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Abstract The Weyl procedure associates a function of two ordinary variables, called
the c-function or symbol, with an operator, called the Weyl operator of the symbol.
One generally formulates this association by defining the operator corresponding to a
given symbol. In this paper we consider the reverse problem: Given theWeyl operator,
what is the matching symbol? We give a number of explicit formulas for obtaining the
symbol that would generate an arbitrary Weyl operator, and we illustrate each form
with an example.
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1 Introduction

Although there were antecedents in the operational calculus of Heaviside, the concept
of associating ordinary functionswith operators took on particular importancewith the
development of quantummechanics. Since ordinary functions commute and operators
generally do not, there is an infinite number of ways to associate a function of two
ordinary variables with an operator. The earliest proposed rules were that of Born and
Jordan [2] and of Weyl [14], and subsequently other rules have been proposed. Such
rules are called rules of association, correspondence rules, ordering rules, among other
names. The ordinary function is commonly called a c-function or symbol. The infinite
number of rules may be characterized and generated in a simple manner [3,6]. In this
paper we restrict ourselves to theWeyl rule. Historically the issue was posed as to how
to define the operator for a given symbol. We consider the inverse problem, namely
how to obtain the c-function given the Weyl operator. We present a number of explicit
formulas and give an example for each one.

Notation Except for the operator D, all operators will be denoted by boldface type.
For a symbol we shall generally use g(x, k), and use G(x, D) for the corresponding
operator. The Weyl operator is generally a function of the operators x and D where,

x =
{
x in the x representation

i d
dk in the Fourier representation

(1.1)

D =
{

1
i

d
dx in the x representation

k in the Fourier representation
(1.2)

The fundamental relation between x and D is the commutator,

[x, D] = xD − Dx = i (1.3)

Depending on the field of study these operators may be appropriately called position
and spatial frequency, or position and momentum, and in time-frequency analysis,
they correspond to the time and frequency operators [4,5]. To avoid confusion in
some equations, instead of the pair (x, D) as defined above we often use the pair
(y, Dy). All integrals range from −∞ to ∞ unless otherwise indicated.

Throughout the paper all functions will be supposed to belong to suitably regular
function spaces in order that all performed operations makes sense. We use the delta
function and its properties freely.

2 The Weyl operator

There are two standard definitions of the Weyl procedure, the first, originally given by
Weyl, and the second, by the action of the Weyl operator on a function [17].
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Definition 1 For the symbol g(x, k), the corresponding operator, G (x, D), is:

G (x, D) =
∫∫

ĝ(θ, τ ) eiθx+iτD dθ dτ (2.1)

=
∫∫

ĝ(θ, τ ) eiθτ/2 eiθx eiτD dθ dτ (2.2)

where ĝ(θ, τ ) is the Fourier transform of g(x, k),

ĝ(θ, τ ) = 1

4π2

∫∫
g(x, k) e−iθx−iτk dx dk (2.3)

g(x, k) =
∫∫

ĝ(θ, τ ) eiθx+iτk dθ dτ (2.4)

In going from Eqs. (2.1) to (2.2) we used the well known identity [12,16]

eiθx+iτD = eiθτ/2 eiθx eiτD = e−iθτ/2 eiτD eiθx (2.5)

Combining Eqs. (2.2) and (2.3), we also have

G(x, D) =
(

1

2π

)2 ∫∫∫∫
g(x ′, k′) eiθ(x−x ′)+iτ(D−k′) dθ dτdx ′ dk′ (2.6)

=
(

1

2π

)2 ∫∫∫∫
g(x ′, k′) eiθτ/2eiθ(x−x ′)eiτ(D−k′) dθ dτdx ′ dk′ (2.7)

We call G(x, D) the Weyl operator corresponding to the symbol g(x, k).

Definition 2 Alternatively, one can define the Weyl procedure by how the operator
transforms a function, say ψ(x),

G (x, D) ψ(x) = 1

2π

∫∫
g

( 1
2 (x + x ′), k

)
ei(x−x ′)kψ(x ′) dx ′ dk (2.8)

Hence the Weyl procedure is often called the Weyl transform because it transforms
ψ(x) into the right hand side of Eq. (2.8) [17].

