i.e. the system (1) is a frame of L2(Rd)which characterises
the Hs-Sobolev norm, that is

A ‖ f ‖2s ≤
∑

λ∈νZd

| 〈 f , ϕ•,λ

〉 |2 +
∑

j∈N,k∈K ,λ∈νZd

22 js
∣∣〈 f , ϕ j,k,λ

〉∣∣2 ≤ B ‖ f ‖2s . (4)

The requirements, see Definition 3.1, involve the decay and non vanishing properties
of suitable linear combinations of translations of ϕ̂, which is the Fourier Transform of
ϕ. Given s ≥ 0, it is not difficult to find functions which satisfy such conditions, as
we show at the end of the section in Theorem 3.6. For example, the Gaussian function
works for all s.

In Theorem 3.4, we generalise the construction and prove a similar result for
seminorms. As expected, the conditions are stronger than those of the Hs-norm char-
acterisation. As an application, we show that this frame can also characterise Besov
spaces Bs

2,q , with s ∈ (0, 1) and q > 1. We end the section by stating some sufficient
conditions for the existence of our frames.

In Sect. 4, we give some explicit examples of Stockwell-like frames and, in a
particular case, we show that the system of functions (1) is indeed an orthonormal
basis of L2(R), characterizing all Sobolev spaces. Moreover, as anticipated, we show
how the Stockwell frame compares with Haar-wavelet in terms of Sobolev regularity,
showing how the former improves the wavelet result.

In Sect. 5, we extend the result to isotropic admissible partitions with a growing
number of frequency directions.
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Notations

We choose the following normalisation for the Fourier transform

(F u) (ω) =
∫

e−2π i x ·ωu(x)dx .

We denote by ‖·‖s and |·|s the Hs-norm and seminorm, respectively. We write f � g,
if there exists a constant C > 0 such that f ≤ C g. We write f � g if f � g and
g � f . Finally, d(·, ·) represents the Euclidean distance. We also use �·� to represent
the “ceiling” function.

2 Stockwell-like frames

First, we define a class of suitable tiling of R
d in the frequency domain; then we

construct frames for the Hs-norm associated to these admissible partitions.

2.1 Admissible partitions ofR
d: the finite directions case

We state here a first definition in arbitrary dimension with finitely many frequency
directions; then we give some examples of admissible partitions. Similar concepts are
used in [13,14], and we refer also to the bibliography presented there.

Definition 2.1 The family
{
I j,k

}
j∈N,k∈K j

∪ I•, where K j is an index set, is called
admissible partition if

(i) I j,k and I• are non empty connected subsets of R
d ;

(ii)
⋃

j∈N,k∈K j
I j,k ∪ I• = R

d ;

(iii) there exists N ∈ N such that for each
(
j̄, k̄

)
there are at most N indices ( j, k)

such that I j̄,k̄ ∩ I j,k �= ∅ (uniformly finite intersection);

(iv) I• is a neighbourhood of the origin and, for each j ∈ N and k ∈ K j , I j,k ∩Z
d �=

∅;
(v) there exist cmin, cmax > 0 such that for all ω ∈ I j,k

cmin <
|ω|
2 j

< cmax, uniformly in j, k;

(vi) |I j,k | � |I j,k′ |, k, k′ ∈ K j , where |I j,k | is the Lebesgue measure of I j,k ;
(vii) there exists CK such that |K j | � CK , uniformly in j .

Remark 1 An admissible partition covers R
d with no holes—(i), (ii)—with finitely

many intersections—(iii)—and each set contains at least some point with integer
coordinates—(iv). The distance from the origin of each elements of the set I j,k is
of order 2 j—(v). In (vi), at the scale j , each set has comparable size. Finally—(vii)—
the constant CK represents the possible number of frequency direction at any scale j ,
which we assume to be uniformly bounded.
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Fig. 1 An example of admissible
partition in d = 2

Ij,k .

1
2

3
2

7
2

We now describe some examples of admissible partition in different dimensions.

Dimension d = 1 In this case we just have two possible directions represented by
k = ±. We set

I j,+ =
{
ω ∈ R, ω ∈

[
2 j − 1

2
, 2 j+1 − 1

2

)}
,

I j,− =
{
ω ∈ R, ω ∈

(
−2 j+1 + 1

2
,−2 j + 1

2

]}
,

I• =
(

−1

2
,
1

2

)
.

(5)

One can easily see that this partition is admissible. With this particular choice, we
show in Sect. 4 that it is possible to define a Stockwell-like frame which is also an
orthonormal basis of L2(R).

Dimension d = 2 We express ω ∈ R
2 using polar coordinates (ρ, θ) and set

Set

I j,k =
{
ω ∈ R

2: 2 j − 1

2
≤ ρ < 2 j+1 − 1

2
,
kπ

4
≤ θ <

(k + 1)π

4

}
, k = 0, . . . , 7

I• =
{
ω ∈ R

2: ρ <
1

2

}
.

(6)
As before, one can easily check that this is an admissible partition; we refer to Fig. 1
for a plot.
The last example represents a partitionwhichnaturally extends to arbitrary dimensions.
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2.2 Stockwell-like frames

Consider functions ϕ, ϕ• ∈ L2(Rd), an admissible partition
{
I j,k

}
j∈N,k∈K j

∪ I• and

Γ =
{
( j, k, λ) | j ∈ N, k ∈ K j , λ ∈ νZ

d
}

. (7)

Let Z j,k = I j,k ∩ Z
d , then the Stockwell frame is defined as

ϕ•,λ(x) = ϕ•(x − λ), ϕ j,k,λ(x) = T2− jλ

⎛
⎝ 1

2 jd/2

∑
η∈Z j,k

e2π i η·xϕ(x)

⎞
⎠ ,

with ( j, k, λ) ∈ Γ , x ∈ R
d . We choose 2 jd/2 as �2(Zd) normalisation, since |Z j,k | �

2 jd . Finally, we define the Stockwell-like system as

S(ϕ•, ϕ, Γ ) =
{
ϕ•,λ, λ ∈ νZ

d
}

∪ {
ϕ j,k,λ, j, k, λ ∈ Γ

}
. (8)

Applying the Fourier transform one gets

ϕ̂•,λ(ω) = e−2π iω·λϕ̂•(ω),

ϕ̂ j,k,λ(ω) = e−2π iω·2− jλ

⎛
⎝ 1

2 jd/2

∑
η∈Z j,k

ϕ̂(ω − η)

⎞
⎠ .

(9)

If ϕ is a localisation window, the sum over the integer in Z j,k determines, in the
space domain, a higher localisations near the point 2− jλ as the scale j increases.

In frequency, it implies that the frame element ϕ j,k,λ has a Fourier transform ϕ̂ j,k,λ

with the support “essentially” in the set I j,k . In Fig. 2 we plot some frame elements
with different windows ϕ, in the dimension d = 1 case. In Fig. 3, we plot a frame
element and its Fourier transform in the dimension d = 2 case using the partition
defined above, see (6).

3 Frames of Hs(Rd)

In this section, we introduce conditions under which the system of functions{
ϕ j,k,λ

}
j,k,λ∈Γ

is a frame representing the Hs-norm. Later, we analyse the Hs-
seminorm’s case as well.

3.1 Hs-norm

Before going into specific details, let us give a brief explanation of which conditions
we need to impose. We require that the frame elements cover in the frequency domain
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Fig. 2 Real parts of the frame element ϕ j ,k,λ(t), ϕ = sincn(t), in dimension d = 1, both in time and

frequency domain. Here, the scale is 2 j , j = 4. We observe that the frame window in frequency works as a

characteristic function of
[
2 j − 1

2 , 2 j+1 − 1
2

]
. a Time, ϕ4,+,0(t), n = 3, b frequency, ϕ̂4,+,0(ω), n = 3,

c time, ϕ4,+,0(t), n = 15, d frequency, ϕ̂4,+,0(ω), n = 15

the whole R
d , and we require decay properties at infinity in the frequency domain, in

order to obtain Sobolev regularity. Precisely, we have the following definition.

