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Abstract
In this paper, we establish a new atomic decomposition theory for Local Hardy spaces
with variable exponents via local grand maximal characterization. By applying the
refined atomic decomposition result, we prove that multilinear pseudo-differential
operators are bounded on product of local Hardy spaces with variable exponents.
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1 Introduction

The study of Hardy spaces began in the early 1900s in the context of Fourier series
and complex analysis in one variable. It was not until 1960 when the groundbreaking
work in Hardy space theory in R

n came from Stein, Weiss, Coifman and C. Fefferman
in [2,4,9]. While they are well suited as functional spaces for their applications to
PDE’s with constant coefficients, the Hardy spaces are not stable under multiplication
by Schwartz class, a fact that seriously hinders their role when it comes to PDE’s with
variable coefficient. Thus, the theory of local Hardy space h p plays an important role
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in various fields of analysis and partial differential equations. In particular, pseudo-
differential operators are bounded on local Hardy spaces h p for 0 < p < 1, but they
are not bounded on Hardy spaces H p for 0 < p < 1 (see [10]).

On the other hand, atomic decomposition is a significant tool in harmonic analysis
and wavelet analysis for the study of function spaces and the operators acting on
these spaces (see Meyer [24] and Coifman and Meyer [3]). Atomic decomposition
was first introduced by Coifman [2] in one dimension in 1974 and later was extended
to higher dimensions by Latter [22]. In 1979, Goldberg [10] introduced the atomic
decomposition of local Hardy spaces.

Another stage in the progress of the theory of Hardy spaces was done by Nakai
and Sawano [26] and Cruz-Uribe and Wang [7] recently when they independently
considered Hardy spaces with variable exponents. However, it is quiet different to
obtain the boundedness of operators on Hardy spaces with variable exponents. It is
not sufficient to show the H p(·)-boundedness merely by checking the action of the
operators on H p(·)-atoms. In the linear theory, the boundedness of some operators on
variable Hardy spaces and some variable Hardy-type spaces have been established in
[7,16,26,32,35] as applications of the corresponding atomic decompositions theories.

In more recent years, the study of multilinear operators on Hardy space theory has
received increasing attention bymany authors, see for example [12,17,18].While some
multilinear operators worked well on the product of local Hardy spaces, it is surprising
that these similar results in the setting of variable exponents are still unknown. The
boundedness of some multilinear operators on products of classical Hardy spaces
was investigated by Grafakos and Kalton [12] and Li et al. [23]. The boundedness of
bilinear pseudo-differential operators Tσ (σ ∈ BS01,0) on classical Lebesgue spaces
is proved by Bényi and Torres in [1]. Xiao et al. [34], established the boundedness
of the bilinear pseudo-differential operator and the bilinear singular integral operators
on product of local Hardy spaces. Very recently, Koezuka and Tomita [20] considered
bilinear pseudo−differential operatorswith symbols in the bilinearHörmander symbol
class BSm1,1 on Triebel–Lizorkin spaces. Tan et al. [33], studied some multilinear

operators are bounded on variable Lebesgue spaces L p(·). However, there are some
subtle difficulties in proving the boundedness results when we deal with the h p(·)-
norm. The goal of this article is to show that multilinear pseudo-differential operators
are bounded fromproduct of localHardy spaceswith variable exponents into Lebesgue
spaces with variable exponents via the elegant atomic decompositions theory of local
Hardy spaces with variable exponents.

First we recall the definition of Lebesgue spaces with variable exponent. Note that
the variable exponent spaces, such as the variable Lebesgue spaces and the variable
Sobolev spaces, were studied by a substantial number of researchers (see, for instance,
[6,21]. For any Lebesgue measurable function p(·) : R

n → (0,∞] and for any mea-
surable subset E ⊂ R

n , we denote p−(E) = inf x∈E p(x) and p+(E) = supx∈E p(x).
Especially, we denote p− = p−(Rn), p+ = p+(Rn) and p− = min {p−, 1}. Let p(·):
R
n → (0,∞) be a measurable function with 0 < p− ≤ p+ < ∞ and P0 be the set

of all these p(·). Let P denote the set of all measurable functions p(·) : R
n → [1,∞)

such that 1 < p− ≤ p+ < ∞.
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Definition 1.1 Let p(·) : R
n → (0,∞] be a Lebesgue measurable function. The

variable Lebesgue space L p(·) consisits of all Lebesgue measurable functions f , for
which the quantity

∫
Rn |ε f (x)|p(x)dx is finite for some ε > 0 and

‖ f ‖L p(·) = inf

{

λ > 0 :
∫

Rn

( | f (x)|
λ

)p(x)

dx ≤ 1

}

.

The variable Lebesgue spaces were first established by Orlicz [29] in 1931. Two
decades later, Nakano [28] first systematically studied modular function spaces which
include the variable Lebesgue spaces as specific examples. However, the modern
development started with the paper [21] of Kováčik and Rákosník in 1991. As a
special case of the theory of Nakano and Luxemberg, we see that L p(·) is a quasi-
normed space. Especially, when p− ≥ 1, L p(·) is a Banach space.