Equivalence of the two definitions For completeness we show the equivalence of the
above two definitions. Using Eq. (2.6) and operating on a function ψ(x) we have

G(x, D)ψ(x) =
[(

1

2π

)2 ∫∫∫∫
g(x ′, k′) eiθ(x−x ′)+iτ(D−k′) dθ dτdx ′ dk′

]
ψ(x) (2.9)

=
(

1

2π

)2 ∫∫∫∫
g(x ′, k′) e−iθx ′−iτk′

eiθτ/2 eiθx eiτDψ(x) dθ dτdx ′ dk′

(2.10)
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Using the fact that eiτD is the translation operator

eiτDψ(x) = eτ d
dx ψ(x) = ψ(x + τ) (2.11)

we have

G(x, D)ψ(x)

=
(

1

2π

)2 ∫∫∫∫
g(x ′, k′) e−iθx ′−iτk′

eiθτ/2 eiθx ψ(x + τ) dθ dτdx ′ dk′ (2.12)

= 1

2π

∫∫∫
g(x ′, k′) δ(x ′ − x + τ/2) e−iτk′

ψ(x + τ) dτdx ′ dk′ (2.13)

= 1

2π

∫∫
g(x + τ/2, k′) e−iτk′

ψ(x + τ) dτ dk′ (2.14)

Making the transformation
x ′ = x + τ dx ′ = dτ (2.15)

Equation (2.8) follows straight forwardly.
In this paper, we deal mostly with the first definition, but all the formulas we derive

can be transcribed to the second.

3 Preliminaries

Central to our results is the ordinary function R(x, k) which is defined by

R(x, k) = e−i xkG (x, D) eixk = e−i xkG
(
x,

1

i

∂

∂x

)
eixk (3.1)

Using Eq. (2.1) we have

R(x, k) = e−i xk
∫∫

ĝ(θ, τ ) eiθx+iτD dθ dτ eixk (3.2)

=
∫∫

e−i xk ĝ(θ, τ ) eiθτ/2 eiθx ei(x+τ)kdθ dτ (3.3)

giving

R(x, k) =
∫∫

ĝ(θ, τ ) eiθτ/2 eiθx+iτk dθ dτ (3.4)

Expressing R(x, k) in terms of the symbol directly, we have

R(x, k) = 1

4π2

∫∫∫∫
g(x ′, k′) eiθτ/2 eiθ(x−x ′)+iτ(k−k′) dθ dτdx ′dk′ (3.5)
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Rearrangement form of an operator For an operatorG(x, D), one defines the function
R(x, k) by the following procedure [6]:

R(x, k) = rearrangeG(x, D) so that all the D operators

are to the right of the x operators; then replace (x, D) by (x, k). (3.6)

To perform the rearrangement, one generally uses the commutation relation, Eq. (1.3),
and variations of it. Conversely, if we have R(x, k), one gets the operator, G(x, D),

by:

G(x, D) = inR(x, k), place all the k variables

to the right of the x factors and then substitute (x, D) for (x, k). (3.7)

Notice that we have used the same notation R(x, k) in both Eqs. (3.6) and (3.1)
because indeed they are the same. To prove this, consider Eq. (2.2) which we repeat
here for convenience

G (x, D) =
∫∫

ĝ(θ, τ ) eiθτ/2 eiθx eiτD dθ dτ (3.8)

which indeed has the x operators to the left of the D operators. Hence

R(x, k) =
∫∫

ĝ(θ, τ ) eiθτ/2 eiθx eiτk dθ dτ (3.9)

which is the same as Eq. (3.4).

