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Abstract In this paper, we study the semilinear pseudo-parabolic equations u; —
Apu — Agu; = |ul? ~!' 4 on a manifold with conical singularity, where Ap is Fuch-
sian type Laplace operator investigated with totally characteristic degeneracy on the
boundary x; = 0. Firstly, we discuss the invariant sets and the vacuum isolating behav-
ior of solutions with the help of a family of potential wells. Then, we derive a threshold
result of existence and nonexistence of global weak solution: for the low initial energy
J(ug) < d, the solution is global in time with 7 (xg) > 0 or ”VBMOHL%(IB) = 0 and

blows up in finite time with 7 (ug) < 0O; for the critical initial energy J (ug) = d, the
solution is global in time with 7 (zg) > 0 and blows up in finite time with / (o) < 0.
The decay estimate of the energy functional for the global solution and the estimates
of the lifespan of local solution are also given.
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1 Introduction

In this paper, we consider the following initial-boundary value problem for a class of
semilinear pseudo-parabolic equation with conical degeneration

uy — Apuy — Apu = |ulP ' u, x €intB,t > 0,

u(0) = uo, x € intB, (1.1)
u=0, xe€dB,t >0,
2n " . .
where 2 < p+1 < — = 2%, and 2* is the critical cone Sobolev exponents.

Here B =1[0,1) x X, ),} is an (n — 1)-dimensional closed compact manifold, which
is regarded as the local model near the conical points, and 0B = {0} x X. Moreover,
the operator Ag in (1.1) is defined by (x19y,)? + 0, + - - - + 97, , which is an elliptic
operator with conical degeneration on the boundary x; = 0 (we also called it Fuchsian
type Laplace operator), and corresponding gradient operator is denoted by Vg =
(10, dxys - - -, Ox, ). Near 9B we will use coordinates (x, x') = (xy, x2, ..., x,) for
0<x<1,x €X.

The equation in (1.1) is a important physical model, appears in many applications
to natural sciences, such as the unidirectional propagation of nonlinear, dispersive,
long waves [2], the aggregation of population [21] and the nonstationary processes in
crystalline semiconductors [11].

In the classical case, we have

ur — Aup — Au = ulP " u, x e Q.1 >0,
u(0) = uo, x € Q, (1.2)
u=0, x €0Q,t>0,

where € is an open bounded domain of R” with smooth boundary 92 and A is the
standard Laplace operator. It’s well known that problem (1.2) has been studied by many
authors. A powerful technique for treating problem (1.2) is the so called “potential
well method”, which was established by Sattinger [23], Payne and Sattinger [22],
and then improved by Liu and Zhao [18] by introducing a family of potential wells.
Recently, there are some interesting results about the global existence and blow-up of
solutions for problem (1.2) in [28], in which Xu and Su proved the invariance of some
sets, global existence, nonexistence and asymptotic behavior of solutions with initial
energy J (up) < d and obtained finite time blow-up with high initial energy J (ug) > d
by comparison principle. In [20], the author obtained a lower bound for blow-up time
if p and the initial value satisfy some conditions. For other related works, we refer the
readers to [3,4,9,15,16,24-27] and the references therein.

In the conical degeneration case, Chen et al. established the corresponding Sobolev
inequality and Poincaré inequality on the cone Sobolev spaces in [6]. Then in [5], Chen
and Liu proved the existence theorem of global solutions with exponential decay and
show the blow-up in finite time of solutions to the parabolic problem
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uy — Agu = |u|?Yu, x €intB, 1 >0,
u(0) = uo, x € intB, (1.3)
u=0, x € 0B, t >0,

where B is the same as above. In [8], Chen and Liu studied the initial boundary
value problem for a class of semilinear edge-degenerate parabolic equations with
singular potential term, and derived a threshold of the existence of global solutions
with exponential decay, and the blow-up in finite time by introducing a family of
potential wells. More works on equations with conical degeneration can be seen in the
monograph [1, 10] and references therein.

In this paper, we aim to use the improved potential well theory to prove the invariant
sets, the vacuum isolating behavior, and the global existence, decay and finite time
blow-up of solutions for problem (1.1) in weighted Sobolev space. For our purpose,
we introduce a family of potential wells and its corresponding sets, and construct
the relation between the existence of solution and the initial data u¢ via the method
of the potential wells. Then, by the usage of Faedo—Galerkin method, the concavity
argument and properties of a family of potential wells, we derive a threshold result
of existence and nonexistence of global weak solution: for the low initial energy case
(i.e., J(up) < d), the solution is global in time with 7 (#p) > O or ||VIBM0||Lg 8= 0

2

and blows up in finite time with 7 (ug) < 0; for the critical initial energy case (i.e.,
J(up) = d), the solution is global in time with 7 (u¢) > 0 and blows up in finite time
with I (ug) < 0. The decay estimate of the energy functional for the global solution
and the estimates of the lifespan of local solution and lower bound on blow-up time
are given by making use of a differential inequality technique.

The outline of this paper are as follows. In Sect. 2, we recall the cone Sobolev
spaces and the corresponding properties. In Sect. 3, we give some preliminaries about
the family of potential wells, after which we discuss the invariant sets and the vacuum
isolating behavior of solutions for problem (1.1). In Sect. 4, we show the global
existence, decay and finite time blow-up for problem (1.1) with low initial energy
J(up) < d.In Sect. 5, we obtain the global existence, decay and finite time blow-up
for problem (1.1) with critical initial energy J (ug) = d.

2 Cone Sobolev spaces

In this section, we recall the manifold with conical singularities and the corresponding
cone Sobolev spaces which are introduced in [6,7].

Let X be a closed, compact, C* manifold. We set X* = R+ x X/({0} x X)asa
local model interpreted as a cone with the base X. Next, we denote X = R x X as
the corresponding open stretched cone with the base X.

An n—dimensional manifold B with conical singularities is a topological space with
a finite subset By = {b1, ..., by} C B of conical singularities, with the following
two properties.

(1) B\ By is a C® manifold.
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(2) Every b € By has an open neighbourhood U in B, such that there is a homeo-
morphism ¢ : U — X* for some closed compact C* manifold X = X (b), and
o restricts to a diffeomorphism ¢’ : U \ {b} — X".

For simplicity, we assume that the manifold B has only one conical point on the
boundary. Thus, near the conical point, we have a stretched manifold B, associated
with B. Here B = [0, 1) x X, 0B = {0} x X and X is a closed compact manifold
of dimension n — 1. Also, near the conical point, we use the coordinates (x1, x") =
(x1,x2,...,xp) for0 <x; < 1,x" € X.

Definition 1 Let B = [0, 1) x X be the stretched manifold of the manifold B with
conical singularity. Then the cone Sobolev space H),"" (B), form € N, y € R and
1 < p < 400, is defined as

Hy' B) = {u e WP (intB)|wu € H),7 (X))}

for any cut-off function w, supported by a collar neighborhood of (0, 1) x dIB. More-
over, the subspace H';’g (B) of H;,"’V (B) is defined by

HOY B) = [ H) Y (X7 + (1 — 0] Wy" P (intB),

where W(;"’p(intIB%) denotes the closure of C3°(intB) in Sobolev spaces WP (X)
when X is a closed compact C* manifold of dimension n that containing B as a
submanifold with boundary.

