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Abstract In this article, we consider the Schrodinger semigroup related to the Dunkl-
Laplacian A, (associated to finite reflection group G) on R". We characterize the
image of L*(R", e”zhu(u)du) under the Schrodinger semigroup as a reproducing
kernel Hilbert space. We define Dunkl-Sobolev space in L2(R", e w(u)du) and
characterize it’s image under the Schrodinger semigroup associated to G = Zj as a
reproducing kernel Hilbert space up to equivalence of norms. Also we provide similar
results for Schrédinger semigroup associated to Dunkl-Hermite operator.
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1 Introduction

In [5], Dunkl introduced a differential operator associated to a finite reflection group
G on R" which is generated by fixed root system R and a non-negative multiplicity
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function u on the root system. This differential operator is called as a Dunkl operator.
The Dunkl operator is same as the directional derivative on R” when u = 0.

During the last three decades Dunkl theory which is parallel to the theory of Fourier
analysis has been developed by many authors. We refer to [4,9,24] and references
therein for further details. Our study is related to the Segal-Bargmann analysis which
was initiated by Segal [20] and Bargmann [1]. It deals with the problems related to some
integral transforms on L?(R", du) and characterizes the image as a weighted Bergman
space. The study of several generalizations of classical Segal-Bargmann transform can
be found in [6,7,10,11,14,15] and the Segal-Bargmann transform associated to the
Dunkl-Laplacian can be found in [2,3,16,21-23].

In [17], Rosler considered the Dunkl-Laplacian A, and proved that it generates
the Heat semigroup e’ Aw on LE(R”, h, (u)du). He also proved, e'®u is an integral
transform with the integral kernel I, (¢, x, y). In [22], Sontz characterized the image
of L(R, h, (u)du) under the heat kernel semigroup e’ Au, as a direct sum of Fock
type spaces. He also characterized in [23], the image of L>(R", h 1 (W)du) under the
heat kernel semigroup as a reproducing kernel Hilbert space.

In this article, we study the image of certain function space under the Schrodinger
semigroup e'/®# associated to the Dunkl-Laplacian and Dunkl-Hermite operator.
Using the heat kernel given in [17] we can see that, the Schrodinger semigroup is an
integral transform on L2(R", h w(u)du) with the integral kernel I', (i, x, y). Since the
Schrodinger semigroup e!'2# is a unitary operator on L>(R", h w(@)du), the function
¢'"Au f cannot be extended as an entire function for all f € LZ(R", h w(u)du). Hence
we consider a suitable function space on which ¢/’?# f can be extended as an entire
function and characterize the corresponding image space as a reproducing kernel
Hilbert space.

In the Context of Dunkl operator for ;& = 0, the above study for n = 1 is done by
Hayashi and Saitoh in [8] and for the general case done in [13] by Parui et al.

This paper is organized as follows: In Sect. 2 we give an introduction to Dunkl opera-
tor, Dunkl transform and some results on the heat kernel transform which are necessary
to prove our main results. In Sect. 3 we identify the image of L*(R", e h w(u)du)
under Schrodinger semigroup e//2# as a reproducing kernel Hilbert space, by using
the techniques given in [13,22,23]. Moreover, in the case of G = Zg, we identify the

image of L2(R", e’ h w(u)du) under e'"%u as a tensor product of Fock type spaces.
In Sect. 4 we consider the Dunkl-Sobolev space defined by the Dunkl operator asso-
ciated to the group Z/ and identify the image of Sobolev space under the semigroup
e'"Au as a reproducing kernel Hilbert space up to an equivalence of norms. In Sect. 5
we discuss the same kind of results as in Sects. 3 and 4 for the Schrédinger semigroup
e~ "M associated to the Dunkl-Hermite operator H,,.

2 Preliminaries

Let (R", {,)) be a standard Euclidean inner product space. For a non-zero vector v €
R”, define the reflection on the hyperspace {v}* by o, (x) = x — 2 m ITZ) v for x € R",

A finite subset R C R"™\{0} is called a root system if 0,(R) = R forall v € R. For a
given B € R"\ Uy {v}* define a positive root system Ry = {v € R : (8, v) > 0}.
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The group G is generated by the reflections {0, : v € R} is called a reflection group,
which is a subgroup of the orthogonal group on R”. A function u : R — [0, 0o) which
is invariant under the action of G on the root system is called multiplicity function.
The weight function 4, (x), associated with the root system R and the multiplicity
function y, is defined by £, (x) = [T g, I(x, V)|, x € R". For 0 # & € R",
Dunkl derivative is defined by

[ = flovr)

(x,v)

D f () =0 f()+ D pn@){v, &

UER+

2.1)

where 0 is the directional derivative in the direction of §. Now consider the equation,

Dé,uf(x»)’)z(évﬂf(x’” forx’y’EERn'

In the above equation Dg , f is the Dunkl derivative of f with respect to the x-variable.
The above equation has a unique real analytic solution £, : R” x R" — R and it
can be extended as an analytic function £, : C" x C" — C, which is called as a
Dunkl kernel or generalized exponential kernel. In the remaining sections we use the
following notations

e D, =D,  fori=1,...n, where {e; : i =1, 2, ..., n} is a standard orthonor-
mal basis for R”.

o N =N x ... x N (n-times), where N := {0, 1,2, ...}.

e Fora = (a1, a2, ...,a,) € N* define |a| == a1 + -+ -+ ap, ! == ! ol

o % :=z{" . gyandz? =20+ + 22, forz = (z1,...,2,) € C"and o € N,

Definition 2.1 The Dunkl transform of a function f € L! (R", h,(x)) is defined by

PN %2
FO) = ¢! fan FOOEu(—iy, x)h,(x)dx, y € R", where ¢, = [pa ™ T hy(x)dx,
a constant.

