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Abstract In this paper, we study the semilinear pseudo-parabolic equations ut −
�Bu − �But = |u|p−1 u on a manifold with conical singularity, where �B is Fuch-
sian type Laplace operator investigated with totally characteristic degeneracy on the
boundary x1 = 0. Firstly, we discuss the invariant sets and the vacuum isolating behav-
ior of solutions with the help of a family of potential wells. Then, we derive a threshold
result of existence and nonexistence of global weak solution: for the low initial energy
J (u0) < d, the solution is global in time with I (u0) > 0 or ‖∇Bu0‖

L
n
2
2 (B)

= 0 and

blows up in finite time with I (u0) < 0; for the critical initial energy J (u0) = d, the
solution is global in time with I (u0) ≥ 0 and blows up in finite time with I (u0) < 0.
The decay estimate of the energy functional for the global solution and the estimates
of the lifespan of local solution are also given.
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1 Introduction

In this paper, we consider the following initial-boundary value problem for a class of
semilinear pseudo-parabolic equation with conical degeneration

⎧
⎨

⎩

ut − �But − �Bu = |u|p−1 u, x ∈ intB, t > 0,
u(0) = u0, x ∈ intB,

u = 0, x ∈ ∂B, t ≥ 0,
(1.1)

where 2 < p + 1 <
2n

n − 2
= 2∗, and 2∗ is the critical cone Sobolev exponents.

Here B = [0, 1) × X , X is an (n − 1)-dimensional closed compact manifold, which
is regarded as the local model near the conical points, and ∂B = {0} × X . Moreover,
the operator �B in (1.1) is defined by (x1∂x1)

2 + ∂2x2 + · · · + ∂2xn , which is an elliptic
operator with conical degeneration on the boundary x1 = 0 (we also called it Fuchsian
type Laplace operator), and corresponding gradient operator is denoted by ∇B =
(x1∂x1 , ∂x2 , . . . , ∂xn ). Near ∂Bwe will use coordinates (x1, x ′) = (x1, x2, . . . , xn) for
0 ≤ x1 < 1, x ′ ∈ X .

The equation in (1.1) is a important physical model, appears in many applications
to natural sciences, such as the unidirectional propagation of nonlinear, dispersive,
long waves [2], the aggregation of population [21] and the nonstationary processes in
crystalline semiconductors [11].

In the classical case, we have

⎧
⎨

⎩

ut − �ut − �u = |u|p−1 u, x ∈ �, t > 0,
u(0) = u0, x ∈ �,

u = 0, x ∈ ∂�, t ≥ 0,
(1.2)

where � is an open bounded domain of Rn with smooth boundary ∂� and � is the
standardLaplace operator. It’swell known that problem (1.2) has been studied bymany
authors. A powerful technique for treating problem (1.2) is the so called “potential
well method”, which was established by Sattinger [23], Payne and Sattinger [22],
and then improved by Liu and Zhao [18] by introducing a family of potential wells.
Recently, there are some interesting results about the global existence and blow-up of
solutions for problem (1.2) in [28], in which Xu and Su proved the invariance of some
sets, global existence, nonexistence and asymptotic behavior of solutions with initial
energy J (u0) ≤ d and obtained finite time blow-upwith high initial energy J (u0) > d
by comparison principle. In [20], the author obtained a lower bound for blow-up time
if p and the initial value satisfy some conditions. For other related works, we refer the
readers to [3,4,9,15,16,24–27] and the references therein.

In the conical degeneration case, Chen et al. established the corresponding Sobolev
inequality and Poincaré inequality on the cone Sobolev spaces in [6]. Then in [5], Chen
and Liu proved the existence theorem of global solutions with exponential decay and
show the blow-up in finite time of solutions to the parabolic problem
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⎧
⎨

⎩

ut − �Bu = |u|p−1 u, x ∈ intB, t > 0,
u(0) = u0, x ∈ intB,

u = 0, x ∈ ∂B, t ≥ 0,
(1.3)

where B is the same as above. In [8], Chen and Liu studied the initial boundary
value problem for a class of semilinear edge-degenerate parabolic equations with
singular potential term, and derived a threshold of the existence of global solutions
with exponential decay, and the blow-up in finite time by introducing a family of
potential wells. More works on equations with conical degeneration can be seen in the
monograph [1,10] and references therein.

In this paper, we aim to use the improved potential well theory to prove the invariant
sets, the vacuum isolating behavior, and the global existence, decay and finite time
blow-up of solutions for problem (1.1) in weighted Sobolev space. For our purpose,
we introduce a family of potential wells and its corresponding sets, and construct
the relation between the existence of solution and the initial data u0 via the method
of the potential wells. Then, by the usage of Faedo–Galerkin method, the concavity
argument and properties of a family of potential wells, we derive a threshold result
of existence and nonexistence of global weak solution: for the low initial energy case
(i.e., J (u0) < d), the solution is global in time with I (u0) > 0 or ‖∇Bu0‖

L
n
2
2 (B)

= 0

and blows up in finite time with I (u0) < 0; for the critical initial energy case (i.e.,
J (u0) = d), the solution is global in time with I (u0) ≥ 0 and blows up in finite time
with I (u0) < 0. The decay estimate of the energy functional for the global solution
and the estimates of the lifespan of local solution and lower bound on blow-up time
are given by making use of a differential inequality technique.

The outline of this paper are as follows. In Sect. 2, we recall the cone Sobolev
spaces and the corresponding properties. In Sect. 3, we give some preliminaries about
the family of potential wells, after which we discuss the invariant sets and the vacuum
isolating behavior of solutions for problem (1.1). In Sect. 4, we show the global
existence, decay and finite time blow-up for problem (1.1) with low initial energy
J (u0) < d. In Sect. 5, we obtain the global existence, decay and finite time blow-up
for problem (1.1) with critical initial energy J (u0) = d.

2 Cone Sobolev spaces

In this section, we recall the manifold with conical singularities and the corresponding
cone Sobolev spaces which are introduced in [6,7].

Let X be a closed, compact, C∞ manifold. We set X� = R̄+ × X/({0} × X) as a
local model interpreted as a cone with the base X . Next, we denote X∧ = R+ × X as
the corresponding open stretched cone with the base X .

An n−dimensionalmanifold B with conical singularities is a topological spacewith
a finite subset B0 = {b1, . . . , bM } ⊂ B of conical singularities, with the following
two properties.

(1) B \ B0 is a C∞ manifold.
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(2) Every b ∈ B0 has an open neighbourhood U in B, such that there is a homeo-
morphism ϕ : U → X� for some closed compact C∞ manifold X = X (b), and
ϕ restricts to a diffeomorphism ϕ′ : U \ {b} → X∧.

For simplicity, we assume that the manifold B has only one conical point on the
boundary. Thus, near the conical point, we have a stretched manifold B, associated
with B. Here B = [0, 1) × X , ∂B = {0} × X and X is a closed compact manifold
of dimension n − 1. Also, near the conical point, we use the coordinates (x1, x ′) =
(x1, x2, . . . , xn) for 0 ≤ x1 < 1, x ′ ∈ X .

Definition 1 Let B = [0, 1) × X be the stretched manifold of the manifold B with
conical singularity. Then the cone Sobolev space Hm,γ

p (B), for m ∈ N, γ ∈ R and
1 < p < +∞, is defined as

Hm,γ
p (B) = {u ∈ Wm,p

loc (intB)|ωu ∈ Hm,γ
p (X∧)

}

for any cut-off function ω, supported by a collar neighborhood of (0, 1) × ∂B. More-
over, the subspace Hm,γ

p,0 (B) of Hm,γ
p (B) is defined by

Hm,γ
p,0 (B) := [ω]Hm,γ

p,0 (X∧) + [1 − ω]Wm,p
0 (intB),

where Wm,p
0 (intB) denotes the closure of C∞

0 (intB) in Sobolev spaces Wm,p(X̄)

when X̄ is a closed compact C∞ manifold of dimension n that containing B as a
submanifold with boundary.

Definition 2 Let B = [0, 1) × X . We say u(x) ∈ Lγ
p(B) with 1 < p < +∞ and

γ ∈ R if

‖u‖p
Lγ
p(B)

=
∫

B

xn1

∣
∣
∣x

−γ
1 u(x)

∣
∣
∣
p dx1

x1
dx ′ < +∞.

Observe that if u(x) ∈ L
n
p
p (B), v(x) ∈ L

n
q
q (B) with p, q ∈ (1,∞) and 1

p + 1
q = 1,

then we have the following Hölder’s inequality

∫

B

|u(x)v(x)| dx1
x1

dx ′ ≤
(∫

B

|u(x)|p dx1
x1

dx ′
) 1

p
(∫

B

|v(x)|q dx1
x1

dx ′
) 1

q

. (2.1)

In the sequel, for convenience we denote

(u, v)2 =
∫

B

u(x)v(x)
dx1
x1

dx ′, ‖u‖p

L
n
p
p (B)

=
∫

B

|u(x)|p dx1
x1

dx ′.

Proposition 1 ([6], Poincaré inequality) Let B = [0, 1) × X be a bounded subspace
in Rn+ with X ⊂ R

n−1, and 1 < p < +∞, γ ∈ R. If u(x) ∈ H1,γ
p,0(B), then
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‖u(x)‖Lγ
p(B) ≤ c‖∇Bu(x)‖Lγ

p(B), (2.2)

where ∇B = (x1∂x1, ∂x2 , . . . , ∂xn ), and the constant c depends only on B.

