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Abstract We consider the Cauchy problem for strictly hyperbolic m-th order partial
differential equations with coefficients low-regular in time and smooth in space. It
is well-known that the problem is L2 well-posed in the case of Lipschitz continuous
coefficients in time, Hs well-posed in the case of Log-Lipschitz continuous coeffi-
cients in time (with an, in general, finite loss of derivatives) and Gevrey well-posed
in the case of Hölder continuous coefficients in time (with an, in general, infinite loss
of derivatives). Here, we use moduli of continuity to describe the regularity of the
coefficients with respect to time, weight sequences for the characterization of their
regularity with respect to space and weight functions to define the solution spaces. We
establish sufficient conditions for the well-posedness of the Cauchy problem, that link
the modulus of continuity and the weight sequence of the coefficients to the weight
function of the solution space. The well-known results for Lipschitz, Log-Lipschitz
and Hölder coefficients are recovered.
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1 Introduction

We consider the strictly hyperbolic Cauchy problem

Dm
t u =

m−1∑

j=0

Am− j (t, x, Dx )D
j
t u + f (t, x),

Dk−1
t u(0, x) = gk(x), (t, x) ∈ [0, T ] × R

n, k = 1, . . . , m,

(1.1)

where

Am− j (t, x, Dx ) =
∑

|γ |+ j=m

am− j,γ (t, x)Dγ
x +

∑

|γ |+ j≤m−1

am− j,γ (t, x)Dγ
x ,

and Dt = 1
i ∂t , D

γ
x = ( 1i ∂x )

γ , as usual. We are interested in well-posedness results
for the above Cauchy problem, when the regularity of the coefficients with respect to
time is Lipschitz or below Lipschitz. We obtain a sufficient result for well-posedness
which links the regularity of the coefficients in time to their regularity in space and
the possible solution spaces.

It is well-known that the strictly hyperbolic Cauchy problem is not well-posed in
C∞, H∞, respectively, if the regularity of the coefficients in time is lower than Lips-
chitz. Usually, one has to compensate for the low regularity in time by assuming higher
regularity in space. Colombini et al. [6] proved this fact for second-order equations
with Hölder continuous coefficients which only depend on t . Considering operators
whose coefficients are Hölder continuous in time and Gevrey in the spatial variables,
Nishitani [16] and Jannelli [10] were able to extend the results of [6].

Colombini and Lerner [7] considered second-order operators with coefficients
which are Log-Lipschitz in time and C∞ in space (with some additional L∞ condi-
tions). They proved well-posedness in Sobolev-spaces (with finite loss of derivatives)
and established the Log-Lipschitz regularity as the natural threshold beyond which no
Sobolev well-posedness could be expected.

Cicognani [4] extended the results of [7,10,16] to equations of order m and con-
sidered Log-Lipschitz and Hölder continuous coefficients, which also depend on x .

For second order equations Cicognani and Colombini [5] provided a classification,
linking the loss of derivatives to the modulus of continuity of the coefficients with
respect to time.

In this paper, we consider the strictly hyperbolic Cauchy problem (1.1), where we
assume that the coefficients am− j, γ satisfy

∣∣Dβ
x am− j, γ (t, x) − Dβ

x am− j, γ (s, x)
∣∣ ≤ CK|β|μ(|t − s|), 0 ≤ |t − s| ≤ 1, x ∈ R

n,

where μ is a modulus of continuity describing their regularity in time and Kp is a
weight sequence describing their regularity in space. To describe the regularity of the
initial data, the right hand side and the solution, we use the spaces

H ν
η, δ(R

n) = {
f ∈ S ′(Rn); eδη(〈Dx 〉) f (x) ∈ H ν(Rn)

}
,
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where H ν(Rn) = H ν, 2(Rn) denotes the usual Sobolev-spaces and δ > 0 is a constant.
Under suitable conditions we are able to prove that our problem is well-posed and that
we have a global (in time) solution which belongs to the space

m−1⋂

j=0

Cm−1− j ([0, T ]; H ν+ j
η, δ (Rn)

)
.

As to be expected from the know results of the above-mentioned authors, the modulus
of continuity μ is linked to the weight function η. In this paper, we describe how μ

and η are related to each other and give sufficient conditions for the well-posedness
of problem (1.1) which link μ to η and the sequence Kp.

The paper is organized as follows: Sect. 2 reviews some definitions and useful
propositions related to moduli of continuity. It also provides an introduction to the
pseudodifferential calculus used in this paper. Section 3 states the main results of this
paper and also features some examples and remarks. Finally, in Sect. 4 we proceed to
prove the theorems of the previous section.

2 Definitions and useful propositions

Let x = (x1, . . . , xn) be the variables in the n-dimensional Euclidean space R
n

and by ξ = (ξ1, . . . , ξn) we denote the dual variables. Furthermore, we set 〈ξ 〉2 =
1 + |ξ |2. We use the standard multi-index notation. Precisely, let Z be the set of all
integers and Z+ the set of all non-negative integers. Then Zn+ is the set of all n-tuples
α = (α1, . . . , αn) with ak ∈ Z+ for each k = 1, . . . , n. The length of α ∈ Z

n+ is
given by |α| = α1 + . . . + αn .

Let u = u(t, x) be a differentiable function, we then write

ut (t, ξ) = ∂t u(t, x) = ∂

∂t
u(t, x),

and

∂α
x u(t, x) =

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn

u(t, x).

Using the notation Dx j = −i ∂
∂x j

, where i is the imaginary unit, we write also

Dα
x = Dα1

x1 . . . Dαn
xn .

Similarly, for x ∈ R
n we set

xα = xα1
1 . . . xαn

n .

In the context of pseudodifferential operators and the related symbol calculus, we
sometimes use the notation

a(α)
(β)(x, ξ) = ∂α

ξ D
β
x a(x, ξ).
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Let f be a continuous function in an open set 
 ⊂ R
n . By supp f we denote the

support of f , i.e. the closure in 
 of {x ∈ 
, f (x) 	= 0}. By Ck(
), 0 ≤ k ≤ ∞,
we denote the set of all functions f defined on 
, whose derivatives ∂α

x f exist and
are continuous for |α| ≤ k. By C∞

0 (
) we denote the set of all functions f ∈ C∞(
)

that have compact support in 
. The Sobolev-space Hk,p(
) consists of all functions
that are k times differentiable in Sobolev-sense and have (all) derivatives in L p(
).

For two functions f = f (x) and g = g(x) we write

f (x) = o(g(x)) if lim
x→∞

f (x)

g(x)
= 0,

and we use the notation

f (x) = O(g(x)) if lim sup
x→∞

f (x)

g(x)
≤ C.

We use C as a generic positive constant which may be different even in the same line.
Furthermore, we introduce the following spaces.

Definition 2.1 Let η be a real, smooth, increasing function, ν ∈ R and δ > 0. We
define the space H ν

η, δ = H ν
η, δ(R

n) by

H ν
η, δ(R

n) = {
f ∈ S ′(Rn); eδη(〈Dx 〉) f (x) ∈ H ν(Rn)

}
,

where H ν(Rn) = H ν,2(Rn) denotes the usual Sobolev-spaces.

Definition 2.2 Let Kp be a positive, increasing sequence of real numbers. We define
the space B∞

K = B∞
K (Rn) by

B∞
K (Rn) =

{
f ∈ C∞(Rn); sup

x∈Rn
|Dβ

x f (x)| ≤ CK|β| for all β ∈ N
n
}

.

By B∞ = B∞(Rn) we denote the space of all smooth functions that have bounded
derivatives.

2.1 Moduli of continuity

As explained in Sect. 1, we use moduli of continuity to describe the regularity of the
coefficients with respect to time. Let us briefly recall what we understand by the term
modulus of continuity.

Definition 2.3 (Modulus of continuity and μ-continuity) We call μ : [0, 1] → [0, 1]
a modulus of continuity, if μ is continuous, concave and increasing and satisfies
μ(0) = 0. A function f ∈ C(Rn) belongs to Cμ(Rn) if and only if

| f (x) − f (y)| ≤ Cμ(|x − y|),

for all x, y ∈ R
n, |x − y| ≤ 1 and some constant C .



Strictly hyperbolic equations with coefficients… 647

Typical examples of moduli of continuity are presented in the following table.

Modulus of continuity Commonly called

μ(s) = s Lipschitz-continuity

μ(s) = s
(
log

(
1
s

)
+ 1

)
Log-Lip-continuity

μ(s) = s
(
log

(
1
s

)
+ 1

)
log[m] ( 1

s

)
Log-Log[m]-Lip-continuity

μ(s) = sα, α ∈ (0, 1) Hölder-continuity

μ(s) =
(
log

(
1
s

)
+ 1

)−α
, α ∈ (0, ∞) Log−α-continuity

For convenience, we introduce the notion of weak and strong moduli of continuity
(compared to the threshold of μ(s) = s log(s−1)).

Definition 2.4 We call a given modulus of continuity μ strong, if

lim
s→0+

μ(s)

s log(s−1)
≤ C,

i.e. functions belonging toCμ are Log-Lip-continuous or more regular. Consequently,
μ is called a weak modulus of continuity, if

lim
s→0+

s log(s−1)

μ(s)
= 0,

i.e. functions belonging to Cμ are less regular than Log-Lip.

2.2 Symbol classes and symbolic calculus

We introduce the standard symbol classes of pseudodifferential operators following
Hörmander [9].

Definition 2.5 (Smρ, δ and �m
ρ, δ) Let m, ρ, δ be real numbers with 0 ≤ δ < ρ ≤ 1.