Example Consider the operator

G(x, D) = xD2x. (3.10)

By making repeated use of the commutation relation, Eq. (1.3), we place all the D
operators to the right of the x operators,

xD2x = xD(xD−i) = xDxD−ixD = x(xD−i)D−ixD = x2D2−2ixD (3.11)

and therefore
R(x, k) = x2k2 − 2i xk (3.12)

Alternatively, using Eq. (3.1) for R(x, k) we have

R(x, k) = e−i xk x

(
1

i

∂

∂x

)2

xeixk = x2k2 − 2i xk (3.13)

which is the same as Eq. (3.12).
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We note that the symbol that gives the operator in Eq. (3.10) is

g(x, k) = x2k2 + 1/2 (3.14)

To show that, consider the Weyl correspondence for
(
x2k2 + 1/2

)
. First we calculate

ĝ(θ, τ )

ĝ(θ, τ ) = 1

4π2

∫∫ (
x2k2 + 1/2

)
e−iθx−iτk dx dk (3.15)

= 1

4π2

∫∫ (
−1

i

∂

∂θ

)2 (
−1

i

∂

∂τ

)2

e−iθx−iτk dx dk + 1

2
δ(θ)δ(τ ) (3.16)

=
(

∂

∂θ

)2 (
∂

∂τ

)2

δ(θ)δ(τ ) + 1

2
δ(θ)δ(τ ) (3.17)

Therefore, the corresponding operator, according to Eq. (2.2) is

G (x, D) =
∫∫

ĝ(θ, τ ) eiθτ/2 eiθx eiτD dθ dτ (3.18)

=
∫∫ ((

∂

∂θ

)2 (
∂

∂τ

)2

δ(θ)δ(τ ) + 1

2
δ(θ)δ(τ )

)
eiθτ/2 eiθx eiτD dθ dτ

(3.19)

which evaluates to Eq. (3.10).

4 Inversion: from Weyl operator to symbol

The issue we address is finding the symbol g(x, k) for a given operator, G (x, D) ,

assuming that the operator was obtained by the Weyl procedure. We have found a
variety of expressions. We list these results, and for each one we provide a proof, and
an example. For the example, we use the one considered in Sect. 3 which we repeat
here for convenience. For the symbol

g(x, k) = x2k2 + 1/2 (4.1)

the Weyl operator is
G(x, D) = xD2x (4.2)

and the corresponding rearrangement operator is

R(x, k) = x2k2 − 2i xk. (4.3)
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4.1 Direct substitution method in G(x,D)

For an operator G(x, D) make the substitution

x −→ x + i

2

∂

∂k
D −→ k − i

2

∂

∂x
(4.4)

then the symbol is given by

g(x, k) = G
(
x + i

2

∂

∂k
, k − i

2

∂

∂x

)
1 (4.5)

where the right hand side is the operation on the number one as indicated.

Proof In Eq. (2.2) make the substitution indicated by Eq. (4.4),

G
(
x + i

2

∂

∂k
, k − i

2

∂

∂x

)
=

∫∫
ĝ(θ, τ )eiθτ/2 e

iθ
(
x+ i

2
∂
∂k

)
e
iτ

(
k− i

2
∂
∂x

)
dθ dτ (4.6)

Now, operate on an arbitrary function, f (x, k),

G
(
x + i

2

∂

∂k
, k − i

2

∂

∂x

)
f (x, k)

=
∫∫

ĝ(θ, τ )eiθτ/2 e
iθ

(
x+ i

2
∂
∂k

)
e
iτ

(
k− i

2
∂
∂x

)
f (x, k)dθ dτ (4.7)

=
∫∫

ĝ(θ, τ )eiθτ/2 e
iθ

(
x+ i

2
∂
∂k

)
eiτk f (x + τ/2, k)dθ dτ (4.8)

=
∫∫

ĝ(θ, τ ) eiθτ/2 eiθx eiτ(k−θ/2) f (x + τ/2, k − θ/2)dθ dτ (4.9)

and therefore

G
(
x + i

2

∂

∂k
, k − i

2

∂

∂x

)
f (x, k) =

∫∫
ĝ(θ, τ ) eiθx+iτk f (x + τ/2, k−θ/2)dθ dτ

(4.10)
If we take

f (x, k) = 1 (4.11)

then Eq. (4.10) becomes identical to Eq. (4.10), and we have that

g(x, k) = G
(
x + i

2

∂

∂k
, k − i

2

∂

∂x

)
1 (4.12)

Also, we note, that the operators indicated by Eq. (4.4) have these same commutation
relations as x and D:[(

x + i

2

∂

∂k

)
,

(
k − i

2

∂

∂x

)]
= [x, D] = i. (4.13)
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In this regard we mention that the Weyl operator may be obtained from g(x, k) by
way of

