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Abstract In this article, we consider the Schrödinger semigroup related to the Dunkl–
Laplacian �μ (associated to finite reflection group G) on R

n . We characterize the

image of L2(Rn, eu
2
hμ(u)du) under the Schrödinger semigroup as a reproducing

kernel Hilbert space. We define Dunkl–Sobolev space in L2(Rn, eu
2
hμ(u)du) and

characterize it’s image under the Schrödinger semigroup associated to G = Z
n
2 as a

reproducing kernel Hilbert space up to equivalence of norms. Also we provide similar
results for Schrödinger semigroup associated to Dunkl–Hermite operator.
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1 Introduction

In [5], Dunkl introduced a differential operator associated to a finite reflection group
G on R

n which is generated by fixed root system R and a non-negative multiplicity

B D. Venku Naidu
venku@iith.ac.in

C. Sivaramakrishnan
ma13p1001@iith.ac.in

D. Sukumar
suku@iith.ac.in

1 Department of Mathematics, Indian Institute of Technology Hyderabad, Hyderabad,
Telangana 502285, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11868-017-0233-9&domain=pdf
http://orcid.org/0000-0002-1279-0105


94 C. Sivaramakrishnan et al.

function μ on the root system. This differential operator is called as a Dunkl operator.
The Dunkl operator is same as the directional derivative on R

n when μ = 0.
During the last three decades Dunkl theory which is parallel to the theory of Fourier

analysis has been developed by many authors. We refer to [4,9,24] and references
therein for further details. Our study is related to the Segal–Bargmann analysis which
was initiated bySegal [20] andBargmann [1]. It dealswith the problems related to some
integral transforms on L2(Rn, du) and characterizes the image as a weighted Bergman
space. The study of several generalizations of classical Segal–Bargmann transform can
be found in [6,7,10,11,14,15] and the Segal–Bargmann transform associated to the
Dunkl–Laplacian can be found in [2,3,16,21–23].

In [17], Rosler considered the Dunkl–Laplacian �μ and proved that it generates
the Heat semigroup et�μ on L2(Rn, hμ(u)du). He also proved, et�μ is an integral
transform with the integral kernel �μ(t, x, y). In [22], Sontz characterized the image
of L2(R, hμ(u)du) under the heat kernel semigroup et�μ , as a direct sum of Fock
type spaces. He also characterized in [23], the image of L2(Rn, hμ(u)du) under the
heat kernel semigroup as a reproducing kernel Hilbert space.

In this article, we study the image of certain function space under the Schrödinger
semigroup eit�μ associated to the Dunkl–Laplacian and Dunkl–Hermite operator.
Using the heat kernel given in [17] we can see that, the Schrödinger semigroup is an
integral transform on L2(Rn, hμ(u)du)with the integral kernel�μ(i t, x, y). Since the
Schrödinger semigroup eit�μ is a unitary operator on L2(Rn, hμ(u)du), the function
eit�μ f cannot be extended as an entire function for all f ∈ L2(Rn, hμ(u)du). Hence
we consider a suitable function space on which eit�μ f can be extended as an entire
function and characterize the corresponding image space as a reproducing kernel
Hilbert space.

In the Context of Dunkl operator for μ = 0, the above study for n = 1 is done by
Hayashi and Saitoh in [8] and for the general case done in [13] by Parui et al.

This paper is organized as follows: In Sect. 2wegive an introduction toDunkl opera-
tor, Dunkl transform and some results on the heat kernel transformwhich are necessary
to prove our main results. In Sect. 3 we identify the image of L2(Rn, eu

2
hμ(u)du)

under Schrödinger semigroup eit�μ as a reproducing kernel Hilbert space, by using
the techniques given in [13,22,23]. Moreover, in the case of G = Z

n
2, we identify the

image of L2(Rn, eu
2
hμ(u)du) under eit�μ as a tensor product of Fock type spaces.

In Sect. 4 we consider the Dunkl–Sobolev space defined by the Dunkl operator asso-
ciated to the group Z

n
2 and identify the image of Sobolev space under the semigroup

eit�μ as a reproducing kernel Hilbert space up to an equivalence of norms. In Sect. 5
we discuss the same kind of results as in Sects. 3 and 4 for the Schrödinger semigroup
e−i t Hμ associated to the Dunkl–Hermite operator Hμ.

2 Preliminaries

Let (Rn, 〈, 〉) be a standard Euclidean inner product space. For a non-zero vector v ∈
R
n, define the reflection on the hyperspace {v}⊥ by σv(x) = x − 2 〈x,v〉

||v||2 v for x ∈ R
n .

A finite subsetR ⊂ R
n\{0} is called a root system if σv(R) = R for all v ∈ R. For a

given β ∈ R
n\ ∪v∈R {v}⊥ define a positive root systemR+ = {v ∈ R : 〈β, v〉 > 0}.
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The group G is generated by the reflections {σv : v ∈ R} is called a reflection group,
which is a subgroup of the orthogonal group onR

n . A functionμ : R → [0,∞)which
is invariant under the action of G on the root system is called multiplicity function.
The weight function hμ(x), associated with the root system R and the multiplicity
function μ, is defined by hμ(x) = ∏

v∈R+ |〈x, v〉|2μ(v), x ∈ R
n . For 0 
= ξ ∈ R

n ,
Dunkl derivative is defined by

Dξ,μ f (x) = ∂ξ f (x) +
∑

v∈R+
μ(v)〈v, ξ 〉 f (x) − f (σvx)

〈x, v〉 , (2.1)

where ∂ξ is the directional derivative in the direction of ξ . Now consider the equation,

Dξ,μ f (x, y) = 〈ξ, y〉 f (x, y) for x, y, ξ ∈ R
n .

In the above equation Dξ,μ f is theDunkl derivative of f with respect to the x-variable.
The above equation has a unique real analytic solution Eμ : R

n × R
n → R and it

can be extended as an analytic function Eμ : C
n × C

n → C, which is called as a
Dunkl kernel or generalized exponential kernel. In the remaining sections we use the
following notations

• Di,μ := Dei ,μ for i = 1, . . . n, where {ei : i = 1, 2, ..., n} is a standard orthonor-
mal basis for R

n .
• N

n = N × · · · × N (n-times), where N := {0, 1, 2, . . .}.
• For α = (α1, α2, . . . , αn) ∈ N

n , define |α| := α1 + · · · + αn , α! := α1! · · · αn !.
• zα := zα11 · · · zαnn and z2 := z21 + · · · + z2n , for z = (z1, . . . , zn) ∈ C

n and α ∈ N
n .

Definition 2.1 The Dunkl transform of a function f ∈ L1(Rn, hμ(x)) is defined by

f̂ (y) = c−1
μ

∫
Rn f (x)Eμ(−iy, x)hμ(x)dx , y ∈ R

n , where cμ = ∫
Rn e− x2

2 hμ(x)dx ,
a constant.

Definition 2.2 The generalized translation (or Dunkl translation) of a function f ∈
L2(Rn, hμ(u)du) is defined by

τμ
y f (x) = c−1

μ

∫

Rn
f̂ (ξ)Eμ(i x, ξ)Eμ(−iy, ξ)hμ(ξ)dξ, x, y ∈ R

n . (2.2)

Definition 2.3 Generalized convolution of f, g ∈ L2(Rn, hμ(u)du) is given by

f ∗μ g(x) =
∫

Rn
f (y)τμ

x ǧ(y)hμ(y)dy, (2.3)

where ǧ(u) = g(−u). Equivalently it can be written as

f ∗μ g(x) =
∫

Rn
f̂ (ξ)ĝ(ξ)Eμ(i x, ξ)hμ(ξ)dξ.
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Dunkl–Laplacian on R
n is defined by

�μ :=
n∑

k=1

D2
k,μ.

Dunkl–Laplacian generates a strongly continuous semigroup
(
et�μ

)
t≥0 on L2(Rn,

hμ(u)du). The fundamental solution or heat kernel of the heat equation ∂t u = �μu
on (0,∞) × R

n is given by the function,

Fμ(t, x) = Mμ

tνμ+ n
2
e− x2

4t , where νμ =
∑

v∈R+
μ(v) and Mμ = c−1

μ 2−(νμ+ n
2 ).

It can be seen that, the generalized translation of heat kernel is given by

�μ(t, x, y) = Mμ

tνμ+ n
2
e− x2+y2

4t Eμ

(
x√
2t

,
y√
2t

)

, x, y ∈ R
n . (2.4)

That is,�μ(t, x, y) = τ
μ
y Fμ(t, x). In [17],Rosler proved that the heat kernel transform

associated to Dunkl–Laplacian �μ is an integral transform and it is given by

et�μ f (x) :=
{∫

Rn f (u)�μ(t, x, u)hμ(u)du if t > 0

f if t = 0.