Definition 2.2 The generalized translation (or Dunkl translation) of a function f €
L?>(R", h, (u)du) is defined by

) = ;] /R PO Ex, OB iy, Dl )5, xy R (22)
Definition 2.3 Generalized convolution of f, g € LZ(R", h w(u)du) is given by
forp g(x) = /Rn TOMTEEWMhu()dy, 2.3)
where g(u) = g(—u). Equivalently it can be written as

S gx) = /w FEREE,(ix, £)hy,(§)dE.
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Dunkl-Laplacian on R” is defined by

n

Ay = Z D,%’M.
k=1

Dunkl-Laplacian generates a strongly continuous semigroup (e’ AH) >0 ON L*(R",
h, (u)du). The fundamental solution or heat kernel of the heat equation d,;u = A, u
on (0, co) x R" is given by the function,

M a2 L .
Fu(t,x) = tvuf%e @, wherev, = Z u) and M, = CM12 Wut+3)
veER

It can be seen that, the generalized translation of heat kernel is given by

Pt y) = 28 =55 (J—x Jy‘> eR" 2.4)
» X, = n e ! B Ry— 5 X, . .
a Y Vet "\V2r' V2t Y

Thatis, ', (¢, x, y) = T;L F,.(t, x).In[17],Rosler proved that the heat kernel transform
associated to Dunkl-Laplacian A, is an integral transform and it is given by

o ) {fR,, FOOT (e, X, why (du it 1> 0
f ifr =0.
Since ¢!« f is a Dunkl convolution of f with the function F,, it can be extended
as an entire function on C”". Hence we can treat e/“# as a linear operator from
L2(R", hy (w)du) to O(C"), the space of all analytic functions on C".
We need some notations to state the theorem related to the image characterization,
for the casen = 1. For z € C,t > 0 and u > 0, define the weight functions

~ 2 2pu+1
Vet (2) 1= 12T (2R3 K, 1 . : 2.5)
@n?| || @z
and
L 2 2u+tl
Vo () = w2 or e Ky || L ee
@n? | || @n?

where for r € {u + %, w— %}, K, is the Macdonald function of order » which can
be found in [12]. Any function f € O(C) can be written as f = f, + f,, a sum
of even and odd functions defined by f.(z) = w and f,(z) = w,
respectively. Consider the space

Ci(C) = { FeOQ©) : foe LXC, vep(2)dz) and f, € L*(C, vg,u,,(z)dz)} .
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The space C,, ;(C) is a Hilbert space with respect to the inner product

(f, g)CH.,(C) = (o, gO)Lz((C,va_M,,(z)dz) + (fe, ge>L2(Csve,u,t(Z)d2) for f, g € C, .+ (C).

Theorem 2.4 [22] For t > 0, the operator ¢'®v : L2(R, |u|** du) — Cui(C)is
unitary.
The general case was studied by Sontz in [23] and he identified the image of

L2(R", h u(u)du) under e Auw as a reproducing kernel Hilbert space. This theorem
can be stated as follows:

Theorem 2.5 The operator ¢'®» : L*(R", h hy(w)du) — C,, :(C") is unitary, where
C,.,:(C") is the Hilbert space of analytlc Sfunctions on C" with reproducing kernel

(P o
Kmdawﬁze( &)Eu<5;_g>’ ZweC" 2.7)

1° 1

2t2 212

Let us introduce some identities which will be useful to prove our main results. For
n = 1and u > 0, the Dunkl operator associated to the reflection group Z, is denoted
by D,, and it is given by

d
(D f)(x) = —df @+ 2@ - f(=x). xeR. 2.8)
X X

Fork e N:= {0, 1, 2, ...}, the generalized factorial function is defined by,

22K (k + o+ 4 2%+ D (ke + o + 2
(ktuts) and y,(2k+1) = ( i 2).

k) =
T FGit ) NOERS!

Generalized factorial function has the following recursion formula:
Yulk+1) = (k+14+2ubkr)yuk), keN (2.9)

where 61 = 0if k + liseven and 1 if kK + 1 is odd.
The generalized exponential kernel for one dimensional space is

. e )t
e,(xy):=E,(x,y) = Z forx,y e R. (2.10)
=0 Vu(k)

Generalized Hermite polynomials and inversion formula for Hermite polynomials are
given by

(5]
u (=17 (2x)k=2] Qb Hi2j()
E “"‘120 T M R Py Ty R
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Further we need the following identities:

S+ 1
Dy(e™ H/'(x)) = —e ™ vulk + ))H,f‘H(x). (2.12)

(k + Dy, (k

(k + 1+ 2u41)
k+1

2x Hy(x) = HJ' (0) + 2kH]" | (x). (2.13)

.\ k 1
T+ Yy 2
/uke#(—ixu)e_"z 2 du = (-~ Me‘ﬂig‘(f). (2.14)
e 2 k! 2

We refer [16] for further details.
Let p(z) be a strictly positive continuous function on C". We define the weighted
Bergman space associated to p by

HL) = HLY(C", p(2)dz) = {f cOC": [c |f @ p)dx < oo} :
Inner product on HL(C", p(z)dz) is given by,

(F.G)yp2 = [E FR)GQ)p(2)dz, where F,G € HL(C", p(2)dz).
It is known that HL>(C", p(z)dz) is a reproducing kernel Hilbert space.

3 Image of Li (R) under Schrodinger semigroup

It is well known that A, is self-adjoint, so the operator 1A, is skew-adjoint. By
Stones theorem, i A, generates a strongly continuous unitary semigroup (e” A#)

on L2(R", h, (u)du), where

t>0

. { Jen FOITutit, . Dk ()dy if 1 >0
f if1 = 0.

Moreover, e!/2# f solves

idu = Apu; u(x,0) = f(x), where f e L*(R",hy(u)du),

the Schrodinger equation associated to the Dunkl-Laplacian A, on R". In contrast
to the heat semigroup, the Schrodinger semigroup is unitary on L2(R", hy,(w)dx),
so the solution of the Schrodinger equation cannot be extended as an entire func-
tion on C". If we assume enough decay on f near infinity then it is expected
that ¢/'®1 f can be extended as an analytic function on C". To achieve this we
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consider the space Li(R") = L*(R", e“zhu(u)du) and for f € Li(]R"), using
Morera’s and Dominated convergence theorems, it is easy to see that e"Au f can
be extended as an analytic function on C". Hence e'/®» (Li(R”)) is a subspace of
space of all analytic functions on C”. It is clear that elthu Lz(Rnne”zhu(u)du) —
eltBu (Li(R")) is linear and bijective. Since it is injective, e'’®n (LIZL(R”)) is
made into a Hilbert space simply by transferring the Hilbert space structure of
L2(R", e”zhﬂ (uw)du) to e''2u (Li(]R")) so that the Schrédinger semigroup ¢/ is an
isometric isomorphism from LZ(R”, e”zhu(u)du) onto ¢4 (L% (R™)). This means
that

itAy £ ity > — i c L2 (R™).
(e f.e 8 ei’AlL(LfL(R")) (fs g)L,g(R ) f 8 M( )