Proposition 2 ([7], Proposition 3.3) For 1 < p < 2∗, the embedding H1, n2
2,0 (B) ↪→

H0, np
p,0 (B) is continuous.

Similar to the classical case, we introduce the following functionals on cone

Sobolev space H1, n2
2,0 (B):

J (u) = 1

2

∫

B

|∇Bu|2 dx1
x1

dx ′ − 1

p + 1

∫

B

|u|p+1 dx1
x1

dx ′, (2.3)

I (u) =
∫

B

|∇Bu|2 dx1
x1

dx ′ −
∫

B

|u|p+1 dx1
x1

dx ′. (2.4)

Then J (u) and I (u) are well-defined and belong to C ′
(H1, n2

2,0 (B)). We introduce the
potential well

W =
{
u ∈ H1, n2

2,0 (B)|I (u) > 0, J (u) < d
}

∪ {0}

and the outside sets of the corresponding potential well

V =
{
u ∈ H1, n2

2,0 (B)|I (u) < 0, J (u) < d
}

.

We define the potential well depth d as

d = inf

{

sup
λ≥0

J (λu), u ∈ H1, n2
2,0 (B),

∫

B

|∇Bu|2 dx1
x1

dx ′ �= 0

}

,

and the Nehari manifold

N =
{

u ∈ H1, n2
2,0 (B)|I (u) = 0,

∫

B

|∇Bu|2 dx1
x1

dx ′ �= 0

}

.

Similar to the results in [28], one has 0 < d = inf
u∈N

J (u).

3 Invariant sets and vacuum isolating

In this section, we shall introduce a family of Nehari functionals Iδ(u) in cone Sobolev
spaces, the family of potential wells sets and give the corresponding lemmas, which
will help us to demonstrate the invariant sets and the vacuum isolating behavior of
solutions for problem (1.1).
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3.1 Properties of potential wells

In this subsection, we shall introduce a family of potential wellsWδ , its corresponding
sets Vδ and give a series of their properties which are useful in the proof of our main
results.

Lemma 3.1 Let u ∈ H1, n2
2,0 (B), and ‖∇Bu‖22 �= 0. Then:

(1) lim
λ→0

J (λu) = 0, lim
λ→+∞ J (λu) = −∞.

(2) On the interval 0 < λ < ∞, there exists a unique λ∗ = λ∗(u), such that
d

dλ
J (λu)|λ=λ∗ = 0.

(3) J (λu) is increasing on 0 ≤ λ ≤ λ∗, decreasing on λ∗ ≤ λ < ∞ and takes the
maximum at λ = λ∗.

(4) I (λu) > 0 for 0 < λ < λ∗, I (λu) < 0 for λ∗ < λ < ∞, and I (λ∗u) = 0.

Proof (1) From the definition of J (u), we know

J (λu) = λ2

2

∫

B

|∇Bu|2 dx1
x1

dx ′ − λp+1

p + 1

∫

B

|u|p+1 dx1
x1

dx ′,

which gives

lim
λ→0

J (λu) = 0

and

lim
λ→+∞ J (λu) = −∞.

(2) An easy calculation shows that

d

dλ
J (λu) = λ

(∫

B

|∇Bu|2 dx1
x1

dx ′
)

− λp
∫

B

|u|p+1 dx1
x1

dx ′. (3.1)

Let λ∗ =
⎛

⎜
⎝

‖∇Bu‖2
L

n
2
2 B

∫

B
|u|p+1 dx1

x1
dx ′

⎞

⎟
⎠

1
p−1

, then
d J (λu)

dλ

∣
∣
∣
∣
λ=λ∗

= 0.

(3) From

∂2 J (λu)

∂λ2
= ‖∇Bu‖2

L
n
2
2 B

− pλp−1
∫

B

|u|p+1 dx1
x1

dx ′,

we have

∂2 J (λu)

∂λ2

∣
∣
∣
∣
λ=λ∗

= ‖∇Bu‖2
L

n
2
2 (B)

− p‖∇Bu‖2
L

n
2
2 (B)

< 0, as p > 1.

So, the conclusion of (3) holds.
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(4) The conclusion follows from

I (λu) = λ2
∫

B

|∇Bu|2 dx1
x1

dx ′ − λp+1
∫

B

|u|p+1 dx1
x1

dx ′ = λ
d

dλ
J (λu).

Hence, when 0 < λ < λ∗, I (λu) > 0; when λ∗ < λ < ∞, I (λu) < 0; when
λ = λ∗, I (λu) = 0.

��

Assume that u∈H1, n2
2,0 (B), ‖∇Bu‖

L
n
2
2 (B)

�=0,we denoteC∗ = sup

⎧
⎪⎨

⎪⎩

‖u‖
L

n
p+1
p+1 (B)

‖∇Bu‖
L

n
2
2 (B)

⎫
⎪⎬

⎪⎭
,

which can be obtained from Propositions 1 and 2.
For δ > 0, we define in cone Sobolev spaces a set of Nehari functionals

Iδ(u) = δ

∫

B

|∇Bu|2 dx1
x1

dx ′ −
∫

B

|u|p+1 dx1
x1

dx ′,

and denote

γ (δ) =
(

δ

C p+1∗

) 1
p−1

.

Lemma 3.2 Let u0 ∈ H1, n2
2,0 (B):

(1) If 0 < ‖∇Bu‖
L

n
2
2 (B)

< γ (δ), then Iδ(u) > 0. In particular, if 0 < ‖∇Bu‖
L

n
2
2 (B)

<

γ (1), then I (u) > 0.
(2) If Iδ(u) < 0, then ‖∇Bu‖

L
n
2
2 (B)

> γ (δ). In particular, if I (u) < 0, then

‖∇Bu‖
L

n
2
2 (B)

> γ (1).

(3) If Iδ(u) = 0, then ‖∇Bu‖
L

n
2
2 (B)

≥ γ (δ) or ‖∇Bu‖
L

n
2
2 (B)

= 0.

(4) If Iδ(u) = 0 and ‖∇Bu‖
L

n
2
2 (B)

�= 0, then J (u) > 0 for 0 < δ <
p+1
2 , J (u) = 0

for δ = p+1
2 , J (u) > 0 for δ >

p+1
2 .

Proof (1) From 0 < ‖∇u‖
L

n
2
2 (B)

< γ (δ), we have

∫

B

|u|p+1 dx1
x1

dx ′ =
∫

B

xn1

∣
∣
∣
∣x

− n
p+1

1 u

∣
∣
∣
∣

p+1 dx1
x1

dx ′ = ‖u‖p+1

L
n

p+1
p+1 (B)

≤ C p+1∗ ‖∇Bu‖p+1

L
n
2
2 (B)

= C p+1∗ ‖∇Bu‖p−1

L
n
2
2 (B)

‖∇Bu‖2
L

n
2
2 (B)

< δ‖∇Bu‖2
L

n
2
2 (B)

,
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then

Iδ = δ‖∇Bu‖2
L

n
2
2 (B)

−
∫

B

|u|p+1 dx1
x1

dx ′ > 0.

(2) Notice that Iδ(u) < 0, then we have ‖∇Bu‖2
L

n
2
2 (B)

�= 0. And we have

δ‖∇Bu‖
L

n
2
2 (B)

<

∫

B

|u|p+1 dx1
x1

dx ′ ≤ C p+1∗ ‖∇Bu‖p+1

L
n
2
2 (B)

= C p+1∗ ‖∇Bu‖p−1

L
n
2
2 (B)

‖∇Bu‖2
L

n
2
2 (B)

,

then

‖∇Bu‖
L

n
2
2 (B)

> γ (δ).

(3) From Iδ(u) = 0, we have

δ‖∇Bu‖2
L

n
2
2 (B)

=
∫

B

|u|p+1 dx1
x1

dx ′.

If ‖∇Bu‖
L

n
2
2 (B)

= 0, then from

∫

B

|u|p+1 dx1
x1

dx ′ ≤ C p+1∗ ‖∇Bu‖p+1

L
n
2
2

,

we have
∫

B

|u|p+1 dx1
x1

dx ′ = 0.

So when ‖∇Bu‖
L

n
2
2 (B)

= 0, satisfies. If ‖∇Bu‖
L

n
2
2 (B)

�= 0 and Iδ(u) = 0, then

δ‖∇Bu‖2
L

n
2
2 (B)

=
∫

B

|u|p+1 dx1
x1

dx ′ ≤ C p+1∗ ‖∇Bu‖p+1

L
n
2
2

= C p+1∗ ‖∇Bu‖p−1

L
n
2
2 (B)

‖∇Bu‖2
L

n
2
2 (B)

.

So, we have

‖∇Bu‖
L

n
2
2 (B)

≥
(

δ

C p+1∗

) 1
p−1

= γ (δ).
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(4) By Iδ(u) = 0 and ‖∇Bu‖2
L

n
2
2 (B)

> 0, we have

J (u) = 1

2

∫

B

|∇Bu|2 dx1
x1

dx ′ − 1

p + 1

∫

B

|u|p+1 dx1
x1

dx ′

=
(
1

2
− δ

p + 1

)

‖∇Bu‖2
L

n
2
2 (B)

+ 1

p + 1
Iδ

=
(
1

2
− δ

p + 1

)

‖∇Bu‖2
L

n
2
2 (B)

.