Since et�μ f is a Dunkl convolution of f with the function Fμ, it can be extended
as an entire function on C

n . Hence we can treat et�μ as a linear operator from
L2(Rn, hμ(u)du) to O(Cn), the space of all analytic functions on C

n .
We need some notations to state the theorem related to the image characterization,

for the case n = 1. For z ∈ C, t > 0 and μ > 0, define the weight functions

νe,μ,t (z) := π−12μ+ 1
2 (2t)μ− 1

2 e
z2+z2
8t Kμ− 1

2

⎛

⎝

∣
∣
∣
∣
∣

z

(4t)
1
2

∣
∣
∣
∣
∣

2
⎞

⎠

∣
∣
∣
∣
∣

z

(4t)
1
2

∣
∣
∣
∣
∣

2μ+1

(2.5)

and

νo,μ,t (z) := π−12μ+ 1
2 (2t)μ− 1

2 e
z2+z2
8t Kμ+ 1

2

⎛

⎝

∣
∣
∣
∣
∣

z

(4t)
1
2

∣
∣
∣
∣
∣

2
⎞

⎠

∣
∣
∣
∣
∣

z

(4t)
1
2

∣
∣
∣
∣
∣

2μ+1

, (2.6)

where for r ∈ {
μ + 1

2 , μ − 1
2

}
, Kr is the Macdonald function of order r which can

be found in [12]. Any function f ∈ O(C) can be written as f = fe + fo, a sum
of even and odd functions defined by fe(z) = f (z)+ f (−z)

2 and fo(z) = f (z)− f (−z)
2 ,

respectively. Consider the space

Cμ,t (C) :=
{
f ∈ O(C) : fe ∈ L2(C, νe,μ,t (z)dz) and fo ∈ L2(C, νo,μ,t (z)dz)

}
.
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The space Cμ,t (C) is a Hilbert space with respect to the inner product

〈 f, g〉Cμ,t (C) := 〈 fo, go〉L2(C,νo,μ,t (z)dz) + 〈 fe, ge〉L2(C,νe,μ,t (z)dz) for f, g ∈ Cμ,t (C).

Theorem 2.4 [22] For t > 0, the operator et�μ : L2(R, |u|2μ du) → Cμ,t (C) is
unitary.

The general case was studied by Sontz in [23] and he identified the image of
L2(Rn, hμ(u)du) under et�μ as a reproducing kernel Hilbert space. This theorem
can be stated as follows:

Theorem 2.5 The operator et�μ : L2(Rn, hμ(u)du) → Cμ,t (C
n) is unitary, where

Cμ,t (C
n) is the Hilbert space of analytic functions on C

n with reproducing kernel

Kμ,t (z, w) := e
−
(
z2+w2

8t

)

Eμ

(
z

2t
1
2

,
w

2t
1
2

)

, z, w ∈ C
n . (2.7)

Let us introduce some identities which will be useful to prove our main results. For
n = 1 and μ > 0, the Dunkl operator associated to the reflection group Z2 is denoted
by Dμ and it is given by

(Dμ f )(x) = d f

dx
(x) + μ

x
( f (x) − f (−x)), x ∈ R. (2.8)

For k ∈ N := {0, 1, 2, . . .}, the generalized factorial function is defined by,

γμ(2k) = 22kk!�(k + μ + 1
2 )

�(μ + 1
2 )

and γμ(2k + 1) = 22k+1k!�(k + μ + 3
2 )

�(μ + 1
2 )

.

Generalized factorial function has the following recursion formula:

γμ(k + 1) = (k + 1 + 2μθk+1)γμ(k), k ∈ N (2.9)

where θk+1 = 0 if k + 1 is even and 1 if k + 1 is odd.
The generalized exponential kernel for one dimensional space is

eμ(xy) := Eμ(x, y) =
∞∑

k=0

(xy)k

γμ(k)
for x, y ∈ R. (2.10)

Generalized Hermite polynomials and inversion formula for Hermite polynomials are
given by

Hμ
k (x) = k!

[ k2 ]∑

j=0

(−1) j (2x)k−2 j

j !γμ(k − 2 j)
and

(2x)k

γμ(k)
=

[ k2 ]∑

j=0

Hk−2 j (x)

j !(k − 2 j)! . (2.11)
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Further we need the following identities:

Dμ(e−x2Hμ
k (x)) = −e−x2 γμ(k + 1)

(k + 1)γμ(k)
Hμ
k+1(x). (2.12)

2xHk(x) = (k + 1 + 2μθk+1)

k + 1
Hμ
k+1(x) + 2kHμ

k−1(x). (2.13)

∫

R

ukeμ(−i xu)e−u2 |u|2μ du =
(

− i

2

)k �(μ + 1
2 )γμ(k)

k! e− x2
4 Hμ

k

( x

2

)
. (2.14)

We refer [16] for further details.
Let ρ(z) be a strictly positive continuous function on C

n . We define the weighted
Bergman space associated to ρ by

HL2
ρ := HL2(Cn, ρ(z)dz) =

{

f ∈ O(Cn) :
∫

Cn
| f (z)|2 ρ(z)dx < ∞

}

.

Inner product onHL2(Cn, ρ(z)dz) is given by,

〈F,G〉HL2
ρ

:=
∫

Cn
F(z)G(z)ρ(z)dz, where F,G ∈ HL2(Cn, ρ(z)dz).

It is known that HL2(Cn, ρ(z)dz) is a reproducing kernel Hilbert space.

3 Image of L2
µ(R) under Schrödinger semigroup

It is well known that �μ is self-adjoint, so the operator i�μ is skew-adjoint. By
Stones theorem, i�μ generates a strongly continuous unitary semigroup

(
eit�μ

)
t≥0

on L2(Rn, hμ(u)du), where

eit�μ f :=
{∫

Rn f (y)�μ(i t, ., y)hμ(y)dy if t > 0

f if t = 0.

Moreover, eit�μ f solves

i∂t u = �μu; u(x, 0) = f (x), where f ∈ L2(Rn, hμ(u)du),

the Schrödinger equation associated to the Dunkl–Laplacian �μ on R
n . In contrast

to the heat semigroup, the Schrödinger semigroup is unitary on L2(Rn, hμ(u)dx),
so the solution of the Schrödinger equation cannot be extended as an entire func-
tion on C

n . If we assume enough decay on f near infinity then it is expected
that eit�μ f can be extended as an analytic function on C

n . To achieve this we
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consider the space L2
μ(Rn) := L2(Rn, eu

2
hμ(u)du) and for f ∈ L2

μ(Rn), using
Morera’s and Dominated convergence theorems, it is easy to see that eit�μ f can
be extended as an analytic function on C

n . Hence eit�μ(L2
μ(Rn)) is a subspace of

space of all analytic functions on C
n . It is clear that eit�μ : L2(Rn, eu

2
hμ(u)du) →

eit�μ(L2
μ(Rn)) is linear and bijective. Since it is injective, eit�μ(L2

μ(Rn)) is
made into a Hilbert space simply by transferring the Hilbert space structure of
L2(Rn, eu

2
hμ(u)du) to eit�μ(L2

μ(Rn)) so that the Schrödinger semigroup eit� is an

isometric isomorphism from L2(Rn, eu
2
hμ(u)du) onto eit�μ(L2

μ(Rn)). This means
that 〈

eit�μ f, eit�μg
〉

eit�μ(L2
μ(Rn))

:= 〈 f, g〉L2
μ(Rn) , f, g ∈ L2

μ(Rn).

Our aim is to identify this space as a reproducing kernel Hilbert space. This kind
of characterization associated to μ = 0 can be found in [13]. In fact, it says the
following: eit� : L2(Rn, eu

2
du) → HL2(Cn, wt (x + iy)dxdy) is unitary, where

wt (x + iy) = 1
(2

√
π t)n

e
xy
t − y2

4t2 . To state our main result we need the following.

Define a linear map G : O(Cn) → O(Cn) by

GF(z) = (2i t)νμ+ n
2 e−i t z2F(2t z),

and consider the space,

Hμ,t (C
n) :=

{
F ∈ O(Cn) : G(F) ∈ Cμ, 12

(Cn)
}

.

The space Hμ,t (C
n) is Hilbert space with respect to the following inner product:

〈F,G〉Hμ,t (Cn) := 〈GF,GG〉C
μ, 12

(Cn) , for F,G ∈ Hμ,t (C
n).

Theorem 3.1 The operator eit�μ : L2(Rn, hμ(u)eu
2
du) → Hμ,t (C

n) is unitary.
Moreover, Hμ,t (C

n) is a reproducing kernel Hilbert space.