Then we denote by Smρ, δ = Smρ, δ(R
n ×R

n) the set of all a ∈ C∞(Rn ×R
n) such that

for all multi-indexes α, β the estimate

|Dβ
x ∂α

ξ a(x, ξ)| ≤ Cα, β(1 + |ξ |)m−ρ|α|+δ|β|,

is valid for all x, ξ ∈ R
n and some constant Cα, β . We write S−∞

ρ, δ = ⋂
m Smρ, δ ,

S∞
ρ, δ = ⋃

m Smρ, δ . For a given a = a(x, ξ) ∈ Smρ, δ , we denote by Op(a) = a(x, Dx )

the associated pseudodifferential operator, which is defined as

a(x, Dx )u(x) =
∫

Rn

eix ·ξa(x, ξ)û(ξ)d̄ξ = Os−
∫∫

R2n

ei(x−y)·ξa(x, ξ)u(y)dyd̄ξ,

where d̄ξ = (2π)−ndξ and Os− ∫∫
R2n

means the oscillatory integral.
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By �m
ρ, δ = �m

ρ, δ(R
n) we denote the set of all pseudodifferential operators that are

associated to some symbol in Smρ, δ . Conversely, for a ∈ �m
ρ, δ , we denote by σ(a) ∈

Smρ, δ the associated symbol.

Analogously, we define sets of weighted symbols and associated operators.

Definition 2.6 (Sm, ω
ρ, δ and �

m, ω
ρ, δ ) Let m, ρ, δ be real numbers with 0 ≤ δ < ρ ≤ 1.

Let ω be a non-decreasing, continuous function satisfying ω(s) = o(s) for s → +∞.
Then we denote by Sm, ω

ρ, δ = Sm, ω
ρ, δ (Rn × R

n) the set of all a ∈ C∞(Rn × R
n) such

that for all multi-indexes α, β the estimate

|Dβ
x ∂α

ξ a(x, ξ)| ≤ Cα, β(1 + |ξ |)m−ρ|α|+δ|β|ω(〈ξ 〉),

is valid for all x, ξ ∈ R
n and some constant Cα, β . The set �

m, ω
ρ, δ = �

m, ω
ρ, δ (Rn) is

defined analogously to �m
ρ, δ .

As usual, if (ρ, δ) = (1, 0) we omit them and just write Sm , Sm, ω, �m , �m, ω.
Since �m, ω ⊂ �m+1, the following composition result is obtained by straightfor-

ward computation.

Proposition 2.7 (Composition of �m and �m, ω) Let a1 ∈ Sm1 and a2 ∈ Sm2, ω, then
as operators in S or S ′

a1(x, Dx ) ◦ a2(x, Dx ) = b1(x, Dx ),

a2(x, Dx ) ◦ a1(x, Dx ) = b2(x, Dx ),

where b1, b2 ∈ Sm1+m2, ω have the asymptotic expansions

b1(x, ξ) ∼
∑

α

1

α!∂
α
ξ a1(x, ξ)Dα

x a2(x, ξ),

b2(x, ξ) ∼
∑

α

1

α!∂
α
ξ a2(x, ξ)Dα

x a1(x, ξ).

Consider a pseudodifferential operator a ∈ �m and a non-negative, increasing
function ψ ∈ C∞(Rn). Throughout this paper we refer to the transformation

aψ(x, Dx ) = eλψ(〈Dx 〉) ◦ a(x, Dx ) ◦ e−λψ(〈Dx 〉),

as conjugation, where λ is a positive constant.

Proposition 2.8 (Conjugation in �m) Let a ∈ �m and let ψ ∈ C∞(Rn) be a non-
negative, increasing function satisfying

∣∣∣∣
dk

dsk
ψ(s)

∣∣∣∣ ≤ Cks
−kψ(s), k ∈ N, s ∈ R+. (2.1)
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We fix a constant λ > 0. Then the symbol aψ(x, ξ) = σ(aψ(x, Dx )) of

aψ(x, Dx ) = eλψ(〈Dx 〉) ◦ a(x, Dx ) ◦ e−λψ(〈Dx 〉),

satisfies
aψ(x, ξ) = a(x, ξ) +

∑

0<|γ |<N

a(γ )(x, ξ)χγ (ξ) + rN (x, ξ), (2.2)

where

χγ (ζ ) = 1

γ !e
−λψ(〈ξ〉)∂γ

ν

(
eλψ(〈ν〉))

∣∣∣
ν=ζ

, (2.3)

and

rN (x, ξ) = N

(2π)n

∑

|γ |=N

[
Os−

∫∫

R2n

1∫

0

(1 − ϑ)N−1e−iyζ

×a(γ )(x + ϑy, ξ)χγ (ξ + ζ )dϑdydζ

]
. (2.4)

Furthermore, we have the estimate

|∂α
ξ χγ (ξ)| ≤ Cα, γ 〈ξ 〉−|α|−|γ |(ψ(〈ξ 〉))|γ |, (2.5)

for ξ ∈ R
n and α ∈ N

n.

Proof Relations (2.2), (2.3) and (2.4) are derived in [11,13] for the case ψ(s) = sκ .
Deriving these equations for general ψ works just as described there. Estimate (2.5)
is obtained by straightforward calculation. We have

|∂α
ξ χγ (ξ)| = 1

γ !
∣∣∣∂α

ξ

(
e−λψ(〈ξ〉)∂γ

ν

(
eλψ(〈ν〉))

∣∣∣
ν=ξ

)∣∣∣

= 1

γ !
∣∣∣∂α

ξ

(
e−λψ(〈ξ〉)eλψ(〈ξ〉)Qγ (ξ)

)∣∣∣

≤ Cα, γ 〈ξ 〉−|α|−|γ |(ψ(〈ξ 〉))|γ |,

where we used that
∂γ
ν

(
eλψ(〈ν〉))

∣∣∣
ν=ξ

= eλψ(〈ξ〉)Qγ (ξ),

and applied (2.1) to
Qγ (ξ) = Cγ ψ ′(〈ξ 〉)|γ | + Rγ (ξ),

where Rγ (ξ) are lower order terms satisfying

|Rγ (ξ)| ≤ Cγ ψ ′(〈ξ 〉)|γ |−1ψ ′′(〈ξ 〉).

This yields estimate (2.5). �
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Remark 2.9 By estimate (2.5) we are immediately able to conclude that χγ ∈ S0 for
all |γ | > 0, since ψ(〈ξ 〉) = o(〈ξ 〉).

Proposition 2.8 does not provide an estimate for rN (x, ξ). In order to derive such
an estimate we pose additional assumptions on the operator a and the function ψ .

Proposition 2.10 (Estimating the remainder rN (x, ξ)) Take a ∈ �m and ψ ∈ C∞
as in Proposition 2.8. Assume additionally that the symbol a = a(x, ξ) ∈ Sm is such
that

|∂α
ξ D

β
x a(x, ξ)| ≤ CαK|β|〈ξ 〉m−|α|, (2.6)

for all x, ξ ∈ R
n. Here K|β| is a weight sequence such that

inf
p∈N

Kp

〈ξ 〉p ≤ Ce−δ0ψ(〈ξ〉), (2.7)

for some δ0 > 0. Furthermore, we suppose that the relation

ψ(〈ξ + ζ 〉) ≤ ψ(〈ξ 〉) + ψ(〈ζ 〉), (2.8)

holds for all large ξ, ζ ∈ R
n. We assume that the constant λ > 0 is such that there

exists another positive constant c0 such that

δ0 − λ = c0 > 0. (2.9)

Then the remainder rN (x, ξ) given by (2.4) satisfies the estimate

∣∣∂α
ξ D

β
x rN (x, ξ)

∣∣ ≤ Cα, β, NλN 〈ξ 〉m−|α|−Nψ(〈ξ 〉)N , (2.10)

for (x, ξ) ∈ R
n × R

n and α, β ∈ N
n.

Proof Our proof essentially follows the strategy presented in [11,12]. We have

|∂α
ξ D

β
x rN (x, ξ)| =

∣∣∣∣
N

(2π)n

∑

|γ |=N
α′+α′′=α

(
α

α′

)
Os−

∫∫

R2n

1∫

0

(1 − ϑ)N−1

γ !

× F̃α′′, γ, β(x, y, ξ, ζ, ϑ)Gα′, γ (ξ, ζ )dϑdydζ

∣∣∣∣,

where

F̃α′′, γ, β(x, y, ξ, ζ, ϑ) = e−iy·ζ ∂α′′
ξ Dγ+β

x a(x + ϑy, ξ), and

Gα′, γ (ξ, ζ ) = ∂α′
ξ

(
e−λψ(〈ξ〉)∂γ

ν

(
eλψ(〈ν〉)∣∣

ν=ξ+ζ

))
.
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Considering Fα′′, γ, β = Fα′′, γ, β(x, ξ, ζ ) with

Fα′′, γ, β = Os−
∫

Rn

1∫

0

(1 − ϑ)N−1 F̃α′′, γ, β(x, y, ξ, ζ, ϑ)dϑdy,

and obtain for |ζ | ≥ 1 that

|ζ κFα′′, γ, β | =
∣∣∣∣Os−

∫

Rn

1∫

0

(1 − ϑ)N−1ζ κe−iy·ζ ∂α′′
ξ Dγ+β

x a(x + ϑy, ξ)dϑdy

∣∣∣∣

=
∣∣∣∣Os−

∫

Rn

1∫

0

(1 − ϑ)N−1e−iy·ζ ∂α′′
ξ Dκ

y D
γ+β
x a(x + ϑy, ξ)dϑdy

∣∣∣∣

≤ CN , α′′K|γ |+|β|+|κ|〈ξ 〉m−|α′′|,

where we used ζ κe−iy·ζ = (−Dy)
κe−iy·ζ and integrated by parts. For |ζ | ≥ 1 we

know that 〈ζ 〉 ≤ √
2|ζ |. Hence, it is clear that

|Fα′′, γ, β | ≤ CN , α′′K|γ |+|β|+|κ|〈ξ 〉m−|α′′||ζ |−|κ|

≤ √
2
|κ|
CN , α′′K|γ |+|β|+|κ|〈ξ 〉m−|α′′|〈ζ 〉−|κ|.