Our aim is to identify this space as a reproducing kernel Hilbert space. This kind
of characterization associated to 4 = 0 can be found in [13]. In fact, it says the
following: ¢/’ : L2(R", e“zdu) — HLAC", w,(x + iy)dxdy) is unitary, where

Xy |y

we(x +iy) = meT_TZ. To state our main result we need the following.
Define a linear map G : O(C") — O(C") by

GF(z) = Qit)"n+3 717 F(217),
and consider the space,
() = [F e O@C") 1 G(F) e €, )}
The space H, ;(C") is Hilbert space with respect to the following inner product:

(F, G)H”ﬁt(Cn) = (QF, QG)C 1 (Cn) > for F, G e H,,L,[((Cn).

s

[~

Theorem 3.1 The operator e''®n LZ(R”,hM(u)e”Zdu) — Hu.(C") is unitary.
Moreover, H,, ;(C") is a reproducing kernel Hilbert space.

u2 i
Proof Let f € L>(R", e”zhu(u)du) and set g(u) = f(u)eTeﬂ“z. Then it is easy to

see that g € L>(R", h, (u)du). Since (f’;(% D)) = Lo—37* y € R", we have

u

1 = —~ 1
(?*u Fu(5 .)> (x) = /R” g (FM(E’ -)) (M Eu(ix, y)h,(y)dy

1 _1,p2 .
= — guye 2" E,(—ix, u)h, (u)du.
Cu JR®
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By using the above equation, ¢!+ f can be written as:

. M i 2 i 2 i
itAy, _ M X U -
et f(x) = (it)"ﬂ+% ed /1‘@" fwes" E, ( 2tx’ u) hy(u)du

_ ! #x2 -3’ g i hy(u)d
= me . g(u)e m —ZX, u M(M) u
1 i 1
(1))
(2ir)et2 2 2t

Since the right hand side function can be extended as an analytic function on C", we
write

itA IS B T i l (i n
R = e <g s Fyu <2)> 2t)’ VzeC'. (3.0)

Then by using change of variable we have,
n i - —~ 1
Qi) e 1 1A £ (217) = (g u Fy (z : )) (@, veeth

Since g € L2(R", h w(u)du), using Theorem 2.5 and Plancherel theorem for Dunkl
transform [9] we have,
2

= 181220 1
€1 i

R 1
F,(=,.
Hg *p ;1.(2 )

— 2 _ 2
- ”g”LZ(R”,hM(u)du) - ”f”L/%_(R”) .

From above equations we can see that, G(e!’2+ f) € C .t (C™) and this implies

that ¢ f € H,(C") for all f € L*(R" e hy,(u)du). Hence ¢
L2(R", e”zhﬂ(u)du) — Hy,(C") is an isometry.
Now we will show that ¢'2» is onto. Let F € H,. (C"), then GF € CM’%((C”).

Since the operator e%Aﬂ . L2(R", e”zhu(u)du) — Cﬂﬂ%((C”) is unitary, then there
exists ¢ € L?(R", h, (u)du) such that
A -~ -~ 1
GF(z) =e2%p(z) = ¢ %, Fy, 3 (2).

12 i 2 L
Set f(u) = ¢p(u)e 2" e~ %" | then it is easy to see that

f e LAR", & hy(w)du) and (g(e”Aﬂf)) (2) = ¢, Fy (% ) (2).
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This implies that ¢/"®+ f = F. That is, e+ : L>(R", hu(u)e"zdu) — H,(C")is
an onto map.

Now we show that 7, ;(C") is a reproducing kernel Hilbert space. This can be
seen with the help of the function G. Since Ge!'®r f € C ) (C™) for every f €

L2(R", e“zhu(u)du) and Ku, 1 (z, w) is a reproducing kernel for C,, ;(C"), we have

G 1) = (G LK 4 o),
wy

Applying change of variable from z to 57, we have

Z

eitAMf(Z) — <gel‘lAp,f , (2it)_(Vu+%)e_%22K 1 ( .y _)> .
w 2t C}L%((C”)

)

Let us define a function KH,,(w, z) on C" x C" by,

K — 1(241) " Ot D)2 g (2w (ﬂ 5)
Ky (w, 2) = |(2t1) [Tew K15, 5)

Then it is easy to see that the above function satisfies the following relation

— o 3Ly _itz2 Z
(QKMJ(.,z)) (w) = Qit)~OntDe 47 Ku,%(w’Z)'

So, for every f € L2(R", e”ZhM(u)du), we have
Hya (€

(3.2)
This implies that the space H, ;(C") is areproducing kernel Hilbert space with repro-

e f(z) = <geitAMf . GR,ui(. ’Z)>c = <eitApf , Ky ,z)>
"y

ducing kernels {Kﬂ,;(z , W)z, w € C"} and it is unitarily equivalent to the Hilbert
space e!! (Li(R”)). ]

For n = 1, the above theorem can be written more precisely as follows: let z € C
. . . _ xy
and consider the weight functions, u;,(z) = (2t)**~le UO’H,%(%) and ul () =

Q0217 , .1 (3). Define

Hy 1 (C) = [F € O(C) : F, € L*(C,u ,(z)dz) and F, € L*(C, ug{,(z)dz)] )
Then the space H,, ;(C) is a Hilbert space with respect to the inner product

(F, G)HH,,((C) = (Fp, GU)LZ(C,uﬁ,(z)dz) + (Fe, Gf)ﬁ(C,uf_,(z)dz)’

where F, G € H, (C).
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Theorem 3.2 The operator ¢''®n : L2(R, |u|2“e“2du) — Hu,: (C) is unitary.

Proof Proof of this theorem easily follows from the Eq. (3.1) and the Theorem 2.4.
(]

Consider the following Hilbert spaces,
H;, (©) = [F e O©): Fisoddand F € LX(C, u}, (:)d2)
and
H, L (C) = {F € O(C): Fisevenand F € L*(C, uﬁit(z)dz)}

with the inner product on H, ;(C)? and H, (C)¢ is given by (F, G)HZ_,((C) =
(F, G)racut, 2ydz) and (F, G)e ©) = (F, G) 12(C.ut, (2)dz)» TESPECtively.

Notice that the above spaces are subspaces of H,, ;(C) and H, ,(C) is the direct
sum of HJ ,(C) and H,, ,(C). That is H,, (C) = HY, ,(C) @H;,,((C). The direct
sum of these kind of Hilbert spaces are called Fock type spaces.