Definition 3.1 (s-admissibility for Hs-norms, finite case) Consider an admissible par-
tition

{
I j,k

}
j,k∈Γ

∪ I• and s ≥ 0; we say that a pair of functions ϕ•, ϕ is s-admissible
with respect to the partition if, given

Φ•(ω) = ϕ̂•(ω), Φ j,k(ω) =
∑

η∈Z j,k

ϕ̂(ω − η), (10)

then
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Fig. 3 A frame element obtained using the partition of Fig. 1, the scale parameter is j = 4 the angular
parameter is the same of Fig. 1, that is k = 1. As localizing window we consider ϕ(x, y) = sinc3(x) ·
sinc3(y). On the left is plotted the real part of the frame element and on the right the absolute value of its
Fourier transform

(i) there exists α > d/2

|Φ•(ω)| � 1

(1 + |ω|)α , and |Φ j,k(ω)| �
{

2 jd/2

(1+d(ω,I j,k))
α+s , ω /∈ I j,k

1, ω ∈ R
d

; (11)

(ii) there exists a > 0 such that, for all ω ∈ R
d then

|Φ•(ω)| ≥ a, if ω ∈ I•,
∣∣Φ j,k(ω)

∣∣ ≥ a, if ω ∈ I j,k (12)

(the constant a does not depend on j, k).

Remark 2 The decay hypothesis on ϕ• implies

∑

λ∈νZd

| 〈Tλϕ•, f 〉 |2 � ‖ f ‖2L2(Rd )
,

see e.g. [9, Thm 9.2.5 p.206].

We state the main result for our Stockwell-like system. The L2-case, hereby repre-
sented by s = 0, has been proved already in [2] under a different and stronger set of
hypotheses.

Theorem 3.2 Let s ≥ 0 and consider an s-admissible couple of functions ϕ•, ϕ. Then
there exists ν0 > 0 such that for each ν ∈ (0, ν0) the system S (ϕ•, ϕ, Γ ) defined
in (8) is a frame representing the Hs(Rd) norm. Precisely, there exist A, B > 0 such
that for each f ∈ Hs(Rd)

A ‖ f ‖2s ≤
∑

λ∈νZd

| 〈 f , Tλϕ•〉 |2 +
∑

j,k,λ∈Γ

22 js
∣∣〈 f , ϕ j,k,λ

〉∣∣2 ≤ B ‖ f ‖2s .
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Proof The result follows by Property 1 (upper bound) and Property 2 (lower bound),
stated and proved below. ��
In order to show the boundedness of the coefficients with respect to the Sobolev norm,
we introduce the following family of sets

E• = I•, E j,k =
{
ω ∈ R

d : d (
ω, I j,k

) ≤ 2 j−1
}

. (13)

Proposition 1 (Upper bound) In the hypothesis of Theorem 3.2, for any s ≥ 0 there
exist a positive constant C such that

∑
j,k,λ∈Γ

22 js
∣∣〈 f , ϕ j,k,λ

〉∣∣2 ≤ C ‖ f ‖2s , (14)

where C depends on ν, the lattice constant defined in (7).

Proof For each index j set

f j,k,1(t) = F−1 (
χE j,k(ω) f̂ (ω)

)
, f j,k,2(t) = 1 − f j,k,1(t),

where E j,k is as in (13). Notice that E j,k ∩ E j ′,k = ∅, if | j − j ′| ≥ 2. By Plancherel
Theorem,

∑
j,k,λ∈Γ

22 js
∣∣〈 f , ϕ j,k,λ

〉∣∣2 =
∑

j,k,λ∈Γ

22 js
∣∣〈F( f ),F(ϕ j,k,λ)

〉∣∣2

=
∑

j,k,λ∈Γ

∣∣∣∣
〈
F( f )(1 + |ω|)s, 2 js

(1 + |ω|)s F(ϕ j,k,λ)

〉∣∣∣∣
2

=
∑

j,k,λ∈Γ

∣∣∣∣
〈
F( f )(1 + |ω|)s, 1

2 jd/2 e
−2π i 2− jλ(·)Φ j,k(·) 2 js

(1 + |ω|)s
〉∣∣∣∣
2

=
∑

j,k,λ∈Γ

∣∣∣
〈
F( f )(1 + |ω|)s,F(ϕ̃ j,k,λ)

〉∣∣∣2 , (15)

where—cf. Lemma A.4—

ϕ̃ j,k,λ(t) = 1

2 jd/2 T2− jλ F
−1

(
2 js

(1 + |ω|)s Φ j,k(ω)

)
(t).

Splitting f = f j,k,1 + f j,k,2 for each j we get

∑
j,k,λ∈Γ

22 js
∣∣〈 f , ϕ j,k,λ

〉∣∣2 �
∑

j,k,λ∈Γ

∣∣∣
〈
F( f j,k,1)(1 + |ω|)s,F(ϕ̃ j,k,λ)

〉∣∣∣2

+
∑

j,k,λ∈Γ

∣∣∣
〈
F( f j,k,2)(1 + |ω|)s,F(ϕ̃ j,k,λ)

〉∣∣∣2 .
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Notice that f j,k,1, f j,k,2 satisfy the hypothesis of Lemmas A.4 and A.5 respectively,
therefore

∑
j,k,λ∈Γ

22 js
∣∣〈 f , ϕ j,k,λ

〉∣∣2 � 1

ν

∑
j,k

(∥∥ f j,k,1
∥∥2
s + 2 j(d−2α)

∥∥F (
f j,k,2

)
(1 + | · |)s∥∥2

)

� ν−1‖ f ‖2s ,

as desired. Indeed, since the partition
{
I j,k, I•

}
is admissible then E j,k have the

(uniform) finite intersection property as well, then

∑
j,k

∥∥ f j,k,1
∥∥2
s ≤

∑
j,k

‖ f ‖2Hs (E j,k)
� ‖ f ‖2s ,

and

∑
j,k

2 j(d−2α)
∥∥F (

f j,k,2
)
(1 + |ω|)s∥∥2 ≤ ‖ f ‖2s

∑
j,k

2 j(d−2α) � ‖ f ‖2s .

In the last inequality, we used that the series

∑
j,k

2 j(d−2α) (16)

is convergent, since d − 2α < 0. ��
Corollary 1 The analysis operator

C : L2(Rd) −→ �2(Γ )

f �−→ {〈
f , ϕ j,k,λ

〉}
j,k,λ∈Γ

is continuous. Hence, the same is true for the frame operator S = C∗C, where C∗ is
the adjoint operator.

Using the hypothesis on the window functions, we show that there exists a (uniform)
lower bound for the Hs-norm.

Proposition 2 (Lower bound) In the hypothesis of Theorem 3.2, for any s ≥ 0 there
exist ν0 > 0 and C > 0 such that for every ν ∈ (0, ν0), we have

∑

λ∈νZd

| 〈Tλϕ•, f 〉 |2 +
∑

j,k,λ∈Γ

22 js
∣∣〈 f , ϕ j,k,λ

〉∣∣2 ≥ C ‖ f ‖2s , (17)

where the constant C depends on ν.
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Proof Consider the (modified) frame operator

Ss f (x) = Ssϕ• f (x) + Ssϕ f (x),

where

Ssϕ• f (x) =
∑
λ

〈
f , ϕ•,λ

〉
ϕ•,λ, Ssϕ f (x) =

∑
j,k,λ∈Γ

22 js
〈
f , ϕ j,k,λ

〉
ϕ j,k,λ(x).

We use the representation formula presented in [2, Lemma 4.6], to rewrite

〈
Ss f (x), f (x)

〉 =
〈∑

σ

∑

m∈Zd

4σ sTm
ν

βσ

(
Φσ f̂

)
Φσ , f̂

〉

L2(Rd )

, (18)

where σ ∈ {•, ( j, k)} j,k∈Γ and, with an abuse of notation, we set

βσ = 2 j , for σ = ( j, k) , βσ = 1, for σ = •.

First, for m = 0 we apply (50) and obtain

〈∑
σ

4σ s |Φσ |2
(1 + |ω|)2s (1 + |ω|)s f̂ , (1 + |ω|)s f̂

〉

L2(Rd )

=
〈⎡
⎣ |Φ•|2

(1 + |ω|)2s +
∑
j,k

4σ s |Φ j,k |2
(1 + |ω|)2s

⎤
⎦ (1 + |ω|)s f̂ , (1 + |ω|)s f̂

〉

L2(Rd )

≥ Csa
2 ‖ f ‖2s .