In the case |ζ | < 1 we have 〈ζ 〉|κ| <
√
2
|κ|
. This allows us to conclude

|Fα′′, γ, β | ≤ Os−
∫

Rn

1∫

0

(1 − ϑ)N−1
∣∣∂α′′

ξ Dγ+β
x a(x + ϑy, ξ)

∣∣dϑdy

≤ CN , α′′K|γ |+|β|〈ξ 〉m−|α′′|

≤ √
2
|κ|
CN , α′′K|γ |+|β|+|κ|〈ξ 〉m−|α′′|〈ζ 〉−|κ|.

We combine the estimates of both cases and obtain

|Fα′′, γ, β(x, ξ, ζ )| ≤ √
2
|κ|
CN , α′′K|γ |+|β|+|κ|〈ξ 〉m−|α′′|〈ζ 〉−|κ|

≤ √
2
|κ|
CN , α′′, γ, βK|κ|〈ξ 〉m−|α′′|〈ζ 〉−|κ|, (2.11)

for all x, ξ, ζ ∈ R
n .

Next, we consider

Gα′, γ (ξ, ζ ) = ∂α′
ξ

(
e−λψ(〈ξ〉)∂γ

ν

(
eλψ(〈ν〉)∣∣

ν=ξ+ζ

))
,
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and find that

∂γ
ν

(
eλψ(〈ν〉)∣∣

ν=ξ+ζ

) = eλψ(〈ξ+ζ 〉)Q1, γ (ξ + ζ ),

∂α′
ξ

(
e−λψ(〈ξ〉)∂γ

ν

(
eλψ(〈ν〉)∣∣

ν=ξ+ζ

)) = eλ(ψ(〈ξ+ζ 〉)−ψ(〈ξ〉))Q2, γ, α′(ξ + ζ, ξ),

where

|Q1, γ (ξ + ζ )| ≤ Cγ λ|γ |ψ ′(〈ξ + ζ 〉)|γ |, (2.12)

|Q2, γ, α′(ξ + ζ, ξ)| ≤ Cγ, α′ |Q1, γ (ξ + ζ )|λ|α′|∣∣ψ ′(〈ξ + ζ 〉) − ψ ′(〈ξ 〉)∣∣|α′|

≤ Cγ, α′λ|γ |+|α′|ψ ′(〈ξ + ζ 〉)|γ |∣∣ψ ′(〈ξ + ζ 〉) − ψ ′(〈ξ 〉)∣∣|α′|
.

(2.13)

For some ϑ̃ ∈ (0, 1), we have the estimate

|ψ ′(〈ξ + ζ 〉) − ψ ′(〈ξ 〉)||α′| = |ψ ′′(〈ξ + ζ 〉 − ϑ̃〈ξ 〉)||α′||〈ξ + ζ 〉 − 〈ξ 〉||α′|

≤ C

∣∣∣∣
ψ(〈ξ + ζ 〉 − ϑ〈ξ 〉)
|〈ξ + ζ 〉 − ϑ̃〈ξ 〉|2

∣∣∣∣
|α′|

〈ζ 〉|α′|

≤ C〈ξ 〉−|α′|〈ζ 〉|α′|, (2.14)

where we applied assumption (2.1). Combining (2.12), (2.13) and (2.14), we obtain

|Gα′, γ (ξ, ζ )| ≤ Cγ, α′λ|γ |+|α′|eλ
(
ψ(〈ξ+ζ 〉)−ψ(〈ξ〉)

)
ψ ′(〈ξ + ζ 〉)|γ |

× ∣∣ψ ′(〈ξ + ζ 〉) − ψ ′(〈ξ 〉)∣∣|α′|

≤ Cγ, α′λ|γ |+|α′|eλ
(
ψ(〈ξ+ζ 〉)−ψ(〈ξ〉)

)
ψ(〈ξ + ζ 〉)|γ |

〈ξ + ζ 〉|γ | 〈ξ 〉−|α′|〈ζ 〉|α′|

≤ Cγ, α′λ|γ |+|α′|eλ
(
ψ(〈ξ+ζ 〉)−ψ(〈ξ〉)

) 〈ζ 〉|α′|ψ(〈ξ + ζ 〉)|γ |

〈ξ 〉|α′|+|γ | .

In view of assumption (2.8), i.e. ψ(〈ξ + ζ 〉) ≤ ψ(〈ξ 〉) + ψ(〈ζ 〉), we conclude that

|Gα′, γ (ξ, ζ )| ≤ Cγ, α′λ|γ |+|α′|eλψ(〈ζ 〉) 〈ζ 〉|α′|(ψ(〈ξ 〉) + ψ(〈ζ 〉))|γ |

〈ξ 〉|α′|+|γ | . (2.15)

Combining (2.11) and (2.15) implies

|∂α
ξ D

β
x rN (x, ξ)| ≤ N

(2π)nN !
∑

|γ |=N
α′+α′′=α
δ′+δ′′=α′

(
α

α′

)(
α′

δ′

)
CN , α, β

√
2
|κ|
Os−

∫

Rn

eλψ(〈ζ 〉)

× λ|γ |K|κ|〈ζ 〉−(|κ|−|α′|)(ψ(〈ξ 〉) + ψ(〈ζ 〉))|γ |〈ξ 〉m−|α|−|γ |dζ.
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We use K|κ| ≤ CαK|κ|−|α′| and apply assumption (2.7) to choose κ such that

K|κ|−|α′|〈ζ 〉−(|κ|−|α′|) ≤ Ce−δ0ψ(〈ζ 〉).

This yields

|∂α
ξ D

β
x rN (x, ξ)| ≤ N

(2π)nN !
∑

|γ |=N

CN , α, β

√
2
|κ|

λ|γ |Os−
∫

Rn

e−(δ0−λ)ψ(〈ζ 〉)

× (ψ(〈ξ 〉) + ψ(〈ζ 〉))|γ |〈ξ 〉m−|α|−|γ |dζ.

By assumption (2.9) there exists a positive constant c0 such that δ0 − λ = c0 > 0. We
conclude that

|∂α
ξ D

β
x rN (x, ξ)| ≤ Cα, β, N

∑

|γ |=N

〈ξ 〉m−|α|−|γ |λ|γ |Os−
∫

Rn

e−c0ψ(〈ζ 〉)√2
|κ|

× (ψ(〈ξ 〉) + ψ(〈ζ 〉))|γ |dζ

≤ Cα, β, NλN 〈ξ 〉m−|α|−N
∑

|γ |=N

Os−
∫

Rn

e−c0ψ(〈ζ 〉)√2
|κ|

× (ψ(〈ξ 〉)|γ | + ψ(〈ζ 〉)|γ |)dζ

≤ Cα, β, NλN 〈ξ 〉m−|α|−Nψ(〈ξ 〉)NOs−
∫

Rn

e− c0
2 ψ(〈ζ 〉)√2

|κ|
dζ

≤ Cα, β, NλN 〈ξ 〉m−|α|−Nψ(〈ξ 〉)N .

This concludes the proof. �

3 Statement of the results

Depending on the modulus of continuity of the coefficients, we expect to have an at
most finite loss of derivatives (for strong moduli of continuity) or an infinite loss of
derivatives (for weak moduli of continuity). We account for this difference by stating
two different theorems, one for strong and one for weak moduli of continuity.

In both cases we consider the Cauchy problem

⎧
⎪⎨

⎪⎩
Dm
t u =

m−1∑
j=0

Am− j (t, x, Dx )D
j
t u + f (t, x),

Dk−1
t u(0, x) = gk(x), (t, x) ∈ [0, T ] × R

n, k = 1, . . . , m,

(3.1)

where

Am− j (t, x, Dx ) =
∑

|γ |+ j=m

am− j,γ (t, x)Dγ
x +

∑

|γ |+ j≤m−1

am− j,γ (t, x)Dγ
x .
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We assume in both cases the following conditions:

(SH1) The Cauchy problem is strictly hyperbolic, i.e. the characteristic roots
τk(t, x, ξ), k = 1, . . . , m, of the principal part

Pm(t, x, τ, ξ) = τm −
m−1∑

j=0

A(m− j)(t, x, ξ)τ j

= τm −
m−1∑

j=0

∑

|γ |+ j=m

am− j,γ (t, x)ξγ τ j ,

are real when |ξ | 	= 0, simple and numbered in such a way that

τ1(t, x, ξ) < τ2(t, x, ξ) < · · · < τm(t, x, ξ),

for all t ∈ [0, T ], x, ξ ∈ R
n .

(SH2) The coefficients am− j, γ (t, x) of the lower order terms (i.e. |γ | + j ≤ m − 1)
are continuous in time and the coefficients am− j, γ (t, x) of the principal part
(i.e. |γ | + j = m) satisfy

∣∣Dβ
x am− j, γ (t, x) − Dβ

x am− j, γ (s, x)
∣∣ ≤ CK|β|μ(|t − s|),

for some constant C > 0 and a weight sequence Kp, all t, s ∈ [0, T ], all
β ∈ N

n and fixed x ∈ R
n , where μ is a strong or weak modulus of continuity.