We also recall the following class of exponent function, which can be found in [8].
Let B be the set of p(·) ∈ P such that the Hardy-littlewood maximal operator M is
bounded on L p(·). An important subset of B is LH condition.

In the study of variable exponent function spaces it is common to assume that the
exponent function p(·) satisfies LH condition.We say that p(·) ∈ LH , if p(·) satisfies

|p(x) − p(y)| ≤ C

− log(|x − y|) , |x − y| ≤ 1/2

and

|p(x) − p(y)| ≤ C

log |x | + e
, |y| ≥ |x |.

It is well known that p(·) ∈ B if p(·) ∈ P ∩ LH . Moreover, example shows that
the above LH conditions are necessary in certain sense, see Pick and Ru̇žička [31] for
more details. Next we also recall the definition of Local Hardy spaces with variable
exponents h p(·) as follows.

Definition 1.2 [26] Let f ∈ S ′, p(·) ∈ P0 ∩ LH and ϕt (x) = t−nϕ(t−1x), x ∈ R
n .

Denote by M the grand maximal operator given by Mloc f (x) = sup{|ϕt ∗ f (x)| :
0 < t < 1, ϕ ∈ FN } for any fixed large integer N , whereFN = {ϕ ∈ S : ∫ ϕ(x)dx =
1,
∑

|α|≤N sup(1+|x |)N |∂αϕ(x)| ≤ 1}. The local Hardy space with variable exponent
h p(·) is the set of all f ∈ S ′ for which the quantity

‖ f ‖h p(·) = ‖Mloc f ‖L p(·) < ∞.

The main goal of this paper is to prove the following result:

Theorem 1.1 Let σ ∈ MB0
1,0 and let p1(·), . . . , pm(·) ∈ LH ∩ P0 and p(·) ∈ P0 be

Lebesgue measure functions satisfying
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1

p1(x)
+ · · · + 1

pm(x)
= 1

p(x)
, x ∈ R

n . (1.1)

Then Tσ extends to a bounded operator from
∏m

j=1 h
p j (·) into L p(·).

Throughout this paper, C or c will denote a positive constant that may vary at
each occurrence but is independent to the essential variables, and A ∼ B means that
there are constants C1 > 0 and C2 > 0 independent of the essential variables such
that C1B ≤ A ≤ C2B. Given a measurable set S ⊂ R

n , |S| denotes the Lebesgue
measure and χS means the characteristic function. For a cube Q, let Q∗ denote with
the same center and 2

√
n its side length, i.e. l(Q∗) = 100

√
nl(Q). The symbols S

and S ′ denote the class of Schwartz functions and tempered functions, respectively.
As usual, for a function ψ on R

n and ψt (x) = t−nψ(t−1x). We also use the notations
j ∧ j ′ = min{ j, j ′} and j ∨ j ′ = max{ j, j ′}. We write N = {0, 1, 2, . . .}. For ϕ ∈ S
and j ∈ Z we write

ϕ j (ξ) ≡ ϕ(2− jξ), ϕ j (x) ≡ 2 jnϕ(2 j x).

We adopt the following definition of the Fourier transform and its inverse:

F f (ξ) ≡
∫

Rn
f (x)e−2π i x ·ξdx, F−1 f (ξ) ≡

∫

Rn
f (ξ)e2π i x ·ξdξ,

for f ∈ L1. Using the definition of Fourier transform and its inverse, we also define

ϕ(D) f (x) ≡ F−1[ϕ · F f ](x)

for f ∈ S ′ and ϕ ∈ S.

2 Boundedness of multilinear pseudo-differential operators

In this section, we will discuss the boundedness of multilinear pseudo−differential
operators on product of Local Hardy spaces with variable exponents by using the
atomic decomposition theory.

2.1 Atomic decomposition of local Hardy spaces with variable exponents

The atomic decomposition of Hardy spaces with variable exponents was first estab-
lished independently in [7,26]. By using local grand maximal characterization we
will establish the new atomic decompositions for local Hardy spaces with variable
exponents h p(·). In what follows, we give the definitions of local (p(·), q)-atom and
(p(·), q)− block for h p(·).

Definition 2.1 Let p(·) : R
n → (0,∞), p(·) ∈ P0 and 1 < q ≤ ∞. Fix an integer

d ≥ dp(·) ≡ min{d ∈ N : p−(n + d + 1) > n}. Define a local (p(·), q)-atom of
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h p(·) to be a function a of compact support which has the additional properties that

‖a‖Lq ≤ |Q|1/q
‖χQ‖L p(·)(Rn )

and
∫
Rn a(x)xαdx = 0 for all |α| ≤ d and |Q| ≤ 1, where Q

is the smallest cube containing the support of a.

Definition 2.2 Let p(·) : R
n → (0,∞), p(·) ∈ P0 and 1 < q ≤ ∞. Define a

(p(·), q)-block of h p(·) to be a function b of compact support which has the additional

properties that ‖b‖Lq ≤ |P|1/q
‖χP‖L p(·)(Rn )

and |P| > 1, where P is the smallest cube

containing the support of b.

For convenience, the set of all such pairs (a, Q) will be denoted byA(p(·), q) and
the set of all such pairs (b, P) will be denoted by B(p(·), q).