Definition 2 Let B = [0, 1) x X. We say u(x) € L,(B) with 1 < p < 400 and
y e Rif

leal?

_ P dx1
— n 14 g
L®) _/Bxl ‘xl u(x)) ; dx' < +00.

X

omﬂwmmﬁmmeLﬁ@meeLgﬁymhnqe(Lu»md%+§=L
then we have the following Holder’s inequality

1 1
/ lu(x)v(x)]| dﬂdx’ < (/ lu(x)|P dﬂdx’>p </ lv(x)|? dﬂdx’>q .20
B X1 B X1 B X1

In the sequel, for convenience we denote

d d
(, v)s = f wew X ay, ., = f u(o)? X,
B X1 L} (B) B X1

Proposition 1 ([6], Poincaré inequality) Let B = [0, 1) x X be a bounded subspace
in R with X C R and1 < p < +o0, y € R Ifu(x) € H;”’a(IB%), then
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le@) gy < €I VB ) 2.2)
where Vg = (x10x,, Ox,, - - ., Ox, ), and the constant ¢ depends only on B.

Proposition 2 ([7], Proposition 3.3) For 1 < p < 2%, the embedding Hég B) —

n

H p”(’)’ (B) is continuous.

Similar to the classical case, we introduce the following functionals on cone
1,z
Sobolev space H, ; (B):

1 d 1 d
J(u)=—/ \Vpul? ZLax’ /|u|!’+1 il N 2.3)
2/ X1 p+1Jp X1

d
I(u) :/ |Vgu|? —dx’—/ P gy (2.4)
B X1 B X1

Then J () and I (u) are well-defined and belong to C/(H;:g (B)). We introduce the
potential well

W= {u € Hy d BT @) > 0, J (u) < d} U {0}
and the outside sets of the corresponding potential well
V= {u € Hy d B () < 0, J (u) < d} .

We define the potential well depth d as

d= 1nf[supJ(Au)ueH2O(]B%) |VE u|2 d 7&0}
2>0

and the Nehari manifold
1,5 pdxi -,
N = ueH,; @) =0, | |Vpul x—dx #0¢.
’ B 1

Similar to the results in [28], one has 0 < d = inj{[ J(u).
ue

3 Invariant sets and vacuum isolating

In this section, we shall introduce a family of Nehari functionals /5(«) in cone Sobolev
spaces, the family of potential wells sets and give the corresponding lemmas, which
will help us to demonstrate the invariant sets and the vacuum isolating behavior of
solutions for problem (1.1).
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3.1 Properties of potential wells

In this subsection, we shall introduce a family of potential wells W5, its corresponding
sets Vs and give a series of their properties which are useful in the proof of our main
results.

Lemma 3.1 Let u € Hy ¢ (B), and || Vgul3 # 0. Then:
(1) lim JOw) =0, lim J(w) = —
r—0 A—>+00
(2) On the interval 0 < L < 00, there exists a unique \* = A*(u), such that
d
—J(u)|p=p* = 0.
’h (M) [r=r

(3) J(Au) is increasing on 0 < A < \*, decreasing on A* < A < oo and takes the

maximum at , = \*.
@) I(wu) >0for0 < i < A* I(u) <0for A" <A < oo, and I (W*u) = 0.

Proof (1) From the definition of J (), we know
A2 d APt d
JOwt) = —f Vg2 2Ly — f P gy,
2 Jp X1 p+1J/s X1

which gives

lim J(Au) =0
r—0

and

Iim JQu) =—

A— 400

(2) An easy calculation shows that

d
—J(Au)_k</ Va2 dx)—kp/ P L gy G.1)
B X1

e
||VIBM||271 p-t
Let \* = —LZB then aJ () =0.
Jp ! S’
(3) From
32J (A d
& = || Vg || N —pkp_lf |M|P+1 ﬂd ’
a2 LIB B X1
we have
82 J (hu)

= IVeull®y = plIVBul’y L, <0 mp> L

8)\‘2 A=A¥ 5 B) 2

So, the conclusion of (3) holds.
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(4) The conclusion follows from

d d
I(Au)—sz (Vgu > E gy )J’“/| P = L T Gw).
X1 X1 dx

Hence, when 0 < A < A*, I(Au) > 0; when A* < A < oo, I(Au) < 0; when
A =A% T(w) = 0.

m}
g el
Assume thatu € H,' § (B), || Vu| =  #0, wedenote Cy = sup u ,
’ L3 (B) IVeull 2
L} (B)
which can be obtained from Propositions 1 and 2.
For § > 0, we define in cone Sobolev spaces a set of Nehari functionals
d
Iy(u) —sf Vaul? 2 /| e gy
and denote
=
) b=
v () = (E) .
Lemma 3.2 Let ug € Hy ¢ (B):
(D) IfO < |Vull = < y(6), then Is(u) > 0. In particular, if 0 < | Vgu|| =z
L2 (B) 2 (B)

2
y (1), then I (u) > 0.
Q) If Is(u) < 0O, then ||V3u||L%(B) > y(8). In particular, if I(u) < 0, then
2

IV3ull 5 >y (D).
7 ®) Y

3 Ifla(u) = 0, then || Vu|| .- y(@®) or [Vpul » =0

2 (B)
@) I ) = 0 and |Vsul 3 5 0, then J () > OforO <5< Jw =0

n
2
2

+1 +1
for s = 2=, J(u) >Of0r8 > &=

Proof (1) From 0 < ||[Vu| = < y(8), we have
Ly B)

dxy —= p+1 dxy
f lu|PH =gy’ :/xi’ x, Py —dx' = |u ||p+
B X1 B X1 LI ®)
+1 +1 +1 1 2
< CENVBul”y = CEIVBUIT, IVBUI®,
L} (B) L} (B) Ly (B)

< 8|IVpul?,
L} (B)
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then
dx
Is = 8| Vaul*» —f Pt 2y s 0.
L@ JB X1

# 0. And we have
)

(2) Notice that I5(u) < 0, then we have ||V153u||2%
L} (B

/Iulp'H Lax <t v ul”y’

SIIVBuII
L} (B)
+1 -1
=Cf IVeull”, I Veul? 'R
L} (B) L} (B)
then
Veul|| = > y(6).
Ve ”LZZ(IB%) v (8)
(3) From Is(u) = 0, we have
dx
3||V]B’4|| ; /W“ Ldx'.

If [Vgull » =0, then from
L5 (B)

dx1 1
/Iul”*‘ P Vuly
B X1 L}

we have

d
/ P gy = o,
B X1

= 0, satisfies. If | Vpu|| =  # 0and I5(u) = 0, then
Ly (B)

So when ||Vpu|| =
L} B)

+1
5||VIB%“||2 /I I”+l d "< ClTVg ullp
+1 1
=Cf IIVBMII”E ||V]B%“||%
L3 (B) L3 (B)
So, we have
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(4) By Is(u) =0 and |Vgu|?>, > 0, we have
L7 (B)

2

1 d 1 d
J(u):—/ |vEu|2ﬂdx’——/ | P L gy
2 /B p+1Jg X1
1

So, the conclusion of (4) holds.