(SH3) The modulus of continuity μ in (SH2) can be written in the form

μ(s) = sω(s−1),

where ω(s) is a non-decreasing, smooth function on [0, 1].

3.1 Result for strong moduli of continuity

We are able to prove the following well-posedness result if we assume (SH1), (SH2)
and (SH3) as well as the following conditions:

(SH1-S) The modulus of continuityμ in (SH2) is strong and the weight sequence Kp

is arbitrary.
(SH2-S) All the coefficients am− j, γ belong to C

([0, T ]; B∞).
(SH3-S) The initial data gk belongs to H ν+m−k for k = 1, · · · , m.
(SH4-S) The right-hand side f = f (t, x) ∈ C([0, T ]; H ν).
(SH5-S) The function ω is smooth and satisfies

∣∣∣∣
dk

dsk
ω(s)

∣∣∣∣ ≤ Cks
−kω(s), (3.2)

for all k ∈ N and large s ∈ R
+.
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Theorem 3.1 Consider the Cauchy problem (3.1). Under the above assumptions,
there is a κ > 0 such that for every ν ∈ R there exists a unique global (in time)
solution

u ∈
m−1⋂

j=0

Cm−1− j ([0, T ]; H ν+ j
ω,−κT

)
.

The solution satisfies the a-priori estimate

m−1∑

j=0

∥∥〈Dx 〉ν+m−1− j e−κtω(〈Dx 〉)∂ j
t u(t, ·)∥∥2L2

≤ C

⎛

⎝
m∑

k=1

∥∥〈Dx 〉ν+m−kgk(0, ·)∥∥2L2 +
t∫

0

∥∥〈Dx 〉νe−κzω(〈Dx 〉) f (z, ·)∥∥2L2dz

⎞

⎠

for 0 ≤ t ≤ T and some C = Cv > 0.

We note that the spaces H ν
ω, κT are embedded in Sobolev spaces, since we are dealing

with strongmoduli of continuity, i.e.ω(s) = O(log(s)). Thismeans, that forω(s) = 1,
i.e. Lipschitz-continuous coefficients, we have no loss of derivatives. For coefficients
that are Log-Lipschitz-continuous in time, we have well-posedness in H ν

log,−κT =
H ν−κT with at most finite loss of derivatives. In between both cases, the loss of
derivatives is arbitrarily small.

3.2 Result for weak moduli of continuity

We are able to prove the following well-posedness result if we assume (SH1), (SH2)
and (SH3) as well as the following conditions:

(SH1-W) The modulus of continuity μ in (SH2) is weak.
(SH2-W) All the coefficients am− j, γ belong to C

([0, T ]; B∞
K

)
.

(SH3-W) The initial data gk belongs to H ν+m−k
η, δ1

for k = 1, . . . , m.
(SH4-W) The right-hand side f = f (t, x) ∈ C([0, T ]; H ν

η, δ2
).

(SH5-W) The weight function η and the sequence of constants Kp satisfy the relation

inf
p∈N

Kp

〈ξ 〉p ≤ Ce−δ0η(〈ξ〉),

for large |ξ | and some δ0 > 0.
(SH6-W) The functions η and ω are smooth and satisfy

∣∣∣∣
dk

dsk
η(s)

∣∣∣∣ ≤ Cks
−kη(s),

∣∣∣∣
dk

dsk
ω(s)

∣∣∣∣ ≤ Cks
−kω(s), (3.3)
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for all k ∈ N and large s ∈ R
+ and

η(〈ξ + ζ 〉) ≤ η(〈ξ 〉) + η(〈ζ 〉), ω(〈ξ + ζ 〉) ≤ ω(〈ξ 〉) + ω(〈ζ 〉), (3.4)

for all large ξ, ζ ∈ R
n .

Theorem 3.2 Consider the Cauchy problem (1.1). Under the above assumptions,
there is a unique global (in time) solution

u ∈
m−1⋂

j=0

Cm−1− j ([0, T ]; H ν+ j
η, δ

)
,

where δ < min{δ0, δ1, δ2}, provided that,

μ

(
1

〈ξ 〉
)

〈ξ 〉 = ω(〈ξ 〉) = o(η(〈ξ 〉)). (3.5)

More specifically, for any t0 ∈ [0, T ], any sufficiently large κ and for any T ∗ ∈
[0, T − t0] such that κT ∗ is sufficiently small, we have the a-priori estimate

m−1∑

j=0

∥∥〈Dx 〉ν+m−1− j eκ(T ∗+t0−t)ω(〈Dx 〉)∂ j
t u(t, ·)∥∥2L2

≤ C

(
m∑

k=1

∥∥〈Dx 〉ν+m−keκ(T ∗+t0)ω(〈Dx 〉)gk(t0, ·)∥∥2L2

+
t∫

t0

∥∥〈Dx 〉νeκ(T ∗+t0−z)ω(〈Dx 〉) f (z, ·)∥∥2L2dz

⎞

⎠ ,

for t0 ≤ t ≤ t0 + T ∗.

We note that the spaces H ν+ j
η, δ are spaces of ultra-differentiable functions, since we

are dealing with weak moduli of continuity, i.e. ω(s) = o(log(s)). In general, the loss
of derivatives that occurs is infinite.

3.3 Examples and remarks

Let us begin with some examples of strong moduli of continuity.

Example (Lipschitz-coefficients). Let the coefficients be Lipschitz continuous in time,
i.e. μ(s) = s and ω(s) = 1, and B∞ in space. The initial data gk and right-hand side
f are chosen such that

gk ∈ H ν+m−k, k = 1, . . . , m, f ∈ C
([0, T ]; H ν

)
.
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All assumptions are satisfied and we a have global (in time) solution

u = u(t, x) ∈
m−1⋂

j=0

Cm−1− j ([0, T ]; H ν+ j ),

i.e. we have Sobolev-well-posednesswithout a loss of derivatives. This result is already
well-known (see e.g. [2,4,5], [8, Chapter 9] and [15, Chapter 6]).

Example (Log-Lip-coefficients). Let the coefficients be Log-Lip-continuous in time,
i.e. μ(s) = s

(
log(s−1)+1

)
and ω(s) = log(s)+1, and B∞ in space. The initial data

gk and right-hand side f are chosen such that

gk ∈ H ν+m−k, k = 1, . . . , m, f ∈ C
([0, T ]; H ν

)
.

In this case, we have a global (in time) solution

u = u(t, x) ∈
m−1⋂

j=0

Cm−1− j ([0, T ]; H ν+ j−κT ),

where κ > 0 is sufficiently large. We conclude that we have an at most finite loss of
derivatives, which is also a well-known result (see e.g. [2,4,5,7]).

Next, we consider weak moduli of continuity. Looking at Theorem 3.2, assump-
tions (SH5-W) and (SH6-W) may not be as intuitive as the other ones.

Assumption (SH5-W) describes the connection between the weight function η of
the solution space and the behavior of the coefficients with respect to the spatial
variables. In a way, we may interpret this condition as a multiplication condition in
the sense that the regularity of the coefficients in x has to be such that the product of
coefficients and the solution stays in the solution space. This means that the weight
sequence Kp and the weight function η have to be compatible in a certain sense. One
way to ensure that they are compatible is to choose them such that the function space
of all functions f ∈ C∞(Rn) with

sup
x ∈Rn

|Dα
x f (x)| ≤ CK|α|,

and the function space of all functions f ∈ L2(Rn) with

eη(〈Dx 〉) f ∈ L2(Rn),

coincide. For results concerning the conditions on η and Kp under which both spaces
coincide, we refer the reader to [3,17,20].

Assumption (SH6-W) provides some relations that are used in the pseudodifferen-
tial calculus. Condition (3.3) for η and ω is not really a restriction. If η or ω happen to
be not smooth, we can define equivalent weight functions, that are smooth and satisfy
(3.3).
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The difficulty of checking whether condition (3.4), is satisfied, certainly depends
on the choice of η and ω. However, in some cases it may be easier to verify that η and
ω belong to a certain class of weights, for which (3.4) is satisfied. An example of such
a class is introduced in Definition 3.7 in [20].

In the following, we compute some examples for weakmoduli of continuity. In each
example, we first choose a certain modulus of continuity μ to describe the regularity
of the coefficients in time. Depending on this modulus of continuity, we look for
a suitable weight function η which satisfies (3.5). Having chosen η, we specify the
regularity of the coefficients in space by choosing a sequence of constants Kp such
that (SH5-W) is satisfied.

Example (Log-Log[m]-Lip coefficients). Let the coefficients be Log-Log[m]-Lip con-
tinuous in time, i.e. μ(s) = s

(
log

( 1
s

)+ 1
)
log[m] ( 1

s

)
and ω(s) = (log(s) +

1) log[m](s), m ≥ 2. We choose

η(s) = log(s)
(
log[m](s)

)1+ε + cm,

where ε > 0 is arbitrarily small and cm > 0 is such that η(s) ≥ 1 for all s ≥ 1. Finding
a suitable weight sequence Kp is not obvious. In the literature on weight sequences
and weight functions (e.g. [3,14,18,19]), for a given weight function M(t) one can
compute the associated weight sequence {Mp}p by considering

Mp = sup
t>0

t p

eM(t)
.