For sequences of scalars {λ j } and cubes {Q j }, define that

As({λ j }∞j=1, {Q j }∞j=1) =

∥
∥
∥
∥
∥
∥
∥

⎧
⎨

⎩

∑

j

( |λ j |χQ j

‖χQ j ‖L p(·)

)s
⎫
⎬

⎭

1
s

∥
∥
∥
∥
∥
∥
∥
L p(·)

,

and for sequences of scalars {κ j } and cubes {Pj },

Bs({κ j }∞j=1, {Pj }∞j=1) =

∥
∥
∥
∥
∥
∥
∥

⎧
⎨

⎩

∑

j

( |κ j |χPj

‖χPj ‖L p(·)

)s
⎫
⎬

⎭

1
s

∥
∥
∥
∥
∥
∥
∥
L p(·)

.

When s = p−, we denote

Ap−({λ j }∞j=1, {Q j }∞j=1) = A({λ j }∞j=1, {Q j }∞j=1)

and

Bp−({κ j }∞j=1, {Pj }∞j=1) = B({κ j }∞j=1, {Pj }∞j=1).

Now we give the definition of atomic local Hardy space with variable exponent
h p(·),q
atom .

Definition 2.3 Let 1 < q ≤ ∞ and p(·) ∈ P0 ∩ LH . The function space h p(·),q
atom

is defined to be the set of all distributions f ∈ S ′ which can be written as f =∑
j λ j a j +∑ j κ j b j in S ′, where {a j , Q j } ⊂ A(p(·), q) and {b j , Pj } ⊂ B(p(·), q)

with the quantities

A({λ j }∞j=1, {Q j }∞j=1) + B({κ j }∞j=1, {Pj }∞j=1) < ∞.

One define

‖ f ‖
h p(·),q
atom

≡ A({λ j }∞j=1, {Q j }∞j=1) + B({κ j }∞j=1, {Pj }∞j=1).
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Next we establish the atomic decomposition for localized Hardy spaces with vari-
able exponents via local grand maximal characterization.

Theorem 2.1 Let 1 < q ≤ ∞ and p(·) ∈ P0 ∩ LH. Then

h p(·) = h p(·),∞
atom .

Theorem 2.1 is a direct result of the following two theorems.

Theorem 2.2 Let p(·) ∈ P0∩ LH and 0 < s < ∞. If f ∈ h p(·), there are {a j , Q j } ⊂
A(p(·, q)) and {b j , Pj } ⊂ B(p(·, q)) with

As({λ j }∞j=1, {Q j }∞j=1) + Bs({κ j }∞j=1, {Pj }∞j=1) ≤ C‖ f ‖h p(·) ,

such that f =∑ j λ j a j +∑ j κ j b j , where the series converges to f in both h p(·) and
Lq norms.

Proof We follow Goldberg’s and Nakai−Sawano’s ideas from [10,26,27]. To prove
this theorem we first recall the following lemma which connects Hardy spaces with
variable exponents and local Hardy spaces with variable exponents.

Lemma 2.3 [26] Suppose that p(·) ∈ LH ∩ P0. Let ψ ∈ S be a bump function
satisfying χQ(0,1) ≤ ψ ≤ χQ(0,2). Then we have the following norm equivalence:

‖ f ‖h p(·) ∼ ‖(1 − ψ(D)) f ‖H p(·) + ‖ψ(D) f ‖L p(·)

Let f ∈ h p(·). Then we can decompose f = ψ(D) f + (1 − ψ(D)) f . By Lemma
2.3,

‖ψ(D) f ‖L p(·) ≤ C‖ f ‖h p(·) , ‖(1 − ψ(D)) f ‖H p(·) ≤ C‖ f ‖h p(·) .

For j ∈ Z
n , f can be expanded into the series f =∑∞

j=1 κ j b j , where

κ j = ‖χ j+[0,1]n‖L p(·) sup
x∈ j+[0,1]n

|ψ(D) f |

and

b j (x) =
⎧
⎨

⎩

1

κ j
χm+[0,1]n (x)ψ(D) f (x), if κ j �= 0,

0, otherwise.

Then we get that b j is supported on j + [0, 1]n and

‖b j‖L∞ = 1

κ
‖χ j+[0,1]n (x)ψ(D) f (x)‖L∞ = 1

‖χ j+[0,1]n‖L p(·)
.
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We denote that Pj = j + [0, 1]n . Hence,

{b j , Pj } ⊂ B(p(·, q))

and
Bs({κ j }∞j=1, {Pj }∞j=1) ≤ C‖ f ‖h p(·) ,

which the inequality follows from

Bs({κ j }∞j=1, {Pj }∞j=1)

=

∥
∥
∥
∥
∥
∥
∥

⎧
⎨

⎩

∑

j

( |κ j |χPj

‖χPj ‖L p(·)

)s
⎫
⎬

⎭

1
s

∥
∥
∥
∥
∥
∥
∥
L p(·)

=
∥
∥
∥
∥
∥
∥

∑

j

( |κ j |χ j+[0,1]n
‖χ j+[0,1]n‖L p(·)

)
∥
∥
∥
∥
∥
∥
L p(·)