Proof Let f ∈ L2(Rn, eu
2
hμ(u)du) and set g(u) = f (u)e

u2
2 e

i
4t u

2
. Then it is easy to

see that g ∈ L2(Rn, hμ(u)du). Since
(
F̂μ( 12 , .)

)
(y) = 1

cμ
e− 1

2 y
2
, y ∈ R

n , we have

(

ĝ ∗μ Fμ(
1

2
, .)

)

(x) =
∫

Rn

̂̂g(y)

(

F̂μ(
1

2
, .)

)

(y)Eμ(i x, y)hμ(y)dy

= 1

cμ

∫

Rn
g(u)e− 1

2 u
2
Eμ(−i x, u)hμ(u)du.
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By using the above equation, eit�μ f can be written as:

eit�μ f (x) = Mμ

(i t)νμ+ n
2
e

i
4t x

2
∫

Rn
f (u)e

i
4t u

2
Eμ

(

− i

2t
x, u

)

hμ(u)du

= 1

(2i t)νμ+ n
2 cμ

e
i
4t x

2
∫

Rn
g(u)e− 1

2 u
2
Eμ

(

− i

2t
x, u

)

hμ(u)du

= 1

(2i t)νμ+ n
2
e

i
4t x

2
ĝ ∗μ Fμ

(
1

2
, .

)( x

2t

)
.

Since the right hand side function can be extended as an analytic function on C
n , we

write

eit�μ f (z) = 1

(2i t)νμ+ n
2
e

i
4t z

2
(

ĝ ∗μ Fμ

(
1

2
, .

))( z

2t

)
, ∀z ∈ C

n . (3.1)

Then by using change of variable we have,

(2i t)νμ+ n
2 e− i

4t (2t z)
2
eit�μ f (2t z) =

(

ĝ ∗μ Fμ

(
1

2
, .

))

(z), ∀z ∈ C
n .

Since g ∈ L2(Rn, hμ(u)du), using Theorem 2.5 and Plancherel theorem for Dunkl
transform [9] we have,

∥
∥
∥
∥ĝ ∗μ Fμ(

1

2
, .)

∥
∥
∥
∥

2

C
μ, 12

(Cn)

= ‖ĝ‖2L2(Rn ,hμ(u)du)

= ‖g‖2L2(Rn ,hμ(u)du)
= ‖ f ‖2L2

μ(Rn)
.

From above equations we can see that, G(eit�μ f ) ∈ Cμ, 12
(Cn) and this implies

that eit�μ f ∈ Hμ,t (C
n) for all f ∈ L2(Rn, eu

2
hμ(u)du). Hence eit�μ :

L2(Rn, eu
2
hμ(u)du) → Hμ,t (C

n) is an isometry.
Now we will show that eit�μ is onto. Let F ∈ Hμ,t (C

n), then GF ∈ Cμ, 12
(Cn).

Since the operator e
1
2�μ : L2(Rn, eu

2
hμ(u)du) → Cμ, 12

(Cn) is unitary, then there

exists φ ∈ L2(Rn, hμ(u)du) such that

GF(z) = e
1
2�μφ̂(z) = φ̂ ∗μ Fμ

(
1

2
, .

)

(z).

Set f (u) = φ(u)e− 1
2 u

2
e− i

4t u
2
, then it is easy to see that

f ∈ L2(Rn, eu
2
hμ(u)du) and

(
G(eit�μ f )

)
(z) = φ̂ ∗μ Fμ

(
1

2
, .

)

(z).
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This implies that eit�μ f = F . That is, eit�μ : L2(Rn, hμ(u)eu
2
du) → Hμ,t (C

n) is
an onto map.

Now we show that Hμ,t (C
n) is a reproducing kernel Hilbert space. This can be

seen with the help of the function G. Since Geit�μ f ∈ Cμ, 12
(Cn) for every f ∈

L2(Rn, eu
2
hμ(u)du) and Kμ, 12

(z, w) is a reproducing kernel for Cμ,t (C
n), we have

Geit�μ f (z) =
〈
Geit�μ f, Kμ, 12

( . , z)
〉

C
μ, 12

(Cn)
.

Applying change of variable from z to z
2t , we have

eit�μ f (z) =
〈
Geit�μ f , (2i t)−(νμ+ n

2 )e− i t
4t z

2
Kμ, 12

(
. ,

z

2t

)〉

C
μ, 12

(Cn)
.

Let us define a function Kμ,t (w, z) on C
n × C

n by,

Kμ,t (w, z) = |(2ti)−(νμ+ n
2 )|2e i

4t (−z2+w2)
Kμ, 12

(w

2t
,
z

2t

)
.

Then it is easy to see that the above function satisfies the following relation

(
GKμ,t ( . , z)

)
(w) = (2i t)−(νμ+ n

2 )e− i t
4t z

2
Kμ, 12

(
w,

z

2t

)
.

So, for every f ∈ L2(Rn, eu
2
hμ(u)du), we have

eit�μ f (z) =
〈
Geit�μ f , GKμ,t ( . , z)

〉

C
μ, 12

=
〈
eit�μ f , Kμ,t ( . , z)

〉

Hμ,t (Cn)
.

(3.2)
This implies that the spaceHμ,t (C

n) is a reproducing kernel Hilbert space with repro-

ducing kernels
{
Kμ,t (z, w) : z, w ∈ C

n
}
and it is unitarily equivalent to the Hilbert

space eit�μ(L2
μ(Rn)). ��

For n = 1, the above theorem can be written more precisely as follows: let z ∈ C

and consider the weight functions, uμ
o,t (z) = (2t)2μ−1e

xy
t νo,μ, 12

( z
2t ) and uμ

e,t (z) =
(2t)2μ−1e

xy
t νe,μ, 12

( z
2t ). Define

Hμ,t (C) :=
{
F ∈ O(C) : Fo ∈ L2(C, uμ

o,t (z)dz) and Fe ∈ L2(C, uμ
e,t (z)dz)

}
.

Then the space Hμ,t (C) is a Hilbert space with respect to the inner product

〈F,G〉Hμ,t (C) := 〈Fo,Go〉L2(C,uμ
o,t (z)dz)

+ 〈Fe,Ge〉L2(C,uμ
e,t (z)dz)

,

where F,G ∈ Hμ,t (C).
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Theorem 3.2 The operator eit�μ : L2(R, |u|2μeu2du) → Hμ,t (C) is unitary.

Proof Proof of this theorem easily follows from the Eq. (3.1) and the Theorem 2.4.
��

Consider the following Hilbert spaces,

Ho
μ,t (C) =

{
F ∈ O(C) : F is odd and F ∈ L2(C, uμ

o,t (z)dz)
}

and

He
μ,t (C) =

{
F ∈ O(C) : F is even and F ∈ L2(C, uμ

e,t (z)dz)
}

with the inner product on Hμ,t (C)o and Hμ,t (C)e is given by 〈F,G〉Ho
μ,t (C) :=

〈F,G〉L2(C,uμ
o,t (z)dz)

and 〈F,G〉He
μ,t (C) := 〈F,G〉L2(C,uμ

e,t (z)dz)
, respectively.

Notice that the above spaces are subspaces of Hμ,t (C) and Hμ,t (C) is the direct
sum of Ho

μ,t (C) and Hμ,t (C)e. That is Hμ,t (C) = Ho
μ,t (C)

⊕He
μ,t (C). The direct

sum of these kind of Hilbert spaces are called Fock type spaces.
In Theorem 3.1 we have identified the image of L2

μ(Rn) under eit�μ (for any finite
reflection group G) as a reproducing kernel Hilbert space Hμ,t (C

n). In the special
case G = Z

n
2, we explicitly construct an orthonormal basis which will help us to

characterize the image of Sobolev space under eit�μ .
Now consider the Dunkl–Laplacian associated to the group Z

n
2 and the root system

R = {±ei : i ∈ {1, 2, . . . , n}}. For any non negative multiplicative function μ on R
(μ(e j ) = μ j for every j = 1, . . . , n), the corresponding weight function is given by
hμ(u) = ∏n

j=1|u j |2μ j , where u = (u1, . . . , un) ∈ R
n . In this case, the Dunkl kernel

is given by

Eμ(x, y) =
n∏

k=1

eμk (xk yk) for x, y ∈ R
n .

Now consider the multiplication operator

S f (u) = f (u)e− i
4t u

2
, for f ∈ L2(Rn, hμ(u)eu

2
du).

Since |e− i
4t u

2 | = 1 for u ∈ R
n , S : L2(Rn, hμ(u)eu

2
du) → L2(Rn, hμ(u)eu

2
du) is

a unitary. For each k ∈ N and μ̃ > 0, we define

ψ
μ̃
k (u) =

(
γμ̃(k)

�(μ̃ + 1
2 )

) 1
2 1

2
k
2 k!