So, the conclusion of (4) holds.
��

Now, for δ > 0, we define the depth of a family of potential wells as follows

d(δ) = inf
u∈Nδ

J (u),

where

Nδ =
{

u ∈ H1, n2
2,0 (B)|Iδ(u) = 0,

∫

B

|∇Bu|2 dx1
x1

dx ′ �= 0

}

. (3.2)

Then, the depth d(δ) and its expression can be estimated. Additionally, we show that
how d(δ) behaves with respect to δ in the following lemma.

Lemma 3.3 d(δ) satisfies the following properties:

(1) d(δ) ≥ a(δ)γ 2(δ) for a(δ) = 1

2
− δ

p + 1
and 0 < δ <

p+1
2 . Moreover, we have

d(δ) = inf
u∈Nδ

J (u) = δ
2

p−1

(
1

2
− δ

p + 1

)
2(p + 1)

p − 1
d, 0 < δ <

p + 1

2
.

(2) lim
δ→0

d(δ) = 0, d

(
p + 1

2

)

= 0, and d(δ) < 0 for δ >
p+1
2 .

(3) d(δ) is increasing on 0 < δ ≤ 1, decreasing on 1 ≤ δ ≤ p+1
2 and takes the

maximum d = d(1) at δ = 1.

Proof (1) Let u ∈ Nδ , then Iδ(u) = 0. By Lemma 3.2 (3), we have ‖∇Bu‖
L

n
2
2 (B)

≥
γ (δ). Hence from

J (u) =
(
1

2
− δ

p + 1

)

‖∇Bu‖2
L

n
2
2 (B)

+ 1

p + 1
Iδ(u)

= a(δ)‖∇Bu‖2
L

n
2
2 (B)

≥ a(δ)γ 2(δ),
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we have

d(δ) = inf
u∈δ

J (u) ≥ a(δ)γ 2(δ).

If δ > 0, ũ ∈ Nδ is a minimizer of d(δ) = infu∈Nδ
J (u), i.e., J (ũ) = d(δ). In

this case, we define λ = λ(δ) by ‖∇B(λũ)‖2
L

n
2
2 (B)

= ∫
B

|λũ|p+1 dx1
x1

dx ′. Then for each

δ > 0,

λ =
⎛

⎜
⎝

‖∇Bũ‖2
L

n
2
2 (B)

∫

B
|ũ|p+1 dx1

x1
dx ′

⎞

⎟
⎠

1
p−1

=
(
1

δ

) 1
p−1

.

Thus for λũ ∈ Nδ , we get from the definition of d that

d ≤ J (λũ) = λ2

2
‖∇Bũ‖2

L
n
2
2 (B)

− λp+1

p + 1

∫

B

|ũ|p+1 dx1
x1

dx ′

= 1

2

(
1

δ

) 2
p−1 ‖∇Bũ‖2

L
n
2
2 (B)

− 1

p + 1

(
1

δ

) p+1
p−1
∫

B

|ũ|p+1 dx1
x1

dx ′

=
(
1

δ

) 2
p−1
(
1

2
‖∇Bũ‖2

L
n
2
2 (B)

− 1

(p + 1)δ

∫

B

|ũ|p+1 dx1
x1

dx ′
)

=
(
1

δ

) 2
p−1 p − 1

2(p + 1)
‖∇Bũ‖2

L
n
2
2 (B)

.

Note that d(δ) = J (ũ) =
(
1

2
− δ

p + 1

)

‖∇Bũ‖2
L

n
2
2 (B)

, we get

d ≤
(
1

δ

) 2
p−1 p − 1

2(p + 1)

(
1

2
− δ

p + 1

)−1

d(δ),

which implies

d(δ) ≥ δ
2

p−1

(
1

2
− δ

p + 1

)
2(p + 1)

p − 1
d, 0 < δ <

p + 1

2
. (3.3)

If δ > 0, and ū ∈ N is a minimizer of d = infu∈N J (u), i.e., J (ū) = d. In this
case, we define λ = λ(δ) by δ‖∇B(λū)‖2

L
n
2
2 (B)

= ∫
B

|λū|p+1 dx1
x1

dx ′. Then for each

δ > 0,
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λ =
⎛

⎜
⎝

δ‖∇Bū‖2
L

n
2
2 (B)

∫

B
|ū|p+1 dx1

x1
dx ′

⎞

⎟
⎠

1
p−1

= δ
1

p−1 .

Thus, for λū ∈ Nδ , we get from the definition of d(δ) that

d(δ) ≤ J (λū) = δ
2

p−1

(
1

2
− δ

p + 1

)

‖∇Bū‖2
L

n
2
2 (B)

.

Note that d = J (ū) =
(
1

2
− 1

p + 1

)

‖∇Bū‖2
L

n
2
2 (B)

, we get

d(δ) ≤ δ
2

p−1

(
1

2
− δ

p + 1

)
2(p + 1)

p − 1
d, 0 < δ <

p + 1

2
. (3.4)

By (3.3) and (3.4), we have

d(δ) = δ
2

p−1

(
1

2
− δ

p + 1

)
2(p + 1)

p − 1
d, 0 < δ <

p + 1

2
. (3.5)

(2) and (3) follow from (3.5). ��

Lemma 3.4 Let u0 ∈ H1, n2
2,0 (B) and 0 < δ <

p+1
2 . Assume that J (u) ≤ d(δ):

(1) If Iδ(u) > 0, then ‖∇Bu‖2
L

n
2
2 (B)

<
d(δ)

a(δ)
, where a(δ) = 1

2
− δ

p + 1
. In particular,

if J (u) ≤ d and I (u) > 0, then ‖∇Bu‖2
L

n
2
2 (B)

<
2(p + 1)

p − 1
d.

(2) If ‖∇Bu‖2
L

n
2
2 (B)

>
d(δ)

a(δ)
, then Iδ(u) < 0. In particular, if J (u) ≤ d and

‖∇Bu‖2
L

n
2
2 (B)

>
2(p + 1)

p − 1
d, then I (u) < 0.

(3) If Iδ(u) = 0, then ‖∇Bu‖2
L

n
2
2 (B)

≤ d(δ)

a(δ)
. In particular, if J (u) ≤ d and I (u) = 0,

then ‖∇Bu‖2
L

n
2
2 (B)

≤ 2(p + 1)

p − 1
d.

Proof (1) For 0 < δ <
p + 1

2
, we have

a(δ)‖∇Bu‖2
L

n
2
2 (B)

+ 1

p + 1
Iδ(u) = J (u) ≤ d(δ). (3.6)
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Then a(δ)‖∇Bu‖2
L

n
2
2 (B)

< d(δ), i.e., ‖∇Bu‖2
L

n
2
2 (B)

<
d(δ)

a(δ)
. If J (u) ≤ d and

I (u) > 0, we can get

(
1

2
− 1

p + 1

)

‖∇Bu‖2
L

n
2
2 (B)

<

(
1

2
− 1

p + 1

)

‖∇Bu‖2
L

n
2
2 (B)

+ 1

p + 1
I (u) ≤ d.

Therefore, we obtain

‖∇Bu‖2
L

n
2
2 (B)

<
2(p + 1)

p − 1
d.

(2) If ‖∇Bu‖2
L

n
2
2 (B)

>
d(δ)
a(δ)

, then from (3.6), we get Iδ(u) < 0. If J (u) ≤ d, we have

I (u) ≤ (p + 1)d − p − 1

2
‖∇Bu‖2

L
n
2
2 (B)

. By ‖∇Bu‖2
L

n
2
2 (B)

>
2(p + 1)

p − 1
d, we get

I (u) < (p + 1)d − (p + 1)d = 0.

(3) From (3.6), we have ‖∇Bu‖2
L

n
2
2 (B)

≤ d(δ)

a(δ)
. If J (u) ≤ d and I (u) = 0, then from

(
1

2
− 1

p + 1

)

‖∇Bu‖2
L

n
2
2 (B)

+ 1

p + 1
I (u) ≤ d,

we have ‖∇Bu‖2
L

n
2
2 (B)

≤ 2(p + 1)

p − 1
d.

��
Lemma 3.5 Assume 0 < J (u) < d for some u ∈ H1, n2

2,0 (B), and δ1 < δ2 are two roots
of equation d(δ) = J (u). Then the sign of Iδ(u) doesn’t change for δ1 < δ < δ2.

Proof J (u) > 0 implies ‖∇Bu‖
L

n
2
2 (B)

�= 0. If the sign of Iδ(u) is changeable for

δ1 < δ < δ2, then we can choose δ̄ ∈ (δ1, δ2) and Iδ̄ (u) = 0. Therefore, we can have
J (u) ≥ d(δ̄). From Lemma 3.3 (3), we have J (u) = d(δ1) = d(δ2) < d(δ̄), which is
contradict with J (u) ≥ d(δ̄). ��

Now, we are in a position to introduce a series of potential wells. For 0 < δ <
p+1
2 ,

we define

Wδ =
{
u ∈ H1, n2

2,0 (B)|Iδ(u) > 0, J (u) < d(δ)
}

∪ {0},
Vδ =
{
u ∈ H1, n2

2,0 (B)|Iδ(u) < 0, J (u) < d(δ)
}

.

From the definition ofWδ , Vδ and Lemma 3.3, we can obtain the following lemmas:

Lemma 3.6 (1) If 0 < δ′ < δ′′ ≤ 1, then Wδ′ ⊂ Wδ′′ .
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(2) If 1 ≤ δ′′ < δ′ <
p+1
2 , then Vδ′ ⊂ Vδ′′ .