≤ ‖(M |ψ(D) f |η) 1
η ‖L p(·)

≤ ‖ψ(D) f ‖L p(·)

≤ ‖ f ‖h p(·) .

for sufficient small η by the Plancherel–Polya–Nikols’kij inequality and the bound-
edness of the maximal operator M . On the other hand, we apply [26, Theorem 4.6]
and [32, Theorem 1.1] to (1 − ψ(D)) f . Then we can obtain the decomposition of
(1 − ψ(D)) f ,

(1 − ψ(D)) f =
∑

j

λ j a j for {a j , Q j } ⊂ As(p(·, q))

and

As({λ j }∞j=1, {Q j }∞j=1) ≤ C‖(1 − ψ(D)) f ‖H p(·) ≤ C‖ f ‖h p(·) .

Therefore, we have completed the proof of Theorem 2.2. ��
Theorem 2.4 Let p(·) ∈ P0 ∩ LH. For any {a j , Q j } ⊂ A(p(·, q)) and {b j , Pj } ⊂
B(p(·, q)) satisfying

A({λ j }∞j=1, {Q j }∞j=1) + B({κ j }∞j=1, {Pj }∞j=1) < ∞,

the series
∑

j λ j a j +∑ j κ j b j converges in S ′, belongs to h p(·) and satisfies

∥
∥
∥
∥
∑

j

λ j a j

∥
∥
∥
∥
h p(·)

≤ CA({λ j }∞j=1, {Q j }∞j=1)
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and ∥
∥
∥
∥
∑

j

κ j b j

∥
∥
∥
∥
h p(·)

≤ CB({κ j }∞j=1, {Pj }∞j=1)

Proof By [26, Theorem 4.6], we have

∥
∥
∥
∥
∑

j

λ j a j

∥
∥
∥
∥
h p(·)

≤ CA({λ j }∞j=1, {Q j }∞j=1).

Suppose that ψ ∈ C∞
c be a nonnegative function that equals 1 near the neighbor-

hood of 0 and supported on Q(0, 1). Observe that

sup
0<t≤1

∣
∣
∣
∣
∣
∣
t−nψ(t−1·) ∗

⎡

⎣
∞∑

j=1

λ j b j

⎤

⎦ (x)

∣
∣
∣
∣
∣
∣
≤ C

⎛

⎝
∞∑

j=1

(|λ j |χ3Pj (x)Mbj (x))
p−

⎞

⎠

1/p−

.

By following the similar argument in [26, Theorem 4.6], then we can get the desired
result. ��

2.2 Some known results onmultilinear pseudo-differential operators

We recall Hörmander class of pseudo-differential operators in [19]. Let Tσ be a clas-
sical pseudo-differential operators of the form

Tσ ( f )(x) =
∫

Rn
σ(x, ξ) f̂ (ξ)eix ·ξdξ, f ∈ S,

where σ ∈ Smρ,σ , that is, σ(x, ξ) is smooth for (x, ξ) ∈ R
n × R

n and

|∂α
x ∂

β
ξ σ (x, ξ)| ≤ C(1 + |ξ |)m−ρ|β|+σ |α|.

Now we consider the multilinear pseudo-differential operators of the form

Tσ ( �f )(x)=
∫

(Rn)m
σ(x, �ξ)

m∏

j=1

f̂ j (ξ j )e
2π i x ·

(∑m
j=1 ξ j

)

d�ξ, for f j ∈ S, j =1, . . . ,m,

where the symbol σ(x, �ξ) ∈ MSmρ,δ , for m ∈ R and ρ, δ ∈ [0, 1], that is, σ(x, �ξ) is

smooth for (x, �ξ) ∈ (Rn)m and

|∂α
x ∂

β1
ξ1

. . . ∂
βm
ξm

σ(x, �ξ)| ≤ C

⎛

⎝1 +
m∑

j=1

|ξ j |
⎞

⎠

m−ρ
(∑m

j=1 |β j |
)
+σ |α|

,
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for all multi-indices α, β j , j = 1, . . . ,m. We denote σ(x, �ξ) ∈ BSmρ,δ for the symbol
of bilinear pseudo-differential operators.

In this paper, we will consider the symbol σ(x, �ξ) ∈ MS01,0, that is,

|∂α
x ∂

β1
ξ1

. . . ∂
βm
ξm

σ(x, �ξ)| ≤ C

⎛

⎝1 +
m∑

j=1

|ξ j |
⎞

⎠

−∑m
j=1 |β j |

,

for all multi-indices α, β j , j = 1, . . . ,m.
If we define k(x, �ξ) is the inverse Fourier transform in the every ξ j− variable of

the function σ(x, �ξ), then

Tσ ( �f )(x) =
∫

(Rn)m
k(x, �y)

m∏

j=1

f j (x − y j )d �y

=
∫

(Rn)m
K (x, �y)

m∏

j=1

f j (y j )d �y, for x /∈ supp( f ) ∩ supp(g),

where K (x, y, z) = k(x, x − y, x − z).
The following refined estimates for K (x, �y) will play very important role in the

proof of our main results.