In Theorem 3.1 we have identified the image of Lﬁ(R”) under ¢''2= (for any finite
reflection group G) as a reproducing kernel Hilbert space H,, ;(C"). In the special
case G = Z5, we explicitly construct an orthonormal basis which will help us to
characterize the image of Sobolev space under e//%# .

Now consider the Dunkl-Laplacian associated to the group Z5 and the root system

itA

R = {%e; :i € {1,2,...,n}}. For any non negative multiplicative function u on R
(u(ej) = puj forevery j = 1,...,n), the corresponding weight function is given by
hy(u) = ]_[?:1 |uj |2“/', where u = (uy, ..., u,) € R". In this case, the Dunkl kernel
is given by

n
E (x,y) = Heﬂk(xkyk) for x,y € R".
k=1

Now consider the multiplication operator

Sfu) = fuwe @, for f € LER", h,(u)e" du).
Since |e~#"}| = 1 foru € R", S : L2(R", hu(u)e“zdu) — L*(R", hu(u)e”2du) is
a unitary. For each k € N and 1 > 0, we define

1

O 0771 O TR B R R 33

From the equation 3.5.1 in [16], we can conclude that { w,il :keN } forms an orthonor-

mal basis for L2(R, e’ lu|?" du). For € N" and u € R”", let
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Wl (u) = ]‘[vf F(ug).-

Then it is easy to show that {\Iléf S N"} forms an orthonormal basis for
L2(R", e, (u)du).

Proposition 3.3 For « € N" and z € C" we have

|
|| 2 ;
€”A“S\I/5(z) _ M, ( - ) (Hk 1 Dl + 2)) zae(i’iﬁ)ﬁ_
t

(it)n T3 Yu(a)21e]

Proof First we will prove this result forn = 1. For k € N, u > 0 and x € R, from
the Egs. 2.11 and 2.14 we have the following,

f Hl (wey, <—2l—txu> e~ uPdu

k

[37] k—2 .

(—1)P2k=2p

Z ) ukle’eu <—Lxu> 67“2|u|2"du
0 P ulk —2p) 2t

[] 13 X
1 H ) (3) 2
_ -~k p \4t
= k!(—i) F<M+§)Z!(k—2p)!e 162
=0

_ kG DT (e +3) -
Yu (k) (20)*

16t2

Using the above, we can calculate, for x € R,

M Lx? 12 i
('l‘):;ﬂ e / Sw]g(u)e‘” E, (—Zx, Lt> hy (u)du
= Vi (e ( )h (w)du

(lt)”+2 / k a H
= MM 7 6417‘1‘)62 yﬂ(k) z k]

ot \Fue D)
< [t e (= gpxu) e wran

R 2t

1
_ o\ k 1) 2
- Afﬁ"eﬁxz <_2l_t> (F(M(ktzi)> whe Tz
(U9l Y

eitA”'SI//]ﬁL()C) —
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Now ¢/!21S 1//,5 can be extended analytically to the complex plane as

1
: M i T+ 5\ (4-125)2
iAL Gy () — r_(_E 27 ) ke \a T ie2 )f C.
e vy (2) YS! ( 2t> ( (02 e , ZE€

This establishes the proposition for n = 1.
The general case follows by observing that ¢!’2+ SW/ can be expressed as a product
of one dimensional expressions. For « € N and u = (uk)zzl, we have

A‘“.

. M i L '
ellA“S\I"g(Z) — W—fﬁ-%eﬂzz » S\Iﬂ’g(u)EE"‘zEﬂ <—2LtZ, u> h,u(“)du

= (t)” +2 ]_[/ Ve (uk)eﬂk( Zkuk> By (ui)duy.
i)

— 1_[ eilA;/,k Sw(/;}:\ (Zk)-

k=1
O

Since the set {W§ : € N"} is a complete orthonormal basis for the space
L2(R", h,, (u)e" du) and the operator /218 : LX(R", h,, (u)e"’du) — H,,,(C") is
unitary, the set {7y’ = M SWE - o e N forms a complete orthonormal basis
for H,, ;(C"). Also from the above theorem we can see that, the n-dimensional vectors
Ta’” is a pointwise product of one dimensional vectors Toff(k ’t, k=1,2,...,n. That
is, for @ € N" and z € C", 7" (2) = [1{_; Td*" (zx), where [Toﬁz"’t Coy € N} is

a complete orthonormal basis for H,, ;(C). This fact forces to consider the tensor
product of Hilbert spaces Q) _; H, ¢ (C).

Theorem 3.4 The Hilbert space H, ;(C") is unitarily equivalent to tensor product
of Hilbert spaces Q) _; H.+ (C).

The above theorem says that the image of Li(R”) is also identified with tensor
product of Fock type spaces.

4 Image of Dunkl-Sobolev space under Schrodinger semigroup

In this section we define Dunkl-Sobolev spaces using the Dunkl operator associated
to the reflection group Z7. The reason to consider this particular group is that, the
Dunkl kernel and the Hermite polynomials are explicitly known in this setting. By
using these explicit functions, we can choose a basis for Dunkl-Sobolev space such
that the Schrodinger semigroup composed with a “multiplication operator” takes this
basis to “nice class of functions”. On observing those “nice class of functions” we can
easily guess the reproducing kernel Hilbert space, which is same as the image of the
Dunkl-Sobolev space under ¢!/2#, upto equivalence of norms.



On the images of Dunkl-Sobolev spaces under the... 105

For the group Z7 the associated Dunkl derivatives corresponding to the vector e
is given by,

fork=1,2,...,n. .1

Dy f(x) = 3 f () + MkM—x—W

Fora € N", let D, := DT‘”M -+ Dp",. Now for m € N, we define the Dunkl-Sobolev
space W2(R") in L2 (R") := LA(R", h, (u)e" du) by

W2 (R") = {f € L2(R"): D%f € LA(R™),Va e N and || < m} .42
Then the space WL"'Q(R") is a Hilbert space with respect to the inner product

(f’ g>Wﬂ1’2(R”) = Z <Df,[Lfa DZg)LZL(R")a fa g € W;Tl(Rn)-

|| <m

Since WIT’Z(R”) c L*(R", hﬂ(u)e“zdu), we can consider
et (i@ = feifde e 0@ 1 f e Wi RY)

as a subspace of O(C"). It is clear that ¢!/ : W‘T*z(R") — lthu (Wl'f’z(R")) is a
bijective linear map. Since it is injective, it’s image e'’*# (W[L”’Z(R")) is made into
a Hilbert space simply by transferring the Hilbert space structure of WIT’Z(R”) to
eltin (WI’I"Z(R")) so that the Schrodinger semigroup e'’# is an isometric isomor-
phism from W/#(R") onto ¢/'“1 (W/"-2(R")). This means that

itA, i;AM> — . m.2 mpn
(o e &) su gy = U ey 107 f8 € WD,

where f, g € WIT'2(R"). Our aim is to identify e/’®« (W,’Z’*Z(]R")) as a reproducing
kernel Hilbert space up to an equivalence of norms. For the notational convenience,
we will do this image identification for » = 1 and the general n follows in the similar
way.