In addition, we define

Bδ =
{

u ∈ H1, n2
2,0 (B)|‖∇Bu‖

L
n
2
2 (B)

< γ (δ)

}

,

B̄δ = Bδ ∪ ∂Bδ =
{

u ∈ H1, n2
2,0 (B)|‖∇Bu‖

L
n
2
2 (B)

≤ γ (δ)

}

,

Bc
δ =
{

u ∈ H1, n2
2,0 (B)|‖∇Bu‖

L
n
2
2 (B)

> γ (δ)

}

.

Lemma 3.7 Let 0 < δ <
p+1
2 . Then

Bγ1(δ) ⊂ Wδ ⊂ Bγ2(δ), Vδ ⊂ Bc
δ

where

Bγ1(δ) =
{

u ∈ H1, n2
2,0 (B)|‖∇Bu‖2

L
n
2
2 (B)

< min
{
γ 2(δ), γ 2

0 (δ)
}
}

,

Bγ2(δ) =
{

u ∈ H1, n2
2,0 (B)|‖∇Bu‖2

L
n
2
2 (B)

<
d(δ)

a(δ)

}

,

where γ0(δ) is the unique real root of equation

1

2
γ 2 = d(δ).

Proof First ‖∇Bu‖
L

n
2
2 (B)

< γ (δ) gives ‖∇Bu‖
L

n
2
2 (B)

= 0 or Iδ(u) > 0. On the other

hand,

J (u) ≤ 1

2
‖∇Bu‖2

L
n
2
2 (B)

and ‖∇Bu‖2
L

n
2
2 (B)

< γ 2
0 (δ) yield J (u) < d(δ). Hence we have Bγ1(δ) ⊂ Wδ . The

remainder of this lemma follows from Lemmas 3.2 and 3.4. ��

3.2 Invariant sets and Vacuum isolating

In this subsection, we prove the invariance of some sets under the flow of (1.1) and
the vacuum isolating behavior of problem (1.1).

Definition 3 (Maximal existence time) Let u(t) be a weak solution of problem (1.1).
We define the maximal existence time Tmax of u(t) as follows:
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(1) If u(t) exists for 0 ≤ t < ∞, then Tmax = +∞.
(2) If there exists a t0 ∈ (0,∞) such that u(t) exists for 0 ≤ t < t0, but doesn’t exist

at t = t0, then Tmax = t0.

Definition 4 (Weak solution) Function u = u(x, t) is called a weak solution of prob-
lem (1.1) on intB × [0, Tmax ), with 0 < Tmax ≤ +∞ being the maximal existence

time, if u ∈ L∞ (0, Tmax ;H1, n2
2,0 (B)
)
with ut ∈ L2

(
0, Tmax ;H1, n2

2,0 (B)
)
and satisfies

problem (1.1) in the distribution sense, i.e.,

(1) ∀ v ∈ H1, n2
2,0 (B), t ∈ (0, Tmax ),

(ut , v)2 + (∇Bu,∇Bv)2 + (∇But ,∇Bv)2 =
(
|u|p−1u, v

)

2
. (3.7)

(2) u(x, 0) = u0(x) inH1, n2
2,0 (B).

(3) For 0 ≤ t < Tmax ,

∫ t

0
‖uτ‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Buτ‖2

L
n
2
2 (B)

dτ + J (u(t)) ≤ J (u0). (3.8)

Now,wediscuss the invariance of some sets corresponding to problem (1.1) inspired
by the ideas in [19].

Theorem 3.1 Let u0 ∈ H1, n2
2,0 (B), 0 < e < d, δ1 < δ2 be the two roots of equation

d(δ) = e. Then:

(1) All weak solutions u of problem (1.1) with 0 < J (u0) ≤ e belong to Wδ for
δ1 < δ < δ2, 0 ≤ t < Tmax , provided I (u0) > 0 or ‖∇Bu0‖

L
n
2
2 (B)

= 0.

(2) All weak solutions u of problem (1.1) with 0 < J (u0) ≤ e belong to Vδ for
δ1 < δ < δ2, 0 ≤ t < Tmax , provided I (u0) < 0,

where Tmax is the maximal existence time of u.

Proof (1) Let u(t) be any weak solution of problem (1.1) with J (u0) ≤ e,
I (u0) > 0 or ‖∇Bu‖

L
n
2
2 (B)

= 0. Tmax is the maximal existence time of u(t).

If ‖∇Bu0‖
L

n
2
2 (B)

= 0, then u0(x) ∈ Wδ . If I (u0) > 0, then from Lemma 3.5,

it follows Iδ(u0) > 0 and J (u0) < d(δ). Then u0(x) ∈ Wδ for δ1 < δ < δ2.
Next, we should prove u(t) ∈ Wδ for δ1 < δ < δ2 and 0 < t < Tmax . Arguing
by contradiction, by the continuity of I (u) we suppose that there must exist a
δ0 ∈ (δ1, δ2) and t0 ∈ (0, Tmax ) such that u(t0) ∈ ∂Wδ0 , and Iδ0(u(t0)) = 0,
‖∇Bu‖

L
n
2
2 (B)

�= 0 or J (u(t0)) = d(δ0). From

∫ t

0
‖uτ‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Buτ‖2

L
n
2
2 (B)

dτ

+ J (u(t)) ≤ J (u0) < d(δ), δ1 < δ < δ2, 0 ≤ t < Tmax , (3.9)
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we can see that J (u(t0)) �= d(δ0). If Iδ0(u(t0)) = 0, ‖∇Bu‖2
L

n
2
2 (B)

�= 0, then by

the definition of d(δ), we have J (u(t0)) ≥ d(δ0), which contradicts (3.9).
(2) Let u(t) be aweak solution of problem (1.1) with 0 < J (u0) ≤ e < d, I (u0) < 0.

From J (u0) ≤ e, I (u0) < 0 and Lemma 3.5, it follows Iδ(u0) < 0 and J (u0) <

d(δ). Then u0(x) ∈ Vδ for δ1 < δ < δ2. We prove u(t) ∈ Vδ for δ1 < δ < δ2 and
0 < t < Tmax . Arguing by contradiction, by time continuity of I (u) we suppose
that there must exist a δ0 ∈ (δ1, δ2) and t0 ∈ (0, Tmax ) such that u(t0) ∈ ∂Vδ0 , and
Iδ0(u(t0)) = 0 or J (u(t0)) = d(δ0). By (3.9) we can see that J (u(t0)) �= d(δ0).
Assume Iδ0(u(t0)) = 0 and t0 is the first time such that Iδ0(u(t)) = 0, then
Iδ0(u(t)) < 0 for 0 ≤ t < t0. By Lemma 3.2 (2) we have ‖∇Bu‖

L
n
2
2 (B)

> γ (δ0)

for 0 ≤ t < t0. Hence ‖∇Bu‖
L

n
2
2 (B)

≥ γ (δ0), then ‖u(t0)‖H1, n2
2,0 (B)

�= 0. From

u(t0) ∈ Nδ0 and J (u(t0)) �= d(δ0), we have J (u(t0)) > d(δ0), which contradicts
to (3.9). ��

To discuss about the invariant of the solutions with negative level energy, we intro-
duce the following results.

Proposition 3 All nontrivial solutions of problem (1.1) with J (u0) = 0 belong to

Bc
γ0

=
{

u ∈ H1, n2
2,0 (B)|‖∇Bu‖

L
n
2
2 (B)

≥ γ0

}

,

where γ0 is the unique real root of equation

C p+1∗
p + 1

γ p−1 = 1

2
. (3.10)

Proof Let u(t) be any solution of problem (1.1) with J (u0) = 0, Tmax be the maximal
existence time of u(t). From (3.8), we get J (u) ≤ 0 for 0 ≤ t < Tmax . Hence by

1

2
‖∇Bu‖2

L
n
2
2 (B)

≤ 1

p + 1

∫

B

|u|p+1 dx1
x1

dx ′

≤ 1

p + 1
C p+1∗ ‖∇Bu‖p−1

L
n
2
2 (B)

‖∇Bu‖2
L

n
2
2 (B)

, 0 ≤ t < Tmax .

we must have either ‖∇Bu‖
L

n
2
2 (B)

= 0 or ‖∇Bu‖
L

n
2
2 (B)

≥ γ0. If ‖∇Bu0‖
L

n
2
2 (B)

= 0,

then ‖∇Bu‖
L

n
2
2 (B)

≡ 0 for 0 ≤ t < Tmax . Otherwise there exists a t0 ∈ (0, Tmax )

such that 0 < ‖∇Bu(t0)‖
L

n
2
2 (B)

< γ0. By a similar argument we can prove that if

‖∇Bu0‖
L

n
2
2 (B)

≥ γ0, then ‖∇Bu‖
L

n
2
2 (B)

≥ γ0 for 0 < t < Tmax . ��



644 G. Li et al.

Theorem 3.2 Let u0 ∈ H1, n2
2,0 (B). Assume that J (u0) < 0 or J (u0) = 0 and

‖∇Bu0‖
L

n
2
2 (B)

�= 0. Then all solutions of problem (1.1) belong to Vδ for 0 < δ <

p + 1

2
.