Lemma 2.5 Suppose that σ ∈ MB0
1,0, the the kernel

K (x, �y) ∈ C∞((Rn)m\{(x, �y) : x = y1 = · · · = ym})

and satisfies

|∂α
x ∂

β1
ξ1

. . . ∂
βm
ξm

K (x, �y)| ≤ C

⎛

⎝
m∑

j=1

|x − y j |
⎞

⎠

−
(
2n+∑m

j=1 |β j |+M
)

,

for all multi-indices α, β j , j = 1, . . . ,m and all M ≥ 0.

We remark that this lemma has been proved in [34] for bilinear symbol BS01,0 and
that this fact is essential used in [14,25]. Repeating the same argument in the proof of
[34, Theorem 2.2], we can get the desired lemma.

2.3 Proof of Theorem 1.1

To prove Theorem 1.1, we need some necessary notations and requisite lemmas. The
following generalized Hölder inequality on variable Lebesgue spaces can be found in
in [5] or [33].
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Lemma 2.6 Given exponent function pi (·) ∈ P0, define p(·) ∈ P0 by

1

p(x)
=

m∑

i=1

1

pi (x)
,

where i = 1, . . . ,m. Then for all fi ∈ L pi (·) and f1 . . . fm ∈ L p(·) and
∥
∥
∥
∥
∥

m∏

i=1

fi

∥
∥
∥
∥
∥
p(·)

≤ C
m∏

i=1

‖ fi‖pi (·).

We also need the following boundedness of the vector-valued maximal operator
M , whose proof can be found in [6].

Lemma 2.7 Let p(·) ∈ P0 ∩ LH. Then for any q > 1, f = { fi }i∈Z, fi ∈ Lloc, i ∈ Z

‖‖M( f )‖lq‖L p(·) ≤ C‖‖ f ||lq‖L p(·) ,

where M( f ) = {M( fi )}i∈Z.
Lemma 2.8 [21] Let p(·) ∈ P , f ∈ L p(·) and g ∈ L p′(·), then f g is integrable on R

n

and
∫

Rn
| f (x)g(x)|dx ≤ rp‖ f ‖L p(·)‖g‖L p′(·) ,

where rp = 1 + 1/p− − 1/p+. Moreover, for all g ∈ L p′(·) such that ‖g‖L p′(·) ≤ 1
we get that

‖ f ‖L p(·) ≤ sup
g

∣
∣
∣
∣

∫

Rn
f (x)g(x)dx

∣
∣
∣
∣ ≤ rp‖ f ‖L p(·) .

Proof By applying the atomic decomposition of local Hardy space h p(·) in Theorem
2.2, for each f j ∈ h p j (·), j = 1, . . . ,m, 0 < s < ∞, f j admits an atomic decom-
position: There exists a sequence of nonnegative numbers η j,k j , κ j,k j , cubes Q j,k j
satisfying

As({η j,k j }∞j=1, {Q j,k j }∞j=1) + Bs({κ j,k j }∞j=1, {Q j,k j }∞j=1) ≤ C‖ f j‖h p j (·) ,

for {a j , Q j } ⊂ A(p(·, q)) and {b j , Q j } ⊂ B(p(·, q)), and f j can be decomposed as

f j =
∑

k j∈N
η j,k j a j,k j +

∑

k j∈N
κ j,k j b j,k j =:

∑

k j∈N
λ j,k j c j,k j in h p j (·) ∩ L p++1,

where λ j,k j = η j,k j and c j,k j = a j,k j for |Q j,k j | ≤ 1, and λ j,k j = κ j,k j and
c j,k j = b j,k j for |Q j,k j | > 1.
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Then by repeating the similar argument in [11], we can obtain

|Tσ ( �f )(x)| ≤
∑

k1

· · ·
∑

km

|λ1,k1 | · · · |λm,km ||Tσ (c1,k1 , . . . , cm,km )(x)|. (2.1)

For x ∈ R
n , we can split (2.1) into two terms, that is,

|Tσ ( �f )(x)|
≤
∑

k1

· · ·
∑

km

|λ1,k1 | · · · |ηm,km ||Tσ (c1,k1 , . . . , cm,km )(x)|χQ∗
1,k1

∩···∩Q∗
m,km

(x)

+
∑

k1

· · ·
∑

km

|λ1,k1 | · · · |ηm,km ||Tσ (c1,k1 , . . . , cm,km )(x)|χQ∗,c
1,k1

∪···∪Q∗,c
m,km

(x)

=: I + I I .

First we will show that

‖I‖L p(·) ≤ C
m∏

j=1

‖ f j‖h p j (·) . (2.2)

Now fix atoms c1,k1 , . . . , cm,km supported in cubes Q1,k1 , . . . , Qm,km respectively.
Assume that Q∗

1,k1
∩ · · · ∩ Q∗

m,km
�= ∅, otherwise there is nothing to prove. Without

loss of generality, assume that Q1,k1 has the smallest size among all these cubes. Since
Q∗

1,k1
∩ · · · ∩ Q∗

m,km
�= ∅, we can pick a cube Rk1,...,km such that

Q∗
1,k1 ∩ · · · ∩ Q∗

m,km ⊂ Rk1,...,km ⊂ R∗
k1,...,km ⊂ Q∗∗

1,k1 ∩ · · · ∩ Q∗∗
m,km (2.3)

and

|Q1,k1 | ≤ C |Rk1,...,km |.