Noted.1 Foru=0,m > land f € W(')"’z(]R), we have

|1|im D fx)px)| =0 (4.3)

for any polynomial p on R and k € Nwithk <m — 1.
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The above note follows from the particular case m = 1. This particular case is a
consequence of the following: using classical Sobolev embedding lemma we have,

(f(t)e§> = —tf(t)e% + f’(t)e%

Integrating both sides from a to b and using the Schwarz inequality to estimate the
integral on the right, we have

b 33 b 3 b
(‘f(r)e’zz> s(b - / If(t)lze’zdt>2+<(b—a)/

From the above inequality we can find B > 0 such that

/ 2 2 %
f (z)‘ o dt) .

fa)le” < BA + D)3, allu e R.

Definition 4.2 We say that a function f € L?(R, |u|** e’ d 1) has a Dunkl primitive
in L2(R, |u|**e" du) if there exists g € L2(R, |u|**¢"’du) such that D,g=f.

Lemma 4.3 The function yo(u) = e does not have Dunkl primitive in
L*(R, |u|2“e“2du).

Proof Suppose there exista g € L*(R, |u|2“e“2du) such that D, g(u) = ¢~ Then
by Sobolev embedding lemma associated to Dunkl operators [9], g is infinitely differ-
entiable function. In particular g is continuous. This gives us

f g () 2"’ du < oo
lul<1
and

/ |g(u)|2e”2du < / |g(u)|2e”2|u|2“du < 00.
[u|>1

[u|>1

Hence g € L2(R, e“zdu). Write g = g, + g, Where g,, g, are odd and even parts of
g, respectively. Now

2 d d %
e =Dugu) = ——go(u) + ——ge(u) + —(8o(u) — go(—u)).
du du u
The above equation can be written as

d d 1% 2
d_ge(u) =——go() — — (gou) — go(—u)) +e .
u du u
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Since the right hand side of the above equation is even, we can conclude that % ge(u)
is also even. At the same time derivative of an even function is odd. These together
forces that g, has to be a constant. We know that g, € LR, |u|2“e“2du) this implies
ge = 0. As the even part g, vanished, now g is an odd function. This implies % g(u)+
o) = ¢ £

function on R. Using this it is easy to see that @ € L*(R, e’d u). Consequently we

—u? is a continuous

. Since g and e are infinitely differentiable,

have %g e L2(R, e”zdu). That implies g € W&’Z(R). From the note 4.1 we conclude
that, for all complex polynomial p(u)

lim [g(u)p(u)| =0 (4.4)
|u]—o00
Fora > 0,

a d
/ d—ug(u)lulz"du=g(a)la|2"—g(e)|6|2“—2M/ 8 g, (4.5)

Similarly,

—Ed —€
/ —g)lul*du = g(—e)le[** —g(—a)|al** -2 / @W“du. (4.6)
_a du —a Uu

Letting ¢ — 0 in the above equations, we have

4 d
lim/ —g)|u)**du = g(a)a®* —2/1,/ g )|u|2“d
e—0J. du 0

—€

d
lim —g@)|u|*du = g(a)a®™ —2u f 84 gy,
du _a U

e—~0J_,

So, for every a > 0,
a

Dy (9) () |u*du = 2g(a)a*. (4.7)

—a

Letting a tends to co in the above equation and using (4.4) we have
) a
/ e |udu = lim / D, (g)(w)|u|*du =0,
R a—oo J_,

which is a contradiction to fR e lu|**du # 0. So Yy does not have Dunkl primitive
in L2(R, [u|?*e du). O

Lemma 4.4 Dunkl primitive for a function f € L*(R, e’ |u|**du) is unique.

Proof 1t is enough to prove that the zero function is the only solution to the equation
D,g =0,forg e L*(R, e”2|u|2“du). To prove this, we argue as in the Lemma 4.3
up to the Eq. (4.7), so that we have g as an odd function with g(a) = 0, forall a > 0.
That implies g = 0. O
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For the functions f € WlT’z(R), using the Lemmas 4.3 and 4.4 we will get a

2 . . . . .
L2(R, " |u|**du) representation of Dunkl derivatives of f in terms of the Fourier
coefficients of f.

Lemma 4.5 Let | € W,T'Z(R). Then Dy f has the following representation in
L2(R, ¢’ h,, (u)du),

Dy f = Z H( DI QK + j + 2061 )) (V) 2@ Vi -

k=0 \ j=1

Proof First we will prove this for m = 1 and the general case follows inductively.
Using the Eq. 2.12 it is easy to see the following

Dyl () = — ek + 1+ 2u81)2 Yl (). .8)

If fe WllL’z(R) then we have the following representations,
o
Z LR Vi and

Duf=(Duf, WO)L%(R)‘PO + Z(Duf’ Wk)%(R)%&
k=1

Dy fv) L2 (R) .
Define g1 := > po (Dy f, wk)L%(R)t/f,f and f1 := > oo, —‘1//” . Since
—(2(k+2H0k))7

f e LA(R, |u|*e*’ du) we can see that fi, g1 € L2(R, |u|*e du). Also it can be
observed that the Dunkl primitives of g is fi. Thatis D, fi = g;. This implies that

Dy f90) 12,y Vo = Dy f —g1 has primitive in L2 (R, |u 2%’ du). From the Lemma
4.3 we know that ¢ does not have a primitive. This implies that (D, f, ) R® = 0.
Consequently we have

o0
D.f = Z(Dﬂ fovrs @Vt forevery f € WiA(R).
k=1

From above we can observe that f; and f are Dunkl primitives of D, f in
L2(R, |u|**¢"* du). But Dunkl primitive is unique in L2(R, ¢’ |u|?*du). This leads to
(D f ) )

=) (fiv) =) ————— Vi,
! ,;f kI Tk k; —Qk+2ub

Comparing the coefficients of v from the above equation we have

Dyt Wl 12wy = — QU+ 208 (V) 12 o)
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This implies that

o0

Duf =3 (=@ + 1+ 2u61))2 (£, Vi 2@ Vi
k=0
= > (¥ 2w Duvy
k=0

O

Next we are going to prove that the collection { w,f : k € N}isacomplete orthogonal
set in W;Z"z(R).

vy

Theorem 4.6 The system of vectors 7
“ k HW{["Q(R)

tkeN } forms a complete
orthonormal basis for WI’L"’Z(R).