O
Now, for § > 0, we define the depth of a family of potential wells as follows
d() = inf J(u),
) nt. (u)
where
1,% 2 dx] ’
Ns=1ue€H, ;B |Is(u) =0, | |Vgul x—dx #£0¢. (3.2)
' B 1

Then, the depth d(8) and its expression can be estimated. Additionally, we show that
how d(§) behaves with respect to § in the following lemma.

Lemma 3.3 d(0) satisfies the following properties:

1 3
(1) d(8) = a(8)y?(8) for a(s) = 2T o and(0 < § < pT'H. Moreover, we have
4

S/ 8 \2p+1 ]
46 = inf Sy =i (Lo 8 \2eED, st
ueN; 2 p+1 p—1 2

1
) lim d(8) =0,d (%) =0, and d(8) < 0 for§ > 2£L.
(3) d(9) is increasing on 0 < § < 1, decreasing on 1 < § < pTH and takes the

maximumd = d(1) at § = 1.
Proof (1) Let u € N, then Is(u) = 0. By Lemma 3.2 (3), we have ”V]BMHL%(B) >
2
y (8). Hence from

1 ) 1
J(u) = (— — —) IVBul®, + I5(u)
2 p+1 e p+1

=a(®)||Veul® ,
L} (B)

> a(8)y*(5),
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we have

d(8) = inf J(u) > a(S)y2(6).
ues
If § > 0, € Ny is a minimizer of d(8) = inf,cn; J(u), ie., J(@) = d(38). In
this case, we define A = A(§) by ||VB(M7)I|2% = fB ilas dxilldx’. Then for each
L} (B)
5> 0, ’
IVBil? , pT e

- L} (B) ()T
S\ Ll ey | s
B X1

Thus for Aii € N, we get from the definition of d that

)\‘2 p+1 dX]
d < JOAil) = — || Vgii pHLZ2 gy
< J00) = SVl p+1/||

2

1 /1\r d
=—<—>‘ I Vail? () f| P !
2\¢ L} ®) P+1
2
1\»T1 1 d
:(_>p -ll Vail, —/W“ Py
s @ (p+1DdJp X1
(1>"' =Ly il
=< BU
5)  2p+1D

1 8
Note that d(8) = J (i1) = <- — —> | Vgiil|>, , we get
2 p+l L3 (B)

d < (1),& p——l (1 — L>_ld(g)
—\s 20p+DH\2 p+1 ’

which implies

21 8 \2p+1 i
Ay s st (Lo 2 )2t D, o _s_ptl (3.3)
2 o+1) p-1 2

If § > 0, and & € N is a minimizer of d = inf,epr J (1), i.e., J (1) = d. In this
case, we define A = A(5) by 8||VB(Aﬁ)||2% = fB Wrilas dx—’j‘dx’. Then for each
L; (B)

6 >0,
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8|IVgill® ,
2
h= || =er
—p+1 dxi /
g lit] Shdx

Thus, for Az € N5, we get from the definition of d(8) that

d(8) < J(hid) = 871 (1 ) )llV i
<JQa)=8rT (= — —— 5371
2 p+l1 L} (B)

1 1
Note that d = J (i1) = (— — —) |Vei|®, ,we get
L7 (B)

2 p+1 ]
2 (1 8 2 1 1
A <si (Lo 0 y2erb, 5 s Pt (3.4)
2 p+1 p—1 2
By (3.3) and (3.4), we have
2 (1 3 2 1 1
agy =si (Lo 0 e+, 5 s Pt 3.5)
2 p+1 p—1 2
(2) and (3) follow from (3.5). O

Lemma 3.4 Let ug € H;g B) and 0 < § < pTH. Assume that J(u) < d(6):

d(s 1
(1) If Is(u) > O, then ||VBM||2 < Q, where a(§) = = — . In particular,
Lim ad) 2 p+l1
2 1
if J(u) < dand I () > 0, then | Veu|*>, < Xt D,
L} (B) p—1
) d(s) o
Q) If |IVBull© . > ——, then Is(u) < 0. In particular, if J(u) < d and
LI (®) a(d)
2 1
I VBu|? , 20Dy hen 1) <0,
L} (B) p—1
2 d(é) . :
3) IfIs(u) =0, then |Vyul||“n < ——. Inparticular, if J(u) < d and I (u) =0,
L@ ~ a)
2 1
then ||V13u||2 n =< Md.
L} ®) p—1
1
Proof (1) For0 <6 < P+ , we have
Is(u) = J(u) < d(6). (3.6)

a@®)IVeull>, +
e p+l1
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Then a(®)|Vaul®>., < d(@©), ie. |Veull>, < Q If Jw) < d and
LE(B) L3 (B)

a@’

I(u) > 0, we can get

11 11 ) 1
= ——IVBul?y <(5-——)IVBul*y +——1I) <d.
2 L2 (B) 2 p+1 LZ® P+l

Therefore, we obtain

2 1
< Md.

Vuzn
IVsul?y <=7

;> B)

Q) If ||vBu||2ﬂ dg;, then from (3.6), we get Is(u) < 0.If J(u) < d, we have
;I ®)

2(p+1
I(w) < (p+1d— —”V]B“” 2 By IVeul?*s > Md, we get

7 ®) L} (B) p—1

I(w) < (p+ Dd — (p+1)d—0
(3) From (3.6), we have ||V13u||2 1 < % If J(u) <d and I (u) = 0, then from
1 1 1
<§——)|I ull? . +——1() <d,
i@ p+1

2(p+1
we have |Vau|?, <21,
L3 (B) p—1 .

1,z
Lemma 3.5 Assume O < J(u) < d for someu € Hz)é (B), and 51 < &> are two roots
of equation d(§) = J(u). Then the sign of Is(u) doesn’t change for §1 < 6 < 3.

Proof J(u) > 0 implies ”VBMHL%(IB) # 0. If the sign of Is(u) is changeable for
2

51 <6 < 8_2, then we can choose § € (81, 62) and I5(u) = 0. Therefore, we can have
J(u) > d(6). From Lemmail 3.3 (3), we have J(u) = d(§1) = d(62) < d(8), which is
contradict with J (i) > d(§). O

Now, we are in a position to introduce a series of potential wells. For0 < § < ”T'H,

we define
Ws = {u € HYE B)|I5(u) > 0, () < d(S)} U {0},

Vs = {u € HY £ B)|I5(u) < 0, () < d(s)} .