Hence,

〈
Ss f (x), f (x)

〉 ≥ a2 ‖ f ‖2s +
〈∑

σ

4σ s
∑
m �=0

Tm
ν

βσ

(
Φσ f̂

)
Φσ , f̂

〉

L2(Rd )

. (19)

We study the last termof the above sumby splitting the different components. Precisely,

〈∑
σ

4σ s
∑
m �=0

Tm
ν

βσ

(
Φσ f̂

)
Φσ , f̂

〉

L2(Rd )

= R1,1 + R2,1 + R1,2 + R2,2

where

Ri, j =
〈∑

σ

4σ s
∑
m �=0

Tm
ν

βσ

(
Φσ f̂σ,i

)
Φσ , f̂σ, j

〉

L2(Rd )

, i, j = 1, 2. (20)
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and

f = fσ,1 + fσ,2, and f̂σ,1 = f̂ χEσ ,

Eσ is defined in (13). We want to show that the terms R1,1, R1,2, R2,1 in (20) go to
zero as ν does. Precisely, we show that there exists ν0 > 0 such that for each ν < ν0
one has

Csa2

2
‖ f ‖2s ≥ R1,1 + R2,1 + R1,2. (21)

Also, we know that R2,2 ≥ 0. Indeed, we can rewrite R2,2 in (20) as

∑
σ

22sσ
∣∣∣〈 fσ,2, ϕσ,λ

〉
L2(Rd )

∣∣∣2 ,

which is quadratic hence positive, as desired.

Step 1 Show that (20), with i = j = 1 is identically zero.
Equation (20) vanishes for allm �= 0 if ν is small, since the support of f̂σ,1 is compact.
Indeed, assuming ν < 1

2 , if ω ∈ Eσ , then

ω − m

ν
βσ /∈ Eσ , m ∈ Z

d\ {0} ,

since the diameter of Eσ is bounded by 2σ+1.

Step 2 Show that the term in (20), with i = 2, j = 1 goes to zero as ν does.
We rearrange the sum as

∑
σ

4sσ
∑
m �=0

〈
f̂σ,2

(
· − m

βσ

ν

)
Φσ ,Φσ

(
· − m

βσ

ν

)
f̂σ,1

〉

L2(Rd )

.

Multiply and dividing by (1 + |ω|)s,
(
1 +

∣∣∣ω − m βσ

ν

∣∣∣
)s
, since fσ,1 vanishes outside

Eσ , we are led to

∑
σ

4σ s
∑
m �=0

∫
Eσ

(
1 +

∣∣∣∣ω − m
βσ

ν

∣∣∣∣
)s

f̂σ,2

(
ω − m

βσ

ν

)
Φσ (ω)

(1 + |ω|)s

Φσ

(
ω − m βσ

ν

)
(
1 +

∣∣∣ω − m βσ

ν

∣∣∣
)s (1 + |ω|)s f̂σ,1(ω)dω.

Then, by Cauchy–Schwartz inequality,

〈∑
σ

4σ s
∑
m �=0

Tm βσ
ν

(
Φσ f̂σ,2

)
Φσ , f̂σ,1

〉

L2(Rd )

≤
∑
σ

∑
m �=0

c1/2σ,md
1/2
σ,m, (22)
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where

cσ,m =
∫
Eσ

∣∣∣∣ f̂σ,2

(
ω − m

βσ

ν

)∣∣∣∣
2 (

1 +
∣∣∣∣ω − m

βσ

ν

∣∣∣∣
)2s

4σ s |Φσ (ω)|2
(1 + |ω|)2s dω

�
∫
Eσ

∣∣∣∣ f̂σ,2

(
ω − m

βσ

ν

)∣∣∣∣
2 (

1 +
∣∣∣∣ω − m

βσ

ν

∣∣∣∣
)2s

dω

and

dσ,m =
∫
Eσ

∣∣∣∣ f̂σ,1 (ω)

∣∣∣∣
2

(1 + |ω|)2s 4σ s

∣∣∣Φσ

(
ω − m βσ

ν

)∣∣∣2
(
1 +

∣∣∣ω − m βσ

ν

∣∣∣
)2s dω

≤
∫
Eσ

∣∣∣∣ f̂σ,1 (ω)

∣∣∣∣
2

(1 + |ω|)2s |βσ |d(
1 + d

(
ω − m βσ

ν
, Iσ

))2α dω

≤ sup
ω∈Eσ

⎧⎪⎨
⎪⎩

|βσ |d(
1 + d

(
ω − m βσ

ν
, Iσ

))2α

⎫⎪⎬
⎪⎭

∫
Eσ

∣∣∣∣ f̂σ,1 (ω)

∣∣∣∣
2

(1 + |ω|)2s dω.

Notice that we have used inequality (38). Since

d

(
ω − m

βσ

ν
, Iσ

)
≥ βσ

ν
(|m| − 2ν) , ω ∈ Eσ ,

if ν < 1
2 , then (|m| − 2ν) > 0, for any m �= 0. Therefore,

dσ,m ≤ ν2αβ(d−2α)
σ

1

(|m| − 2ν)2α

∥∥ fσ,1
∥∥2
s .

Hence, using the properties of the scalar product and the norm in the space �2 with
parameters (σ,m), we can write

∑
σ,m �=0

c1/2σ,md
1/2
σ,m �

∑
σ,m �=0

c1/2σ,mναβ
1
2 (d−2α)
σ

1

(|m| − 2ν)α

∥∥ fσ,1
∥∥
s

� να

∥∥∥∥c1/2σ,mβ
1
2 (d−2α)
σ

∥∥∥∥
�2

∥∥∥∥
1

(|m| − 2ν)α

∥∥ fσ,1
∥∥
s

∥∥∥∥
�2

. (23)
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Fig. 4 Frame element ϕ j ,k,λ(t) in both time and frequency. Here, ϕ is the convolution between χ[
− 1

2 , 12

]

and itself, the scale is j = 4. a Time domain, b frequency domain, c frequency domain, zoom in the origin

Since
{
I j,k, I•

}
is an admissible partition, {Eσ } is a partition of R

d as well, with the
uniformly finite intersection property, and since α > d/2

∥∥∥∥
1

(|m| − 2ν)α

∥∥ fσ,1
∥∥
s

∥∥∥∥
2

�2
≤

⎛
⎝∑

m �=0

1

(|m| − 2ν)2α

⎞
⎠∑

σ

∥∥ fσ,1
∥∥2
s

� ‖ f ‖2s . (24)

Moreover,

∥∥∥∥c1/2σ,mβ
1
2 (d−2α)
σ

∥∥∥∥
2

�2
=

∑
σ

⎛
⎝β(d−2α)

σ

⎛
⎝∑

m �=0

cσ,m

⎞
⎠

⎞
⎠ � ‖ f ‖2s . (25)

Step 3 Show that the term in (20) with i = 1, j = 2 goes to zero as ν does.
This follows from the previous step using a change of variable of integration. ��

3.2 Hs-seminorm

In Theorem 3.2 we proved that F(ϕ•, ϕ, Γ ) is a frame that describes the Hs-norm,
provided the parameter ν is small enough. Going through the proof it is clear that,
under the hypothesis of the previous section, it is not possible to describe the Hs-
seminorm as well. The problem arises, near the point ω = 0, in the frequency domain.
The main reason is that the partition (5) is too coarse near the origin, in particular,
the set I• is too large. Therefore we need sufficiently many vanishing moments in the
origin, see [20]. In Fig. 4, we show an example of window with such properties.

We first introduce the dilation operator (Da f )(x) = a−d/2 f
( x
a

)
, a ∈ R\ {0} ,

which is unitary on L2(Rd). Let
{
I j,k ∪ I•

}
be an admissible partition in the sense of

Definition 2.1, we consider a new set of indices [compared to Γ in (7)], defined as
follows:
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Σ =
{
( j, k, λ) | j ∈ Z, k ∈ K j , λ ∈ νZ

d
}

,

and the sets

I− j,k =
{
x ∈ R

d | 22 j x ∈ I j,k
}

, j ∈ N\{0} , k ∈ K j ,

Z− j,k = Z j,k, j ∈ N\{0} , k ∈ K j . (26)

Remark 3 These new sets are just contractions of the original ones. We define these
sets in order to refine the analysis on I•. The union of these covers I• entirely, except
the point {0} which has zero measure.