G(x, D) = g

(
x + α − i

2

∂

∂β
, D + β + i

2

∂

∂α

)
1
∣∣∣
α,β=0

(4.14)

Example Consider the operator

G(x, D) = xD2x (4.15)

Making the substitution indicated by Eq. (4.5) we have

g(x, k) = G
(
x + i

2

∂

∂k
, k − i

2

∂

∂x

)
1 (4.16)

=
(
x + i

2

∂

∂k

) (
k − i

2

∂

∂x

)2 (
x + i

2

∂

∂k

)
1 (4.17)

= k2x2 + 1/2 (4.18)

4.2 Integral transformation of R(x, k)

For an operatorG(x, D)with a corresponding R(x, k), as defined in Sect. 3, the symbol
g(x, k) may obtained by way of

g(x, k) = 1

π

∫∫
R(x ′, k′) e2i(x ′−x)(k′−k) dx ′ dk′ (4.19)

or, translating the integration variables, via

g(x, k) = 1

π

∫∫
R(x ′ + x, k′ + k) e2i x

′k′
dx ′ dk′ (4.20)

In addition,

g(x, k) = − 1

2π

∫∫
R(x ′, k − θ/2)eiθ(x−x ′)dx ′dθ (4.21)

Proof Inverting the Fourier transform in Eq. (3.4) to find ĝ(θ, τ ) in terms of R, we
have

ĝ(θ, τ ) = e−iθτ/2

4π2

∫∫
R(x ′, k′)e−iθx ′−iτk′

dx ′dk′ (4.22)

and using Eq. (2.4) to obtain the symbol g from ĝ,

g(x, k) = 1

4π2

∫∫∫∫
e−iθτ/2R(x ′, k′)eiθ(x−x ′)+iτ(k−k′)dx ′dk′dθ dτ (4.23)
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which simplifies to

g(x, k) = 1

π

∫∫
R(x ′, k′) e2i(x ′−x)(k′−k) dx ′ dk′ (4.24)

which is (4.19).
To obtain Eq. (4.21), we make the substitution

k′ = k − θ/2 dk′ = −dθ/2 (4.25)

which gives

g(x, k) = 1

2π

∫∫
R(x ′, k − θ/2) e−iθ(x ′−x) dx ′ dθ. (4.26)

��
Example Substituting R(x, k) from Eq. (4.3) into (4.20), we have

g(x, k) = 1

π

∫∫ [
(x ′ + x)2(k′ + k)2 − 2i(x ′ + x)

]
e2i x

′k′
dx ′ dk′, (4.27)

which straightforwardly evaluates to

g(x, k) = x2k2 + 1/2. (4.28)

4.3 Operator form on R(x, k)

Equation (4.19) can be put into an operator form giving

g(x, k) = exp

[
i

2

∂

∂x

∂

∂k

]
R(x, k) (4.29)

Proof From Eq. (4.19) we have

g(x, k) = 1

4π2

∫∫∫∫
R(x ′, k′) e−iθτ/2e−iθx ′

e−iτk′
eiθx+iτk dx ′dk′ dθ dτ (4.30)

= exp

[
i

2

∂

∂x

∂

∂k

]
1

4π2

∫∫∫∫
R(x ′, k′)e−iθ(x ′−x) e−iτ(k′−k)dx ′dk′dθ dτ

(4.31)

which gives Eq. (4.29). ��
Example Using Eq. (4.3) for R(x, k)

g(x, k) = exp

[
i

2

∂

∂x

∂

∂k

]
(x2k2 − 2i xk). (4.32)
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Expanding the exponential in a power series in its argument, only the first three terms
contribute to the sum

g(x, k) = (x2k2−2i xk)+
[
i

2

∂

∂x

∂

∂k

]
(x2k2−2i xk)+ 1

2

[
i

2

∂

∂x

∂

∂k

]2
(x2k2−2i xk),

(4.33)
giving

g(x, k) = x2k2 + 1/2 (4.34)