From the definition of Wy, V5 and Lemma 3.3, we can obtain the following lemmas:

Lemma 3.6 (1) If0 <8 < 8" < 1, then Wy C Wy
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(2) If1 <8" <8 < EEL then Vy C Vs

In addition, we define

Ln
Bs = {u € Hz,é(B)IIIVJBMIIL - V(5)},

n
;B

1,%
Bs =Bs UdBs = {u € Hy o B)IIVpull 5 < V(S)} ,
’ L3 (B)

1z
B = e H, 2BV n 8¢ .
5 {M 2.0 Bl JB%MHLZZ(]B) > y( )}

Lemma 3.7 Let 0 < 8 < 2L, Then
By, 5y C Ws C By,5), Vs C B§

where
_ L5 2 . 2 2
By ) =qu € Hyg (B)IIIVBMHL%(B) <miny“(8), vy &) ¢ »
2

_ L3 2 d(5)
By,i) = {u € Hy, (BN”VBMHLZ%(IB) <ol

where yy(8) is the unique real root of equation

L2 —as
2V T

Proof First ||Vpul||
L
hand,

n < y(8) gives |Vpu|| = = 0or Is(u) > 0. On the other
5 (B) Ly B)

1
J(u) < =||Veul®,
2 LI (®)

and ||VBu||2% < ¥3(5) yield J(u) < d(3). Hence we have By, 5y C W;s. The
L; (B)

remainder of this lemma follows from Lemmas 3.2 and 3.4. O

3.2 Invariant sets and Vacuum isolating

In this subsection, we prove the invariance of some sets under the flow of (1.1) and
the vacuum isolating behavior of problem (1.1).

Definition 3 (Maximal existence time) Let u(t) be a weak solution of problem (1.1).
We define the maximal existence time T},,,, of u(¢) as follows:
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(1) If u(z) exists for 0 <t < oo, then T;,,4y = +00.
(2) If there exists a tp € (0, co) such that u(t) exists for 0 < ¢ < tp, but doesn’t exist
att = tg, then T;,,4 = 1o.

Definition 4 (Weak solution) Function u = u(x, t) is called a weak solution of prob-
lem (1.1) on intB x [0, Tjpax), with 0 < T, < 400 being the maximal existence

time, if u € L™ (O, Tinax: H;g(ﬂ%)) with u; € L? (0, Trnax: H;:g (IB%)) and satisfies
problem (1.1) in the distribution sense, i.e.,

(1) Vv e Hé:g (B), 1 € (0, Tnax),
(s, 0)2 + (Vu, Vi) + (Ve Vo) = (Il ~wv) . 3D)

(2) u(x,0) = ug(x) in Hy Z (B).
(3) For0 <t < Tyax,

t t
/nufu% dr+/ IVBu. >y dt+J () < J(o). (3.8
0 L} (B) 0 L} (B)

Now, we discuss the invariance of some sets corresponding to problem (1.1) inspired
by the ideas in [19].

Theorem 3.1 Let ug € H;:g (B), 0 < e < d, §1 < 8 be the two roots of equation
d(8) = e. Then:

(1) All weak solutions u of problem (1.1) with 0 < J(ug) < e belong to Ws for
81 <8 < 8,0 <t < Thax, provided I (ug) > 0 or ||V153u0|| 1 LFS =0

(2) All weak solutions u of problem (1.1) with 0 < J(ug) < e belong to Vs for
81 <8 < 8,0 <t < Thyax, provided I (up) < 0,

where Ty is the maximal existence time of u.

Proof (1) Let u(¢t) be any weak solution of problem (1.1) with J(ug) < e,
I(ug) > 0 or ||VBu|| 4 ®) = 0. Tjuax is the maximal existence time of u(z).

If || VBug|| = 7(]11%) =0, then upg(x) € Ws. If I(ug) > 0, then from Lemma 3.5,
LZ

it follows I5(ug) > 0 and J(ug) < d(5). Then ug(x) € Ws for §; < 6§ < 8.
Next, we should prove u(t) € Ws for 61 < 6 < 82 and 0 < t < Tp4y. Arguing
by contradiction, by the continuity of /(x) we suppose that there must exist a
80 € (81,682) and 19 € (0, T;,4y) such that u(tg) € dWs,, and I, (u(tp)) = 0,
I Veull # 0 or J(u(ty)) = d(8p). From

L} (B)

t t
[ ey dee [19auel?, dr
0 L} (B) 0 L} (B)

+ J(u(t)) < J(ug) < d(9), 81 <8 < &, 0<t < Tuux, 3.9)
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we can see that J(u(t9)) # d(8o). If I5,(u(t9)) = 0, ||V]]3;u||2 # 0, then by
2 (B)
the definition of d(6), we have J (u(ty)) > d(8p), which contrad1cts 3.9).

(2) Letu(t) be a weak solution of problem (1.1) with 0 < J(ug) < e < d, I (ug) < 0.
From J(ug) < e, I(ug) < 0 and Lemma 3.5, it follows I5(ug) < 0 and J (ug) <
d(8). Then ug(x) € Vs for §; < § < §,. We prove u(t) € Vs for §; < 6 < 6, and
0 < t < Tyax- Arguing by contradiction, by time continuity of 7 (1) we suppose
that there must exista g € (81, 62) and fg € (0, T;,4x) such that u(fg) € dVs,, and
Is, (u(tp)) = 0 or J(u(tp)) = d(dp). By (3.9) we can see that J(u(f9)) # d(5o).
Assume I5,(u(t9)) = 0 and tg is the first time such that Is,(u(t)) = 0, then
Is,(u(t)) < O0for0 <t < 9. By Lemma 3.2 (2) we have ||VBu||L%(B) > ¥ (80)

for 0 <t < t9. Hence |Vgu| = > 1(8p), then ||u(x n 0. From
< 0 Ve ||L22(IB) > y (o) l (O)”H;jg 5 #*

u(ty) € ./\/50 and J (u(tp)) # d(80), we have J (u(ty)) > d(8p), which contradicts
to (3.9). O

To discuss about the invariant of the solutions with negative level energy, we intro-
duce the following results.

Proposition 3 All nontrivial solutions of problem (1.1) with J (uy) = 0 belong to
By = {u € Hzé(B)IIIVBMII . > Vo},
2

where yy is the unique real root of equation

cht! 1
RN - (3.10)
p+1 2

Proof Letu(t) be any solution of problem (1.1) with J (1) = 0, T},,4x be the maximal

existence time of u(¢). From (3.8), we get J(u) < 0for 0 <t < T,,4x. Hence by

d
—||vBu|| , = f| prt gy
L} B p+1

+1 —1
——ClTVBulP, IIVBuI?, 0 <1 < Thax-
p+1 2 (B) L2 (B)

IA

L;

we must have either | Vgu||

[l

=0or IIVJBMIILg( 5 =0 If [[Vuol|

Ll ®)
then | Vpul| 1 5 = 0 for 0 < t < Tygx. Otherwise there exists a tg € (0, Tax)
Ly (B)

n
L3 (B)

such that 0 < [[Vpu(ro)ll 1 5 < yp. By a similar argument we can prove that if
Ly (B)

Vpug| =z > 1, then || Vgu|| = >y for0 <t < Thax. O
Ve 0||L27(B)_V0 Vs ”L}(B)_VO max
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Theorem 3.2 Let ug € H;:g B). Assume that J(ug) < 0 or J(ug) = 0 and

”V]BMOHL%(]B) # 0. Then all solutions of problem (1.1) belong to Vs for 0 < § <
2

p+1

2

Proof Let u(t) be any solution of problem (1.1) with J(x#g) < 0 or J(ug) = 0 and

I VBuol| L% ® # 0, Tinax be the maximal existence time of u (7). The energy inequality