Following this approach for our weight function η runs into the difficulty of actually
computing the above supremum. However, it is possible to compute the associ-
ated sequence for ω, which is Mp, ω = (exp[m](p))(p−1)e−p. From this, we can
get a possible sequence Kp by decreasing the growth of Mp, ω. Setting Kp =
(exp[m](p))(p−1)e−p−̃ε, for some ε̃ > 0, yields a possible weight sequence for η,
in the sense that, for fixed ε̃ > 0 there is a ε > 0 such that (SH5-W) is satisfied.
However, it is not clear how ε̃ is related to ε in general. Furthermore, it is not clear
whether the set of functions defined by Kp forms a proper function space.

Another way to obtain a possible weight sequence Kp (which actually defines a
function space) is to guess a weight sequence {Mp}p and to compute the associated
weight function M(t) by considering

M(t) = sup
p∈N

log
( |t |p
Mp

)
if t 	= 0 and M(0) = 0.

Then we compare M(t) and η. If M(t) grows faster than η, then Mp is a potential
candidate for Kp. Of course, following this procedure, we cannot ensure that the
sequence Kp is optimal.

In our case, we consider the sequence {Mp}p = {pp2}p, which defines a space of
ultradifferentiable functions (see [18,19]). We compute the associated function M(ξ)

and obtain
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M(ξ) = log(〈ξ 〉)
2

eW
(
log(〈ξ〉)√e

2

)
− 1

2 ,

where W denotes the Lambert W function (also called product logarithm). For suffi-
ciently large ξ we find that M(ξ) > η(〈ξ 〉) and, therefore, we obtain the inequality

inf
p∈N

pp2

〈ξ 〉p ≤ Ce−M(ξ) ≤ Ce−δ0η(〈ξ〉),

for some δ0 > 0.
Either way, condition (SH5-W) is satisfied if the coefficients am− j, γ are Log-

Log[m]-Lip-continuous in time, belong to B∞ in space and satisfy

|Dβ
x am− j, γ (t, x)| ≤ CK|β|,

uniformly in x , for fixed t .
The initial data gk and right-hand side f are chosen such that

gk ∈ H ν+m−k
η, δ1

, k = 1, . . . , m, f ∈ C
([0, T ]; H ν

η, δ2

)
.

Lastly, we check that assumption (SH6-W) is satisfied. Clearly,

∣∣∣
dk

dsk
η(s)

∣∣∣ ≤ Cks
−kη(s),

∣∣∣
dk

dsk
ω(s)

∣∣∣ ≤ Cks
−kω(s),

for all k ∈ N and large s ∈ R.
Proving

η(〈ξ + ζ 〉) ≤ η(〈ξ 〉) + η(〈ζ 〉), ω〈ξ + ζ 〉) ≤ ω(〈ξ 〉) + ω(〈ζ 〉), (3.6)

for large 〈ξ 〉 and 〈ζ 〉, is not so obvious. We use that η and ω belong to the set W(R)

which was introduced by Reich [20]. In [20] the author proves that all functions in
W(R) satisfy an even stronger condition than (3.6).

Thus, all assumptions are satisfied and we have a global (in time) solution u =
u(t, x) ∈ ⋂m−1

j=0 Cm−1− j
([0, T ]; H ν+ j

η, δ

)
with δ < min{δ0, δ1, δ2}. We expect an

infinite loss of derivatives since log(s) = o(η(s)).

Example (Hölder-coefficients). Let the coefficients be Hölder-continuous in time, i.e.
μ(s) = sα and ω(s) = s1−α , α ∈ (0, 1). We choose

η(s) = sκ ,

where κ > 1 − α is a constant. We use the well-known inequality

inf
p∈N(p!) 1

κ (A〈ξ 〉−1)p ≤ Ce−δ0η(〈ξ〉),
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where A is a positive constant. This yields that condition (SH5-W) is satisfied if the
coefficients am− j, γ are Hölder-continuous in time and belong to the B∞ in space and
satisfy

|Dβ
x am− j, γ (t, x)| ≤ C(|β|!) 1

κ A|β|,

uniformly in x , for fixed t . This defines the Gevrey space G
1
κ (Rn). The initial data gk

and right-hand side f are chosen such that

gk ∈ H ν+m−k
η, δ1

, k = 1, . . . , m, f ∈ C
([0, T ]; H ν

η, δ2

)
.

Lastly, we check that assumption (SH6-W) is satisfied. Clearly,

∣∣∣
dk

dsk
η(s)

∣∣∣ ≤ Cks
−kη(s),

∣∣∣
dk

dsk
ω(s)

∣∣∣ ≤ Cks
−kω(s)

for all k ∈ N and large s ∈ R. Moreover,

ω(〈ξ + ζ 〉) ≤ ω(〈ξ 〉) + ω(〈ζ 〉), and η(〈ξ + ζ 〉) ≤ η(〈ξ 〉) + η(〈ζ 〉),

for sufficiently large 〈ξ 〉 and 〈ζ 〉.
Thus, all assumptions are satisfied and we have a global (in time) solution u =

u(t, x) ∈ ⋂m−1
j=0 Cm−1− j

([0, T ]; H ν+ j
η, δ

)
with δ < min{δ0, δ1, δ2}, where the loss of

derivatives is infinite, since log(s) = o(η(s)).

We remark, that H ν
η, δ is the classical Gevrey space G

1
κ , which means we have

Gevrey-well-posedness (with infinite loss of derivatives), if κ > 1 − α, which is a
well-known result (cf. e.g. [1,4,10,16]).

Example (Log−α-coefficients). Let the coefficients be Log−α-continuous in time, i.e.
μ(s) = (

log
( 1
s

)+ 1
)−α

and ω(s) = s (log(s) + 1)−α , α ∈ (0, 1). We choose

η(s) = s (log(s) + 1)−κ ,

where 0 < κ < α is a constant. In view of Definition 9 and Example 25 in [3], we
find that condition (SH5-W) is satisfied if we choose

Kp = ((p + 1)(log(e + p)))p.

The initial data gk and right-hand side f are chosen such that

gk ∈ H ν+m−k
η, δ1

, k = 1, . . . , m, f ∈ C
([0, T ]; H ν

η, δ2

)
.

Lastly, we check that assumption (SH6-W) is satisfied. Clearly,

∣∣∣
dk

dsk
η(s)

∣∣∣ ≤ Cks
−kη(s),

∣∣∣
dk

dsk
ω(s)

∣∣∣ ≤ Cks
−kω(s)
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for all k ∈ N and large s ∈ R. The relations

ω(〈ξ + ζ 〉) ≤ ω(〈ξ 〉) + ω(〈ζ 〉), and η(〈ξ + ζ 〉) ≤ η(〈ξ 〉) + η(〈ζ 〉),

for sufficiently large 〈ξ 〉 and 〈ζ 〉, can be proved by using a similar approach to the one
used in Example 3.3.

Thus, all assumptions are satisfied and we have a global (in time) solution u =
u(t, x) ∈ ⋂m−1

j=0 Cm−1− j
([0, T ]; H ν+ j

η, δ

)
with δ < min{δ0, δ1, δ2}. We expect an

infinite loss of derivatives since log(s) = o(η(s)).

4 Proofs

In this section, we prove Theorems 3.1 and 3.2. Both proofs follow the steps described
below and are, in fact, identical until we perform the change of variables. In the case of
strong moduli of continuity, this change of variables features pseudodifferential oper-
ators of finite order; for weak moduli of continuity these pseudodifferential operators
are of infinite order, by which we mean that their symbols behave like exponentials
rather than polynomials.

The first step of both proofs is to introduce regularized characteristic roots λ j which
are smooth in time. We continue by rewriting the original differential equation using
the newly defined regularized roots and transform the differential equation into a first
order system with respect to the derivatives in time. After the diagonalization of the
principal part, we perform a change of variables (containing the loss of derivatives).
Finally, we able to apply sharp Gårding’s inequality and Gronwall’s lemma to derive
a H ν-H ν-estimate, this implies L2 well-posedness for the auxiliary Cauchy problem.

4.1 Regularize characteristic roots

The characteristic roots of the operator in (3.1) are the solutions τ1, . . . , τm of the
characteristic equation

τm −
m−1∑

j=0

∑

|γ |+ j=m

am− j, γ (t, x)ξγ τ j = 0.

They are homogeneous of degree 1 in ξ and

∣∣∂α
ξ D

β
x τ j (t, x, ξ) − ∂α

ξ D
β
x τ j (s, x, ξ)

∣∣ ≤ CK|β|μ(|t − s|)〈ξ 〉1−|α|,

due to the assumptions (SH1) and (SH2). Since the characteristic roots are only μ-
continuous in time, it is useful to approximate them by regularized roots which are
smooth in time.

Definition 4.1 Let ϕ ∈ C∞
0 (R) be a given function satisfying

∫
R

ϕ(x)dx = 1 and
ϕ(x) ≥ 0 for any x ∈ R with suppϕ ⊂ [−1, 1]. Let ε > 0 and set ϕε(x) = 1

ε
ϕ
( x

ε

)
.
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Then we define for j = 1, . . . , m,

λ j (t, x, ξ) := (τ j (·, x, ξ) ∗ ϕε(·))(t, x, ξ).

Remark 4.2 The characteristic roots τ j (t, x, ξ) are defined on [0, T ]×R
n ×R

n . For
the above definition to be sensible, it is necessary to extend them to [−ε, T + ε] ×
R
n ×R

n , continuously. However, we do not distinguish between τ j (t, x, ξ) and their
continuation but just write τ j (t, x, ξ).

The following relations are obtained by straightforward computations.