4.4 R(x, k) operating on e−2i xk

In R(x, k) make the substitution

x −→ i

2

∂

∂k
k −→ i

2

∂

∂x
(4.35)

which defines the operator R
( i
2

∂
∂k ,

i
2

∂
∂x

)
. Then, the symbol g(x, k) is given by

g(x, k) = e2i xk R

(
i

2

∂

∂k
,
i

2

∂

∂x

)
e−2i xk (4.36)

Proof In Eq. (3.4) for R(x, k), make the substitutions given by Eq. (4.36) to obtain
that

e2i xk R

(
i

2

∂

∂k
,
i

2

∂

∂x

)
e−2i xk (4.37)

= e2i xk
∫∫

ĝ(θ, τ ) eiθτ/2 eiθ
i
2

∂
∂k eiτ

i
2

∂
∂x e−2i xkdθ dτ (4.38)

= e2i xk
∫∫

ĝ(θ, τ ) eiθτ/2 e−θ 1
2

∂
∂k e−τ 1

2
∂
∂x e−2i xkdθ dτ (4.39)

= e2i xk
∫∫

ĝ(θ, τ ) eiθτ/2 e−2i(x−τ/2)(k−θ/2)dθ dτ (4.40)

=
∫∫

ĝ(θ, τ ) eiθx+iτkdθ dτ (4.41)

which is g(x, k). ��
Example For our example, where R(x, k) = x2k2 − 2i xk, the expression for the
symbol g, as per Eq. (4.36), gives

e2i xk R

(
i

2

∂

∂k
,
i

2

∂

∂x

)
e−2i xk

= e2i xk
[(

i

2

∂

∂x

)2 (
i

2

∂

∂k

)2

− 2i

(
i

2

∂

∂x

) (
i

2

∂

∂k

)]
e−2i xk (4.42)
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= e2i xk
[(

i

2

∂

∂x

)2

x2 + ∂

∂x
x

]
e−2i xk (4.43)

= x2k2 + 1/2. (4.44)

4.5 Operating on a delta function

Since the delta function forms a complete set, one would expect that the operation of
the operator on the delta function would allow one to obtain the symbol. Explicitly
we show that

g(x, k) =
∫∫

δ(x − τ/2 − y)G(y, Dy)δ(x + τ/2 − y)eiτkdτdy (4.45)

Proof Consider

∫∫
δ(x − τ ′/2 − y)G(y, Dy)δ(x + τ ′/2 − y)eiτ

′kdτ ′dy

=
(

1

2π

)2 ∫∫∫∫ ∫∫
g(x ′, k′)δ(x − τ ′/2 − y) eiθ(y−x ′)+iτ(Dy−k′)

δ(x + τ ′/2 − y)eiτ
′kdτ ′dydθ dτdx ′ dk′ (4.46)

=
(

1

2π

)2 ∫∫∫∫ ∫∫
g(x, k)δ(x − τ ′/2 − y) eiθτ/2e−iθx ′−iτk′

eiθyeiτDy

δ(x + τ ′/2 − y)eiτ
′kdτ ′dydθ dτdx ′ dk′ (4.47)

=
(

1

2π

)2 ∫∫∫∫ ∫∫
g(x, k)δ(x − τ ′/2 − y) eiθτ/2e−iθx ′−iτk′

eiθy

δ(x + τ ′/2 − (y + τ))eiτ
′kdτ ′dydθ dτdx ′ dk′ (4.48)

witch evaluates to g(x, k). ��

Example Using our standard example

g(x, k) =
∫∫

δ(x − 1
2τ − y)G(y, Dy)δ(x + 1

2τ − y)eiτkdτdy (4.49)

=
∫∫

δ(x − 1
2τ − y)y

(
1

i

∂

∂y

)2

y δ(x + 1
2τ − y)eiτkdτdy (4.50)

which evaluates to g(x, k) = x2k2 + 1/2.
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4.6 Operating on the exponential

Similar to Eq. (4.45), we have

g(x, k) = 1

2π

∫∫
e−i(k−θ/2)yG(y, Dy)e

i(k+θ/2)ye−iθx dθdy (4.51)

Proof Substituting Eq. (2.2) for G(y, Dy) gives for the right hand side of Eq. (4.51),