H μ̃
k (u)e−u2 , u ∈ R. (3.3)

From the equation 3.5.1 in [16],we can conclude that
{
ψ

μ̃
k : k ∈ N

}
forms an orthonor-

mal basis for L2(R, eu
2 |u|2μ̃ du). For α ∈ N

n and u ∈ R
n , let
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�μ
α (u) =

n∏

k=1

ψμk
αk

(uk).

Then it is easy to show that
{
�

μ
α : α ∈ N

n
}

forms an orthonormal basis for

L2(Rn, eu
2
hμ(u)du).

Proposition 3.3 For α ∈ N
n and z ∈ C

n we have

eit�μS�μ
α (z) = Mμ

(i t)νμ+ n
2

(

− i

2t

)|α| (∏n
k=1 �(μk + 1

2 )

γμ(α)2|α|

) 1
2

zαe

(
i
4t − 1

16t2

)
z2

.

Proof First we will prove this result for n = 1. For k ∈ N, μ > 0 and x ∈ R, from
the Eqs. 2.11 and 2.14 we have the following,

∫

R

Hμ
k (u)eμ

(

− i

2t
xu

)

e−u2 |u|2μdu

= k!
[ k2 ]∑

p=0

(−1)p2k−2p

p!γμ(k − 2p)

∫

R

uk−2peμ

(

− i

2t
xu

)

e−u2 |u|2μdu

= k!(−i)k�

(

μ + 1

2

) [ k2 ]∑

p=0

Hμ
k−2p

( x
4t

)

p!(k − 2p)!e
− x2

16t2

= k!(−i)k�(μ + 1
2 )

γμ(k)(2t)k
xke

− x2

16t2 .

Using the above, we can calculate, for x ∈ R,

eit�μSψ
μ
k (x) = Mμ

(i t)μ+ n
2
e

i
4t x

2
∫

R

Sψ
μ
k (u)e

i
4t u

2
Eμ

(

− i

2t
x, u

)

hμ(u)du

= Mμ

(i t)μ+ 1
2

e
i
4t x

2
∫

R

ψ
μ
k (u)eμ

(

− i

2t
xu

)

hμ(u)du

= Mμ

(i t)μ+ n
2
e

i
4t x

2

(
γμ(k)

�
(
μ + 1

2

)

) 1
2 1

2
k
2 k!

×
∫

R

Hμ
k (u)eμ

(

− i

2t
xu

)

e−u2 |u|2μdu

= Mμ

(i t)μ+ n
2
e

i
4t x

2
(

− i

2t

)k
(

�(μ + 1
2 )

γμ(k)2k

) 1
2

xke
− 1

16t2
x2

.
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Now eit�μSψ
μ
k can be extended analytically to the complex plane as

eit�μSψ
μ
k (z) = Mμ

(i t)μ+ 1
2

(

− i

2t

)k
(

�(μ + 1
2 )

γμ(k)2k

) 1
2

zke

(
i
4t − 1

16t2

)
z2

, z ∈ C.

This establishes the proposition for n = 1.
The general case follows by observing that eit�μS�

μ
α can be expressed as a product

of one dimensional expressions. For α ∈ N
n and μ = (μk)

n
k=1, we have

eit�μS�μ
α (z) = Mμ

(i t)νμ+ n
2
e

i
4t z

2
∫

Rn
S�μ

α (u)e
i
4t u

2
Eμ

(

− i

2t
z, u

)

hμ(u)du

= Mμ

(i t)νμ+ n
2
e

i
4t z

2
n∏

k=1

∫

R

ψμk
αk

(uk)eμk

(

− i

2t
zkuk

)

hμk (uk)duk .

=
n∏

k=1

eit�μk Sψμk
αk

(zk).

��
Since the set

{
�

μ
α : α ∈ N

n
}
is a complete orthonormal basis for the space

L2(Rn, hμ(u)eu
2
du) and the operator eit�μS : L2(Rn, hμ(u)eu

2
du) → Hμ,t (C

n) is
unitary, the set {Υ μ,t

α := eit�μS�
μ
α : α ∈ N

n} forms a complete orthonormal basis
forHμ,t (C

n). Also from the above theoremwe can see that, the n-dimensional vectors
Υ

μ,t
α is a pointwise product of one dimensional vectors Υ

μk ,t
αk , k = 1, 2, . . . , n. That

is, for α ∈ N
n and z ∈ C

n , Υ
μ,t
α (z) = ∏n

k=1 Υ
μk ,t
αk (zk), where

{
Υ

μk ,t
αk : αk ∈ N

}
is

a complete orthonormal basis for Hμk ,t (C). This fact forces to consider the tensor
product of Hilbert spaces

⊗n
k=1Hμk ,t (C).

Theorem 3.4 The Hilbert space Hμ,t (C
n) is unitarily equivalent to tensor product

of Hilbert spaces
⊗n

k=1Hμk ,t (C).

The above theorem says that the image of L2
μ(Rn) is also identified with tensor

product of Fock type spaces.

4 Image of Dunkl–Sobolev space under Schrödinger semigroup

In this section we define Dunkl–Sobolev spaces using the Dunkl operator associated
to the reflection group Z

n
2. The reason to consider this particular group is that, the

Dunkl kernel and the Hermite polynomials are explicitly known in this setting. By
using these explicit functions, we can choose a basis for Dunkl–Sobolev space such
that the Schrödinger semigroup composed with a “multiplication operator” takes this
basis to “nice class of functions”. On observing those “nice class of functions” we can
easily guess the reproducing kernel Hilbert space, which is same as the image of the
Dunkl–Sobolev space under eit�μ , upto equivalence of norms.
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For the group Z
n
2 the associated Dunkl derivatives corresponding to the vector ek

is given by,

Dk,μ f (x) = ∂k f (x) + μk
f (x) − f (σk(x))

xk
for k = 1, 2, . . . , n. (4.1)

For α ∈ N
n , let Dα

μ := Dα1
1,μ · · · Dαn

n,μ. Now for m ∈ N, we define the Dunkl–Sobolev

space Wm,2
μ (Rn) in L2

μ(Rn) := L2(Rn, hμ(u)eu
2
du) by

Wm,2
μ (Rn) :=

{
f ∈ L2

μ(Rn) : Dα
μ f ∈ L2

μ(Rn),∀α ∈ N
n and |α| ≤ m

}
. (4.2)

Then the space Wm,2
μ (Rn) is a Hilbert space with respect to the inner product

〈 f, g〉Wm,2
μ (Rn)

:=
∑

|α|≤m

〈Dα
μ f, Dα

μg〉L2
μ(Rn), f, g ∈ Wm,2

μ (Rn).

Since Wm,2
μ (Rn) ⊂ L2(Rn, hμ(u)eu

2
du), we can consider

eit�μ

(
Wm,2

μ (Rn)
)

:=
{
eit�μ f ∈ O(Cn) : f ∈ Wm,2

μ (Rn)
}

as a subspace of O(Cn). It is clear that eit�μ : Wm,2
μ (Rn) → eit�μ

(
Wm,2

μ (Rn)
)
is a

bijective linear map. Since it is injective, it’s image eit�μ
(
Wm,2

μ (Rn)
)
is made into

a Hilbert space simply by transferring the Hilbert space structure of Wm,2
μ (Rn) to

eit�μ(Wm,2
μ (Rn)) so that the Schrödinger semigroup eit�μ is an isometric isomor-

phism from Wm,2
μ (Rn) onto eit�μ

(
Wm,2

μ (Rn)
)
. This means that

〈
eit�μ f, eit�μg

〉

eit�μ(Wm,2
μ (Rn))

:= 〈 f, g〉Wm,2
μ (Rn)

for f, g ∈ Wm,2
μ (Rn),

where f, g ∈ Wm,2
μ (Rn). Our aim is to identify eit�μ

(
Wm,2

μ (Rn)
)
as a reproducing

kernel Hilbert space up to an equivalence of norms. For the notational convenience,
we will do this image identification for n = 1 and the general n follows in the similar
way.

Note 4.1 For μ = 0,m ≥ 1 and f ∈ Wm,2
0 (R), we have

lim|x |→∞

∣
∣
∣Dk f (x)p(x)

∣
∣
∣ = 0 (4.3)

for any polynomial p on R and k ∈ N with k ≤ m − 1.
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The above note follows from the particular case m = 1. This particular case is a
consequence of the following: using classical Sobolev embedding lemma we have,

(

f (t)e
t2
2

)′

= −t f (t)e
t2
2 + f ′(t)e

t2
2 .