. 2
gives

Isw) = Ju) < J(ug), 0<68< pTH. 3.11)

a@®)|\Veull*, +
Li® p+1

From (3.11) it follows that if J(ug) < 0, then Is(u) < 0 and J(u) < 0 < d(8) for
p+1
0<§ <

;if J(ug) = 0 and ||V]Bu0|| 75 0, then by Proposition 3 we
have ”VBMHL%(]B) >y for 0 <t < Tax. Agam by (3.11) we get I5(u) < 0 and

2

1
Jw) <0 <d@) for0 <6 < rpr ;_ . Hence for above two cases we always have
1
u(t)eV3f0r0<8<%,05[<Tmm. O

Corollary 3.1 Let ug € H;:g (B). Assume that J(ug) < 0 or J(ug) = 0 and
I VBuo ||L% ® # 0. Then all weak solutions of problem (1.1) belong to BEH

2 T
Proof Let u(t) be any weak solution of problem (1.1) with J (1) < 0 or J(up) =0

and ||VEuo||L% 5 # 0, Tpnax be the maximal existence time of u(¢). Then Theorem
2

3.2 gives

1
u(t)eV5f0r0<5<p+ ,

0<t < Thax-

p+1

,0<t <

From this and Lemma 3.2 we get || Vpu|| > y() for0 < 4§ <

Lz% (B)

1 1
Tnax- Letting § — % we obtain || Veu| = >y (%) for0 <t < Thax-

L} (B)

Now, we discuss the vacuum isolating to problem (1.1) with J(ug) < d.

Theorem 3.3 Let e € (0,d). Suppose 81, 62 are the two of d(8) = e. Then for all
weak solutions of problem (1.1) with J (ug) < e, there is a vacuum region

1,z
U, = {u € My ¢ B)|Is(u) =0, HVEMHL%(IB) £0,8 <8 < 52}
2

such that there is no any weak solution of problem (1.1) in U,.
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Proof Let u(t) be any weak solution of problem (1.1) with J(ug) < e, Tyqx be the
maximal existence time of u (). We only need to prove that if || Vpu || B # 0 and
7 ®)

J(up) < e,thenforall § € (61, 82),u(t) ¢ Ns,i.e. Is(u(t)) # 0, for allt € [0, Truax).
At first, it is clear that I5(ug) # 0. Since if I5(ug) = 0, then J(ug) > d(§) >
d(81) = d(82), which contradicts with J (ug) < e.
Suppose there is #; > 0 s.t. u(t;) € U,. Namely, there must exist a o € (31, 8§2)
such that u(t;) € Ns,. From (3.8), we get J (ug) > J(u(t1)) > d(8) > J(up), which
leads to a contradiction. O

4 Low initial energy J(ug) < d

In this section, we prove a threshold result of global existence and nonexistence of
solutions for problem (1.1) with the low initial energy J (ug) < d.

4.1 Global existence with exponential decay

In this subsection, we establish the global existence of weak solutions for problem (1.1)
when J(ug) < d and I (ug) > O or ||V153u0|| ! ®) = 0 by using Galerkin approxi-

mation technique and potential well theory. Meanwhlle we obtain the asymptotic
stability of global solutions.

Theorem 4.1 (Global existence and decay for J (1g) < d) Letug € H;g (B). Assume
that J(ug) < d and I (ug) > 0 or ”VBMOHL%(]B) = 0. Then problem (1.1) admits a
2

global weak solution u(t) € L™ (O, o0; Hézg (]B)) with u, € L? (O, o0; Hézg (B)).

Moreover u(t) € W for 0 <t < oo, and there exist constants C > 0 such that

lal®y  +1VBul®y < luol?y +[Veuol?y Je .
L} (B) L} (B) L} (B) L} (B)
Proof We divide the proof into two steps.

Step 1 Proof of global existence. Let {w (x)} be asystem of base functions in H2 0 (IB%)
Now we construct the following approximate solutions u,, (¢, x) of problem

(1.1):
m
um(tax)zzg]m(t)wj(x)» m=1527"‘7
j=1
which satisfies

(Umt, ws)2 + (VBUy, VBw;s))

+ Vot Va0 = (el ws) o s=12...0 @D
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(6, 0) = 3 e (x) = wo(x) in Hy. ¢ (B). 4.2)

Multiplying (4.1) by g, (7), summing for s, and integrating with respect to  from
0 to ¢, we have

t t
f ||umr||2ﬂ d":"‘/ ”VIBumrHZE dt + J(um) < J(uy(0)), 0<t<oo.
0 L (®) 0 L} ®)
By (4.2) we can get J (u,,(0)) — J(up), then for sufficiently large m, we have
t t
/ lume? s dr +/ IVBUme 1> dt+J(uy) <d, 0<t<oo. (43)
0 L} (B) 0 L} (B)

From (4.3) and the proof of Theorem 3.1, we can get u,,(t) € W for 0 <t < oo and
sufficiently large m. Hence, by (4.3) and

p— 1
—V + —1I(u
20 +1)||Bm|| b Pt (um),

t 12
[ hnely de [Vl de
0 L} (B) 0 L} (B)

—1
+ ——VBuml?s <d, 0<t<o0, (4.4)
B)

J(up) =

we obtain

2(p + 1
Vounl?y <2204 0<i<oo, 45
p) p—
t
/Ilvzaaumfllig( dt <d, 0<t<oo, (4.6)
0
p+1
[ fiwatr e b T e
. L@
2p+1) \'T
1 1 1 p
< CI VB, |17, < CETH( ——=d ) . 4.7
L7 (B) p—1

Therefore, there exist a # and a subsequence {u,} such that
Uy — uin L™ (0, o0; H;:g (B)) weakly star and a.e. in intB x [0, 00),

Uy — Uy in L2 (0, 0] H;:g (]B)) weakly star,
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ub — uPin L*® (O o0; L (IB%)) weakly star and a.e. in intB x [0, c0).
P

In (4.1), we fixed s, letting m = v — oo. Then, we get
(s, @0)2 + (Vait, Vaoy)s + (Vaur, Vaor)y = ()™ u, o)
and

(ur, v)2 + (Vgu, Vgv)y + (Vur, Vo)
1,2
= (" 'u ). Vo e M3 @,1 € 0.7).

From (4.2) we obtain u(x, 0) = ug(x) in H;’g (B), t € (0, T). By density we obtain

ue L™ (O, 00; H;g(B)) with u, € L? (0, 00; H;:g (B)) is a global weak solution

of problem (1.1). It is obvious that u(¢) € W for 0 <t < oo.
Step 2 Proof of decay. Taking v = u in (3.7), we get

1d 1
Sy A UVBul?, ) = —IVBul?s A+ lul”, = —T).
2 dt L7 (B) 2(B) ;

L3 ( Ly (B) L ppjll (B)

From Theorem 3.1 we have that u(x, t) € Wsford; < <drand0 <t < oo
under the condition J (1g) < d and I (ug) > 0 or || Vyug|| %(B) = 0. Thus, by
L

2
Lemma 3.5, we have 1(81) > 0 for 0 < ¢ < oo. Therefore,

ld 2 2 2
37 ||u|| + IVeull” s =—I(w) = —DIVpull"n —Is;(w)
! L; 2 (@) L3 (B) L} (B)

Consequently,

Il +11VBul?, luoll®y  +11Veuol®, e,
L} (B) L} (B) L} (B) L} (B)
1—46;
C2+1
The proof is complete.