For each ϕ, we define the new frame

ϕ j,k,λ(x) = ϕ j,k,λ(x), j ∈ N, k ∈ K j ,

ϕ− j,k,λ(x) = D22 j ϕ j,k,λ(x) = D22 j T2− jλϕ j,k,0(t), j ∈ N\{0} , k ∈ K j . (27)

Recalling (10), the natural expression of Φ− j,k(ω) for j ∈ N\{0} is: Φ− j,k(ω) =
Φ j,k(22 jω). Finally, we define the Stockwell-like system for the seminorm as

G(ϕ,Σ) = {
ϕ j,k,λ, j, k, λ ∈ Σ

}
. (28)

We introduce now the admissibility criteria for the seminorm characterisation.

Definition 3.3 (s-admissibility for Hs-seminorms, finite case) Let s ≥ 0, we say that ϕ
is s-admissible for the Sobolev seminorm with respect to the partition

{
I j,k

}
j∈Z,k∈K j

if

(i) there exists α > d/2 such that for all j ∈ N

|Φ j,k(ω)| �
{

2 jd/2 min(1,|ω|)s
(1+d(ω,I j,k ))

α+s , ω /∈ I j,k

1, ω ∈ R
d ;

(29)

(ii) there exists a constant a > 0 such that

|Φ j,k(ω)| ≥ a, ω ∈ I j,k .

(the constant a does not depend on j, k).

We state the counterpart of Theorem 3.2 for seminorms.

Theorem 3.4 Let s ≥ 0 and consider an s-admissible couple of functions ϕ•, ϕ. Then
there exists ν0 > 0 such that for each ν ∈ (0, ν0), the system G (ϕ,Σ) defined in (28)
is a frame representing the Hs(Rd) seminorm. That is, there exist constants A, B > 0
such that

A | f |2s ≤
∑

j,k,λ∈Σ

22 js
∣∣〈 f , ϕ j,k,λ

〉∣∣2 ≤ B | f |2s . (30)
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Proof The proof is a consequence of the upper bound and of the lower bound as in
Theorem 3.2. We avoid an explicit proof here. Nonetheless, in the “Appendix”, we
provide the counterparts of the properties used in the first part so that the entire proof
can be reproduced. ��

3.3 Characterisation of Besov spaces

We discuss here an important consequence of Theorem 3.4; precisely we show how
to characterise Besov spaces of type Bs

2,q with s ∈ (0, 1] and q > 1, using (real)
interpolation techniques. We recall that a function f belongs to the Besov space
Bs
2,q(R

d) ⊆ L2(Rd), if the following seminorm is finite

| f |Bs
2,q

=
(∫ +∞

0
[t−sω

(r)
2 ( f , t)]q dt

t

) 1
q

,

with r ∈ N, r > s, where

ω
(r)
2 ( f , t) = sup

|h|<t

∥∥Δr
h f (·)

∥∥
2 ,

and Δr
h is the difference of order r and step h

Δr
h f (x) =

r∑
j=1

(−1)r+ j
(
r

j

)
f (x + jh).

A norm can be defined as follows

‖ f ‖Bs
2,q

= ‖ f ‖2 + | f |Bs
2,q

.

Theorem 3.5 Consider the Stockwell frame
{
ϕ j,k,λ

}
j,k,λ∈Σ

as defined in Sect. 3.2 and
let s ∈ (0, 1) , q > 1; then for any v ∈ Bs

2,q one has

|v|Bs
2,q

�
⎛
⎜⎝

∑
j∈Z

2 jsq

⎛
⎝ ∑

k,λ∈Δ j

∣∣〈ϕ j,k,λ, v
〉∣∣2

⎞
⎠

q/2
⎞
⎟⎠

1/q

.

Proof The result follows from Theorem B.1 and the fact that for α ∈ (0, 1) and
q ∈ (1,+∞],

Bs
2,q(R) = (L2(R), H1(R))s,q

(see e.g. [19]). ��
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3.4 Sufficient conditions for Sobolev-like frames

The definition of s-admissible window function involves properties ofΦ j,k rather than
of the window function ϕ. In general, it is very difficult to check the properties ofΦ j,k

since it is a sum of translations (recall Definition 3.1). Nevertheless, it is possible to
provide sufficient conditions onϕ which guarantee the s-admissibility. In the following
we will always consider ϕ = ϕ•.

Theorem 3.6 Let ϕ be a function such that

|ϕ̂(ω)| � 1

(1 + ω)s+d+ε
, ε > 0, (31)

for a certain s ∈ R and such that ϕ̂ has definite sign and |ϕ̂(ω)| ≥ a, for ω ∈ I• then
the pair (ϕ, ϕ) is s-admissible for Hs-norm.

Proof Condition (31) implies that ϕ̂ belongs to L1(Rd), moreover

∣∣Φ j,k(ω)
∣∣ ≤

∑
η∈Z j,k

|ϕ̂(ω − η)| �
∑

η∈Z j,k

1

(1 + |ω − η|)s+d+ε

�
∫

1

(1 + |ω|)d+ε
dω � 1.

Therefore,
∣∣Φ j,k(ω)

∣∣ is uniformly bounded.
In order to prove the decay property, notice again that the issue is to have a uniform

bound with respect to j . Since Φ j,k(ω) is uniformly bounded, we can prove the
inequality when d(ω, I j,k) = ε > 0. Under this hypothesis, recalling that, |Z j,k | �
2 jd we can write

∣∣Φ j,k(ω)
∣∣ ≤

∑
η∈Z j,k

|ϕ̂(ω − η)| �
∑

η∈Z j,k

1

(1 + |ω − η|)s+d+ε

�
∑

|r |<2 j

1

(1 + ε + |r |)s+d+ε
.

If ε < 2 j−1, we notice that this sum may be bounded by the corresponding integral
and, after a change of variable,

∣∣Φ j,k(ω)
∣∣ � 1

(1 + ε)s+d+ε

∫
|x |<2 j

1(
1 + x

1+ε

)s+d/2+ε

� (1 + ε)d

(1 + ε)s+d+ε
= (1 + ε)d/2

(1 + ε)s+d/2+ε
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due to the convergence of the integral on the whole R
d space. Thus, upon noticing

that (1 + ε)d/2 � 2 jd/2, one gets

∣∣Φ j,k(ω)
∣∣ � 2 jd/2

(1 + ε)s+d/2+ε
≤ 2 jd/2

(1 + d(ω, I j,k))s+d/2+ε

as desired.
On the contrary, if ε > 2 j−1, then

∣∣Φ j,k(ω)
∣∣ �

∑

|r |<2 j

1

(1 + ε + |r |)s+d+ε
≤ 2 jd

(1 + ε)s+d+ε
� 2 jd/2

(
1 + d(ω, I j,k)

)s+d/2+ε
,

since

2 jd/2

(
1 + d(ω, I j,k)

)d/2 � 1.

To conclude, we need to show that Φ j,k satisfies condition (12), since for Φ• there is
nothing to prove. Notice that, by hypothesis,

|Φ j,k(ω)| =
∑

η∈Z j,k

|ϕ̂(ω − η)|

and that for all ω ∈ I j,k there exists η̄ ∈ Z j,k such that ω − η̄ ∈ I•, therefore

|Φ j,k(ω)| =
∑

η∈Z j,k

|ϕ(ω − η)| ≥ |ϕ(ω − η̄)| ≥ a.

��

The easiest example of a function satisfying the conditions of Theorem 3.6 is the
Gaussian, see Fig. 5.

We can obtain similar sufficient conditions for the seminorm by adding a vanishing
condition on non-zero integers. Indeed, summing integer translations of window func-
tions will generate vanishing moments at the origin as required by the s-admissibility
condition. We show an example using sinc(·) in Sect. 4.2 below.