Since Tσ has a bounded extension from
∏m

j=1 L
q j into Lq , for all 1 < q, q j ≤ ∞,

∑m
j=1

1
q j

= 1
q , as in [14]. By using the Hölder’s inequality with exponents q and q ′,

we have

1

|Rk1,...,km |
∫

Rk1,...,km

|Tσ (c1,k1 , . . . , cm,km )(x)|dx

≤ 1

|Rk1,...,km |q ‖Tσ (c1,k1 , . . . , cm,km )‖Lq

≤ C
1

|Rk1,...,km |q
m∏

j=1

‖c j,k j ‖Lq j

≤ C
1

|Rk1,...,km |q
m∏

j=1

|Q j , k j |
1
q j

‖χQ j,k j
‖p j (·)
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≤ C
1

|Q1,k1 |q
m∏

j=1

|Q j , k j |
1
q j

‖χQ j,k j
‖p j (·)

. (2.4)

If we choose q1 = q, q2 = · · · = qm = ∞, then the last inequality of (2.4) can be
controlled by C

∏m
j=1

1
‖χQ j,k j

‖p j (·)
.

In order to prove (2.2), we need to introduce another lemma:

Lemma 2.9 Let p(·) ∈ LH ∩ P0. Suppose that we are given a sequence of
cubes {Q j }∞j=1 and a sequence of non-negative L1−functions {Fj }∞j=1. Then for
∑∞

j=1 χQ j Fj ∈ L p(·) we have

∥
∥
∥
∥
∥
∥

∞∑

j=1

χQ j Fj

∥
∥
∥
∥
∥
∥
L p(·)

≤ C

∥
∥
∥
∥
∥
∥

∞∑

j=1

(
1

|Q j |
∫

Q j

Fj (y)dy

)

χQ j

∥
∥
∥
∥
∥
∥
L p(·)

. (2.5)

The proof of this lemma can be obtained by the extrapolation theorem on variable
Lebesgue spaces. Forw ∈ Ap0 , repeating the similar argument in [12] for 0 < p0 ≤ 1
and in [13,32] for 1 < p0 < ∞wecanget theweightednorm inequality by substituting
L p0 norm by L p0

w as below:

∥
∥
∥
∥
∥
∥

∞∑

j=1

χQ j Fj

∥
∥
∥
∥
∥
∥
L
p0
w

≤ C

∥
∥
∥
∥
∥
∥

∞∑

j=1

(
1

|Q j |
∫

Q j

Fj (y)dy

)

χQ j

∥
∥
∥
∥
∥
∥
L
p0
w

.

Observe that p(·) ∈ LH
⋂P0, by Lemma 2.3, for

⎛

⎝
∞∑

j=1

χQ j Fj ,

∞∑

j=1

(
1

|Q j |
∫

Q j

Fj (y)dy

)

χQ j

⎞

⎠ ∈ F

and
∑∞

j=1 χQ j Fj ∈ L p(·), then we get (2.5).
Applying Lemma 2.9, we obtain that

‖I‖L p(·)

≤
∥
∥
∥
∥
∥
∥

∑

k1

· · ·
∑

km

m∏

j=1

|λ j,k j ||Tσ (c1,k1 , . . . , cm,km )|χRk1,··· ,km

∥
∥
∥
∥
∥
∥
L p(·)

≤
∥
∥
∥
∥
∥
∥

∑

k1

· · ·
∑

km

m∏

j=1

|λ j,k j |
∣
∣
∣
∣
∣

1

|Rk1,...,km |
∫

Rk1,...,km

Tσ (c1,k1 , . . . , cm,km )(y)dy

∣
∣
∣
∣
∣

×χRk1,...,km

∥
∥
∥
L p(·)
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≤
∥
∥
∥
∥
∥
∥

∑

k1

· · ·
∑

km

m∏

j=1

|λ j,k j |
m∏

j=1

1

‖χQ j,k j
‖p j (·)

m∏

i=1

χQ∗∗
j,k j

∥
∥
∥
∥
∥
∥
L p(·)

≤
∥
∥
∥
∥
∥
∥

m∏

j=1

⎛

⎝
∑

k j

|λ j,k j |
‖χQ j,k j

‖p j (·)
χQ∗∗

j,k j

⎞

⎠

∥
∥
∥
∥
∥
∥
L p(·)

.