Proof Forl # n,

m

Wl )y R) = D (D Dl 12y
k=0

Z Ory MWy wr/zt-i-k)Li(R) =0,

k=0

mey — k Tk , Wi o
where 7, (1) = (=1) Hj:l QU4+ j+2ub4j)2 and ry (1) = 1 forl € N,k €
N\{0}.

Suppose (f, wk) wri®) = 0 for f € Wl”f’z(R) and k € N. From Lemma 4.5

we can conclude that (f, wk ) L® = 0 for every k € N. So the system of vectors

"
Iuw—k : k € N ¢ is a complete orthonormal basis for W;Z"Z(R). O
” Vi ” w2 (R)

Note 4.7 Fork € N,

m

I sy = 2 [ [ 2K + 5 + 204641).

Jj=0s=1
Let B, = span{y; : k € N}. For f € B, we have
I

f= Zaklﬁf for some a; € Cand!/ € N.
k=0
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For f € B, recall that S f (u) = f(u)e_i"ruz. From the Eq. 2.13 it is easy to see that

1
k + 26\ 2 k+142u0;4q
—) w}i‘_l(u) + <—+

1
ury, () = ( 5 5 ) Vi () for ke N.

4.9)
Using this equation we can conclude that the map S : B, — B, is a linear map.

Theorem 4.8 The map S : Wl’f'z(R) — WIT’Z(R) is a bounded and invertible oper-
ator.

Proof First we will prove this theorem for Dunkl-Sobolev space of order one and the
rest follows from the induction on m. Let f € By, then f can be written as

1

f= Zakl//,f for some ay € Cand/ € N.
k=0

From the Eq. (4.9) and using triangle inequality we have,

lef iz )
l 1 1 1
k42162 k+142ubky1\2
Z ( 2 @y + Z ) akwlgﬂ
k=1 k=0 Li(R)
I 1 1
k+2ub\ 2 k+1+ 2M9k+1
S (Y |y (e vl
k=1 L%(R) k=0

L2(R)

1
L (k1420004 5\’
Y () w?)

k=0

(B2

Observe that there exists 5,,, s, > 0 (independent of /) such that

k+1+2u6 k 4+ 2u6, k+14+2u0
d t 1+ 20 < + 210k <s w forall k € N.
" 2 2 " 2

Then we have,

l 2
luaf iz @) < Su (ZZ(k + 14 2140k41) Iak|2) =5 | Duf“L,%(R)’ (4.10)
k=0

where 5, = max{l, ./5,}. Also by comparing the LIZL(R) norms of D, f and uf, we

have

- - 11
||D,Lf||L%l(R)§dﬂ||uf||Li(R), where d,, = max{z,%}. 4.11)
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Using the Eq. 4.10 we get,

2 —%uz 2
ISz, = 1z + | P (F@0e 0 9) [,
. 2
—ig2 l
||f||L2(R)+HD,Lf<u)g e Lupw
4 L2(R)

1 2
=< ||f||L2 R ||Duf“Lz R T —||Mf||L2(R)
® T ®)

<1175 @ + (max{l n ) 1Dt 72 e -

Hence we have,

ISy = Brot 11512,

R) — ®)’

where B; 1, = max{l, (max{l, %}) }. As B, is dense in WA’Z(R) and the above
inequality is true for all f € B, the operator S : W} #(R) — W) ?(R) is bounded.
Already we know that S is a unitary operator on L*(R, e”zhﬂ (u)du). That says S :
Wll’z(R) — W;’Z(R) is a one to one map as well. From the Eq. (4.10) we can
conclude thatforany f € W&’Z(R) wehaveuf € L%L(R). This implies D,LS_1 fu) =
D,l(f)(u)eﬁ”2 + 2’—'tuf(u)eﬁ”2 € Li(R). Consequently we have S™! f € W&’Z(R)
and S : Wli'2(R) — W&'Z(R) is onto. Since S : W&'z(R) — WJ*Z(R) is a one to one,
onto and bounded operator, by bounded inverse theorem it is a bounded and invertible

operator. This proves the stated theorem for m = 1.
For general m € Nand f € B,

2
1 £ 13y,
_ 2 m 2
= ISy + 1DESE O
2

= 1SN Im12, + '

pr! <S(D,Lf) - Zl—tu8f>

® 2®

1 2
< IS por2 )+ (HD,TIS(Dm\ +2—t||D;71<qu)||L5(R>) :

L2(R)

Using induction on m and from the Eqs. (4.10) and (4.11) there exists By, , > 0
such that,

2
IS Pz ey < Brans 1 Wy -

Since B, is dense in Wl’f’z(R), from bounded inverse theorem we conclude that S is
a bounded and invertible operator. O
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Note 4.9 Fork =0, ..., m, from the Eq. (4.10) we can conclude the following,

LIf f € WIA(R) then uk f € Wi—H2(R).
2. If f € W/T’2(R) then there exist Vi, > 0 such that, Hukf”Lz
m

Vieok | lelfHLlZL(R)'

® =

Now we are in the position to characterize the image of sobolev space under
w1 . . ; M Q2

Schrodinger semigroup. Since e/'41S f(x) = (iz)“i% es™ f(5;) for f € WlT’z(R)

and x € R and it is known that Dunkl transform translate Dunkl derivatives into
multiplication with polynomials, then we have the following:

. M i 02— /X xX\m
itA, m _ M X m — (i itA,
el SDMf(x) = —(it)l“*% e’ DMf <_2t) (l _Zt) e''erS f(x).