4 Explicit examples of Hs-frames

In this section we provide some explicit examples of frames which discretise the
Hs-norm and seminorm.
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Fig. 5 Time and frequency outlook of a frame element with normalised Gaussian window. On the right the
real part in the time domain, on the left the absolute value in the frequency domain. a Time domain, j = 4,
b frequency domain, j = 4

Fig. 6 Frame element ϕ j ,k,λ(t) in both time and frequency, ϕ = sinc(t) and j = 4. a Time domain, b
frequency domain

4.1 Shannon-like basis

Let us consider ϕ•(t) = ϕ(t) = sinc(t) =
(
F−1 χ(

− 1
2 , 12

)
)

(t) and the partition

introduced in (5); see Fig. 6. Since the characteristic function has compact support,
the couple ϕ•, ϕ is trivially s-admissible for all s ≥ 0 both for the Sobolev norm and
seminorm, hence a frame for ν small enough.

This example is indeed very peculiar. This system is not only a frame for ν small
enough, but it is an orthonormal basis of L2(R) if we set ν = 1. Indeed, notice that,
using the notations of Sect. 2



720 U. Battisti et al.

Φ•(ω) = χ(− 1
2 , 12 )(ω), Φ j,±(ω) =

±(2 j−1)∑

η=±2 j

χ(
− 1

2 , 12

)(ω − η) = χI j,±(ω).

Therefore, if j �= j ′ or k �= k′, by Plancherel Theorem

〈
ϕ j,k,λ, ϕ j ′,k′,λ′

〉 =
〈

1

2 j/2 e
−2π i ·λ/2 j

χI j,k (·),
1

2 j ′/2 e
−2π i ·λ′/2 j ′

χI j ′,k′ (·)
〉

= 0

for all λ, λ′ ∈ Z. Moreover if j = j ′ and k = k′, by well known properties of Fourier
series,

〈
ϕ j,k,λ, ϕ j,k,λ′

〉 =
〈

1

2 j/2 e
−2π i ·λ/2 j

χI j,k (·),
1

2 j/2 e
−2π i ·λ′/2 j

χI j,k (·)
〉

= δ0,

where δ0 is the Dirac delta. The same holds for ϕ•,λ which is also orthogonal to ϕ j,k,λ

for all j, k, λ.

Remark 4 The orthonormal basis system we introduced is strictly related to the Shan-
non basis. As expected the localisation properties in the time domain of this frame are
not so strong, due to the lack of such properties of the sinc function. Nevertheless, in
our setting, we can gain localisation considering powers of sinc. That is, we can con-
sider ϕ(t) = sinc(t)n and this new window has increasing localisation as n increases,
moreover it is always s-admissible since its Fourier transform has compact support
(see Fig. 2).

4.2 Haar-like frame

In this subsection we describe in detail an example in dimension d = 1 which shows
that the conditions of Theorem 3.6 are sufficient, but not necessary.

Let us consider

ϕ(t) = χ(
− 1

2 , 12

)(t) =
(
F−1 sinc(·)

)
(t) =

(
F−1 sin(π ·)

π ·
)

(t). (32)

It is clear that ϕ defined in (32) does not satisfy the sufficient conditions (31). Never-
theless, it will provide a frame. See Fig. 7 for the plots of the frame with this particular
window function. One can prove that the pair (ϕ, ϕ) is s-admissible for the Sobolev
seminorm for each s ∈ [0, 1).

It is enough to prove the decay property for j ≥ 0.
Let us suppose k = +, the case k = − is equivalent. By definition

Φ j,+(ω) =
2 j+1−1∑

η=2 j

sinc(ω − η) =
2 j+1−1∑

η=2 j

sin (π (ω − η))

π (ω − η)
.

If ω ∈ I j,+ then, by construction, there exists η̄ ∈ Z j,+ such that |ω − η̄| ≤ 1
2 , hence
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Fig. 7 Frame element ϕ j,k,λ(t) in both time and frequency. Here, ϕ = χ[
− 1

2 , 12

] and j = 4. aTime domain,

b frequency domain

∣∣∣∣
sin (π(ω − η̄))

π (ω − η̄)

∣∣∣∣ ≤ 1.

We can write, using trigonometric inequalities,

∣∣Φ j,+(ω)
∣∣ =

∣∣∣∣∣∣
2 j+1−1∑

η=2 j

sin (π(ω − η))

π(ω − η)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
η̄−2 j∑
m=1

(−1)m

π(ω − η + m)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
2 j+1−η̄∑
m=1

(−1)m

π(ω − η − m)

∣∣∣∣∣∣
+ 1.

Since the alternate harmonic series is convergent, we can obtain a uniform bound with
respect to j for Φ j,+(ω), if ω ∈ I j,+. Notice that, if ω /∈ I j,+ the above inequality
still holds; actually one could improve the bound, but this is not important for our
purpose. In order to prove (29), in view of the uniform bound of Φ j,+ we can suppose
d(w, I j,+) > 2 j−1, as shown above. Therefore

∣∣Φ j,+(ω)
∣∣ =

∣∣∣∣∣∣
2 j−1∑
m=0

sin (πω) (−1)m

π(ω − m − 2 j )

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
sin (πω)

2 j−1−1∑
m=0

1

π(ω − m − 2 j )(ω − m − 1 − 2 j )

∣∣∣∣∣∣

≤ 2 j
∣∣∣∣sin (πω)

1

πd(ω, I j,+)2

∣∣∣∣ � 2 j/2

∣∣∣∣∣sin (πω)
1

πd(ω, I j,+)
3
2

∣∣∣∣∣ ,

which implies (29) for each s ∈ [0, 1).
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With the same notation as above, notice that

∣∣∣∣
sin (π(ω − η̄))

π (ω − η̄)

∣∣∣∣ ≥ 2

π
. Hence

∣∣Φ j,+(ω)
∣∣ ≥ 2

π
−

∣∣∣∣∣∣
sin (π(ω − η̄))

⎛
⎝

η̄−2 j∑
m=1

(−1)m

π(ω − η + m)
+

2 j+1−η̄∑
m=1

(−1)m

π(ω − η − m)

⎞
⎠

∣∣∣∣∣∣

≥ 2

π
− 1

2
> 0.

Remark 5 This example is closely related to the standard Haar basis. It is well known
that the Haar basis is suited to represent Sobolev spaces Hs(R)with s < 1

2 , essentially
due to the lack of continuity in the time domain which is related to the slow decay
at infinity of the function sinc. With our approach we can get rid of this problem and
reach all s < 1, the main reason is that performing sums instead of dilation we are
able to exploit the oscillation behavior of the sinc function and increase the decay rate
of the functions Φ j,k .

5 Extension to a wider class of partitions

In this section we discuss the extension of the Stockwell-like frame defined in Sect. 3
to more general partitions. Specifically, so far we only considered a fixed amount of
direction, while here we relax that requirement.

We start with a preliminary definition.

Definition 5.1 Let {X�}�∈L , be a family of subsets of R
d with L index sets at most

countable. Let us denote by v� the volume of each X� and define two constants c1, c2
such that 0 < c1 < c2. Then {X�}�∈L is an almost-isotropic family of sets if for each
� ∈ L there exist a point x� ∈ X� such that

B
c1v

1/d
�

(x�) ⊆ X� ⊆ B
c2v

1/d
�

(x�),

uniformly in �, where Br (x) is the ball of radius r and center x .

See Fig. 8 for a simple example of isotropic set.

Fig. 8 A simple example of
almost-isotropic set. In blue and
red the inner and outer ball,
respectively; in black the set X�

(colour figure online)

X�
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Fig. 9 Isotropic tailing of the
frequency plane related to
isotropic frames

2j 2j+1

.2j/2

Ij,k

Remark 6 With this definition,we guarantee that every point on the boundary of X� has
a comparable distance from the centroid of the set itself, and this distance is roughly
v
1/d
� modulo uniform constants. This requirement is crucial in order to prove technical
results such as the generalization of Lemmas A.4 and A.5.

We now state here a general definition and later give some examples of admissible
partitions with growing number of frequency directions.

Definition 5.2 The family
{
I j,k

}
j∈N,k∈K j

∪ I•, where K j is an index set, is an admis-
sible partition if it satisfies (i)–(vi) of Definition 2.1 and moreover:

(vii) there exists δ, with 0 ≤ δ ≤ min (1, d − 1), such that |K j | � 2| j |δ(d−1);
(viii)

{
I j,k

}
j,k is a family of almost isotropic sets, see Definition 5.1 below.