Proof Let u(t) be any solution of problem (1.1) with J (u0) < 0 or J (u0) = 0 and
‖∇Bu0‖

L
n
2
2 (B)

�= 0, Tmax be the maximal existence time of u(t). The energy inequality

gives

a(δ)‖∇Bu‖2
L

n
2
2 (B)

+ 1

p + 1
Iδ(u) = J (u) ≤ J (u0), 0 < δ <

p + 1

2
. (3.11)

From (3.11) it follows that if J (u0) < 0, then Iδ(u) < 0 and J (u) < 0 < d(δ) for

0 < δ <
p + 1

2
; if J (u0) = 0 and ‖∇Bu0‖

L
n
2
2 (B)

�= 0, then by Proposition 3 we

have ‖∇Bu‖
L

n
2
2 (B)

≥ γ0 for 0 ≤ t < Tmax . Again by (3.11) we get Iδ(u) < 0 and

J (u) < 0 < d(δ) for 0 < δ <
p + 1

2
. Hence for above two cases we always have

u(t) ∈ Vδ for 0 < δ <
p + 1

2
, 0 ≤ t < Tmax . ��

Corollary 3.1 Let u0 ∈ H1, n2
2,0 (B). Assume that J (u0) < 0 or J (u0) = 0 and

‖∇Bu0‖
L

n
2
2 (B)

�= 0. Then all weak solutions of problem (1.1) belong to B̄c
p+1
2
.

Proof Let u(t) be any weak solution of problem (1.1) with J (u0) < 0 or J (u0) = 0
and ‖∇Bu0‖

L
n
2
2 (B)

�= 0, Tmax be the maximal existence time of u(t). Then Theorem

3.2 gives

u(t) ∈ Vδ for 0 < δ <
p + 1

2
, 0 ≤ t < Tmax .

From this and Lemma 3.2 we get ‖∇Bu‖
L

n
2
2 (B)

> γ (δ) for 0 < δ <
p + 1

2
, 0 ≤ t <

Tmax . Letting δ → p + 1

2
, we obtain ‖∇Bu‖

L
n
2
2 (B)

≥ γ

(
p + 1

2

)

for 0 ≤ t < Tmax .

��
Now, we discuss the vacuum isolating to problem (1.1) with J (u0) < d.

Theorem 3.3 Let e ∈ (0, d). Suppose δ1, δ2 are the two of d(δ) = e. Then for all
weak solutions of problem (1.1) with J (u0) ≤ e, there is a vacuum region

Ue =
{

u ∈ H1, n2
2,0 (B)|Iδ(u) = 0, ‖∇Bu‖

L
n
2
2 (B)

�= 0, δ1 < δ < δ2

}

such that there is no any weak solution of problem (1.1) in Ue.
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Proof Let u(t) be any weak solution of problem (1.1) with J (u0) ≤ e, Tmax be the
maximal existence time of u(t). We only need to prove that if ‖∇Bu‖

L
n
2
2 (B)

�= 0 and

J (u0) ≤ e, then for all δ ∈ (δ1, δ2), u(t) /∈ Nδ , i.e. Iδ(u(t)) �= 0, for all t ∈ [0, Tmax ).
At first, it is clear that Iδ(u0) �= 0. Since if Iδ(u0) = 0, then J (u0) ≥ d(δ) >

d(δ1) = d(δ2), which contradicts with J (u0) ≤ e.
Suppose there is t1 > 0 s.t. u(t1) ∈ Ue. Namely, there must exist a δ0 ∈ (δ1, δ2)

such that u(t1) ∈ Nδ0 . From (3.8), we get J (u0) ≥ J (u(t1)) ≥ d(δ) > J (u0), which
leads to a contradiction. ��

4 Low initial energy J(u0) < d

In this section, we prove a threshold result of global existence and nonexistence of
solutions for problem (1.1) with the low initial energy J (u0) < d.

4.1 Global existence with exponential decay

In this subsection,we establish the global existence ofweak solutions for problem (1.1)
when J (u0) < d and I (u0) > 0 or ‖∇Bu0‖

L
n
2
2 (B)

= 0 by using Galerkin approxi-

mation technique and potential well theory. Meanwhile, we obtain the asymptotic
stability of global solutions.

Theorem 4.1 (Global existence and decay for J (u0) < d) Let u0 ∈ H1, n2
2,0 (B). Assume

that J (u0) < d and I (u0) > 0 or ‖∇Bu0‖
L

n
2
2 (B)

= 0. Then problem (1.1) admits a

global weak solution u(t) ∈ L∞
(
0,∞;H1, n2

2,0 (B)
)
with ut ∈ L2

(
0,∞;H1, n2

2,0 (B)
)
.

Moreover u(t) ∈ W for 0 ≤ t < ∞, and there exist constants C > 0 such that

‖u‖2
L

n
2
2 (B)

+ ‖∇Bu‖2
L

n
2
2 (B)

≤
(

‖u0‖2
L

n
2
2 (B)

+ ‖∇Bu0‖2
L

n
2
2 (B)

)

e−Ct .

Proof We divide the proof into two steps.

Step 1 Proof of global existence. Let {ω j (x)}be a systemof base functions inH1, n2
2,0 (B).

Now we construct the following approximate solutions um(t, x) of problem
(1.1):

um(t, x) =
m∑

j=1

g jm(t)ω j (x), m = 1, 2, . . . ,

which satisfies

(umt , ωs)2 + (∇Bum,∇Bωs)2

+ (∇Bumt ,∇Bωs)2 =
(
|um |p−1um, ωs

)

2
, s = 1, 2, . . . , (4.1)
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um(x, 0) =
m∑

j=1

a jmω j (x) → u0(x) inH1, n2
2,0 (B). (4.2)

Multiplying (4.1) by g′
sm(t), summing for s, and integrating with respect to t from

0 to t , we have

∫ t

0
‖umτ‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Bumτ‖2

L
n
2
2 (B)

dτ + J (um) ≤ J (um(0)), 0 ≤ t < ∞.

By (4.2) we can get J (um(0)) → J (u0), then for sufficiently large m, we have

∫ t

0
‖umτ‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Bumτ‖2

L
n
2
2 (B)

dτ + J (um) < d, 0 ≤ t < ∞. (4.3)

From (4.3) and the proof of Theorem 3.1, we can get um(t) ∈ W for 0 ≤ t < ∞ and
sufficiently large m. Hence, by (4.3) and

J (um) = p − 1

2(p + 1)
‖∇Bum‖2

L
n
2
2 (B)

+ 1

p + 1
I (um),

we obtain

∫ t

0
‖umτ‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Bumτ‖2

L
n
2
2 (B)

dτ

+ p − 1

2(p + 1)
‖∇Bum‖2

L
n
2
2 (B)

< d, 0 ≤ t < ∞, (4.4)

for sufficiently large m, which yields

‖∇Bum‖2
L

n
2
2 (B)

<
2(p + 1)

p − 1
d, 0 ≤ t < ∞, (4.5)

∫ t

0
‖∇Bumτ‖2

L
n
2
2 (B)

dτ < d, 0 ≤ t < ∞, (4.6)

∫

B

∣
∣
∣|um |p−1 um

∣
∣
∣

p+1
p dx1

x1
dx ′ =
∫

B

|um |p+1 dx1
x1

dx ′ = ‖um‖p+1

L
n

p+1
p+1 (B)

≤ C p+1∗ ‖∇Bum‖p+1

L
n
2
2 (B)

< C p+1∗
(
2(p + 1)

p − 1
d

) p+1
2

. (4.7)

Therefore, there exist a u and a subsequence {uv} such that

uv → u in L∞
(
0,∞;H1, n2

2,0 (B)
)
weakly star and a.e. in intB × [0,∞),

uvt → ut in L2
(
0,∞;H1, n2

2,0 (B)
)
weakly star,
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u p
v → u p in L∞

(

0,∞; L
pn
p+1
p+1
p

(B)

)

weakly star and a.e. in intB × [0,∞).

In (4.1), we fixed s, letting m = v → ∞. Then, we get

(ut , ωs)2 + (∇Bu,∇Bωs)2 + (∇But ,∇Bωs)2 =
(
|u|p−1u, ωs

)

and

(ut , v)2 + (∇Bu,∇Bv)2 + (∇But ,∇Bv)2

=
(
|u|p−1u, v

)
, ∀v ∈ H1, n2

2,0 (�), t ∈ (0, T ).

From (4.2) we obtain u(x, 0) = u0(x) in H1, n2
2,0 (B), t ∈ (0, T ). By density we obtain

u ∈ L∞
(
0,∞;H1, n2

2,0 (B)
)
with ut ∈ L2

(
0,∞;H1, n2

2,0 (B)
)
is a global weak solution

of problem (1.1). It is obvious that u(t) ∈ W for 0 ≤ t < ∞.

Step 2 Proof of decay. Taking v = u in (3.7), we get

1

2

d

dt

(

‖u‖2
L

n
2
2 (B)

+ ‖∇Bu‖2
L

n
2
2 (B)

)

= −‖∇Bu‖2
L

n
2
2 (B)

+ ‖u‖p+1

L
n

p+1
p+1 (B)

= −I (u).