Integrating both sides from a to b and using the Schwarz inequality to estimate the
integral on the right, we have

(∣
∣
∣
∣ f (t)e

t2
2

∣
∣
∣
∣

)b

a
≤
(
b3 − a3

3

∫ b

a
| f (t)|2 et2dt

) 1
2

+
(

(b − a)

∫ b

a

∣
∣
∣ f

′
(t)
∣
∣
∣
2
et

2
dt

) 1
2

.

From the above inequality we can find B̃ > 0 such that

| f (u)| eu2 ≤ B̃(1 + |u|) 3
2 , all u ∈ R.

Definition 4.2 We say that a function f ∈ L2(R, |u|2μeu2du) has a Dunkl primitive
in L2(R, |u|2μeu2du) if there exists g ∈ L2(R, |u|2μeu2du) such that Dμg = f .

Lemma 4.3 The function ψ0(u) = e−u2 does not have Dunkl primitive in
L2(R, |u|2μeu2du).

Proof Suppose there exist a g ∈ L2(R, |u|2μeu2du) such that Dμg(u) = e−u2 . Then
by Sobolev embedding lemma associated to Dunkl operators [9], g is infinitely differ-
entiable function. In particular g is continuous. This gives us

∫

|u|≤1
|g(u)|2eu2du < ∞

and

∫

|u|≥1
|g(u)|2eu2du ≤

∫

|u|≥1
|g(u)|2eu2 |u|2μdu < ∞.

Hence g ∈ L2(R, eu
2
du). Write g = go + ge, where go, ge are odd and even parts of

g, respectively. Now

e−u2 = Dμg(u) = d

du
go(u) + d

du
ge(u) + μ

u
(go(u) − go(−u)).

The above equation can be written as

d

du
ge(u) = − d

du
go(u) − μ

u
(go(u) − go(−u)) + e−u2 .
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Since the right hand side of the above equation is even, we can conclude that d
du ge(u)

is also even. At the same time derivative of an even function is odd. These together
forces that ge has to be a constant. We know that ge ∈ L2(R, |u|2μeu2du) this implies
ge = 0. As the even part ge vanished, now g is an odd function. This implies d

du g(u)+
2μ
u g(u) = e−u2 . Since g and e−u2 are infinitely differentiable, g(u)

u is a continuous

function onR. Using this it is easy to see that 2g(u)
u ∈ L2(R, eu

2
du). Consequently we

have d
du g ∈ L2(R, eu

2
du). That implies g ∈ W 1,2

0 (R). From the note 4.1 we conclude
that, for all complex polynomial p(u)

lim|u|→∞|g(u)p(u)| = 0· (4.4)

For a > 0,

∫ a

ε

d

du
g(u)|u|2μdu = g(a)|a|2μ − g(ε)|ε|2μ − 2μ

∫ a

ε

g(u)

u
|u|2μdu. (4.5)

Similarly,

∫ −ε

−a

d

du
g(u)|u|2μdu = g(−ε)|ε|2μ−g(−a)|a|2μ−2μ

∫ −ε

−a

g(u)

u
|u|2μdu. (4.6)

Letting ε → 0 in the above equations, we have

lim
ε→0

∫ a

ε

d

du
g(u)|u|2μdu = g(a)a2μ − 2μ

∫ a

0

g(u)

u
|u|2μdu

lim
ε→0

∫ −ε

−a

d

du
g(u)|u|2μdu = g(a)a2μ − 2μ

∫ 0

−a

g(u)

u
|u|2μdu.

So, for every a > 0, ∫ a

−a
Dμ(g)(u)|u|2μdu = 2g(a)a2μ. (4.7)

Letting a tends to ∞ in the above equation and using (4.4) we have

∫

R

e−u2 |u|2μdu = lim
a→∞

∫ a

−a
Dμ(g)(u)|u|2μdu = 0,

which is a contradiction to
∫
R
e−u2 |u|2μdu 
= 0. So ψ0 does not have Dunkl primitive

in L2(R, |u|2μeu2du). ��
Lemma 4.4 Dunkl primitive for a function f ∈ L2(R, eu

2 |u|2μdu) is unique.

Proof It is enough to prove that the zero function is the only solution to the equation
Dμg = 0, for g ∈ L2(R, eu

2 |u|2μdu). To prove this, we argue as in the Lemma 4.3
up to the Eq. (4.7), so that we have g as an odd function with g(a) = 0, forall a > 0.
That implies g = 0. ��
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For the functions f ∈ Wm,2
μ (R), using the Lemmas 4.3 and 4.4 we will get a

L2(R, eu
2 |u|2μdu) representation of Dunkl derivatives of f in terms of the Fourier

coefficients of f .

Lemma 4.5 Let f ∈ Wm,2
μ (R). Then Dm

μ f has the following representation in

L2(R, eu
2
hμ(u)du),

Dm
μ f =

∞∑

k=0

⎛

⎝
m∏

j=1

(−1) j
(
2(k + j + 2μθk+ j )

) 1
2

⎞

⎠ 〈 f, ψμ
k 〉L2

μ(R)ψ
μ
k+ j .

Proof First we will prove this for m = 1 and the general case follows inductively.
Using the Eq. 2.12 it is easy to see the following

Dμψ
μ
k (u) = − (2(k + 1 + 2μθk+1))

1
2 ψ

μ
k+1(u). (4.8)

If f ∈ W 1,2
μ (R) then we have the following representations,

f =
∞∑

k=0

〈 f, ψk〉L2
μ(R)ψ

μ
k and

Dμ f = 〈Dμ f, ψ0〉L2
μ(R)ψ0 +

∞∑

k=1

〈Dμ f, ψk〉L2
μ(R)ψ

μ
k .

Define g1 := ∑∞
k=1〈Dμ f, ψk〉L2

μ(R)ψ
μ
k and f1 := ∑∞

k=1

〈Dμ f,ψμ
k 〉

L2μ(R)

−(2(k+2μθk ))
1
2
ψ

μ
k−1. Since

f ∈ L2(R, |u|2μeu2du) we can see that f1, g1 ∈ L2(R, |u|2μeu2du). Also it can be
observed that the Dunkl primitives of g1 is f1. That is Dμ f1 = g1. This implies that

〈Dμ f, ψ0〉L2
μ(R)ψ0 = Dμ f −g1 has primitive in L2(R, |u|2μeu2du). From theLemma

4.3 we know thatψ0 does not have a primitive. This implies that 〈Dμ f, ψ0〉L2
μ(R) = 0.

Consequently we have

Dμ f =
∞∑

k=1

〈Dμ f, ψk〉L2
μ(R)ψ

μ
k for every f ∈ W 1,2

μ (R).

From above we can observe that f1 and f are Dunkl primitives of Dμ f in

L2(R, |u|2μeu2du). But Dunkl primitive is unique in L2(R, eu
2 |u|2μdu). This leads to

f =
∞∑

k=0

〈 f, ψμ
k 〉L2

μ(R)ψ
μ
k =

∞∑

k=1

〈Dμ f, ψμ
k 〉L2

μ(R)

−(2k + 2μθk)
1
2

ψ
μ
k−1.

Comparing the coefficients of ψk from the above equation we have

〈Dμ f, ψμ
k 〉L2

μ(R) = − (2(k + 2μθk))
1
2 〈 f, ψμ

k−1〉L2
μ(R).
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This implies that

Dμ f =
∞∑

k=0

(−1)(2(k + 1 + 2μθk+1))
1
2 〈 f, ψμ

k 〉L2
μ(R)ψ

μ
k+1

=
∞∑

k=0

〈 f, ψμ
k 〉L2

μ(R)Dμψ
μ
k .

��
Nextwe are going to prove that the collection {ψμ

k : k ∈ N} is a complete orthogonal
set in Wm,2

μ (R).

Theorem 4.6 The system of vectors

{
ψ

μ
k∥

∥ψ
μ
k

∥
∥
Wm,2

μ (R)

: k ∈ N

}

forms a complete

orthonormal basis for Wm,2
μ (R).

Proof For l 
= n,

〈ψμ
l , ψμ

n 〉Wm,2
μ

(R) =
m∑

k=0

〈Dk
μψ

μ
l , Dk

μψμ
n 〉L2

μ(R)

=
m∑

k=0

rμ
k (l)rμ

k (n)〈ψμ
l+k, ψ

μ
n+k〉L2

μ(R) = 0,

where rμ
k (l) = (−1)k

∏k
j=1 (2(l + j + 2μθl+ j ))

1
2 and rμ

0 (l) = 1 for l ∈ N, k ∈
N\{0}.