IA

where C =2

! 2
—— @ =D | Il +1VBul?,
C2+1 ( L} ®B) L2 (B)

O

Corollary 4.1 InTheorem4.1, if the assumptions “J (ug) < d, I (ug) > 0" is replaced
by “0 < J(uo) < d, Is,(ug) > 0", where (81, 82) is the maximal interval including
8 = 1 such that ds > J(uo)for 8 € (81, 82), then problem (1. 1) admits a global weak

solution u(t) € L*(0, oo; Hzé(B)) with u; € L*(0, oo; Hzé(]BS)) and u(t) € Wg,

for0 <t < oo.
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Proof Making use of Lemma 3.5, we obtain from 0 < J(ug) < d, Is,(ug) > 0
that I5(up) > O for all § € (81, §2). Repeating the arguments of Theorem 4.1 for
81 < 8 < &2, then the conclusion of Corollary 4.1 holds. |

Corollary 4.2 In Corollary 4.1, if the assumptions “Is,(up) > 0 or ||Vpuol| = g (]B) =

0" is replaced by ||Vul| < y(8), then problem (1.1) admits a global weak

Lz% (B)

solution u(t) € L™ (0, 00; H;g (B)) withu; € L? (O, o0; H;g (IB%)) and satisfies

d(s)
a@®)’

1
||VBu||2%(B) < for &1 <8<min{82,p+ },0§t<oo. 4.8)
L2

In particular, we have

d(é
IIVBulli%(B < ©1) for 0 <t < co. (4.9)
2

y — a(dr)

Proof ||V15;u|| 4 ®) < y(8) gives Is,(up) > 0 or ||V]Bgu0|| 4 ®) = 0. Hence, from

Corollary 4.1, 1t follows that problem (1.1) admlts a global weak solution u(t) €
L® (o, 003 Hy'd (IB%)) withu, € L (o, 00; Hy ¢ (B)) andu(r) € W, for0 < 1 < oo.

Moreover, from Lemma 3.4, we can deduce that (4.8) holds. Letting § — §1, the
conclusion (4.9) is also obtained. O

4.2 Finite time blow-up of solution

In this subsection, we establish finite time blow-up of solution for problem (1.1) when
J(ug) < d and I(ug) < O by using the concavity argument (see [13,14,17]) and
properties of a family of potential wells. Furthermore, by making use of a differential
inequality technique (see [20]) we determine a lower bound on blow-up time for certain
solutions of problem (1.1) if blow-up occurs.

We need the following lemmas to prove finite time blow-up with J (ug) < d.

Lemma 4.1 Let ug € Hé:g (B). Suppose J(uo) < d and I (ug) < 0O, then we have

p—

L 2 4.10
2( +1)||IB%|| b ) (4.10)

2
forallt € [0, Thyax), where Tyqx is the maximal existence time.

Proof We first prove I (u) < 0 for ¢ > 0. If it is false, we must be allowed to choose

aty > 0 such that 7 (u(t9)) = O and I(u) < O for 0 <t < ty. From Lemma 3.2

(2), we have IIVIBM(t)IILg(B) > y() for0 <1 < 1, IIVBu(to)IIZ% > y(1) and
2

Ly (B)
J(u(ty)) > d, which contradicts to (3.8). Since
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22 d e d
JOut) = —/ \Vaul> Ly — /|u|p+1 Rl
2 Jn X1 B X1

p+1
we get
d d
ﬁJ()\u):k/W u|2 —)\1’/| |1’+1 Ly
and
dx1
JA Va2 & — AP*I/ P20 gy
) = /| sl by = prrt [t

d
Let d_AJ (Au) = 0, which implies

1
24 s
3 e (fIPB Vaul ) dX/>p | .

1d
Jg lulP* Xilldx/

An elementary calculation shows

2 d2
I 2J()L]u)>0 and I 2]()\214)<0
So we have
p+l1
_ p—1 (fIB |Viu|? dx—xlldx’> !
sup J (Au) = J(Au) = D)
320 p (fﬂaa || P+ ‘%dx/) =

By I (u) < 0, we have

Pt

1 (fa1vmu )

2
-1

d JOue) = J (hau) =
§/s\1;% (Au) (Aou) 2(p+ )<f||p+1dx1dx)

< Pm v
2( +1)

7 (B)

2

O

Lemma 4.2 ([12]) Let L(t) be a positive, twice differentiable function, which satisfies,
fort > 0, inequality

LOL' ) — (1 +a)L' #)* >0
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L0
with some a > 0. If L(0) > 0 and L' (0) > 0, then there exists a time T* < [L;’(()))]
o
such that lim,_, 7+ L(t) = oo.

1,2

Theorem 4.2 Let ug € Hz,é (B). Suppose J(uo) < d and 1(ug) < 0. Then the
existence time of the weak solution for problem (1.1) is finite, i.e., the maximal existence
time Ty 1S finite and

t
lim (nunz% + | Vaul?
0 B) L

t— Tyrun L (

. dt = +o0. 4.12)
7 B)

Moreover, we have

2
3 bT;

Tmax

, (4.13)
b(p— DTo— [lluol?,  + Veuol® »
L} (B) Ly (B)

where b and Ty will be chosen later.

Proof Letu(t) be any weak solution of problem (1.1) with J (1) < d and I (ug) < 0.
By contradiction, we suppose that u(¢) is global, then T,,,+ = co. Forany T > 0 and
for all # € [0, T], we define

t t
L(r>=/ lu())|? dr+f IVeu(t)I? s  dt
0 L} (B) 0 L} (B)

+ (T —1) (uuon% + I VBuoll*
L2 (B) L

2

" + b(t + To)? (4.14)
7 ®)

where b and Ty are positive constants which will be specified later. Furthermore,

L@ =lu®)?y  + IVeu@)?,
L} (B) L} (B)

2 2
= | llwoll”y +1IVBuol
L} (B) L

n + Zb(t + TO)
7 (B)

! !
:2/ u(r),ur(r))dr + 2/ (VBu(t), Vpu(t))odt + 2b(t + Tp)
0 0
(4.15)

and, consequently,

d d
L") =2f u(t)u,(t)ﬂdxurz/ Vau (1) Vi, (1) L dx’ + 2b,
B X1 B X1
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Therefore, we get

L)L (1) — IDT“L/@)2

=LOL"0O)+2p+1) [n(t) - (L(t) —(T -1 <|IM0|I2%
L% (B)