Let us give an example of such partitions which is similar to the one presented
in [4]. For j ≥ 0 we let

{
c j,k : j > 0, k ≤ n j

} ⊆ R
d , d > 1, for some n j > 2, be a

set of points such that:

1. the elements of the family
{
B2 j/2(c j,k), k = 1, . . . , n j

}
are pairwise disjoint sets

and are contained in the corona C j = B2 j+1(0)\B2 j (0);
2. C j ⊆ ⋃n j

k=1 B2( j+1)/2(c j,k).

We set I j,k = B2( j+1)/2(c j,k), see Fig. 9. Then, from a volume estimate, it is easy to
see that the number of sets n j inside each corona is n j � 2 jd/2. This is clearly an
admissible partition which satisfies the requirements with δ = d

2(d−1) .
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5.1 Frame generalisation

Let Z j,k = I j,k ∩ Z
d and let β j,k ∈ R

d be the diameter of I j,k . Then the Stockwell
system depending on the parameters ( j, k, λ) ∈ Γ , x ∈ R

d is defined to be

ϕ•,λ(x) = ϕ•(x − λ), ϕ j,k,λ(x) = T
β−1
j,kλ

⎛
⎝ 1∣∣β j,k

∣∣d/2

∑
η∈Z j,k

e2π i η·xϕ(x)

⎞
⎠ ,

which can be written in compact form as

S(ϕ•, ϕ, Γ ) =
{
ϕ•,λ, λ ∈ νZ

d
}

∪ {
ϕ j,k,λ, j, k, λ ∈ Γ

}
, (33)

with
ϕ̂•,λ(ω) = e−2π iω·λϕ̂•(ω),

ϕ̂ j,k,λ(ω) = e−2π iω·β−1
j,kλ

⎛
⎝ 1∣∣β j,k

∣∣d/2

∑
η∈Z j,k

ϕ̂(ω − η)

⎞
⎠ .

(34)

Remark 7 Consider a scale j , we want to determine the number of points with integer
coordinates contained in I j,k , i.e. |Z j,k |. The number of such points contained in the
union

⋃
k∈K j

I j,k is approximately |K j |
∣∣I j,k

∣∣ � 2 jd . Thus

∣∣Z j,k
∣∣ � 1

|K j |2
d j � 2 jd− jδ(d−1) = 2 jd(1−δ)+ jδ.

Definition 3.1 generalises to the following one.

Definition 5.3 (s-admissibility for Hs-norms—infinite case) Consider an admissible
partition

{
I j,k

}
j,k∈Γ

∪I• and s ≥ 0,we say that a pair of functionsϕ•, ϕ is s-admissible
with respect to the partition if, given Φ•, Φ j,k as in (10), then

(i) there exists α > d
2(1−δ d−1

d )

|Φ•(ω)| � 1

(1 + |ω|)α , and |Φ j,k(ω)| �
{

(β j,k )
d/2

(1+d(ω,I j,k))
α+s , ω /∈ I j,k

1, ω ∈ R
d

;

(35)

(ii) there exists a > 0 such that, for all ω ∈ R
d then

|Φ•(ω)| ≥ a, if ω ∈ I•,
∣∣Φ j,k(ω)

∣∣ ≥ a, if ω ∈ I j,k (36)

(the constant a does not depend on j, k).

Remark 8 Notice that the decay rate increases with the number of directions allowed,
in particular, we ask α > d/2 for δ = 0, α > 2d2

d+1 for δ = 1
2 and α > d2/ if δ = 1.
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With these new definitions, we can generalise Theorem 3.2.

Theorem 5.4 Let s ≥ 0 and consider an s-admissible set of functions ϕ•, ϕ—cf.
Definition 5.3. Then there exists ν0 > 0 such that for each ν ∈ (0, ν0) the system
S (ϕ•, ϕ, Γ ) defined in (33) is a frame representing the Hs(Rd) norm. Precisely,
there exist A, B > 0 such that for each f ∈ Hs(Rd)

A ‖ f ‖2s ≤
∑

λ∈νZd

| 〈 f , Tλϕ•〉 |2 +
∑

j,k,λ∈Γ

22 js
∣∣〈 f , ϕ j,k,λ

〉∣∣2 ≤ B ‖ f ‖2s .

Proof The proof of this result follows the one of Theorem 3.2, since all the technical
results extend to the general definition of isotropic partition and s-admissibility. The
main difference,which is also the key point of the proof, is to show that the summability
of the series in (16) is preserved. This can be shown as follows.

Since βd
j,k = |Z j,k | � 2 jd

|K j | , then

∑
j,k

βd−2α
j,k �

∑
j

|K j |βd−2α
j,k �

∑
j

2 jd (
β j,k

)−2α
.

Notice that, making δ explicit

β j,k � 2 j−δ j d−1
d ,

(
β j,k

)2α � 22α j(1−δ d−1
d ).

Finally, the sum converges if

2α

(
1 − δ

d − 1

d

)
> d, i.e. α >

d

2
(
1 − δ d−1

d

) ,

as assumed.

Similarly, one can extend the case of the seminorm using the same pattern.

6 Conclusion

In this paper we focused on the Sobolev properties of the Stockwell-like frame in
arbitrary dimension obtaining a characterisation of these spaces. Although this is a
standard property that many other types of frames share, we believe that the extreme
flexibility of this frame opens interesting research paths. Specifically, this frame can
be adapted to a variety of different partitions. Hence, we claim that our approach
can be used to describe decomposition spaces associated to different partitions of the
frequency plane.

It is clear from the result on the Sobolev seminorms, that this frame is very close
to the wavelet one. With our frame, it is possible to construct a structure close to the
wavelet Multi Resolution Analysis and use that to represent interpolation spaces. As
an example, we showed the characterisation of Besov spaces.
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In Sect. 4 we proposed several examples of frame windows; in particular, we con-
sidered the powers of the sinc function, that gives arbitrary high regularity while
providing great localisation in space and being just a perturbation of the characteristic
function of the frequency band in the Fourier domain.

The example of the Haar-like Stockwell frame presented in Sect. 4, shows that even
if we start with the same characteristic window as in the Haar wavelets, we can reach
higher regularity.

In Sect. 5, we provided a generalisation to a frequency tiling that allows isotropic
sets with a (parabolic) number of frequency directions paired with the scale j . It is
clear that the machinery presented here is not tailored to treat anisotropic partitions;
this is a possible topic for future researches.

Among other interesting open problems on this frame, it would be challenging to
investigate the density of the Stockwell frame with Gaussian window and compare it
with well known results on Gabor frames.

Concerning numerics, we implemented a new algorithm for Stockwell-like frames.
We aim to test this on numeric problems and compare it to other existing frames. The
code is available for tests and academic use upon request to the authors.

One of the possible applications of our frame is medical imaging, since the Stock-
well transform is widely used in that research area, see [3,22] for recent results on this
matter.

Acknowledgements We thank Fabio Nicola and Sandra Saliani for useful discussions on the subject. We
also acknowledge the anonymous referee who helped improving the quality of the paper. We acknowledge
that the present research has been partially supported byMIUR grant Dipartimenti di Eccellenza 2018-2022.

A Technical results

We show some technical result needed to prove the frame property.

Lemma A.1 Let s ≥ 0 and ϕ such that Φ j,k—cf. (10)—satisfies

|Φ j,k(ω)| � min

(
1,

2 jd/2

(
1 + d(ω, I j,k)

)α+s

)
, (37)

for some α. Then

2 js

(1 + |ω|)s |Φ j,k(ω)| � min

(
1,

2 jd/2

(
1 + d(ω, I j,k)

)α

)
. (38)

Proof Inequality (38) is trivially verified when ω ∈ I j,k since ω � 2 j .
Assume ω /∈ I j,k , then we immediately notice that by hypothesis (37)

2 js

(1 + |ω|)s
∣∣Φ j,k(ω)

∣∣ � 2 js

(1 + |ω|)s (
1 + d(ω, I j,k)

)s
2 jd/2

(
1 + d(ω, I j,k)

)α .
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Now, there existsω ∈ I j,k such that d(ω, I j,k) = |ω−ω|, moreover |ω| � 2 j because
the partition is admissible. Hence, by triangular inequality

2 js

(1 + |ω|)s
∣∣Φ j,k(ω)

∣∣ � 2 js

(1 + |ω|)s (1 + |ω − ω|)s
2 jd/2

(
1 + d(ω, I j,k)

)α

� 2 js

(1 + |ω|)s
2 jd/2

(
1 + d(ω, I j,k)

)α � 2 jd/2

(
1 + d(ω, I j,k)

)α .