1

2π

∫∫∫∫
e−i(k−θ/2)y ĝ(θ ′, τ ′) eiθ ′τ ′/2 eiθ

′y eiτ
′Dy dθ ′ dτ ′ei(k+θ/2)ye−iθxdθdydθ ′ dτ ′

(4.52)

= 1

2π

∫∫∫∫
e−i(k−θ/2)y ĝ(θ ′, τ ′) eiθ ′τ ′/2 eiθ

′y ei(k+θ/2)(y+τ ′)e−iθxdθdydθ ′ dτ ′

(4.53)

= 1

2π

∫∫∫∫
ĝ(θ ′, τ ′) eiθy eiθ ′τ ′/2 eiθ

′y ei(k+θ/2)τ ′
e−iθxdθdydθ ′ dτ ′ (4.54)

which evaluates to g(x, k). ��
Example For our standard example

G(y, Dy) = xD2x (4.55)

we have

g(x, k) = 1

2π

∫∫
e−i(k−θ/2)y y

(
1

i

∂

∂y

)2

yei(k+θ/2)ye−iθxdθdy (4.56)

= 1

2π

∫∫
eiθ(y−x)

[
y2

(
k + θ

2

)2

− 2iy

(
k + θ

2

)]
dθdy (4.57)

which simplifies to

g(x, k) =
∫

δ(y − x)
(
k2y2 + 1/2

)
dy = x2k2 + 1/2 (4.58)

4.7 Operating on the delta function directly

Another form involving the delta function is to define

F(x, x ′) = G(x, D)δ(x − x ′) (4.59)

then the symbol is found via

g(x, k) = 2
∫

F(x ′, 2x − x ′)e2i(x−x ′)kdx ′. (4.60)
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A convenient form to evaluate Eq. (4.60) is

g(x, k) = 2
∫∫

F(x ′, x ′′)δ(x ′ + x ′′ − 2x)e2i(x
′′−x)kdx ′dx ′′ (4.61)

Proof Using Eq. (2.8), we have that

F(x, x ′) =G(x, D)δ(x − x ′) (4.62)

= 1

2π

∫∫
g

( 1
2 (x + x ′′), k

)
ei(x−x ′′)kδ(x ′′ − x ′) dx ′′dk (4.63)

= 1

2π

∫
g

( 1
2 (x + x ′), k

)
ei(x−x ′)kdk. (4.64)

A few manipulations and an inverse Fourier transform leads to Eq. (4.60).

Example For our usual example,

F(x, x ′) = G(x, D)δ(x − x ′) = xD2x δ(x − x ′) = x

(
1

i

∂

∂x

)2

x δ(x − x ′) (4.65)

we have

g(x, k) = 2
∫∫

x ′
[(

1

i

∂

∂x ′

)2

x ′δ(x ′ − x ′′)
]

δ(x ′ + x ′′ − 2x)e2i(x
′′−x)kdx ′dx ′′

(4.66)

= − 1

π

∫∫∫
x ′

[(
∂

∂x ′

)2

x ′eiy(x ′−x ′′)
]

δ(x ′ + x ′′ − 2x)e2i(x
′′−x)kdx ′dx ′′dy

(4.67)

= 1

π

∫∫∫
x ′ [2iy − x ′y2

]
eiy(x

′−x ′′)δ(x ′ + x ′′ − 2x)e2i(x
′′−x)kdx ′dx ′′dy

(4.68)

= 1

π

∫∫
x ′ [2iy − x ′y2

]
ei2y(x

′−x)e2i(x−x ′)kdx ′dy. (4.69)

Straightforward evaluation leads to g(x, k) = x2k2 + 1/2.

4.8 Trace of the Wigner and Weyl operators

The symbol may be obtained from

g(x, k) = 2π Tr(WG) (4.70)

whereW andG are the matrix elements of the Wigner operator and the Weyl operator
respectively, terms that we now define. This method is essentially the one presented
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by Englert [8] and in reference [1]. A similar result was obtained by Duan and Wong
[7]; see discussion after Eq. (4.87).