2
2 ! 2
+ [IVBuoll™, / luc(OI7, dr
L} (B) 0 L} (B)
t
+f IVBu-()I1>y  dr+b
0 L (B)

where 1 : [0, T] — Ry is the function defined by

t t
n= /||u(7:)||2n dt+/ IVeu() >, dr+b
0 L} (B) 0 L} (B)

t t
/ lus(I?y  dr+ / IVBu (DI, dt + b(t + Tp)*
0 L} (B) 0 L} (B)

t t 2
- (/ (u(t),ur(t))zdﬂr/ (VIBM(T)’V]BMT(T))ZdT+b(t+TO)> > 0.
0 0

As a consequence, we read the following differential inequality

L()L"(1) - pT_HL/(t)Z >L()L" (1) —2(p + DL(1)

t t
(/ llue (D) 5 dr+/ I VB ()%, dr+b)
0 L} (B) 0 L} (B)
=L(E(1), (4.16)

for almost every ¢ € [0, T], where & : [0, T] — Ry is the map defined by
d d
50 = 2/ u(Ouy () =L dx' +2 / Vu(t) Ve, (1) —dx’
B X1 B X1
t
~ 2040 [l e
0 L} (B)

t
- 2(p+ l)/ | Veu (0)||>x  dt —2pb. (4.17)
0 L} (B)
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By (1.1) and (3.8), we have

dx !
ey =2 [ (! = 19aul?) ax =204 1) [ @l dr
B X 0 L ®)
t
—2(p+ 1)/ IIV]Buf(‘E)IIZ% dt —2pb
0 LI ®)

d
=2 [ (wr = 19aulR) S - 2+ I
B X1
+ 2(p + DJ (u(t)) — 2pb.
= (p = DIVBul?y  —2(p+1)d —2pb.
L7 (B)

2

By Lemma 4.1, we can getd < A IVBul>, . Choosing b small enough
2(p+1) L} (B)

such that

(p = DIVBul?y  —2(p+1d

L7 (B)
b < ,
=< 2

we have

50 = (p—DIVaul®y —2(p+1d —2pb =0,
L; (B)

which implies

L)L (1) — pT—HL’(t)Z > 0. (4.18)

By (4.14) and (4.15), we have L(0) > Oand L’(0) > 0. We then choose Ty sufficiently
large such that

b(p—DTo— (lluol®*s  +IVeuol?s | >0.
L} (B) L} (B)

Combining Lemma 4.2, we then obtain that L(¢) blows up in finite time

bT3

T* <

b(p — DTo— [lluol?,  + I Veuoll® »
L} (B) L} (B)
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In view of the arbitrariness of time 7', we may choose T such that

2
. bT;

b(p—l)To—(nuon?g + I Vauol® )
)

LB L} (B

Thus, we see from (4.14) that there exists a time 7* € (0, T] such that

t—>T*

t
lim lull>,  +IVeul?, |dr =+o0,
0 L} (B) L} (B)

which contradicts 7,,,x = c0. Hence, the solution of the problem (1.1) blows up in
finite time. O

Theorem 4.3 Under the assumption of Theorem 4.2, then the solution u(x,t) of

problem (1.1) blows up at t = Tpyy in H20 (B) with lim,_, ;- fo |u||2% +
max L2 (]B)
IVul>, dt = —+00. Moreover, we have
L} (B)

_p!

2
luol®,  + ||V]B%u0||2n
L] (B) L} (B)

(p—1ckt!

Tmax Z

Proof First, from Theorem 4.2, we know that the solution u(x, ) of problem (1.1)
blows up in finite time 7;,,4,. Now, we estimate the lower bound for blow-up time

Tmax .

We define
@) =llull®>y  +IVsul®, . (4.19)
L} (B) L} (B)
Multiplying u(x, ) on two sides of Eq. (1.1), and integrating by part, we have

d d
/uu,ﬂdx/—}—/ |VBu;| | Viul ﬂdx/
B

_ /|v o Eax +/| prt &1 (4.20)

Then by direct computation and (4.20), we have

(p(l)——Z/ |vBu| d +2/| |1’+1 4.21)
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which implies

o't < 2C (o)) T

If there exists ty € [0, T;,qx) such that ¢(7y) = 0, then we can obtain ¢(T},4x) = 0,

which contradicts with the fact that u(x, ¢) blows up at T4, in H2”07 (B)-norm. So we
see

() >0
and
O _ert, (4.22)
(@)=

Integrating the inequality (4.22) from O to ¢, we have

p—1 _
@O)™T — ()T = (p—nClt. (4.23)
So letting t — Tj4x in (4.23), we can conclude that

p—1

-2
luol®>,  + IVBuoll? 4
L} (B) L3 (B)

e = (»—ncit
(]
Remark 1 Noting that from
p— 1
m“ BU 0|| . )+T1(uo)—f(uo)

we see that if J(ug) < O, then I (ug) > 0 is impossible. If J(ug) = 0, then either
I(ug) > 0 or I(ug) = 0 with ||V13uo||2 . # 0 is impossible. If 0 < J(ug) < d, it

7 (B)

2

follows from the definition of d that I (ug) = 0 with ||Vug ||2 # 0 is impossible.
3 (B)

Thus, all possible cases already have been considered in Theorems 4.1 and 4.2.

From the discussion above, a threshold result of global existence and nonexistence
of solutions for problem (1.1) has been obtained as follows.

Corollary 4.3 Assume that uy € H;:g (B) and J (ug) < d. Then problem (1.1) admits

a global weak solution provided I (ug) > 0 or || Vpug ||2% = 0, problem (1.1) dose

Ly (B)
not admit any global solution provided I (up) < 0.
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5 Critical initial energy J (u¢) =

In this section, we prove the global existence and finite time blow-up of solutions for
problem (1.1) with the critical initial condition J (u¢) =

Theorem 5.1 (Global existence for J(ug) = d) Let ug € H;:g (B). Suppose
J(ug) = d and I(ug) > 0. Then problem (1.1) has a global weak solution

ue 1 (0,00 Hy 3 (B) ) withu; € L2 (0, 00: Hy ¢ (B)), andu(t) € W = WUIW
for0 <t < oo.

1
Proof Let uy, = 1 — — and ugy = wmuo, m = 2, 3, .... We consider the following
m

problem

u; — Aguy — Agu = |u|p_1 u, x €intB, t > 0,

u(0, x) = ugm (x), x € intB, (GR))
u(t,x) =0, x €0B,t > 0.
From I(ug) > 0 and Lemma 3.1, we have A* = A*(ug) > 1. Thus, we get

I(uom) = I(umuo) > 0 and J(uom) = J(umuo) < J(ug) < d. So it follows
from Theorem 4.1 that, for each m, problem (5.1) admits a global weak solution

U (1) € L™ (0, 003 Hy' ¢ (IB%)) with 1y € L2 (o, o0: H;jg(B)) and up; € W for
0 <t < oo, satisfying

1L,n
(tme, V)2 + (VBlUm, VBV)2 + (VB VBV)y = (uh, v)2 forany v € M, 5 (B)

and

t
2
/ Nttmell”n dt
0 L} (B)

t
+/ IVBme |y dT + J(um) < J(om) < J(ug) = d for t € (0, 00).
0 L} (B)
(5.2)

By a direct computation we can see that

/ ””mt” 1 df"‘/ ”VIB”mr” n( dt

pP—
— |V —I d.
+2( le)II BU m” 4 ) + P (um) <

Since I (u,,) > 0, we can deduce (4.5), (4.6), (4.7) for each m. Hence there exists a u
and a subsequence still denoted as {u,,}, such that, as m — oo,
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Uy — uin L® (O, 00; Hé:g (IB%)) weakly star and a.e. in intB x [0, 00),

Ui — Uy in L2 (0, 00; H;:g (IB%)) weakly star,

pn

ub — uPin L>® (O, o0; Lﬁﬂ (IB%)) weakly star and a.e. in intB x [0, 00).