Consequently we have 25218 f(z) in H,, 1 (C) for k € {0, ..., m}if f € W/MA(R).
This fact forces us to consider the Hilbert space

m SN 2
o= freoo: 3 (5) el . <]

with the inner product on )} ,(C) by

m 1 2k ' ‘
F, G m = -— < Fv G> .
(F.G)mr () kzo (2:) S Y

it !
Theorem 4.10 The set Tk,m =

= = N}forms an orthonormal basis
k H™ (C)
.t

for H; ,(C).
Proof We know that 2 := {Tk“ Tike N} forms a complete orthonormal basis for

H,.,1(C). By using this we prove Q2 is an orthogonal set in H}; ,(C). For that j #1 €
N",

t t = 1 2* k t k t
T =Y (5 ) ()
< N ) Z 2t SNEN ©

m
=S <T””,,T’”>
;rk(nnrk(n e T Dy o

Here r,’: ) = (—l)k ]_[];:0 QU+j+ 2,u91+j))% forl, k € N. This proves the orthog-
onality.
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For F € ’H/’f’ ;(C), we have the following representation,

o0
F= <F T“”) it
,; ko In,,© k

So zF(z) = Z,‘:‘;O<F, Tk“’I)H (C)szM’t(z). Similarly for k € {0, 1,...,m}, we
It

have
o0
k it kit
F2) = <F,T. > (),
z F(2) Z k. HW(C)Z @
j=0
i k 00
=(= Hot 13 ,t
- <2_f> Z<F T >H,”(<c> e DT 4 @)
j=0 -
Suppose <F , Tz’“) = 0 for all / € N. This implies that,
Hj i (©)

< ) <sz, szz>
Hyu (C)

o0
<Z|r OIFT) T |rk<l>m+k>
= " H,04(C)

m k
= (F. 1/ )24,. 0 {Z [Tea+s+ MIH))} .

k=0 s=1

Since ]_[ls,1 QU+s+2ub4+5)) > 0 for every k € {0,1,...,m}, we have
(F.1/*")34, @) = 0. This implies that F = 0. This proves the completeness of
Qin 1" (). O

Now we have a complete orthonormal basis for )] , (C) as well as for WlT’z(R).
From this we can establish the characterization of the image of Sobolev space under
Schrédinger semigroup.

Theorem 4.11 The map /!>« : Wl’f’z(R) — Hﬁt(C) is a bounded and invertible

operator.

W
"

v Wi (R)

WIT’Z(R) and {Tk” ni k € N} forms an complete orthonormal basis for ’HZ’J (C). For

keN,

Proof We know that { 1k e N} is a complete orthonormal basis for

I
|

2 5 m
Hua© Vi lwpom = 2(:) 1_! 20k + 5 + 201 ).
j=0s=
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Moreover, for k € N and z € C from proposition 3.3, we have

wﬂ;t
S —— [ (@ =75, @
vt|
H kw2 @)
So, e!'2u S takes an orthonormal basis in W,T’2 (R) to an orthonormal basis in 1} , (C).

This implies that ¢/'*1S : Wl’f’z(R) — H}} ,(C) is a unitary operator. In particular,
This implies that,

He"’AnSfH forall f € WI2(R).

= m,2
=1

Ly

Since S : W,’I”Z(R) — W}’Z”z(R) is bounded and invertible operator, there exists
M, M, > 0 such that

itA, H § -
et f M (© < Myl fllymag,  forall f e Wib“(R).

(]

The n—dimensional characterization of the image of Sobolev space under
Schrodinger semigroup is analogous to the one dimensional case. The set

\I,N

M—a o € N'} forms a complete orthonormal basis for W/T’Z(R”) and
e Iy ey

the transform S : W[["z(R") — WI’L"’Z(R”) is a bounded and invertible operator. For

a € N, from the Eq. (4.8) we have

1

Dp Wl = — (2Qa + 1 4 21400y 41)) > Whyy,» o« €N (4.12)
Similarly for 8 € N",

n B .
DRwl = (—DPITT T 2 + j + 24004.))* Warp- (4.13)
k=1 j=1
Consider the Hilbert space
H (CY) = {F € O(C") : 2P F € H, (C"),0 < |B] < m]}

with the inner product

1\ 28]
(F,G)ygn ony = ), <§> (PF. PGy oy F.G €M (C).
|Bl<m
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1 !
The system of vectors § Yy = M,T‘”— :a € N* ¢ forms a complete orthonor-
17 ”HZ’ t(cn)

mal basis for HJ; ,(C").

Theorem 4.12 The operator ¢''®r Wﬁ"z(R”) — H}; (C") is bounded and invert-
ible. Moreover, the space H}] , (C™) is a reproducing kernel Hilbert space.

Proof Using the above details and following similar technique as in the Theorem 4.11,
we can prove that e// %« Wl’f’z R") — HZIJ (C") isabounded and invertible operator.
For every F' € 'H)} ,(C") and fixed z € C" we have the following representation,

F(Z) - Z <F’ Talf;rll)'}—('ﬁ,r(cn) Ta‘f;fl(z)

aeN"?

Since ), el <F, Ta’f,’£> |%fﬁ,r((c”)< oo and

2
[z%]

PG

2 2l
aeNn weNn ”T“”HZZ,,((C”) 259y ()

2 2
:Eu<<% % ),(1,...,1)) < oo,

we have

MH |Zot|2
(it)wt3

2
2
1Pl cny D

IF(2)* <
aeti 221y, (@) H Toﬁ“H

2
HyL(C)

From the above equation we can conclude that pointwise evalutaions are continuous
on Hj; ,(C"). This proves that Hj; ,(C") is a reproducing kernel Hilbert space. Since

{Toﬁf ,,’, RS N”] forms a complete orthonormal basis for H’/Z[(C”), one can verify
that the reproducing kernels are given by

aHa L 2,20y —
K’l;lt(za w) = Z = 2 e—m(z o )eﬁ(zz_wz),
aer 2291y (a) HT‘“ ‘
y/i o 'HZ’_,((C”)
N .
where 172" 13 oy = Ejpj<m [Tic 55 e + j + 26 +)) - o

Remark 4.13 As in Theorem 3.4 we can see that Hj; ,(C") is unitarily equivalent to

®Z=l Hz,lk,t ((C)
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5 Image of Dunkl-Hermite-Sobolev space under Schriodinger
semigroup associated to the Dunkl-Hermite operator

Let G be a finite reflection group on R” and p be a non-negative multiplicity function,
on some fixed root system R, that is invariant under the group action G on R”". The
Dunkl-Hermite operator on R” is given by