From Theorem 3.1 we have that u(x, t) ∈ Wδ for δ1 < δ < δ2 and 0 < t < ∞
under the condition J (u0) < d and I (u0) > 0 or ‖∇Bu0‖

L
n
2
2 (B)

= 0. Thus, by

Lemma 3.5, we have I (δ1) ≥ 0 for 0 < t < ∞. Therefore,

1

2

d

dt

(

‖u‖2
L

n
2
2 (B)

+ ‖∇Bu‖2
L

n
2
2 (B)

)

= −I (u) = (δ1 − 1)‖∇Bu‖2
L

n
2
2 (B)

− Iδ1(u)

≤ 1

C2∗ + 1
(δ1 − 1)

(

‖u‖2
L

n
2
2 (B)

+ ‖∇Bu‖2
L

n
2
2 (B)

)

.

Consequently,

‖u‖2
L

n
2
2 (B)

+ ‖∇Bu‖2
L

n
2
2 (B)

≤
(

‖u0‖2
L

n
2
2 (B)

+ ‖∇Bu0‖2
L

n
2
2 (B)

)

e−Ct ,

where C = 2
1 − δ1

C2∗ + 1
.

The proof is complete. ��
Corollary 4.1 In Theorem4.1, if the assumptions “J (u0) < d, I (u0) > 0′′ is replaced
by “0 < J (u0) < d, Iδ2(u0) > 0′′, where (δ1, δ2) is the maximal interval including
δ = 1 such that dδ > J (u0) for δ ∈ (δ1, δ2), then problem (1.1) admits a global weak

solution u(t) ∈ L∞(0,∞;H1, n2
2,0 (B)) with ut ∈ L2(0,∞;H1, n2

2,0 (B)) and u(t) ∈ Wδ ,
for 0 ≤ t < ∞.



648 G. Li et al.

Proof Making use of Lemma 3.5, we obtain from 0 < J (u0) < d, Iδ2(u0) > 0
that Iδ(u0) > 0 for all δ ∈ (δ1, δ2). Repeating the arguments of Theorem 4.1 for
δ1 < δ < δ2, then the conclusion of Corollary 4.1 holds. ��
Corollary 4.2 In Corollary 4.1, if the assumptions “Iδ2(u0) > 0 or ‖∇Bu0‖

L
n
2
2 (B)

=
0′′ is replaced by ‖∇Bu‖

L
n
2
2 (B)

< γ (δ), then problem (1.1) admits a global weak

solution u(t) ∈ L∞
(
0,∞;H1, n2

2,0 (B)
)
with ut ∈ L2

(
0,∞;H1, n2

2,0 (B)
)
and satisfies

‖∇Bu‖2
L

n
2
2 (B)

<
d(δ)

a(δ)
, f or δ1 < δ < min

{

δ2,
p + 1

2

}

, 0 ≤ t < ∞. (4.8)

In particular, we have

‖∇Bu‖2
L

n
2
2 (B)

≤ d(δ1)

a(δ1)
for 0 ≤ t < ∞. (4.9)

Proof ‖∇Bu‖
L

n
2
2 (B)

< γ (δ) gives Iδ2(u0) > 0 or ‖∇Bu0‖
L

n
2
2 (B)

= 0. Hence, from

Corollary 4.1, it follows that problem (1.1) admits a global weak solution u(t) ∈
L∞ (0,∞;H1, n2

2,0 (B)
)
with ut ∈ L2

(
0,∞;H1, n2

2,0 (B)
)
and u(t) ∈ Wδ , for 0 ≤ t < ∞.

Moreover, from Lemma 3.4, we can deduce that (4.8) holds. Letting δ → δ1, the
conclusion (4.9) is also obtained. ��

4.2 Finite time blow-up of solution

In this subsection, we establish finite time blow-up of solution for problem (1.1) when
J (u0) < d and I (u0) < 0 by using the concavity argument (see [13,14,17]) and
properties of a family of potential wells. Furthermore, by making use of a differential
inequality technique (see [20])we determine a lower bound on blow-up time for certain
solutions of problem (1.1) if blow-up occurs.

We need the following lemmas to prove finite time blow-up with J (u0) < d.

Lemma 4.1 Let u0 ∈ H1, n2
2,0 (B). Suppose J (u0) < d and I (u0) < 0, then we have

d <
p − 1

2(p + 1)
‖∇Bu‖2

L
n
2
2 (B)

(4.10)

for all t ∈ [0, Tmax ), where Tmax is the maximal existence time.

Proof We first prove I (u) < 0 for t > 0. If it is false, we must be allowed to choose
a t0 > 0 such that I (u(t0)) = 0 and I (u) < 0 for 0 ≤ t < t0. From Lemma 3.2
(2), we have ‖∇Bu(t)‖

L
n
2
2 (B)

> γ (1) for 0 ≤ t < t0, ‖∇Bu(t0)‖2
L

n
2
2 (B)

≥ γ (1) and

J (u(t0)) ≥ d, which contradicts to (3.8). Since
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J (λu) = λ2

2

∫

B

|∇Bu|2 dx1
x1

dx ′ − λp+1

p + 1

∫

B

|u|p+1 dx1
x1

dx ′,

we get

d

dλ
J (λu) = λ

∫

B

|∇Bu|2 dx1
x1

dx ′ − λp
∫

B

|u|p+1 dx1
x1

dx ′

and

d2

dλ2
J (λu) =

∫

B

|∇Bu|2 dx1
x1

dx ′ − pλp−1
∫

B

|u|p+1 dx1
x1

dx ′.

Let
d

dλ
J (λu) = 0, which implies

λ̄1 = 0, λ̄2 =
(∫

B
|∇Bu|2 dx1

x1
dx ′

∫

B
|u|p+1 dx1

x1
dx ′

) 1
p−1

.

An elementary calculation shows

d2

dλ2
J (λ̄1u) > 0 and

d2

dλ2
J (λ̄2u) < 0.

So we have

sup
λ≥0

J (λu) = J (λ̄2u) = p − 1

2(p + 1)

(∫

B
|∇Bu|2 dx1

x1
dx ′
) p+1

p−1

(∫

B
|u|p+1 dx1

x1
dx ′
) 2

p−1

.

By I (u) < 0, we have

d ≤ sup
λ≥0

J (λu) = J (λ̄2u) = p − 1

2(p + 1)

(∫

B
|∇Bu|2 dx1

x1
dx ′
) p+1

p−1

(∫

B
|u|p+1 dx1

x1
dx ′
) 2

p−1

<
p − 1

2(p + 1)
‖∇Bu‖2

L
n
2
2 (B)

. (4.11)

��
Lemma 4.2 ([12])Let L(t) be a positive, twice differentiable function, which satisfies,
for t > 0, inequality

L(t)L ′′(t) − (1 + α)L ′(t)2 ≥ 0
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with some α > 0. If L(0) > 0 and L ′(0) > 0, then there exists a time T ∗ ≤ L(0)

[αL ′(0)]
such that limt→T ∗− L(t) = ∞.

Theorem 4.2 Let u0 ∈ H1, n2
2,0 (B). Suppose J (u0) < d and I (u0) < 0. Then the

existence time of theweak solution for problem (1.1) is finite, i.e., themaximal existence
time Tmax is finite and

lim
t→T−

max

∫ t

0

(

‖u‖2
L

n
2
2 (B)

+ ‖∇Bu‖2
L

n
2
2 (B)

)

dτ = +∞. (4.12)

Moreover, we have

Tmax ≤ bT 2
0

b(p − 1)T0 −
(

‖u0‖2
L

n
2
2 (B)

+ ‖∇Bu0‖2
L

n
2
2 (B)

) , (4.13)

where b and T0 will be chosen later.

Proof Let u(t) be any weak solution of problem (1.1) with J (u0) < d and I (u0) < 0.
By contradiction, we suppose that u(t) is global, then Tmax = ∞. For any T > 0 and
for all t ∈ [0, T ], we define

L(t) =
∫ t

0
‖u(τ )‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Bu(τ )‖2

L
n
2
2 (B)

dτ

+ (T − t)

(

‖u0‖2
L

n
2
2 (B)

+ ‖∇Bu0‖2
L

n
2
2 (B)

)

+ b(t + T0)
2 (4.14)

where b and T0 are positive constants which will be specified later. Furthermore,

L ′(t) = ‖u(t)‖2
L

n
2
2 (B)

+ ‖∇Bu(t)‖2
L

n
2
2 (B)

−
(

‖u0‖2
L

n
2
2 (B)

+ ‖∇Bu0‖2
L

n
2
2 (B)

)

+ 2b(t + T0)

= 2
∫ t

0
(u(τ ), uτ (τ ))2 dτ + 2

∫ t

0
(∇Bu(τ ),∇Buτ (τ ))2 dτ + 2b(t + T0)

(4.15)

and, consequently,

L ′′(t) = 2
∫

B

u(t)ut (t)
dx1
x1

dx ′ + 2
∫

B

∇Bu(t)∇But (t)
dx1
x1

dx ′ + 2b,



Global existence, exponential decay and finite time… 651

Therefore, we get

L(t)L ′′(t) − p + 1

2
L ′(t)2

= L(t)L ′′(t) + 2(p + 1)

[

η(t) −
(

L(t) − (T − t)

(

‖u0‖2
L

n
2
2 (B)

+‖∇Bu0‖2
L

n
2
2 (B)

))](∫ t

0
‖uτ (τ )‖2

L
n
2
2 (B)

dτ

+
∫ t

0
‖∇Buτ (τ )‖2

L
n
2
2 (B)

dτ + b

)

where η : [0, T ] → R+ is the function defined by

η =
(∫ t

0
‖u(τ )‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Bu(τ )‖2

L
n
2
2 (B)

dτ + b

)

(∫ t

0
‖uτ (τ )‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Buτ (τ )‖2

L
n
2
2 (B)

dτ + b(t + T0)
2

)

−
(∫ t

0
(u(τ ), uτ (τ ))2 dτ +

∫ t

0
(∇Bu(τ ),∇Buτ (τ ))2 dτ + b(t + T0)

)2

≥ 0.