��
With the same argument, one can show the following result.

Lemma A.2 Let s ≥ 0 and ϕ such that for all j ∈ N, Φ j,k—cf. (10)—satisfies

|Φ j,k(ω)| �
{

min(1,|ω|)s2 jd/2

(1+d(ω,I j ))
α+s , ω /∈ I j,k

1, ω ∈ R
d

, (39)

for some α > 0. Then

2 js

|ω|s |Φ j,k(ω)| � min

(
1,

2 jd/2

(
1 + d(ω, I j,k)

)α

)
(40)

for all j ∈ N.

As a consequence of Lemma A.1, we have the following result.

Lemma A.3 Assume the hypothesis (37) of Lemma A.1 above and also that α > d/2.
Then, there exists bs ∈ R such that

∑
j,k∈Γ

22 js

(1 + |ω|)2s |Φ j,k(ω)|2 ≤ bs, a.e. ω ∈ R
d . (41)

Proof Given ω ∈ R
d , since the partition is admissible, there exists a finite collection

of indices ΓF , |ΓF | < W1 such that ω ∈ I j,k, { j, k} ∈ ΓF . Assume for the moment
W1 = 1 and ω ∈ I j,k . First, we want to estimate

∑
k∈K j

22 js

(1 + |ω|)2s |Φ j,k(ω)|2,

for j = j . Clearly, ω � 2 j , hence 22 js

(1+|ω|)2s |Φ j,k(ω)|2 � 1. Moreover, since the
number of possible directions is bounded by CK ,

∑
k∈K j

22 js

(1 + |ω|)2s |Φ j,k(ω)|2 � CK . (42)
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With this majorisation, we can treat also the cases of the adjacent coronae, i.e. for
j = j ± 1. If j > j + 1 or j < j − 1, then d(ω, I j,k) � 2 j , and the result follows as
above. Hence, if W1 = 1, the result follows easily by the requirement on α. Indeed,
using Lemma A.1, one gets

∑

| j− j |>1,k∈K j

22 js

(1 + |ω|)2s |Φ j,k(ω)|2 ≤ CK

⎛
⎝3 +

∑
j

2 j(d−2α)

⎞
⎠ , (43)

which is clearly bounded. Now we can repeat this argument a finite number of time if
W1 > 1 and the result follows. ��

Lemma A.4 Let s ≥ 0 and ϕ such that Φ j,k(ω) satisfies hypothesis (37). Define

ϕ̃ j,k,λ(t) = 1

2 jd/2 T2− jλ F
−1
ω �→t

(
2 js

(1 + |ω|)s Φ j,k(ω)

)
(t); (44)

then for ν ∈ (0, 1] and all j, k the system of functions
{
ϕ̃ j,k,λ(t)

}
λ∈νZ

is a Bessel
sequence uniformly in j, k, that is

∑
λ∈νZ

∣∣〈ϕ̃ j,k,λ, f
〉∣∣2 ≤ Cν ‖ f ‖2L2(Rd )

(45)

with Cν independent on j, k.

Proof Awell known result (see again e.g. [9, Thm 9.2.5, p.206]) states that the Bessel
property (45) of

{
ϕ̃ j,k,λ(t)

}
λ∈νZ

, for fixed j , is equivalent to the following condition

Ξ j,k(γ ) =
∑

m∈Zd

∣∣∣∣F
(
ϕ̃ j,k,0

) (
(γ − m)

2 j

ν

)∣∣∣∣
2

≤ Cν

νd

2 jd
, a.e. γ ∈ [0, 1]d .

By definition

Ξ j,k(γ ) = 1

2 jd

∑

m∈Zd

∣∣∣∣∣∣∣
2 js

(
1 +

∣∣∣(γ − m) 2 j

ν

∣∣∣
)s Φ j,k

(
(γ − m)

2 j

ν

)
∣∣∣∣∣∣∣

2

.
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Using the hypothesis (37) and relation (38), we can write

Ξ j,k(γ ) � 1

2 jd

⎛
⎜⎝1 +

∑
|m|>1

2 jd

(
1 + d

(
(γ − m) 2 j

ν
, I j,k

))2α

⎞
⎟⎠

� 1

2 jd

⎛
⎜⎝1 +

∑
|m|>1

2 jd

(
(|m| − 1) 2

j

ν

)2α

⎞
⎟⎠

� 1

2 jd

⎛
⎝1 + ν2α

2 j(2α−d)

∑
|m|>1

1

((|m| − 1))2α

⎞
⎠ , a.e. γ ∈ [0, 1], (46)

where the second inequality follows from our assumption on the radius. Again, by our
hypothesis on α, the sum in (46) is convergent, and uniformly bounded with respect
to j . ��
Lemma A.5 Let Φ j,k , ϕ̃ j,k,λ as in Lemma A.4 and E j,k as in (13).

If ν ∈ (0, 1] and supp f̂ ∩ E j,k = ∅, then

∑
λ∈νZ

∣∣〈ϕ̃ j,k,λ, f
〉∣∣2 ≤ Cν

2 j(2α−d)
‖ f ‖2L2(Rd )

, (47)

with Cν as in Lemma A.4, therefore independent on j, k.

Proof Since f̂ (ω) = 0 if ω ∈ E j,k

∑
λ∈νZ

∣∣〈ϕ̃ j,k,λ, f
〉∣∣2 =

∑
λ∈νZ

∣∣〈χR\E j,k F
(
ϕ̃ j,k,λ

)
,F( f )

〉∣∣2 .

Therefore, using the same property of Lemma A.4, (47) is equivalent to prove that

1

2 jd

∑
m∈Z

∣∣∣∣∣χR\E j,k

(
mγ, j,ν

) 2 js

(
1 + ∣∣mγ, j,ν

∣∣)s Φ j,k
(
mγ, j,ν

)
∣∣∣∣∣
2

≤ 1

2 j(2α)
, (48)

where mγ, j,ν = (γ − m) 2 j

ν
. Since ν ≤ 1, for each j, k, there exist a finite number of

consecutive indices m such that (γ − m) 2 j

ν
∈ E j,k for some γ ∈ [0, 1]. We set

Mj,ν =
{
m ∈ Z: ∃ γ ∈ [0, 1] such that (γ − m)

2 j

ν
∈ E j,k

}
.

We notice that Mj,ν is uniformly bounded with respect to j , by the properties of the
partitioning and by the definition of E j,k .
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If m ∈ Mj,ν and mγ, j,ν ∈ E j,k , then

∣∣∣∣∣χR\E j,k

(
mγ, j,ν

) 2 js

(
1 + ∣∣mγ, j,ν

∣∣)s Φ j,k
(
mγ, j,ν

)
∣∣∣∣∣
2

= 0.

Otherwise χR\E j,k

(
mγ, j,ν

) = 1 and, using Lemma A.1,

∣∣∣∣∣
2 js

(
1 + ∣∣mγ, j,ν

∣∣)s Φ j,k
(
mγ, j,ν

)
∣∣∣∣∣
2

�
∣∣∣∣∣

2 jd/2

(
1 + 2 j

)α

∣∣∣∣∣
2

� 2 j(d−2α).

Hence, (48) is bounded by

∣∣Mj,ν
∣∣ (2 j

)−2α + 1

2 jd

∑
m /∈Mj,ν

∣∣∣∣∣χR\E j,k

(
mγ, j,ν

) 2 js

(
1 + d

(
mγ, j,ν , I j,k

))s Φ j,k
(
mγ, j,ν

)
∣∣∣∣∣
2

.