P

The proof of global existence for the solution is the same as that in the first part of the
Theorem 4.1. O

Theorem 5.2 Let ug € H;:g (B). Assume that J(ug) = d and I (ug) > 0. Then, for
the global weak solution u of problem (1.1), there exist constants C > 0 and t; > 0
such that

lul®>s I VBul
L7 (B) L

n
2 (B 2 (B)

5 (

< luaDl?y  +1VBu@)I*, e €, <t<oo.  (53)
L} (B) Ly (B)

Proof First, Theorem 4.1 gives the existence of a global weak solution for problem
(1.1). In addition, from (3.8), Theorems 4.1, and 5.1, it follows that if u(¢) is a global
weak solution of problem (1.1) with J(ug) = d, I (up) > 0, we must have I (u) > 0
for 0 <t < co. Next, we consider the following two cases.

(1) Assume that /(u) > 0 for 0 < ¢ < oo. Then from (u,, u), + (Vpu,, Vpu), =
—I(u) < 0, it follows that |u;] = > 0 and ||Vpu;| = > 0 and
L (B) Ly (B)

t

/ ||uf||2ﬂ + ||VIB;u,||2ﬂ dt is strictly increasing for 0 < ¢t < oo.
0 L} (B) L} (B)

Taking any #; > 0 and letting

1
m=1wm»=1ww—/ luel?s  + [ VBucly  dr,
0 L} (B) L} ®)

then by the energy inequality we get 0 < J(u) < dj < dforty <t < oo.
Similar to the proof of Theorem 4.1, we can deduce the exponential decay (5.3)
if we take ¢ = ¢1 as the initial time.

(ii) Assume that there exists a #; > 0 such that 7 (u(¢;)) = 0 and I(I;t) > 0 for 0 <

2 2
VB, ||i%(B))dr is strictly increasing for 0 < ¢ < 1. By (3.8), we have
2

t < t1. Wealso have [lu/|| » >0, [[Vpu/ll = >0 and/ (ull>,  +
L} (B) L3 (B) 0 Ly B)

1
J(u(tr)) < J(uo) —/ lucl®y — +IVBuc?y dr <d
0 L} (B) L} (B)
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and ||V153u(t1)||2% = 0. That means J(u(t1)) = 0, then we get J(u) < 0 for
L

5 (B)
1 <t < oo from

t
J(u) +/ lucl®y,  +IVBucl?, dr <J@m), <t<oc.
f L} (B) L} (B)

Hence from
1 1 dx
Divaul?, < —f Mlaalaip
2 Li®  p+1lJp X1
1 +1 —1
< ——CIvul”, IVBul*, .
p+1 L3 ®) L} (B)

it follows that either ||Vyu|| 4o = 0 for t; < t < o0, hence (5.3) holds;
Ly (B)

+1 1 S . .
or ||V153u||2 " > P 1 )r=1, for t; <t < oo, which is impossible since
L] ®) 2c?
IVeu(t)| = 0. Thereby, we conclude ||u||2 .+ ||V]Bu||2 » =0 for
L7 B) L} (B) L7 (B)
t1 <t < oo. This completes the proof. O

Theorem 5.3 (Blow-up for J(ug) = d) Let ug € ’H;g (B). Suppose J(ug) = d and
1(ug) < 0. Then the existence time of the weak solution for problem (1.1) is finite,
i.e., the maximal existence time T,,qyx s finite and

7 (B)

t
lim (nunzn + I Vpul?
0 2 (B) L

) dt = 4o00. 5.4)
1= Ty L7 (

Proof Let u(t) be any weak solution of problem (1.1) with J(uo) = d, I (ug) < O.
By contradiction, we suppose that u(¢) is global, then T,,,+ = co. Forany T > 0 and
for all r € [0, T], we define

t t
L(t>=/ lu(O)|? dr+f IVeu(t)I? s dt
0 L} (B) 0 L} (B)

7 (B)

2 2

+(T 1) (nuonzg + | Vauol? )+b<r+To>2 (5.5)
L; (B) L

where b and Ty are positive constants which will be specified later. Furthermore,

L@ =luml?>y  +I1VBu®I*s = [luol®>s  +IVBuol®s | +2b0 + To)
L} (B) L} (B) L} (B) L} (B)

t t
= 2/(; u(r), ur(r))rdr + 2/0 (Vpu(r), Vpu () dt + 2b(t + Tp) (5.6)
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and, consequently,
d d
L'(t) = 2/ u(@uy () 2L ax’ + 2/ Vpu (1) Vi, (1) 2t dx’ +2b,
B X1 B X1
for almost every ¢ € [0, T]. Therefore, we get

1
L(t)L"(t) — %L/(I)2 =LOL"t)+2(p+1)

x [n@) = (L&) = (T =0 | luol®>y  + IVBuol 4
LZ(B) L7 (B)
t t
x /uuf(r)n% dr+/ IVBu (0)[1>, dt+b
0 L} (B) 0 L} (B)

where 1 : [0, T] — R, is the function defined by

t t
n= / lu(@)?, dr +f IVBu()|*, dt
0 L3 (B) 0 L} (B)
t t
+b) f luz (D) dr+/ IVBur (01?5 dt + b(t + Tp)*
0 L} (B) 0 L} (B)
t t 2
- </ (u(z), uc (1)) de +f (VBu(r), Vu (1)) dt + b(t + To)> >0.
0 0
As a consequence, we read the following differential inequality
p+1

L(OL" (1) — TL’(z)2

t t
> LOL"(1) - 2(p + DL() fnuf(r)n% dr+/ IVeur (D)2, dr+b
0 L} B) 0 L} B)

= L&), (5.7)
for almost every ¢ € [0, T], where & : [0, T] — R is the map defined by
d d
&(r) =2/ u(t)u,(t)ﬂdx’Jrz/ Vu(t) Ve, (1) —dx’
B X1 B X1
t
~ 2040 [l e
0 L} (B)

t
—2(p+ 1)/ IVBu (01>, dt —2pb. (5-8)
0 L} (B)
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By (1.1) and (3.8), we have

dx !
ey =2 [ (ur! = 19aul) Trax' =24 ) [l dr
B X1 0 L7 (B)

t
- 2(P+1)f IVBu: (0)|1*, dt —2pb
0 L} (B)

d
32/ (up+1 _ ||V]Bu||2) Rl
B X1

= 2(p+ DJ(uo) +2(p + DJ (u(1)) — 2pb.

From J(ug) = d, it follows

E) > (p—D|IVeul>n  —2(p + 1)d —2pb.
L} (B)

The reminder of the proof is the same as those of Theorem 4.2, therefore we omit it. O
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