Proposition 4.3 For ε = 〈ξ 〉−1 we have λ j ∈ C
([0, T ]; S1

)
. There exist constants

Cα > 0 such that the inequalities

(i)
∣∣∂α

ξ D
β
x ∂kt λ j (t, x, ξ)

∣∣ ≤ CαK|β|〈ξ 〉k+1−|α|μ(〈ξ 〉−1), for all k ≥ 1, j =
1, . . . , m,

(ii)
∣∣∂α

ξ D
β
x
(
λ j (t, x, ξ) − τ j (t, x, ξ)

)∣∣ ≤ CαK|β|〈ξ 〉1−|α|μ(〈ξ 〉−1), for all j =
1, . . . , m, and

(iii) λ j (t, x, ξ) − λi (t, x, ξ) ≥ C〈ξ 〉, for all 1 ≤ i < j ≤ m,

are satisfied for all t ∈ [0, T ] and x, ξ ∈ R
n.

Remark 4.4 We observe that (i) and (i i) in Proposition 4.3 are equivalent to

(i)
∣∣∂α

ξ D
β
x ∂kt λ j (t, x, ξ)

∣∣ ≤ CαK|β|〈ξ 〉k−|α|ω(〈ξ 〉) and
(ii)

∣∣∂α
ξ D

β
x
(
λ j (t, x, ξ) − τ j (t, x, ξ)

)∣∣ ≤ CαK|β|〈ξ 〉−|α|ω(〈ξ 〉).

4.2 Factorization and reduction to a pseudodifferential system of first order

We are interested in a factorization of the operator P(t, x, Dt , Dx ). Formally, this
leads to

P(t, x, Dt , Dx ) = (Dt − τm(t, x, Dx )) · · · (Dt − τ1(t, x, Dx ))

+
m−1∑

j=0

R j (t, x, Dx )D
j
t ,

(4.1)

where the difficulty is that the operators τk(t, x, Dx ) are not differentiablewith respect
to t , which means that the composition Dt ◦τk(t, x, Dx )may not be well-defined. An
idea to overcome this difficulty is to use the regularized roots λk(t, x, Dx ) in (4.1)
instead of τk(t, x, Dx ). This idea, however, comes at the price of increasing the order
of the lower order terms. How much their order is increased depends on the terms∣∣∂α

ξ D
β
x
(
λ j (t, x, ξ) − τ j (t, x, ξ)

)∣∣. In view of Proposition 4.3 and Remark 4.4 we
define the operator

P̃(t, x, Dt , Dx ) = (Dt − λm(t, x, Dx ) ◦ . . . ◦ (Dt − λ1(t, x, Dx )),
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and observe that P̃(t, x, Dt , Dx ) is a factorization of P(t, x, Dt , Dx ) in the sense
that

P(t, x, Dt , Dx ) = P̃(t, x, Dt , Dx ) +
m−1∑

j=0

R j (t, x, Dx )D
j
t , (4.2)

where R j (t, x, Dx ) ∈ C
([0, T ]; �m−1− j, ω

)
, j = 0, . . . , m − 1.

Our next step is to transform the differential equation Pu = f into a first order
pseudodifferential system. For this purpose, we consider P = P(t, x, Dt , Dx )

as given in (4.2) and introduce the change of variables U = U (t, x) =
(u0(t, x), . . . , um−1(t, x))T , where

u0(t, x) = 〈Dx 〉m−1v0(t, x), u j (t, x) = 〈Dx 〉m−1− jv j ,

v0(t, x) = u(t, x), v j (t, x) = (Dt − λ j (t, x, Dx ))v j−1(t, x),

for j = 1, . . . , m − 1. By including the terms Dt −λ j (t, x, Dx ) (and not just Dt ) in
the change of variables (i.e. also in the energy), the principal part of the operator of the
resulting system is already almost diagonal. More precisely, this means that Pu = f
is equivalent to

DtU (t, x) − A(t, x, Dx )U (t, x) + B(t, x, Dx )U (t, x) = (0, . . . 0, f (t, x))T ,

(4.3)
where

A(t, x, Dx ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

λ1(t, x, Dx ) 〈Dx 〉 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
...

. . . 〈Dx 〉
0 . . . . . . 0 λm(t, x, Dx )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

and B(t, x, Dx ) = {bi, j (t, x, Dx )}1≤i, j≤m is a matrix of lower order terms which
satisfies

bi, j (t, x, Dx ) = 0,

for i = 1, . . . , m − 1 and j = 1, . . . , m, and

|∂α
ξ D

β
x bm, j (t, x, ξ)| ≤ Cα, βω(〈ξ 〉), (4.4)

for i = m and j = 1, . . . , m.

4.3 Diagonalization procedure

The principal part A(t, x, Dx ) in (4.3) can be diagonalized and the regularized roots
λ j can be replaced by the original characteristic roots τ j since there are invertible
operators H and H−1 which satisfy the following proposition.
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Proposition 4.5 Consider the matrix T (t, x, ξ) = {βp, q(t, x, ξ)}0≤p, q≤m−1,
where

βp, q(t, x, ξ) = 0, p ≥ q;

βp, q(t, x, ξ) = (1 − ϕ1(ξ))〈ξ 〉k− j

dp, q(t, x, ξ)
, p < q;

dp, q(t, x, ξ) =
q−1∏

r=p

(
λq(t, x, ξ) − λr (t, x, ξ)

)
, ϕ1 ∈ C∞

0 , ϕ1 = 1 for |ξ | ≤ M,

where M is a large parameter. We define H(t, x, Dx ) and H−1(t, x, Dx ) to be the
pseudodifferential operators with symbols

H(t, x, ξ) = I + T (t, x, ξ), and

H−1(t, x, ξ) = I +
m−1∑

j=1

(−1) j T j (t, x, ξ).

Then the following assertions hold true.

(i) The operators H(t, x, Dx ) and H−1(t, x, Dx ) are in C
([0, T ]; �0

)
.

(ii) The composition (H−1 ◦ H)(t, x, Dx ) satisfies

H−1(t, x, Dx ) ◦ H(t, x, Dx ) = I + K (t, x, Dx ),

where K (t, x, Dx ) ∈ C
([0, T ]; �−1

)
.

(iii) The operator (Dt H)(t, x, Dx ) belongs to C
([0, T ]; �0, ω

)
.

(iv) The operator Â(t, x, Dx ) = H−1(t, x, Dx ) ◦ A(t, x, Dx ) ◦ H(t, x, Dx )

belongs to C
([0, T ]; �1

)
and its full symbol may be written as

Â(t, x, ξ) =
⎛

⎜⎝
τ1(t, x, ξ)

. . .

τm(t, x, ξ)

⎞

⎟⎠+ M(t, x, ξ),

where M(t, x, ξ) ∈ C
([0, T ]; S0, ω

)
is a lower order term.

(v) The operator B̂(t, x, Dx ) = H−1(t, x, Dx ) ◦ B(t, x, Dx ) ◦ H(t, x, Dx )

belongs to C
([0, T ]; �0, ω

)
.

We perform the described diagonalization by setting Û = Û (t, x) = H−1(t, x,
Dx )U (t, x) and obtain that

P(t, x, Dt , Dx )U (t, x) = (
0, . . . 0, f (t, x)

)T
,
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is equivalent to

Dt ◦ H(t, x, Dx )Û (t, x) − A(t, x, Dx ) ◦ H(t, x, Dx )Û (t, x)

+ B(t, x, Dx ) ◦ H(t, x, Dx )Û (t, x)

= H(t, x, Dx )DtÛ (t, x) − A(t, x, Dx ) ◦ H(t, x, Dx )Û (t, x)

+ (Dt H)(t, x, Dx )Û (t, x) + B(t, x, Dx ) ◦ H(t, x, Dx )Û (t, x)

= (
0, . . . 0, f (t, x)

)T
.

We set F = F(t, x) = (
0, . . . 0, f (t, x)

)T and apply H−1(t, x, Dx ) to both sides
of the previous pseudodifferential system to obtain

DtÛ (t, x) + K (t, x, Dx )DtÛ (t, x)

− H−1(t, x, Dx ) ◦ A(t, x, Dx ) ◦ H(t, x, Dx )Û (t, x)

+ H−1(t, x, Dx ) ◦ (Dt H)(t, x, Dx )Û (t, x)

+ H−1(t, x, Dx ) ◦ B(t, x, Dx ) ◦ H(t, x, Dx )Û (t, x)

= H−1(t, x, Dx )F(t, x). (4.5)

Applying Proposition 4.5 yields

H−1(t, x, Dx ) ◦ A(t, x, Dx ) ◦ H(t, x, Dx ) = A (t, x, Dx ) + M(t, x, Dx ),

H−1(t, x, Dx ) ◦ B(t, x, Dx ) ◦ H(t, x, Dx ) = B̂(t, x, Dx ) ∈ C
([0, T ]; �0, ω),

H−1(t, x, Dx ) ◦ (Dt H)(t, x, Dx ) ∈ C
(
[0, T ]; �0, ω),

where M(t, x, Dx ) ∈ C
([0, T ]; �0, ω

)
and

A (t, x, Dx ) =
⎛

⎜⎝
τ1(t, x, Dx )

. . .

τm(t, x, Dx )

⎞

⎟⎠ ,

is diagonal. Hence, setting

B (t, x, Dx ) = B̂(t, x, Dx )−M(t, x, Dx )+H−1(t, x, Dx )◦(Dt H)(t, x, Dx ),

the pseudodifferential system (4.5) may be written as

(
I + K (t, x, Dx )

)
DtÛ (t, x) − A (t, x, Dx )Û (t, x) + B (t, x, Dx )Û (t, x)

= H−1(t, x, Dx )F(t, x).