Suppose 〈 f, ψμ
k 〉Wm,2

μ (R)
= 0 for f ∈ Wm,2

μ (R) and k ∈ N. From Lemma 4.5

we can conclude that 〈 f, ψμ
k 〉L2

μ(R) = 0 for every k ∈ N. So the system of vectors
{

ψ
μ
k∥

∥ψ
μ
k

∥
∥
Wm,2

μ (R)

: k ∈ N

}

is a complete orthonormal basis for Wm,2
μ (R). ��

Note 4.7 For k ∈ N,

‖ψμ
k ‖2

Wμ
m (R)

=
m∑

j=0

j∏

s=1

2(k + s + 2μθk+s).

Let Bμ = span{ψμ
k : k ∈ N}. For f ∈ Bμ we have

f =
l∑

k=0

akψ
μ
k for some ak ∈ C and l ∈ N.
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For f ∈ Bμ recall that S f (u) = f (u)e− i
4t u

2
. From the Eq. 2.13 it is easy to see that

uψ
μ
k (u) =

(
k + 2μθk

2

) 1
2

ψ
μ
k−1(u) +

(
k + 1 + 2μθk+1

2

) 1
2

ψ
μ
k+1(u) for k ∈ N.

(4.9)
Using this equation we can conclude that the map S : Bμ → Bμ is a linear map.

Theorem 4.8 The map S : Wm,2
μ (R) → Wm,2

μ (R) is a bounded and invertible oper-
ator.

Proof First we will prove this theorem for Dunkl–Sobolev space of order one and the
rest follows from the induction on m. Let f ∈ Bμ, then f can be written as

f =
l∑

k=0

akψ
μ
k for some ak ∈ C and l ∈ N.

From the Eq. (4.9) and using triangle inequality we have,

‖u f ‖L2
μ(R)

=
∥
∥
∥
∥
∥

l∑

k=1

(
k + 2μθk

2

) 1
2

akψ
μ
k−1 +

l∑

k=0

(
k + 1 + 2μθk+1

2

) 1
2

akψ
μ
k+1

∥
∥
∥
∥
∥
L2

μ(R)

≤
∥
∥
∥
∥
∥

l∑

k=1

(
k + 2μθk

2

) 1
2

akψ
μ
k−1

∥
∥
∥
∥
∥
L2

μ(R)

+
∥
∥
∥
∥
∥

l∑

k=0

(
k + 1 + 2μθk+1

2

) 1
2

akψ
μ
k+1

∥
∥
∥
∥
∥
L2

μ(R)

=
(

l∑

k=1

(
k + 2μθk

2

)

|ak |2
) 1

2

+
(

l∑

k=0

(
k + 1 + 2μθk+1

2

)

|ak |2
) 1

2

.

Observe that there exists s̃μ, sμ > 0 (independent of l) such that

dμ

(
k + 1 + 2μθk+1

2

)

≤
(
k + 2μθk

2

)

≤ sμ

(
k + 1 + 2μθk+1

2

)

for all k ∈ N.

Then we have,

‖u f ‖L2
μ(R) ≤ s̃μ

(
l∑

k=0

2 (k + 1 + 2μθk+1) |ak |2
) 1

2

= s̃μ
∥
∥Dμ f

∥
∥
L2

μ(R)
, (4.10)

where s̃μ = max{1,√sμ}. Also by comparing the L2
μ(R) norms of Dμ f and u f , we

have

∥
∥Dμ f

∥
∥
L2

μ(R)
≤ d̃μ ‖u f ‖L2

μ(R) , where d̃μ =
√

max

{
1

2
,

1

2dμ

}

. (4.11)
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Using the Eq. 4.10 we get,

‖S( f )‖2
W 1,2

μ (R)
= ‖ f ‖2L2

μ(R)
+
∥
∥
∥Dμ

(
f (u)e− i

4t u
2
)∥
∥
∥
2

L2
μ(R)

= ‖ f ‖2L2
μ(R)

+
∥
∥
∥
∥Dμ f (u)e− i

4t u
2 − i

2t
u f (u)

∥
∥
∥
∥

2

L2
μ(R)

≤ ‖ f ‖2L2
μ(R)

+
(
∥
∥Dμ f

∥
∥
L2

μ(R)
+ 1

2t
‖u f ‖L2

μ(R)

)2

≤ ‖ f ‖2L2
μ(R)

+
(

max{1, s̃μ
2t

}
)2 ∥
∥Dμ f

∥
∥2
L2

μ(R)
.

Hence we have,
‖S( f )‖2

W 1,2
μ (R)

≤ Bt,1,μ ‖ f ‖2
W 1,2

μ (R)
,

where Bt,1,μ = max{1,
(
max{1, s̃μ

2t }
)2}. As Bμ is dense in W 1,2

μ (R) and the above

inequality is true for all f ∈ Bμ, the operator S : W 1,2
μ (R) → W 1,2

μ (R) is bounded.

Already we know that S is a unitary operator on L2(R, eu
2
hμ(u)du). That says S :

W 1,2
μ (R) → W 1,2

μ (R) is a one to one map as well. From the Eq. (4.10) we can
conclude that for any f ∈ W 1,2

μ (R)wehave u f ∈ L2
μ(R). This implies DμS−1 f (u) =

Dμ( f )(u)e
i
4t u

2 + i
2t u f (u)e

i
4t u

2 ∈ L2
μ(R). Consequently we have S−1 f ∈ W 1,2

μ (R)

and S : W 1,2
μ (R) → W 1,2

μ (R) is onto. Since S : W 1,2
μ (R) → W 1,2

μ (R) is a one to one,
onto and bounded operator, by bounded inverse theorem it is a bounded and invertible
operator. This proves the stated theorem for m = 1.

For general m ∈ N and f ∈ Bμ,

‖S f ‖2
Wm,2

μ (R)

= ‖S( f )‖2
Wm−1,2

μ (R)
+ ∥
∥Dm

μ (S f )
∥
∥2
L2

μ(R)

= ‖S( f )‖2
Wm−1,2

μ (R)
+
∥
∥
∥
∥D

m−1
μ

(

S(Dμ f ) − i

2t
uS f

)∥
∥
∥
∥

2

L2
μ(R)

≤ ‖S( f )‖2
Wm−1,2

μ (R)
+
(∥
∥
∥Dm−1

μ S(Dμ f )
∥
∥
∥
L2

μ(R)
+ 1

2t
‖Dm−1

μ (uS f )‖L2
μ(R)

)2

·

Using induction on m and from the Eqs. (4.10) and (4.11) there exists Bt,m,μ > 0
such that,

‖S f ‖2
Wm,2

μ (R)
≤ Bt,m,μ ‖ f ‖2

Wm,2
μ (R)

.

Since Bμ is dense in Wm,2
μ (R), from bounded inverse theorem we conclude that S is

a bounded and invertible operator. ��
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Note 4.9 For k = 0, . . . ,m, from the Eq. (4.10) we can conclude the following,

1. If f ∈ Wm,2
μ (R) then uk f ∈ Wm−k,2

μ (R).

2. If f ∈ Wm,2
μ (R) then there exist Vμ,t,k > 0 such that,

∥
∥uk f

∥
∥
L2

μ(R)
≤

Vμ,t,k
∥
∥Dk

μ f
∥
∥
L2

μ(R)
.

Now we are in the position to characterize the image of sobolev space under

Schrödinger semigroup. Since eit�μS f (x) = Mμ

(i t)μ+ 1
2
e

i
4t x

2
f̂ ( x

2t ) for f ∈ Wm,2
μ (R)

and x ∈ R and it is known that Dunkl transform translate Dunkl derivatives into
multiplication with polynomials, then we have the following:

eit�μSDm
μ f (x) = Mμ

(i t)μ+ 1
2

e
i
4t x

2
D̂m

μ f
( x

2t

)
=
(
i
x

2t

)m
eit�μS f (x).

Consequently we have zkeit�μS f (z) inHμ,t (C) for k ∈ {0, . . . ,m} if f ∈ Wm,2
μ (R).

This fact forces us to consider the Hilbert space

Hm
μ,t (C) =

{

F ∈ O(C) :
m∑

k=0

(
1

2t

)2k ∥
∥
∥zk F

∥
∥
∥
2

Hμ,t (C)
< ∞

}

with the inner product on Hm
μ,t (C) by

〈F,G〉Hm
μ,t (C) :=

m∑

k=0

(
1

2t

)2k 〈
zk F, zkG

〉

Hμ,t (C)
.

Theorem 4.10 The set

{

Υ
μ,t
k,m := Υ

μ,t
k

‖Υ μ,t
k ‖Hm

μ,t (C)

: k ∈ N

}

forms an orthonormal basis

forHm
μ,t (C).