We observe that we only need to consider the case p− ≤ 1. The other case p− > 1
is easier because of h p(·) ∼ L p(·) when p− > 1. Applying Lemmas 2.6 and 2.7 yields
that

∥
∥
∥
∥
∥
∥

m∏

j=1

⎛

⎝
∑

k j

|λ j,k j |‖χQ j,k j
‖−1
L p j (·)χQ∗∗

j,k j

⎞

⎠

∥
∥
∥
∥
∥
∥
L p(·)

≤ C
m∏

j=1

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

k j

|λ j,k j |p
−‖χQ j,k j

‖−p−

L p j (·)χQ∗∗
j,k j

⎞

⎠

1/p−∥∥
∥
∥
∥
∥
∥
L p j (·)

≤ C
m∏

j=1

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

k j

|λ j,k j |p
−‖χQ j,k j

‖−p−

L p j (·)MχQ j,k j

⎞

⎠

1/p−∥∥
∥
∥
∥
∥
∥
L p j (·)

≤ C
m∏

j=1

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

k j

|λ j,k j |p
−‖χQ j,k j

‖−p−

L p j (·)χQ j,k j

⎞

⎠

1/p−∥∥
∥
∥
∥
∥
∥
L p j (·)

= C
m∏

j=1

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

k j

(

|λ j,k j |
χQ j,k j

‖χQ j,k j
‖
L p j (·)

)p−⎞

⎠

1
p−
∥
∥
∥
∥
∥
∥
∥
L p j (·)

≤ C
m∏

j=1

‖ f j‖H p j (·) .

Next wewill consider the estimate of I I . Let A be a nonempty subset of {1, . . . ,m},
and we denote the cardinality of A by |A|, then 1 ≤ |A| ≤ m. Let Ac = {1, . . . ,m}\A.

If A = {1, . . . ,m}, we define (∩ j∈AQ
∗,c
j,k j

) ∩ (∩ j∈Ac Q∗,c
i,k j

) = ∩ j∈AQ
∗,c
j,k j

, then

Q∗,c
1,k1

∪ · · · ∪ Q∗,c
m,km

= ∪A⊂{1,...,m}((∩ j∈AQ
∗,c
j,k j

) ∩ (∩ j∈Ac Q∗
j,k j )).

Set EA = (∩ j∈AQ
∗,c
j,k j

) ∩ (∩ j∈Ac Q∗
j,k j

). For fixed A, assume that Q j̃,k j̃
is the

smallest cubes in the set of cubes Q j,k j , j ∈ A. Let z j̃,k j̃
be the center of the cube

Q j̃,k j̃
and d = max{dp1 , . . . , dpm }. When |Q j,k j | ≤ 1, c j̃,k j̃

is an (p(·), q)-atom.

Then c j̃,k j̃
has zero vanishing moment up to order d. By using the Taylor expansion

we get
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Tσ (c1,k1 , . . . , cm,km )(x)

≤
∫

(Rn)m
K (x, y1, . . . , ym)c1,k1(y1) . . . cm,km (ym)d �y

=
∫

(Rn)m−1

∏

j �= j̃

c j,k j (y j )
∫

Rn

[

K (x, y1, . . . , ym) − Pd
z j̃,k

j̃

(x, y1, . . . , ym)

]

c j̃,k j̃
d �y

=
∫

(Rn)m−1

∏

j �= j̃

c j,k j (y j )

×
∫

Rn

∑

|γ |=d+1

(
∂

γ
y j̃
K
)

(x, y1, . . . , ξ, . . . , y2, ym)

(
y j̃ − z j̃,k j̃

)γ

γ ! c j̃ (y j̃ )d �y

for some ξ on the line segment joining y j̃ to z j̃,k j̃
, where Pd

z j̃,k
j̃

(x, y1, . . . , ym) is the

Taylor polynomial of K (x, y1, . . . , ym). Since x ∈ (Q∗
j̃,k j̃

)c, we can easily obtain that

|x − ξ | ≥ 1
2 |x − z j̃,k j̃

|. Similarly, |x − y j | ≥ 1
2 |x − z j,k j | for y j ∈ Q j,k j , j ∈ A\{ j̃}.

By using the estimate for the kernel K in Lemma 2.5 and the size estimates for the
atoms or blocks, we get that

∫

(Rn)m−1

∏

j �= j̃

|c j,k j (y j )|

×
∫

Rn

∑

|γ |=d+1

|
(
∂

γ
y j̃
K
)

(x, y1, . . . , ξ, . . . , y2, ym)|
|y j̃ − z j̃,k j̃

|γ
γ ! |a j̃ (y j̃ )|d �y

≤ C
∫

(Rn)|A|

∏

j∈A

|c j,k j (y j )|

×
∫

(Rn)m−|A|

|y j̃ − z j̃,k j̃
|d+1

(
|x − ξ | +∑ j �= j̃ |x − y j |

)mn+d+1

∏

j∈Ac

|c j,k j (y j̃ )|d �y

≤ C

(∏

j∈A

‖c j,k j ‖L1

)( ∏

j∈Ac

‖c j,k j ‖L∞
)

×
∫

(Rn)m−|A|

|y j̃ − z j̃,k j̃
|d+1

(
|x − ξ | +∑ j �= j̃ |x − y j |

)mn+d+1 d �yAc

≤ C

(∏

j∈A

‖c j,k j ‖L1

)( ∏

j∈Ac

‖c j,k j ‖L∞
)

×
|y j̃ − z j̃,k j̃

|d+1

(∑
j∈A |x − z j,k j |

)mn+d+1−n(m−|A|)
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≤ C

(∏

j∈A

|Q j,k j |
‖χQ j,k j

‖
L p j (·)

)( ∏

j∈Ac

1

‖χQ j,k j
‖
L p j (·)

)

×
|Q j̃,k j̃

|(d+1)/n

(∑
j∈A |x − z j,k j |

)mn+d+1−n(m−|A|)

≤ C

(∏

j∈A

|Q j,k j |
‖χQ j,k j

‖
L p j (·)

)( ∏

j∈Ac

1

‖χQ j,k j
‖
L p j (·)

)

×
|Q j̃,k j̃

|(d+1)/n

(∑
j∈A |x − z j,k j |

)mn+d+1−n(m−|A|) .