We now observe, that I + K (t, x, Dx ) is invertible for sufficiently large values of M .
Recall that K (t, x, Dx ) ∈ C

([0, T ]; �−1
)
. Therefore we may estimate the operator
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norm of K (t, x, Dx ) byCM−1, whereM is the parameter introduced in the definition
of H(t, x, Dx ) in Proposition 4.5. Choosing M sufficiently large ensures that the
operator normof K (t, x, Dx ) is strictly smaller than 1,which guarantees the existence
of

(
I + K (t, x, Dx )

)−1 =
∞∑

k=0

(−K (t, x, Dx ))
k ∈ C

([0, T ]; �0).

This means, that

P(t, x, Dt , Dx )U (t, x) = (
0, . . . 0, f (t, x)

)T

is equivalent to

L(t, x, Dt , Dx )Û (t, x) = H̃−1(t, x, Dx )F(t, x), (4.6)

where
L(t, x, Dt , Dx ) = Dt − Ã(t, x, Dx ) + B̃(t, x, Dx ),

with

H̃−1(t, x, Dx ) = (
I + K (t, x, Dx )

)−1 ◦ H−1(t, x, Dx ) ∈ C
([0, T ]; �0),

Ã(t, x, Dx ) = (
I + K (t, x, Dx )

)−1 ◦ A (t, x, Dx ) ∈ C
([0, T ]; �1),

B̃(t, x, Dx ) = (
I + K (t, x, Dx )

)−1 ◦ B (t, x, Dx ) ∈ C
([0, T ]; �0, ω).

From this point on, the proofs of Theorems 3.1 and 3.2 differ. We first discuss how
to proceed in the case of strong moduli of continuity and then conclude this chapter
by finishing the proof for weak moduli of continuity as well.

4.4 Conjugation for strong moduli of continuity

Beforewe apply sharpGårding’s inequality andGronwall’s lemmaweperformanother
change of variables, which allows us to control the lower order terms B̃(t, x, Dx ).

We set Û (t, x) = 〈Dx 〉−νeκtω(〈Dx 〉)V (t, x), t ∈ [0, T ], where κ is a suitable
positive constant, which is determined later and ν is the index of the Sobolev space
H ν which is related to the space in which we want to have well-posedness. We obtain
that the pseudodifferential system (4.6) is equivalent to

L̃(t, x, Dt , Dx )V (t, x) = 〈Dx 〉νe−κtω(〈Dx 〉) H̃−1(t, x, Dx )F(t, x), (4.7)

where

L̃(t, x, Dt , Dx ) = Dt − 〈Dx 〉νe−κtω(〈Dx 〉) ◦ Ã(t, x, Dx ) ◦ eκtω(〈Dx 〉)〈Dx 〉−ν

+ 〈Dx 〉νe−κtω(〈Dx 〉) ◦ B̃(t, x, Dx ) ◦ eκtω(〈Dx 〉)〈Dx 〉−ν − iκω(〈Dx 〉),
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Applying the composition rule for pseudodifferential operators of finite order, we
obtain that

〈Dx 〉νe−κtω(〈Dx 〉) ◦ Ã ◦ eκtω(〈Dx 〉)〈Dx 〉−ν = Ã(t, x, Dx ) + B1(t, x, Dx ),

〈Dx 〉νe−κtω(〈Dx 〉) ◦ B̃ ◦ eκtω(〈Dx 〉)〈Dx 〉−ν = B̃(t, x, Dx ) + B2(t, x, Dx ),

where B1, B2 ∈ C
([0, T ];�0

)
.

We conclude that, for t ∈ [0, T ], the pseudodifferential system (4.6) is equivalent
to

L̃(t, x, Dt , Dx )V (t, x) = 〈Dx 〉νe−κtω(〈Dx 〉) H̃−1(t, x, Dx )F(t, x), (4.8)

where

L̃(t, x, Dt , Dx ) = Dt − Ã(t, x, Dx ) + B̌(t, x, Dx ) − iκω(〈Dx 〉),

and B̌ ∈ C
([0, T ];�0, ω

)
.

4.5 Well-posedness of an auxiliary Cauchy problem for strong moduli of
continuity

We consider the auxiliary Cauchy problem

∂t V = (
i Ã(t, x, Dx ) − iB̌(t, x, Dx ) − κω(〈Dx 〉)

)
V

+ i〈Dx 〉νeρ(t)ω(〈Dx 〉) H̃−1(t, x, Dx )F(t, x),
(4.9)

for (t, x) ∈ [0, T ] × R
n , with initial conditions

V (0, x) = (
v0(x), . . . , vm−1(x)

)T
,

where

v j (x) = 〈Dx 〉νe−κtω(〈Dx 〉)H−1(0, x, Dx )〈Dx 〉m−1− j

× (Dt − λ j (0, x, Dx )) · · · (Dt − λ1(0, x, Dx ))u(0, x),

for j = 0, . . .m − 1.
Recalling that ∂t‖V ‖2

L2 = 2Re
[
(∂t V, V )L2

]
we obtain

∂t‖V ‖2L2 = 2Re
[
((i Ã − iB̌ − κω(〈Dx 〉))V, V )L2

]

+ 2Re
[
(〈Dx 〉νe−κtω(〈Dx 〉) H̃−1F, V )L2

]
.

We observe that

Re
[
i Ã(t, x, ξ) − iB̌(t, x, ξ) − κω(〈ξ 〉)] = −Re

[
iB̌(t, x, ξ) + κω(〈ξ 〉)],
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since Re
[
i Ã(t, x, ξ)

] = 0 (by assumption (SH1)). Taking account of B̌ ∈
C
([0, T ];�0, ω

)
it follows

Re
[
iB̌(t, x, ξ) + κω(〈ξ 〉)] ≥ Re

[− CBω(〈ξ 〉) + κω(〈ξ 〉)] ≥ 0,

if we choose κ > CB , where CB > 0 depends on B̌ and, hence, it is determined by
the coefficients of the original differential equation. Thus, we are able to apply sharp
Gårding’s inequality to obtain

2 Re
[(

(i Ã − iB̌ − κω(〈Dx 〉))V, V
)
L2

] ≤ C‖V ‖2L2 .

This yields

∂t‖V ‖2L2 ≤ C‖V ‖2L2 + C‖〈Dx 〉νe−κtω(〈Dx 〉) H̃−1F‖2L2 . (4.10)

We apply Gronwall’s Lemma to (4.10) and obtain

‖V (t, ·)‖2L2 ≤ C‖V (0, ·)‖2L2

+C

t∫

0

‖〈Dx 〉νe−κzω(〈Dx 〉) H̃−1(z, x, Dx )F(z, ·)‖2L2dz, (4.11)

for t ∈ [0, T ]. We recall that H̃−1(t, x, Dx ) is a pseudo-differential operator of order
zero and use assumption (SH4-S) to obtain that

‖〈Dx 〉νe−κzω(〈Dx 〉) H̃−1(z, x, Dx )F(z, ·)‖2L2 ≤ Cv, z < ∞,

similarly, in view of assumption (SH3-S), it is clear that,

‖V (0, ·)‖2L2 = ‖〈Dx 〉ν H̃−1(0, x, Dx )U (0, x)‖2L2 ≤ C < ∞.

We conclude that

‖〈Dx 〉νe−κtω(〈Dx 〉)Û (t, ·)‖2L2 ≤ C‖〈Dx 〉νÛ (0, ·)‖2L2

+ C

t∫

0

‖〈Dx 〉νe−κzω(〈Dx 〉) H̃−1(z, x, Dx )F(z, ·)‖2L2dz,

which means that the solution Û to (4.6) belongs to C([0, T ]; H ν
ω,−κT ). Returning to

our original solution u = u(t, x) we obtain that
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m−1∑

j=0

∥∥〈Dx 〉νe−κtω(〈Dx 〉)∂ j
t u(t, ·)∥∥2L2 ≤ C

⎛

⎝
m−1∑

j=0

∥∥〈Dx 〉νg j (0, ·)∥∥2L2

+
t∫

0

∥∥〈Dx 〉νe−κzω(〈Dx 〉) f (z, ·)∥∥2L2dz

⎞

⎠ ,

for 0 ≤ t ≤ T and some C = Cν > 0. This, in turn means that the original Cauchy
problem (3.5) is well-posed for u = u(t, x), with

u ∈
m−1⋂

j=0

Cm−1− j ([0, T ]; H ν+ j
ω,−κT ).

This concludes the proof for strong moduli of continuity.

4.6 Conjugation for weak moduli of continuity

In Sect. 4.3 we left off by observing that

P(t, x, Dt , Dx )U (t, x) = (
0, . . . 0, f (t, x)

)T
,

is equivalent to

L(t, x, Dt , Dx )Û (t, x) = H̃−1(t, x, Dx )F(t, x), (4.6)

where
L(t, x, Dt , Dx ) = Dt − Ã(t, x, Dx ) + B̃(t, x, Dx ),

with

H̃−1(t, x, Dx ) ∈ C
([0, T ]; �0),

B̃(t, x, Dx ) ∈ C
([0, T ]; �0, ω), and

Ã(t, x, Dx ) =
⎛

⎜⎝
τ1(t, x, Dx )

. . .

τm(t, x, Dx )

⎞

⎟⎠ ∈ C
([0, T ]; �1),

is diagonal. As in the case of strong moduli of continuity, this time we also perform a
change of variables to control the lower order terms B̃(t, x, Dx ). However, this time
the involved pseudodifferential operators are of infinite order.