As a consequence, we read the following differential inequality

L(t)L ′′(t) − p + 1

2
L ′(t)2 ≥L(t)L ′′(t) − 2(p + 1)L(t)

(∫ t

0
‖uτ (τ )‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Buτ (τ )‖2

L
n
2
2 (B)

dτ + b

)

= L(t)ξ(t), (4.16)

for almost every t ∈ [0, T ], where ξ : [0, T ] → R+ is the map defined by

ξ(t) = 2
∫

B

u(t)ut (t)
dx1
x1

dx ′ + 2
∫

B

∇Bu(t)∇But (t)
dx1
x1

dx ′

− 2(p + 1)
∫ t

0
‖uτ (τ )‖2

L
n
2
2 (B)

dτ

− 2(p + 1)
∫ t

0
‖∇Buτ (τ )‖2

L
n
2
2 (B)

dτ − 2pb. (4.17)
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By (1.1) and (3.8), we have

ξ(t) = 2
∫

B

(
u p+1 − ‖∇Bu‖2

) dx1
x1

dx ′ − 2(p + 1)
∫ t

0
‖uτ (τ )‖2

L
n
2
2 (B)

dτ

− 2(p + 1)
∫ t

0
‖∇Buτ (τ )‖2

L
n
2
2 (B)

dτ − 2pb

≥ 2
∫

B

(
u p+1 − ‖∇Bu‖2

) dx1
x1

dx ′ − 2(p + 1)J (u0)

+ 2(p + 1)J (u(t)) − 2pb.

≥ (p − 1)‖∇Bu‖2
L

n
2
2 (B)

− 2(p + 1)d − 2pb.

By Lemma 4.1, we can get d <
p − 1

2(p + 1)
‖∇Bu‖2

L
n
2
2 (B)

. Choosing b small enough

such that

b ≤
(p − 1)‖∇Bu‖2

L
n
2
2 (B)

− 2(p + 1)d

2p
,

we have

ξ(t) ≥ (p − 1)‖∇Bu‖2
L

n
2
2 (B)

− 2(p + 1)d − 2pb ≥ 0,

which implies

L(t)L ′′(t) − p + 1

2
L ′(t)2 ≥ 0. (4.18)

By (4.14) and (4.15), we have L(0) > 0 and L ′(0) > 0.We then choose T0 sufficiently
large such that

b(p − 1)T0 −
(

‖u0‖2
L

n
2
2 (B)

+ ‖∇Bu0‖2
L

n
2
2 (B)

)

> 0.

Combining Lemma 4.2, we then obtain that L(t) blows up in finite time

T ∗ ≤ bT 2
0

b(p − 1)T0 −
(

‖u0‖2
L

n
2
2 (B)

+ ‖∇Bu0‖2
L

n
2
2 (B)

) .
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In view of the arbitrariness of time T , we may choose T such that

T ≥ bT 2
0

b(p − 1)T0 −
(

‖u0‖2
L

n
2
2 (B)

+ ‖∇Bu0‖2
L

n
2
2 (B)

) .

Thus, we see from (4.14) that there exists a time T ∗ ∈ (0, T ] such that

lim
t→T ∗−

∫ t

0

(

‖u‖2
L

n
2
2 (B)

+ ‖∇Bu‖2
L

n
2
2 (B)

)

dτ = +∞,

which contradicts Tmax = ∞. Hence, the solution of the problem (1.1) blows up in
finite time. ��
Theorem 4.3 Under the assumption of Theorem 4.2, then the solution u(x, t) of

problem (1.1) blows up at t = Tmax in H1, n2
2,0 (B) with limt→T−

max

∫ t
0 ‖u‖2

L
n
2
2 (B)

+
‖∇Bu‖2

L
n
2
2 (B)

dτ = +∞. Moreover, we have

Tmax ≥

(

‖u0‖2
L

n
2
2 (B)

+ ‖∇Bu0‖2
L

n
2
2 (B)

)− p−1
2

(p − 1)C p+1∗
.

Proof First, from Theorem 4.2, we know that the solution u(x, t) of problem (1.1)
blows up in finite time Tmax . Now, we estimate the lower bound for blow-up time
Tmax .

We define

ϕ(t) = ‖u‖2
L

n
2
2 (B)

+ ‖∇Bu‖2
L

n
2
2 (B)

. (4.19)

Multiplying u(x, t) on two sides of Eq. (1.1), and integrating by part, we have

∫

B

uut
dx1
x1

dx ′ +
∫

B

|∇But | |∇Bu| dx1
x1

dx ′

= −
∫

B

|∇Bu|2 dx1
x1

dx ′ +
∫

B

|u|p+1 dx1
x1

dx ′. (4.20)

Then by direct computation and (4.20), we have

ϕ′(t) = −2
∫

B

|∇Bu|2 dx1
x1

dx ′ + 2
∫

B

|u|p+1 dx1
x1

dx ′, (4.21)
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which implies

ϕ′(t) ≤ 2C p+1∗ (ϕ(t))
p+1
2 .

If there exists t0 ∈ [0, Tmax ) such that ϕ(t0) = 0, then we can obtain ϕ(Tmax ) = 0,

which contradicts with the fact that u(x, t) blows up at Tmax in H
1, n2
2,0 (B)-norm. So we

see

ϕ(t) > 0

and

ϕ′(t)

(ϕ(t))
p+1
2

≤ 2C p+1∗ . (4.22)

Integrating the inequality (4.22) from 0 to t , we have

(ϕ(0))−
p−1
2 − (ϕ(t))−

p−1
2 ≤ (p − 1)C p−1∗ t. (4.23)

So letting t → Tmax in (4.23), we can conclude that

Tmax ≥

(

‖u0‖2
L

n
2
2 (B)

+ ‖∇Bu0‖2
L

n
2
2 (B)

)− p−1
2

(p − 1)C p+1∗
.

��
Remark 1 Noting that from

p − 1

2(p + 1)
‖∇Bu0‖2

L
n
2
2 (B)

+ 1

p + 1
I (u0) = J (u0),

we see that if J (u0) < 0, then I (u0) ≥ 0 is impossible. If J (u0) = 0, then either
I (u0) > 0 or I (u0) = 0 with ‖∇Bu0‖2

L
n
2
2 (B)

�= 0 is impossible. If 0 < J (u0) < d, it

follows from the definition of d that I (u0) = 0 with ‖∇Bu0‖2
L

n
2
2 (B)

�= 0 is impossible.

Thus, all possible cases already have been considered in Theorems 4.1 and 4.2.

From the discussion above, a threshold result of global existence and nonexistence
of solutions for problem (1.1) has been obtained as follows.

Corollary 4.3 Assume that u0 ∈ H1, n2
2,0 (B) and J (u0) < d. Then problem (1.1) admits

a global weak solution provided I (u0) > 0 or ‖∇Bu0‖2
L

n
2
2 (B)

= 0; problem (1.1) dose

not admit any global solution provided I (u0) < 0.
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5 Critical initial energy J(u0) = d

In this section, we prove the global existence and finite time blow-up of solutions for
problem (1.1) with the critical initial condition J (u0) = d.

Theorem 5.1 (Global existence for J (u0) = d) Let u0 ∈ H1, n2
2,0 (B). Suppose

J (u0) = d and I (u0) ≥ 0. Then problem (1.1) has a global weak solution

u ∈ L∞ (0,∞;H1, n2
2,0 (B)
)
with ut ∈ L2

(
0,∞;H1, n2

2,0 (B)
)
, and u(t) ∈ W̄ = W ∪∂W

for 0 ≤ t < ∞.

Proof Let μm = 1 − 1

m
and u0m = μmu0, m = 2, 3, . . .. We consider the following

problem

⎧
⎨

⎩

ut − �But − �Bu = |u|p−1 u, x ∈ intB, t > 0,
u(0, x) = u0m(x), x ∈ intB,

u(t, x) = 0, x ∈ ∂B, t ≥ 0.
(5.1)

From I (u0) ≥ 0 and Lemma 3.1, we have λ∗ = λ∗(u0) ≥ 1. Thus, we get
I (u0m) = I (μmu0) > 0 and J (u0m) = J (μmu0) < J (u0) < d. So it follows
from Theorem 4.1 that, for each m, problem (5.1) admits a global weak solution

um(t) ∈ L∞
(
0,∞;H1, n2

2,0 (B)
)
with umt ∈ L2

(
0,∞;H1, n2

2,0 (B)
)
and umt ∈ W for

0 ≤ t < ∞, satisfying

(umt , v)2 + (∇Bum,∇Bv)2 + (∇Bumt ,∇Bv)2 = (u p
m, v
)

2 for any v ∈ H1, n2
2,0 (B)

and

∫ t

0
‖umτ‖2

L
n
2
2 (B)

dτ

+
∫ t

0
‖∇Bumτ‖2

L
n
2
2 (B)

dτ + J (um) ≤ J (u0m) < J (u0) = d for t ∈ (0,∞).

(5.2)

By a direct computation we can see that

∫ t

0
‖umτ‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Bumτ‖2

L
n
2
2 (B)

dτ

+ p − 1

2(p + 1)
‖∇Bum‖2

L
n
2
2 (B)

+ 1

p + 1
I (um) < d.