Hy=—A, +x°.
In this section we define Dunkl-Hermite—Sobolev space and wish to discuss the image
of it under Schrédinger semigroup associated to the operator H,,.
It is known that from [17], the generalized Hermite functions ®,,,, for @ € N"
are eigen vectors of H,, with eigen values (2|c«| 4+ 2v,, + n) . They form a complete

orthonormal basis for L>(R", h w(u)du). So, the spectral decomposition of H,, is given
by

o
Hy =Y Pif (5.1)
k=0
where Py f = Z\a,|=k<f’ Dy 1) Po, - Using generalized Mehler’s formula [17], we

can see that the heat semigroup associated to the Dunkl-Hermite operator e "+ on
L2(R", h,,(u)du) given by,

e M f(x) = / Fa Ky (6, )y (w)du, (5.2)
Rn
where the kernel is

n 1
K, (x,u) = (2sin ht)~Wnt?) eifCOthzt(szr”z)Eu (csch2tx, u),

for all x,u € R". For n = 1, the heat semigroup e’ Hy. js considered and studied in

[18,19] by Ben Salem and Nefzi. For t % km where k € N, the Schrodinger semigroup
is an integral operator on L*>(R”", h w(u)du) given by

e_ilH“f(x) — / f(u)KHM,it(u’ x)e_uzhﬂ(u)du, (53)
R~
where

) e —(v+) i 2 2 .
K, it(u, x) = (2i sin2¢) 7"+ 727 exp 2cot2t(u +x7) ) E, (=i csc2tu, x).

If f e L>(R", e”zhu(u)du) then e =" f can be extended as an analytic function on
C", by the discussion given in Sect. 3. Also it can be seen that

e M £(z) = (2i sin 2t)_("+%)e%°°t2tZ2 (g * Fu (s, .)) (2).
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LetHLgx, Y (C™) be areproducing kernel Hibert space of holomorphic fuctions whose
1f, i
reproducing kernel function is

— i 2 D 1 20 (2 csc2tz  csc2tw
K " (z, w) = e2 cot2t(z"—w )efzcsc 2t (z°+w )E ( , > )
o "\V2 V2
The proof of the following theorem is similar to the proof of the Theorem 3.1.
Theorem 5.1 The operator e~ *Hu . L2(R", e”zhu(u)du) - HLg, . (CYisa
it,Hy
unitary operator.

For rest of the section we fix G = Zg, the root system R = {£e; :i =1,2,...,n}
and p be any nonnegative function on R which is invariant under G. For k € N, let us
consider the operator Ay ;, = — Dy ;, + X on suitable dense class of L2(R", hy(uw)du).
Its adjoint is given by A,f’ u = Diep + xk. Then the Dunkl-Hermite operator can be
written as

l n
Hy =5 > (A A+ A Akw)-
k=1

Definition 5.2 Let m € N, the Dunkl-Hermite—Sobolev spaces is defined by,
W R = {f e L2(R") : A%A," f e L2(RY), o] + || < m} (5.4)
H/l. : 1 : 1 H n ’ - ’ .

where A% = AT .. A%, and AL, = (A7 )P --- (AL )P

The Sobolev space WZ}’LZ (R™) is a Hilbert space under the inner product

(fo ymagn = D (ALALS . AGALS) L any-
g ler|+1 B <m

Consider the map ¢!’k W;I",’LZ(R") — e~ itHy (WZ;};Q(R")), where
e (Wi R ) = [ f e O - f € Wi @D

Clealry it is linear and bijective. The space e~k (WZ}/’LZ(R")> is made into a
Hilbert space simply by transferring the Hilbert space structure of WZILZ(R”) to
el Hu (WZ,;Z (R™)) so that the Schrodinger semigroup e~/ is an isometric isomor-

phism from W;;’;’Lz(R") onto e!!Hn (WZ};2 (R™)). This means that
(e_”H"f , e—itHug) =(f, g)ng(R”) )

where f, g € W;;’/’LZ(R")).
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Note that A, +Az,u = 2xy and Ay, — Alt,u =2Dy  fork=1,2,...,n. Using
these relations it is easy to see that W}f}f (R™) and WIT’Z(R") represent the same vector

space. From the note 4.9, it is easy to see that there exist B > 0 (depends only on m)
such that

”f”WgMZ(R") S B ”f”WZ’z(R”)

for any f € W/2(R"). That is, the identity map from W/"?(R") to W,”;f (R") is
bounded bijective linear map. From bounded inverse theorem it follows that the norms
1 W@y [I- W2 ey AT equivalent. Hence characterizing the image of W;["f (R™)

under ¢~ Hu itHy

Let Ef(u) = e’%cmzmzf(u), for f € WL"’Z(R”). It is easy to prove that the
operator S; : WZ”Z(R”) — WI’L”*Z(R”) is bounded and invertible as in the Theorem
4.8 . For o € N" we have,

is equivalent to characterizing the image of Wl’l”’2 (R™) under e

e i 1 e 94),2
TaHﬂ,t(Z) — (e_”H“S‘I’a) (2) = &a’#’tzae(j cot 2t —z csc” 2t)z , (5.5)

1

n n 1 2
where dg ., = (2i 8in2t) ™2 <%ﬁig2)> (—icsc2n)lel,

Consider the Hilbert space

Megy, (€)= {FeO@): Y esean |l <
|Bl=m

1, €

with the inner product

— 2|81 (,B B
(F s G>HL‘% (cny = Z (CSCZZ) <Z FaZ G>H‘C’K,~,_H# (cny

it,Hy |Bl<m

where F, G € HLpn . (C™). Moreover, it is a reproducing kernel Hilbert space with
it Hy

the reproducing kernel function is given by

o o .
—m 7w 1 2 2,2y @ 2_=2
KH# ,(Z, w) — - - e ©5¢ 2t (z°+w )ezcot2t(z w )'
s ot
aen 220y, (o) ( rHn
H[,Km (6]
it, Hy,

Theorem 5.3 The map e~ 'Hi - WZL’LZ(R") — 'HL‘% (C") is a bounded and
it,Hy,

invertible operator.
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From the above theorem we can see that, the image of Dunkl-Hermite—Sobolev
space W;{"f (R™) under ¢/"H is identified with the reproducing kernel Hilbert space
H L . (C™) upto equivalance of norms.

it Hy
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