Proof We know that � :=
{
Υ

μ,t
k : k ∈ N

}
forms a complete orthonormal basis for

Hμ,t (C). By using this we prove � is an orthogonal set inHm
μ,t (C). For that j 
= l ∈

N
n ,

〈
Υ

μ,t
j , Υ

μ,t
l

〉

Hm
μ,t (C)

=
m∑

k=0

(
1

2t

)2k 〈
zkΥ μ,t

j , zkΥ μ,t
ł

〉

Hμ,t (C)

=
m∑

k

|rμ
k ( j)||rμ

k (l)|
〈
Υ

μ,t
j+s, Υ

μ,t
l+s

〉

Hμ,t (C)

= 0.

Here rμ
k (l) = (−1)k

∏k
j=0 (2(l + j + 2μθl+ j ))

1
2 for l, k ∈ N. This proves the orthog-

onality.
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For F ∈ Hm
μ,t (C), we have the following representation,

F =
∞∑

k=0

〈
F, Υ

μ,t
k

〉

Hμ,t (C)
Υ

μ,t
k .

So zF(z) = ∑∞
k=0

〈
F, Υ

μ,t
k

〉

Hμ,t (C)
zΥ μ,t

k (z). Similarly for k ∈ {0, 1, . . . ,m}, we
have

zk F(z) =
∞∑

j=0

〈
F, Υ

μ,t
j

〉

Hμ,t (C)
zkΥ μ,t

j (z),

=
(−i

2t

)k ∞∑

j=0

〈
F, Υ

μ,t
j

〉

Hμ,t (C)
|rμ
k ( j)|Υ μ,t

j+k(z).

Suppose
〈
F, Υ

μ,t
l

〉

Hm
μ,t (C)

= 0 for all l ∈ N. This implies that,

0 =
m∑

k=0

(
1

2t

)2k 〈
zk F, zkΥl

〉

Hμ,t (C)

=
m∑

k=0

〈 ∞∑

j=0

|rμ
k ( j)|

〈
F, Υ

μ,t
j

〉

Hμ,t (C)
Υ

μ,t
j+k , |rk(l)|Υl+k

〉

Hμ,t (C)

= 〈F, Υ
μ,t
l 〉Hμ,t (C)

{
m∑

k=0

k∏

s=1

(2(l + s + 2μθl+s))

}

.

Since
∏k

s=1 (2(l + s + 2μθl+s)) > 0 for every k ∈ {0, 1, . . . ,m}, we have
〈F, Υ

μ,t
l 〉Hμ,t (C) = 0. This implies that F = 0. This proves the completeness of

� inHm
μ,t (C). ��

Now we have a complete orthonormal basis for Hm
μ,t (C) as well as for Wm,2

μ (R).
From this we can establish the characterization of the image of Sobolev space under
Schrödinger semigroup.

Theorem 4.11 The map eit�μ : Wm,2
μ (R) → Hm

μ,t (C) is a bounded and invertible
operator.

Proof We know that

{
ψ

μ
k∥

∥ψ
μ
k

∥
∥
Wm,2

μ (R)

: k ∈ N

}

is a complete orthonormal basis for

Wm,2
μ (R) and

{
Υ

μ,t
k,m : k ∈ N

}
forms an complete orthonormal basis forHm

μ,t (C). For

k ∈ N,
∥
∥
∥Υ

μ,t
k

∥
∥
∥
2

Hμ,t (C)
= ∥
∥ψ

μ
k

∥
∥2
Wm,2

μ (R)
=

m∑

j=0

j∏

s=1

2(k + s + 2μθk+ j ).
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Moreover, for k ∈ N and z ∈ C from proposition 3.3, we have

⎛

⎜
⎝eit�μS ψ

μ,t
k∥

∥
∥ψ

μ,t
k

∥
∥
∥
Wm,2

μ (R)

⎞

⎟
⎠ (z) = Υ

μ,t
k,m (z).

So, eit�μS takes an orthonormal basis inWm,2
μ (R) to an orthonormal basis inHm

μ,t (C).
This implies that eit�μS : Wm,2

μ (R) → Hm
μ,t (C) is a unitary operator. In particular,

This implies that,

∥
∥
∥eit�μS f

∥
∥
∥Hm

μ,t (C)
= ‖ f ‖Wm,2

μ (R)
for all f ∈ Wm,2

μ (R).

Since S : Wm,2
μ (R) → Wm,2

μ (R) is bounded and invertible operator, there exists
M1, M2 > 0 such that

M1 ‖ f ‖Wm,2
μ (R)

≤
∥
∥
∥eit�μ f

∥
∥
∥Hm

μ,t (C)
≤ M2 ‖ f ‖Wm,2

μ (R)
for all f ∈ Wm,2

μ (R).

��
The n−dimensional characterization of the image of Sobolev space under

Schrödinger semigroup is analogous to the one dimensional case. The set{
�

μ
α∥

∥�
μ
α

∥
∥
Wm,2

μ (Rn)

: α ∈ N
n

}

forms a complete orthonormal basis for Wm,2
μ (Rn) and

the transform S : Wm,2
μ (Rn) → Wm,2

μ (Rn) is a bounded and invertible operator. For
α ∈ N

n , from the Eq. (4.8) we have

Dk,μ�μ
α = − (2(2αk + 1 + 2μkθαk+1)

) 1
2 �

μ
α+ek , α ∈ N

n . (4.12)

Similarly for β ∈ N
n ,

Dβ
μ�μ

α = (−1)|β|
n∏

k=1

βk∏

j=1

(
2(αk + j + 2μkθαk+ j )

) 1
2 �α+β. (4.13)

Consider the Hilbert space

Hm
μ,t (C

n) := {
F ∈ O(Cn) : zβF ∈ Hμ,t (C

n), 0 ≤ |β| ≤ m
}

with the inner product

〈F,G〉Hm
μ,t (C

n) :=
∑

|β|≤m

(
1

2t

)2|β| 〈
zβF, zβG

〉
Hμ,t (Cn)

, F,G ∈ Hm
μ,t (C

n).
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The system of vectors

{

Υ
μ,t
α,m = Υ

μ,t
α

‖Υ μ,t
α ‖Hm

μ,t (C
n )

: α ∈ N
n

}

forms a complete orthonor-

mal basis forHm
μ,t (C

n).

Theorem 4.12 The operator eit�μ : Wm,2
μ (Rn) → Hm

μ,t (C
n) is bounded and invert-

ible. Moreover, the space Hm
μ,t (C

n) is a reproducing kernel Hilbert space.

Proof Using the above details and following similar technique as in the Theorem 4.11,
we can prove that eit�μ : Wm,2

μ (Rn) → Hm
μ,t (C

n) is a bounded and invertible operator.
For every F ∈ Hm

μ,t (C
n) and fixed z ∈ C

n we have the following representation,

F(z) =
∑

α∈Nn

〈
F, Υ μ,t

α,m

〉
Hm

μ,t (C
n)

Υ μ,t
α,m(z).

Since
∑

α∈Nn |
〈
F, Υ

μ,t
α,m

〉
|2Hm

μ,t (C
n)

< ∞ and

∑

α∈Nn

|Υ μ,t
α,m(z)|2 ≤

∑

α∈Nn

|zα|2
‖Υα‖2Hm

μ,t (C
n)
22|α|γμ(α)

= Eμ

(( |z1|
2

2

, . . . ,
|z1|
2

2)

, (1, . . . , 1)

)

< ∞,

we have

|F(z)|2 ≤
∣
∣
∣
∣

Mμ

(i t)νμ+ n
2

∣
∣
∣
∣

2

‖F‖2Hm
μ,t (C

n)

∑

α∈Nn

|zα|2

22|α|γμ(α)

∥
∥
∥Υ

μ,t
α

∥
∥
∥
2

Hm
μ,t (C

n)

.

From the above equation we can conclude that pointwise evalutaions are continuous
onHm

μ,t (C
n). This proves thatHm

μ,t (C
n) is a reproducing kernel Hilbert space. Since

{
Υ

μ,t
α,m : α ∈ N

n
}
forms a complete orthonormal basis for Hm

μ,t (C
n), one can verify

that the reproducing kernels are given by

K
m
μ,t (z, w) =

∑

α∈Nn

zαwα

22|α|γμ(α)

∥
∥
∥Υ

μ,t
α

∥
∥
∥
2

Hm
μ,t (C

n)

e
− 1

16t2
(z2+w2)

e
i
4t (z

2−w2),

where ‖Υ μ,t
α ‖2Hm

μ,t (C
n)

= ∑
|β|≤m

∏n
k=1

∏βk
j=1

(
2(αk + j + 2μkθαk+ j )

)
. ��

Remark 4.13 As in Theorem 3.4 we can see that Hm
μ,t (C

n) is unitarily equivalent to
⊗n

k=1Hm
μk ,t (C).
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5 Image of Dunkl–Hermite–Sobolev space under Schrödinger
semigroup associated to the Dunkl–Hermite operator

Let G be a finite reflection group on R
n andμ be a non-negative multiplicity function,

on some fixed root system R, that is invariant under the group action G on R
n . The

Dunkl–Hermite operator on R
n is given by

Hμ = −�μ + x2.