Since I (um) ≥ 0, we can deduce (4.5), (4.6), (4.7) for each m. Hence there exists a u
and a subsequence still denoted as {um}, such that, as m → ∞,
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um → u in L∞
(
0,∞;H1, n2

2,0 (B)
)
weakly star and a.e. in intB × [0,∞),

umt → ut in L2
(
0,∞;H1, n2

2,0 (B)
)
weakly star,

u p
m → u p in L∞

(

0,∞; L
pn
p+1
p+1
p

(B)

)

weakly star and a.e. in intB × [0,∞).

The proof of global existence for the solution is the same as that in the first part of the
Theorem 4.1. ��

Theorem 5.2 Let u0 ∈ H1, n2
2,0 (B). Assume that J (u0) = d and I (u0) ≥ 0. Then, for

the global weak solution u of problem (1.1), there exist constants C > 0 and t1 > 0
such that

‖u‖2
L

n
2
2 (B)

+ ‖∇Bu‖2
L

n
2
2 (B)

≤
(

‖u(t1)‖2
L

n
2
2 (B)

+ ‖∇Bu(t1)‖2
L

n
2
2 (B)

)

e−C(t−t1), t1 ≤ t < ∞. (5.3)

Proof First, Theorem 4.1 gives the existence of a global weak solution for problem
(1.1). In addition, from (3.8), Theorems 4.1, and 5.1, it follows that if u(t) is a global
weak solution of problem (1.1) with J (u0) = d, I (u0) ≥ 0, we must have I (u) ≥ 0
for 0 ≤ t < ∞. Next, we consider the following two cases.

(i) Assume that I (u) > 0 for 0 ≤ t < ∞. Then from (ut , u)2 + (∇But ,∇Bu)2 =
−I (u) < 0, it follows that ‖ut‖

L
n
2
2 (B)

> 0 and ‖∇But‖
L

n
2
2 (B)

> 0 and

∫ t

0

(

‖uτ‖2
L

n
2
2 (B)

+ ‖∇Buτ‖2
L

n
2
2 (B)

)

dτ is strictly increasing for 0 ≤ t < ∞.

Taking any t1 > 0 and letting

d1 = J (u(t1)) = J (u0) −
∫ t1

0
‖uτ‖2

L
n
2
2 (B)

+ ‖∇Buτ‖2
L

n
2
2 (B)

dτ,

then by the energy inequality we get 0 < J (u) ≤ d1 < d for t1 ≤ t < ∞.
Similar to the proof of Theorem 4.1, we can deduce the exponential decay (5.3)
if we take t = t1 as the initial time.

(ii) Assume that there exists a t1 > 0 such that I (u(t1)) = 0 and I (u) > 0 for 0 ≤
t < t1. We also have ‖ut‖

L
n
2
2 (B)

> 0, ‖∇But‖
L

n
2
2 (B)

> 0 and
∫ t

0
(‖uτ‖2

L
n
2
2 (B)

+
‖∇Buτ‖2

L
n
2
2 (B)

)dτ is strictly increasing for 0 ≤ t < t1. By (3.8), we have

J (u(t1)) ≤ J (u0) −
∫ t1

0
‖uτ‖2

L
n
2
2 (B)

+ ‖∇Buτ‖2
L

n
2
2 (B)

dτ < d
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and ‖∇Bu(t1)‖2
L

n
2
2 (B)

= 0. That means J (u(t1)) = 0, then we get J (u) ≤ 0 for

t1 ≤ t < ∞ from

J (u) +
∫ t

t1
‖uτ‖2

L
n
2
2 (B)

+ ‖∇Buτ‖2
L

n
2
2 (B)

dτ ≤ J (u(t1)), t1 ≤ t < ∞.

Hence from

1

2
‖∇Bu‖2

L
n
2
2 (B)

≤ 1

p + 1

∫

B

|u|p+1 dx1
x1

dx ′

≤ 1

p + 1
C p+1∗ ‖∇Bu‖p−1

L
n
2
2 (B)

‖∇Bu‖2
L

n
2
2 (B)

,

it follows that either ‖∇Bu‖
L

n
2
2 (B)

= 0 for t1 ≤ t < ∞, hence (5.3) holds;

or ‖∇Bu‖2
L

n
2
2 (B)

≥ (
p + 1

2C p+1∗
)

1
p−1 , for t1 ≤ t < ∞, which is impossible since

‖∇Bu(t1)‖
L

n
2
2 (B)

= 0. Thereby, we conclude ‖u‖2
L

n
2
2 (B)

+ ‖∇Bu‖2
L

n
2
2 (B)

≡ 0 for

t1 ≤ t < ∞. This completes the proof. ��

Theorem 5.3 (Blow-up for J (u0) = d) Let u0 ∈ H1, n2
2,0 (B). Suppose J (u0) = d and

I (u0) < 0. Then the existence time of the weak solution for problem (1.1) is finite,
i.e., the maximal existence time Tmax is finite and

lim
t→T−

max

∫ t

0

(

‖u‖2
L

n
2
2 (B)

+ ‖∇Bu‖2
L

n
2
2 (B)

)

dτ = +∞. (5.4)

Proof Let u(t) be any weak solution of problem (1.1) with J (u0) = d, I (u0) < 0.
By contradiction, we suppose that u(t) is global, then Tmax = ∞. For any T > 0 and
for all t ∈ [0, T ], we define

L(t) =
∫ t

0
‖u(τ )‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Bu(τ )‖2

L
n
2
2 (B)

dτ

+ (T − t)

(

‖u0‖2
L

n
2
2 (B)

+ ‖∇Bu0‖2
L

n
2
2 (B)

)

+ b(t + T0)
2 (5.5)

where b and T0 are positive constants which will be specified later. Furthermore,

L ′(t) = ‖u(t)‖2
L

n
2
2 (B)

+ ‖∇Bu(t)‖2
L

n
2
2 (B)

−
(

‖u0‖2
L

n
2
2 (B)

+ ‖∇Bu0‖2
L

n
2
2 (B)

)

+ 2b(t + T0)

= 2
∫ t

0
(u(τ ), uτ (τ ))2 dτ + 2

∫ t

0
(∇Bu(τ ),∇Buτ (τ ))2 dτ + 2b(t + T0) (5.6)
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and, consequently,

L ′′(t) = 2
∫

B

u(t)ut (t)
dx1
x1

dx ′ + 2
∫

B

∇Bu(t)∇But (t)
dx1
x1

dx ′ + 2b,

for almost every t ∈ [0, T ]. Therefore, we get

L(t)L ′′(t) − p + 1

2
L ′(t)2 = L(t)L ′′(t) + 2(p + 1)

×
[

η(t) −
(

L(t) − (T − t)

(

‖u0‖2
L

n
2
2 (B)

+ ‖∇Bu0‖2
L

n
2
2 (B)

))]

×
(∫ t

0
‖uτ (τ )‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Buτ (τ )‖2

L
n
2
2 (B)

dτ + b

)

where η : [0, T ] → R+ is the function defined by

η =
(∫ t

0
‖u(τ )‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Bu(τ )‖2

L
n
2
2 (B)

dτ

+ b)

(∫ t

0
‖uτ (τ )‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Buτ (τ )‖2

L
n
2
2 (B)

dτ + b(t + T0)
2

)

−
(∫ t

0
(u(τ ), uτ (τ ))2 dτ +

∫ t

0
(∇Bu(τ ),∇Buτ (τ ))2 dτ + b(t + T0)

)2

≥ 0.

As a consequence, we read the following differential inequality

L(t)L ′′(t) − p + 1

2
L ′(t)2

≥ L(t)L ′′(t) − 2(p + 1)L(t)

(∫ t

0
‖uτ (τ )‖2

L
n
2
2 (B)

dτ +
∫ t

0
‖∇Buτ (τ )‖2

L
n
2
2 (B)

dτ + b

)

= L(t)ξ(t), (5.7)

for almost every t ∈ [0, T ], where ξ : [0, T ] → R+ is the map defined by

ξ(t) = 2
∫

B

u(t)ut (t)
dx1
x1

dx ′ + 2
∫

B

∇Bu(t)∇But (t)
dx1
x1

dx ′

− 2(p + 1)
∫ t

0
‖uτ (τ )‖2

L
n
2
2 (B)

dτ

− 2(p + 1)
∫ t

0
‖∇Buτ (τ )‖2

L
n
2
2 (B)

dτ − 2pb. (5.8)
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By (1.1) and (3.8), we have

ξ(t) = 2
∫

B

(
u p+1 − ‖∇Bu‖2

) dx1
x1

dx ′ − 2(p + 1)
∫ t

0
‖uτ (τ )‖2

L
n
2
2 (B)

dτ

− 2(p + 1)
∫ t

0
‖∇Buτ (τ )‖2

L
n
2
2 (B)

dτ − 2pb

≥2
∫

B

(
u p+1 − ‖∇Bu‖2

) dx1
x1

dx ′

− 2(p + 1)J (u0) + 2(p + 1)J (u(t)) − 2pb.

From J (u0) = d, it follows

ξ(t) ≥ (p − 1)‖∇Bu‖2
L

n
2
2 (B)

− 2(p + 1)d − 2pb.

The reminder of the proof is the same as those of Theorem 4.2, therefore we omit it. ��
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