Observe that x ∈ ∩ j∈AQ
∗,c
j,k j

, then we can find a constant C such that |x − z j,k j | ≥
C(|x−z j,k j |+l(Q j,k j )). On the other hand, using the fact that x ∈ ∩ j∈Ac Q∗

j,k j
yields

that there exists a constant C such that |x − z j,k j | ≤ Cl(Q j,k j ) for j ∈ Ac. Then we
have that

|Q j,k j |1+
d+1
n|A|

(|x − z j,k j | + l(Q j,k j )
)n+ d+1

|A|
≥ C, for j ∈ Ac.

Moreover, since Q j̃,k j̃
is the smallest cube among {Q j,l j } j∈A, we have that

|Q j̃,k j̃
| ≤∏ j∈A |Q j,l j |

1
|A| . Thus,

|T (c1,k1 , . . . , cm,km )(x)|

≤ C

(∏

j∈A

|Q j,k j |1+
d+1
n|A|

‖χQ j,k j
‖
L p j (·)

(|x − z j,k j | + l(Q j,k j )
)n+ d+1

|A|

)( ∏

j∈Ac

1

‖χQ j,k j
‖
L p j (·)

)

≤ C
m∏

j=1

|Q j,k j |1+
d+1
n|A|

‖χQ j,k j
‖
L p j (·)

(|x − z j,k j | + l(Q j,k j )
)n+ d+1

|A|
(2.6)

for all x ∈ EA.
When |Q j,k j | > 1, c j̃,k j̃

is an (p(·), q)−block. Using the estimate for the kernel

K in Lemma 2.5 and a computation similar to the above, we obtain

Tσ (c1,k1 , . . . , cm,km )(x)

≤
∫

(Rn)m
K (x, y1, . . . , ym)c1,k1(y1) · · · cm,km (ym)d �y

=
∫

(Rn)m−1

∏

j �= j̃

c j,k j (y j )
∫

Rn
K (x, y1, . . . , ym)c j̃,k j̃

d �y
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≤ C
∫

(Rn)|A|

∏

j∈A

|c j,k j (y j )|
∫

(Rn)m−|A|
1

∑m
j=1 |x − y j |mn+M

∏

j∈Ac

|c j,k j (y j̃ )|d �y

≤ C

(∏

j∈A

‖c j,k j ‖L1

)( ∏

j∈Ac

‖c j,k j ‖L∞
)∫

(Rn)m−|A|
1

∑m
j=1 |x − y j |mn+M

d �yAc

≤ C

(∏

j∈A

|Q j,k j |
‖χQ j,k j

‖
L p j (·)

)( ∏

j∈Ac

1

‖χQ j,k j
‖
L p j (·)

)

× 1
(∑

j∈A |x − z j,k j |
)mn+M−n(m−|A|)

≤ C
m∏

j=1

|Q j,k j |1+
M
n|A|

‖χQ j,k j
‖
L p j (·)

(|x − z j,k j | + l(Q j,k j )
)n+ M

|A|

for all M ≥ 0.
For convenience, we choose M = d + 1. Then we obtain

‖I I‖L p(·)

≤ C
∑

A⊂{1,...,m}

×
∥
∥
∥
∥

m∏

j=1

∑

k j

|λ j,k j |
|Q j,k j |1+

d+1
n|A|

‖χQ j,k j
‖
L p j (·)

(|x − z j,k j | + l(Q j,k j )
)n+ d+1

|A|
χEA

∥
∥
∥
∥
L p(·)

≤ C
∑

A⊂{1,...,m}

m∏

j=1

×
∥
∥
∥
∥
∑

k j

|λ j,k j |
|l(Q j,k j )|n+ d+1

|A|

‖χQ j,k j
‖
L p j (·)

(|x − z j,k j | + l(Q j,k j )
)n+ d+1

|A|
χEA

∥
∥
∥
∥
L p j (·)

.

Denote θ = n+ d+1
|A|
n and we can choose d such that θ p−

j > 1. Therefore, we get that

‖I I‖L p(·) ≤ C
m∏

j=1

∥
∥
∥
∥
∥
∥

∑

k j

|λ j,k j |
(MχQ j,k j

)θ

‖χQ j,k j
‖
L p j (·)

∥
∥
∥
∥
∥
∥
L p j (·)

≤
m∏

j=1

∥
∥
∥
∥
∥
∥
∥

⎛

⎝
∑

k j

|λ j,k j |
χQ j,k j

‖χQ j,k j
‖
L p j (·)

⎞

⎠

1
θ

∥
∥
∥
∥
∥
∥
∥

θ

Lθ p j (·)

≤ C
m∏

j=1

‖ f j‖H p j (·) .

Therefore, we complete the proof of Theorem 1.1. ��
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