In this section we define Dunkl–Hermite–Sobolev space and wish to discuss the image
of it under Schrödinger semigroup associated to the operator Hμ.

It is known that from [17], the generalized Hermite functions �α,μ for α ∈ N
n

are eigen vectors of Hμ with eigen values (2|α| + 2νμ + n) . They form a complete
orthonormal basis for L2(Rn, hμ(u)du). So, the spectral decomposition of Hμ is given
by

Hμ =
∞∑

k=0

Pk f (5.1)

where Pk f = ∑
|α,|=k〈 f,�α,μ〉�α,μ. Using generalized Mehler’s formula [17], we

can see that the heat semigroup associated to the Dunkl–Hermite operator e−t Hμ on
L2(Rn, hμ(u)du) given by,

e−t Hμ f (x) =
∫

Rn
f (u)KHμ,t (x, u)hμ(u)du, (5.2)

where the kernel is

KHμ,t (x, u) = (2 sin ht)−(νμ+ n
2 ) e− 1

2 coth 2t (x
2+u2)Eμ (csc h2t x, u) ,

for all x, u ∈ R
n . For n = 1, the heat semigroup e−t Hμ is considered and studied in

[18,19] by Ben Salem andNefzi. For t 
= kπ where k ∈ N, the Schrödinger semigroup
is an integral operator on L2(Rn, hμ(u)du) given by

e−i t Hμ f (x) =
∫

Rn
f (u)KHμ,i t (u, x)e−u2hμ(u)du, (5.3)

where

KHμ,i t (u, x) = (2i sin 2t)−(νμ+ n
2 ) exp

(
i

2
cot 2t (u2 + x2)

)

Eμ(−i csc 2tu, x).

If f ∈ L2(Rn, eu
2
hμ(u)du) then e−i t Hμ f can be extended as an analytic function on

C
n , by the discussion given in Sect. 3. Also it can be seen that

e−i t Hμ f (z) = (2i sin 2t)−(μ+ n
2 )e

i
2 cot 2t z

2 (
g ∗ Fμ(s, .)

)
(z).
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LetHL
Ki t,Hμ

(Cn)be a reproducingkernelHibert space of holomorphic fuctionswhose

reproducing kernel function is

Ki t,Hμ(z, w) = e
i
2 cot 2t (z

2−w2)e− 1
4 csc

2 2t (z2+w2)Eμ

(
csc 2t z√

2
,
csc 2tw√

2

)

.

The proof of the following theorem is similar to the proof of the Theorem 3.1.

Theorem 5.1 The operator e−i t Hμ : L2(Rn, eu
2
hμ(u)du) → HL

Ki t,Hμ
(Cn) is a

unitary operator.

For rest of the section we fix G = Z
n
2, the root systemR = {±ei : i = 1, 2, . . . , n}

and μ be any nonnegative function onR which is invariant under G. For k ∈ N, let us
consider the operator Ak,μ = −Dk,μ+xk on suitable dense class of L2(Rn, hμ(u)du).
Its adjoint is given by A∗

k,μ = Dk,μ + xk . Then the Dunkl–Hermite operator can be
written as

Hμ = 1

2

n∑

k=1

(Ak,μA
∗
k,μ + A∗

k,μAk,μ).

Definition 5.2 Let m ∈ N, the Dunkl–Hermite–Sobolev spaces is defined by,

Wm,2
Hμ

(Rn) :=
{
f ∈ L2

μ(Rn) : Aα
μAμ

β
f ∈ L2

μ(Rn), |α| + |β| ≤ m
}

, (5.4)

where Aα
μ = Aα1

1,μ · · · Aαn
n,μ and A

β

μ = (A∗
1,μ)β1 · · · (A∗

n,μ)βn .

The Sobolev space Wm,2
Hμ

(Rn) is a Hilbert space under the inner product

〈 f , g〉Wm,2
Hμ

(Rn)
:=

∑

|α|+|β|≤m

〈Aα
μA

β
μ f , Aα

μA
β
μg〉L2

μ(Rn).

Consider the map eit Hμ : Wm,2
Hμ

(Rn) → e−i t Hμ

(
Wm,2

Hμ
(Rn)

)
, where

e−i t Hμ

(
Wm,2

Hμ
(Rn)

)
:=
{
eit Hμ f ∈ O(Cn) : f ∈ Wm,2

Hμ
(Rn)

}
.

Clealry it is linear and bijective. The space e−i t Hμ

(
Wm,2

Hμ
(Rn)

)
is made into a

Hilbert space simply by transferring the Hilbert space structure of Wm,2
Hμ

(Rn) to

eit Hμ(Wm,2
Hμ

(Rn)) so that the Schrödinger semigroup e−i t Hμ is an isometric isomor-

phism from Wm,2
Hμ

(Rn) onto eit Hμ(Wm,2
Hμ

(Rn)). This means that

〈
e−i t Hμ f , e−i t Hμg

〉
:= 〈 f , g〉Wm,2

Hμ
(Rn)

,

where f, g ∈ Wm,2
Hμ

(Rn)).



118 C. Sivaramakrishnan et al.

Note that Ak,μ + A∗
k,μ = 2xk and Ak,μ − A∗

k,μ = 2Dk,μ for k = 1, 2, . . . , n. Using

these relations it is easy to see thatWm,2
Hμ

(Rn) andWm,2
μ (Rn) represent the same vector

space. From the note 4.9, it is easy to see that there exist B > 0 (depends only on m)
such that

‖ f ‖Wm,2
Hμ

(Rn)
≤ B ‖ f ‖Wm,2

μ (Rn)

for any f ∈ Wm,2
μ (Rn). That is, the identity map from Wm,2

μ (Rn) to Wm,2
Hμ

(Rn) is
bounded bijective linear map. From bounded inverse theorem it follows that the norms
‖·‖Wm,2

Hμ
(Rn)

, ‖·‖Wm,2
μ (Rn)

are equivalent. Hence characterizing the image ofWm,2
Hμ

(Rn)

under e−i t Hμ is equivalent to characterizing the image of Wm,2
μ (Rn) under eit Hμ .

Let S̃t f (u) = e− i
2 cot 2tu2 f (u), for f ∈ Wm,2

μ (Rn). It is easy to prove that the
operator S̃t : Wm,2

μ (Rn) → Wm,2
μ (Rn) is bounded and invertible as in the Theorem

4.8 . For α ∈ N
n we have,

Υ
Hμ,t
α (z) :=

(
e−i t Hμ S̃�α

)
(z) = ãα,μ,t z

αe( i
2 cot 2t− 1

4 csc
2 2t)z2 , (5.5)

where ãα,μ,t = (2i sin 2t)− n
2

(∏n
k=1 �(μk+ 1

2 )

2|α|γμ(α)

) 1
2

(−i csc 2t)|α|.
Consider the Hilbert space

HL
K
m
it,Hμ

(Cn) :=
⎧
⎨

⎩
F ∈ O(Cn) :

∑

|β|≤m

(csc 2t)2|β| ∥∥zβF
∥
∥2HL

Ki t,Hμ
(Cn)

< ∞
⎫
⎬

⎭

with the inner product

〈F , G〉HLm
Ki t,Hμ

(Cn) =
∑

|β|≤m

(csc 2t)2|β| 〈zβF, zβG
〉
HL

Ki t,Hμ
(Cn)

,

where F,G ∈ HL
K
m
it,Hμ

(Cn). Moreover, it is a reproducing kernel Hilbert space with

the reproducing kernel function is given by

K
m
Hμ,t (z, w) =

∑

α∈Nn

zαwα

22|α|γμ(α)

∥
∥
∥Υ

Hμ,t
α

∥
∥
∥
2

HL
K
m
it,Hμ

(Cn)

e
1
4 csc

2 2t (z2+w2)e
i
2 cot2t (z

2−w2).

Theorem 5.3 The map e−i t Hμ : Wm,2
Hμ

(Rn) → HLm
Ki t,Hμ

(Cn) is a bounded and

invertible operator.
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From the above theorem we can see that, the image of Dunkl–Hermite–Sobolev
space Wm,2

Hμ
(Rn) under eit Hμ is identified with the reproducing kernel Hilbert space

HL
K
m
it,Hμ

(Cn) upto equivalance of norms.
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