For any complete set un(y), we define, as is standard in quantum mechanics, the
matrix elements, Gnk of an operator G(y, Dy) by

Gnm =
∫

u∗
n(y)G(y,Dy) um(y)dy. (4.71)

We define the Wigner operator by

Wxk(y,Dy) = 1

4π2

∫∫
eiθ(y−x)+iτ(Dy−k) dθ dτ (4.72)

= 1

(2π)2

∫∫
eiθτ/2eiθ(y−x)eiτ(Dy−k)dθ dτ (4.73)

where the subscripts x and k are parameters. The reason this is called the Wigner
operator is that its expectation value gives the Wigner distribution [1,8,15]. That is,

〈
Wxk(y, Dy)

〉 =
∫

ψ∗(y)Wxk(y, Dy)ψ(y)dy (4.74)

= 1

2π

∫
ψ∗(x − τ/2)e−iτkψ(x + τ/2)dτ, (4.75)

which is the Wigner distribution in x and k. For the Wigner operator, the matrix
elements are

Wnm(x, k) = 1

(2π)2

∫∫∫
u∗
n(y) e

iθ(y−x)+iτ(Dy−k) um(y) dθdτdy (4.76)

= 1

(2π)2

∫∫∫
u∗
n(y) e

iθτ/2 eiθ(y−x)−iτk um(y + τ) dθdτdy (4.77)

= 1

(2π)2

∫∫∫
u∗
n(y − τ/2) eiθ(y−x)−iτk um(y + τ/2) dθdτdy (4.78)

and are functions of the parameters x and k.
The nk matrix elements of the Weyl operator, G(y, Dy), given by Eq. (2.2), are

Gnm =
∫∫∫

u∗
n(y) ĝ(θ, τ ) eiθτ/2 eiθy eiτDy um(y) dθdτdy (4.79)

=
∫∫∫

u∗
n(y) ĝ(θ, τ ) eiθτ/2 eiθy um(y + τ) dθdτdy (4.80)

=
∫∫∫

u∗
n(y − τ/2) ĝ(θ, τ ) eiθy um(y + τ/2) dθdτdy (4.81)

Trace The nm matrix elements of the product of two matrices is

(WG)nm =
∑
j

WnjG jm (4.82)
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and their trace is given by

Tr(WG) =
∑
jn

WnjG jn (4.83)

= 1

(2π)2

∑
jn

∫∫∫ ∫∫∫
u∗
n(y

′) eiθ ′τ ′/2eiθ
′(y′−x)−iτ ′k u j (y

′ + τ ′)

× u∗
j (y)ĝ(θ, τ ) eiθτ/2 eiθy un(y + τ) dθ ′dτ ′dy′dθdτdy (4.84)

Since the un form a complete set, we have that in general

∑
n

u∗
n(y

′) un(y) = δ(y − y′). (4.85)

Applying Eq. (4.85) to Eq. (4.84) we have

Tr(WG) = 1

4π2

∫∫∫ ∫∫∫
eiθ

′τ ′/2δ(y′ − y − τ) δ(y − y′ − τ ′)eiθ ′(y′−x)−iτ ′k

× ĝ (θ, τ ) eiθτ/2 eiθy dθ ′dτ ′dy′dθ dτdy (4.86)

which simplifies to

Tr(WG) = 1

2π
g(x, k) (4.87)

and hence Eq. (4.70).
As mentioned above, a similar result was obtained by Duan and Wong [7] but with

different approach and terminology.1 It is of interest to relate their result to that of Eq.
(4.70). Using our notation, they define integral representation of the Weyl transform
by

Wg =
∫ ∫

ĝ(θ, τ )eiθx+iτkdθdτ (4.88)

which is what we have called the Weyl operator, G (x, D). Also, they define the
operator ρ∗ by what we have called the Wigner operatorWxk(y,Dy). Their Theorem
1.8 is that the symbol is the trace of ρ∗Wg which corresponds to Eq. (4.70)

Continuous case If the complete set is continuous, uα(y), the above summations
become integrations and we have that

Gαβ =
∫∫∫

u∗
α(y)ĝ(θ, τ ) eiθτ/2 eiθy uβ(y + τ)dθ dτdy (4.89)

and

Wαβ(x, k) = 1

4π2

∫∫∫
u∗

α(y) eiθτ/2 eiθ(y−x)−iτk uβ(y + τ)dθ dτdy (4.90)

1 The authors thank the referee for making us aware of the paper by Duan and Wong.
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and further

Tr(WG) =
∫∫

WβαGαβdαdβ = 1

2π
g(x, k), (4.91)

which is the continuous analog of Eq. (4.87).