(49)

The second term in the equation above may be bounded as follows

1

2 jd

∑
m /∈Mj,ν

∣∣∣∣∣χR\E j,k

(
mγ, j,ν

) 2 js

(
1 + d

(
mγ, j,ν , I j,k

))s Φ j,k
(
mγ, j,ν

)
∣∣∣∣∣
2

� 1

2 jd

ν2α2 jd

(
2 j

)2α
∑

|m|≥2

1

((|m| − 1))2α
� ν2α(

2 j
)2α

∑
|m|≥2

1

((|m| − 1))2α
� ν2α(

2 j
)2α .

Then the assertion follows as in Lemma A.4. ��
Lemma A.6 Let s ≥ 0 and ϕ•, ϕ be a system of functions such that there exists a > 0
such that, for all ω ∈ R

d then

|Φ•(ω)| ≥ a, if ω ∈ I•,
∣∣Φ j,k(ω)

∣∣ ≥ a, if ω ∈ I j,k

and the constant a does not depend on j, k. Then

|Φ•(ω)|2
(1 + |ω|)2s +

∑
j,k∈Γ

22 js

(1 + |ω|)2s |Φ j,k(ω)|2 ≥ Csa
2, a.e. ω ∈ R

d , (50)

with a constant Cs which depends on s only and is uniform with respect to ω.

Proof For s = 0, the statement is trivial while for general s, notice that

(1 + |ω|) � 2 j , ω ∈ I j,k,

while if ω ∈ I•, then (1 + |ω|) � 1. ��



Stockwell-like frames for Sobolev spaces 731

Remark A.1 Inequality (50) could be used as hypothesis on the window function
weaker then ours. Since it is quite cumbersome to be checked, we prefer to work
with a more transparent assumption.

We state now the counterpart of LemmasA.4 andA.5 in the framework of seminorm
discretisation.

Lemma A.7 Let s ≥ 0 and ϕ such that Φ j,k(ω) satisfies hypothesis (39). We define

ϕ̃ j,k,λ(t) = 1

2 jd/2 T2− jλ F
−1
ω �→t

(
2 js

|ω|s Φ j,k(ω)

)
(t), j ∈ N

ϕ̃− j,k,λ(t) = 1

2 jd/2 Tλ2 j D22 j F
−1
ω �→t

(
2 js

|ω|s Φ j,k(ω)

)
(t), j ∈ N\{0} (51)

then, for all ν ∈ (0, 1] and j, k the system of functions
{
ϕ̃ j,k,λ(t)

}
λ∈νZ

is a Bessel
sequence uniformly in j, k, that is

∑
λ∈νZ

∣∣〈ϕ̃ j,k,λ, f
〉∣∣2 ≤ Cν ‖ f ‖2L2(Rd )

(52)

with Cν independent on j, k.

Lemma A.8 Let Φ j,k , ϕ̃ j,k,λ as in Lemma A.7 and E j,k as in (13) for j ∈ N and as

E− j,k =
{
x ∈ R | 22 j x ∈ E j,k

}

for negative integers. If ν ∈ (0, 1] and supp f̂ ∩ E j,k = ∅, then

∑
λ∈νZ

∣∣〈ϕ̃ j,k,λ, f
〉∣∣2 ≤ Cν∣∣2 j

∣∣(2α−d)
‖ f ‖2L2(Rd )

(53)

with Cν independent on j, k.

Proof of Lemmas A.7, A.8 If j ∈ N the proofs for is the same of Lemmas A.4 and A.5.
In order to prove Lemma A.7 for − j with j ∈ N\ {0}, we use the following relation

∑
λ∈νZ

∣∣〈ϕ̃− j,k,λ, f
〉∣∣2 =

∑
λ∈νZ

∣∣∣∣
〈
D22 j T λ

2 j
ϕ̃ j,k,0, f

〉∣∣∣∣
2

=
∑
λ∈νZ

∣∣∣∣
〈
T λ

2 j
ϕ̃ j,k,0,D2−2 j f

〉∣∣∣∣
2

and the fact that
∥∥D2−2 j f

∥∥
L2(Rd )

= ‖ f ‖L2(Rd ). For Lemma A.8 notice also that

supp f̂ ∩ E− j,k = ∅ implies supp D̂2−2 j f ∩ E j,k = ∅. ��
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B Interpolation techniques

We define a multi-resolution partition using the notation of [8]. Then, we adapt the
interpolation result to our specific case.

Set V = L2(R), Z = H1(R) and let

Vj = span
{
ϕ j,k,λ

}
j≤ j (54)

where
{
ϕ j,k,λ | j, k, λ ∈ Δ

}
is the frame defined as in (27). We also define the related

projectors
P j : L2 −→ Vj

v �−→
∑

j≤ j,k,λ

〈ϕ j,k,λ, v〉ϕD
j,k,λ,

(55)

where ϕD
j,k,λ is the dual window. By definition

. . . V− j−1 ⊆ V− j ⊆ · · · ⊆ V1 ⊆ · · · ⊆ Vj ⊆ Vj+1 · · · ⊆ L2(R) (56)

and also Vj ⊆ Hs(Rd), j ∈ Z. Finally, we notice that due to our definition

lim
j→−∞ Pj = 0. (57)

Lemma B.9 Let r ∈ Z, then the following inequalities hold.

|v|r � 2 jr ‖v‖ , ∀v ∈ Vj , j ∈ Z (Bernstein) (58)

and ∥∥∥v − Pj (v)

∥∥∥ � 2− jr |v|r ∀v ∈ Vj , j ∈ Z (Jackson). (59)

Proof This follows immediately from Theorem 3.4 and a few observations. We notice
that we can write the Sobolev seminorm as

|v|r =
∥∥∥v(r)

∥∥∥
2
,

where v(r) is the r th derivative of v. We also notice that if
{
ϕ j,k,λ

}
j,k,λ∈Γ

is a frame

for Hr , then
{
2− jrϕ

(r)
j,k,λ

}
j,k,λ∈Γ

is a frame for L2. Indeed,

2− jr ̂
ϕ

(r)
j,k,λ(ξ) = 2− jr e−2π iω·2− jλ|ξ |rΦ j,k(ξ).

and the frequency window

Φ̃ j,k(ξ) = 2− jr |ξ |rΦ j,k(ξ),
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clearly satisfies the requirements of Definition 3.3 and thus yields a frame, as claimed.
Hence, we can represent the r th derivative of the function v as

v(r) =
∑

j< j,k,λ

2 jr 〈v, 2− jrϕ
(r)
j,k,λ〉ϕD

j,k,λ.

Finally, using the minimal property of the frame coefficients, see [16, Proposition
5.1.4.],

|v|2s �
∑

j< j,k,λ∈Δ

22 js
∣∣〈v, ϕ j,k,λ

〉∣∣2 ≤ 22 js
∑

j< j,k,λ∈Δ

∣∣〈v, ϕ j,k,λ
〉∣∣2 ≤ 22 js ‖v‖ ,

as desired.
To prove Jackson’s inequality, notice that, using again the minimal property of the
frame coefficients,

∥∥∥v − Pj (v)

∥∥∥2 �
∑

j> j,k,λ∈Δ

∣∣〈 f , ϕ j,k,λ
〉∣∣2 ≤ 2−2 js

∑

j> j,k,λ∈Δ

22 js
∣∣〈 f , ϕ j,k,λ

〉∣∣2

≤ 2−2 js |v|2s ,

and this concludes the proof. ��
We now review Theorem 1 in [8] adapting it to our framework.

Theorem B.1 Consider the spaces Vj and the associated partitions Pj that satisfies
(57) and Jackson–Bernstein inequalities. Then, for any 0 < α < 1, q > 1 one has

(L2, H1)α,q =

⎧⎪⎨
⎪⎩

v ∈ L2 | |v|α,q =
⎡
⎢⎣

∑
j∈Z

2 jαq

⎛
⎝ ∑

k,λ∈Δ j

∣∣〈ϕ j,k,λ, v
〉∣∣2

⎞
⎠

q/2
⎤
⎥⎦
1/q

< ∞

⎫⎪⎬
⎪⎭

,

and a norm for this space is ‖·‖ = ‖·‖2 + |·|α,q .

Proof The hypothesis of [8, Theorem 1] are fulfilled, hence the result follows. ��
Remark 9 The same result holds if we interchange the role of the window function
and its dual.
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