Examples of complete sets Considering the continuous complete set given by

uα(y) = 1√
2π

eiαy (4.92)

The Wigner operator matrix elements are

Wαβ(x, k) = 1

4π2

1

2π

∫∫∫
e−iαy eiθ(y−x)+iτ(Dy−k) eiβydθ dτdy (4.93)

= 1

8π3

∫∫∫
eiθτ/2e−iαy eiθ(y−x)−iτk eiβ(y+τ)dθ dτdy. (4.94)

Evaluation leads to

Wαβ(x, k) = 1

2π
ei(β−α)xδ

(
k − α + β

2

)
. (4.95)

For the matrix element of the Weyl operator we have

Gαβ = 1

2π

∫∫∫
e−iαy ĝ(θ, τ ) eiθτ/2 eiθy eiτDy eiβy/dydθ dτ (4.96)

= 1

2π

∫∫∫
e−iαy ĝ(θ, τ ) eiθτ/2 eiθy eiβ(y+τ)dydθ dτ (4.97)

which evaluates to

Gαβ =
∫

ĝ (α − β, τ) ei(α+β)τ/2dτ (4.98)

Now consider the trace of the product of Wα,β(x,k ) and Gα,β

Tr(WG) =
∫∫

WβαGαβdαdβ (4.99)

= 1

2π2

∫∫∫
e−i(β−α)xδ

(
k − β + α

2

)
ĝ (α − β, τ) ei(α+β)τ/2dαdβdτ

(4.100)

which evaluates to

Tr(WG) = 1

2π
g(x, k). (4.101)

Complete set: delta function
We consider the complete set

uα(y) = δ(y − α). (4.102)
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For the Wigner matrix elements, we have

Wαβ(x, k) = 1

4π2

∫∫∫
δ(y − α) eiθ(y−x)+iτ(Dy−k) δ(y − β)dθ dτdy (4.103)

= 1

4π2

∫∫∫
δ(y − α) eiθ(y−x)+iτ(Dy−k) δ(y − β)dθ dτdy (4.104)

= 1

4π2

∫∫∫
eiθτ/2δ(y − α) eiθ(y−x)−iτk δ(y − β + τ)dθ dτdy

(4.105)

which simplifies to

Wαβ(x, k) = 1

2π
δ

(
x − β + α

2

)
e−i(β−α)k (4.106)

The G matrix elements are,

Gαβ =
∫

δ(y − α) ĝ(θ, τ ) eiθτ/2 eiθy eiτDy δ(y − β)dydθ dτ (4.107)

=
∫

ĝ(θ, τ ) eiθτ/2 eiθα δ(α − β + τ)dθ dτ (4.108)

which gives

Gαβ =
∫

ĝ (θ, (β − α)) ei(β+α)θ/2 dθ. (4.109)

Taking the trace, we have

Tr(WG) =
∫∫

WβαGαβdαdβ (4.110)

= 1

2π

∫∫∫
δ

(
x − α + β

2

)
e−i(α−β)k ĝ (θ, (β − α)) ei(β+α)θ/2 dαdβdθ

(4.111)

which simplifies to

Tr(WG) =
∫∫

ĝ(θ, τ ) eiτkeixθ dτdθ = 1

2π
g(x, k). (4.112)

5 Conclusion

We have presented a number of different expressions for obtaining the symbol that
generates a given Weyl operator. The Weyl procedure is not the only possible one and
many others have been studied, including the Born and Jordan, standard, anti-standard



678 M. Kim et al.

symmetrization rule, among others [9,11,13]. A unified approach that generates all
rules has been developed [3,6,10]. For a symbol g(x, k), the operator is given by

G(x, D) =
∫∫

ĝ(θ, τ )�(θ, τ ) eiθx+iτD dθ dτ (5.1)

where �(θ, τ) is a two dimensional function, called the kernel. By choosing different
kernels, different rules are obtained. In a future paper, we will deal with the inverse
problem for the generalized correspondence rule indicated by Eq. (5.1).
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