We set

Û (t, x) = 〈Dx 〉−νe−κ(T ∗−t)ω(〈Dx 〉)V (t, x), t ∈ [0, T ∗],
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where κ and T ∗ are suitable positive constants, which are determined later and v ∈ R.
We obtain that the system (4.6) is equivalent to

L̃(t, x, Dt , Dx )V (t, x) = 〈Dx 〉νeκ(T ∗−t)ω(〈Dx 〉) H̃−1(t, x, Dx )F(t, x), (4.12)

where

L̃(t, x, Dt , Dx ) = Dt − 〈Dx 〉νeκ(T ∗−t)ω(〈Dx 〉) ◦ Ã ◦ e−κ(T ∗−t)ω(〈Dx 〉)〈Dx 〉−ν

+ 〈Dx 〉νeκ(T ∗−t)ω(〈Dx 〉) ◦ B̃ ◦ e−κ(T ∗−t)ω(〈Dx 〉)〈Dx 〉−ν

− iκω(〈Dx 〉).

Remark 4.6 We note that the operator eκ(T ∗−t)ω(〈Dx 〉) is of infinite order since
o(ω(s)) = log(s). Therefore, we cannot apply the standard asymptotic expansion
of the product of pseudodifferential operators of finite order.

We write ρ(t) = κ(T ∗ − t) and choose T ∗ such that the conjugation condition

ρ(t) = κ(T ∗ − t) ≤ κT ∗ < δ0,

is satisfied for all t ∈ [0, T ∗], where δ0 is the constant given by assumption (SH5-W)
and κ > 0 is determined later on. In view of condition (3.5) and by assumption (SH5-
W) it is clear that

inf
l∈N

Kl

〈ξ 〉l ≤ Ce−δ0η(〈ξ〉) ≤ Ce−δ0ω(〈ξ〉). (4.13)

Assumption (SH6-W) and (4.13) enable us to apply Proposition 2.8 and Proposi-
tion 2.10, which allow us to conclude that

Ãω(t, x, Dx ) = 〈Dx 〉νeρ(t)ω(〈Dx 〉) ◦ Ã(t, x, Dx ) ◦ e−ρ(t)ω(〈Dx 〉)〈Dx 〉−ν, and

B̃ω(t, x, Dx ) = 〈Dx 〉νeρ(t)ω(〈Dx 〉) ◦ B̃(t, x, Dx ) ◦ e−ρ(t)ω(〈Dx 〉)〈Dx 〉−ν,

(4.14)
satisfy

Ãω(t, x, ξ) = Ã(t, x, ξ) +
∑

0<|γ |<N

Dγ
x Ã(t, x, ξ)χγ (ξ) + rN ( Ã; x, ξ), and

B̃ω(t, x, ξ) = B̃(t, x, ξ) +
∑

0<|γ |<N

Dγ
x B̃(t, x, ξ)χγ (ξ) + rN (B̃; x, ξ),

where
|∂α

ξ χγ (ξ)| ≤ Cα, γ ρ(t)|γ |〈ξ 〉−|α|−|γ |(ω(〈ξ 〉))|γ |,
and

∣∣∂α
ξ D

β
x rN ( Ã; x, ξ)

∣∣ ≤ Cα, β, Nρ(t)N 〈ξ 〉1−|α|(ω(〈ξ 〉)
〈ξ 〉

)N
, and

∣∣∂α
ξ D

β
x rN (B̃; x, ξ)

∣∣ ≤ Cα, β, Nρ(t)N 〈ξ 〉−|α|ω(〈ξ 〉)
(ω(〈ξ 〉)

〈ξ 〉
)N

,
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for t ∈ [0, T ∗]. Thus,

Ãω(t, x, ξ) = Ã(t, x, ξ) +
∑

0<|γ |≤N

Rγ ( Ã; t, x, ξ), and

B̃ω(t, x, ξ) = B̃(t, x, ξ) +
∑

0<|γ |≤N

Rγ (B̃; t, x, ξ),

where

Rγ ( Ã; t, x, ξ) ∈ C
([0, T ]; S1−|γ |, ω|γ |) ⊂ C

([0, T ∗]; S0, ω), and

Rγ (B̃; t, x, ξ) ∈ C
([0, T ]; S−|γ |, ω|γ |+1) ⊂ C

([0, T ∗]; S0, ω).

The above observations show that the conjugation we perform in (4.14), does not
change the principal part of the operators Ã(t, x, Dx ) and B̃(t, x, Dx ) but introduces
more lower order terms. We denote these new lower order terms by

R( Ã, B̃; t, x, Dx ) =
∑

0<|γ |≤N

Rγ ( Ã; t, x, Dx ) + Rγ (B̃; t, x, Dx ),

and set

B̌(t, x, Dx ) = B̃(t, x, Dx ) + R( Ã, B̃; t, x, Dx ) ∈ C
([0, T ∗];�0, ω),

with
|∂α

ξ D
β
x B̌(t, x, ξ)| ≤ Cα, β(1 + ρ(t))〈ξ 〉−|α|ω(〈ξ 〉). (4.15)

We conclude that, for t ∈ [0, T ∗], the system (4.6) is equivalent to

L̃(t, x, Dt , Dx )V (t, x) = 〈Dx 〉νeκ(T ∗−t)ω(〈Dx 〉) H̃−1(t, x, Dx )F(t, x), (4.16)

where

L̃(t, x, Dt , Dx ) = Dt − Ã(t, x, Dx ) + B̌(t, x, Dx ) − iκω(〈Dx 〉).

Rearranging the system (4.16) yields

∂t V = (
i Ã(t, x, Dx ) − iB̌(t, x, Dx ) − κω(〈Dx 〉)

)
V

+ i〈Dx 〉νeρ(t)ω(〈Dx 〉) H̃−1(t, x, Dx )F(t, x).
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4.7 Well-posedness of an auxiliary Cauchy problem for weak moduli of
continuity

In this section we consider the auxiliary Cauchy problem

∂t V = (
i Ã(t, x, Dx ) − iB̌(t, x, Dx ) − κω(〈Dx 〉)

)
V

+ i〈Dx 〉νeρ(t)ω(〈Dx 〉) H̃−1(t, x, Dx )F(t, x).
(4.17)

for (t, x) ∈ [0, T ∗] × R
n , with initial condition

V (0, x) = (
v0(x), . . . , vm−1(x)

)T
,

where

v j (x) = 〈Dx 〉νeρ(0)ω(〈Dx 〉)H−1(0, x, Dx )〈Dx 〉m−1− j

× (Dt − λ j (0, x, Dx )) · · · (Dt − λ1(0, x, Dx ))u(0, x),

for j = 0, . . .m − 1.
Recalling that ∂t‖V ‖2

L2 = 2Re
[
(∂t V, V )L2

]
we obtain

∂t‖V ‖2L2 = 2Re
[(

(i Ã − iB̌ − κω(〈Dx 〉))V, V
)
L2

]

+ 2Re
[(〈Dx 〉νeρ(t)ω(〈Dx 〉) H̃−1F, V

)
L2

]
.

We observe that

Re
[
i Ã(t, x, ξ) − iB̌(t, x, ξ) − κω(〈ξ 〉)] = −Re

[
iB̌(t, x, ξ) + κω(〈ξ 〉)],

since Re[i Ã(t, x, ξ)] = 0 (by assumption (SH1)). In view of (4.15) we obtain

Re
[
iB̌(t, x, ξ) + κω(〈ξ 〉)] ≥ Re

[− CB(1 + ρ(t))ω(〈ξ 〉) + κω(〈ξ 〉)]

≥ Re
[− CB(1 + κT ∗)ω(〈ξ 〉) + κω(〈ξ 〉)] ≥ 0,

if we choose T ∗ such that T ∗CB < 1 and κ is sufficiently large. Thus, we are able to
apply sharp Gårding’s inequality to obtain

2 Re
[(

(i Ã − iB̌ − κω(〈Dx 〉))V, V
)
L2

] ≤ C‖V ‖2L2 .

This yields

∂t‖V ‖2L2 ≤ C‖V ‖2L2 + C
∥∥〈Dx 〉νeρ(t)ω(〈Dx 〉) H̃−1F

∥∥2
L2 . (4.18)
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We apply Gronwall’s Lemma to (4.18) and obtain

‖V (t, ·)‖2L2 ≤ C‖V (0, ·)‖2L2

+C

t∫

0

‖〈Dx 〉νeρ(z)ω(〈Dx 〉) H̃−1(z, x, Dx )F(z, ·)‖2L2dz, (4.19)

for t ∈ [0, T ∗]. We recall that H̃−1(t, x, Dx ) is a pseudodifferential operator of order
zero and use assumption (SH4-W) to obtain that

‖〈Dx 〉νeκ(T ∗−z)ω(〈Dx 〉) H̃−1(z, x, Dx )F(z, ·)‖2L2 ≤ Cz < ∞,

similarly, in view of assumption (SH3-W), it is clear that,

‖V (0, ·)‖2L2 = ‖〈Dx 〉νeκT ∗ω(〈Dx 〉) H̃−1(0, x, Dx )U (0, x)‖2L2 ≤ C < ∞.

At the moment, we only know that

‖V (t, ·)‖2L2 = ‖〈Dx 〉νeρ(t)ω(〈Dx 〉) H̃−1(t, x, Dx )U (t, ·)‖2L2 ≤ C < ∞,

for t ∈ [0, T ∗]. We use a continuation argument to prove that

‖〈Dx 〉νeδ∗η(〈Dx 〉) H̃−1(t, x, Dx )U (t, ·)‖2L2 ≤ C < ∞,

for t ∈ [0, T ]. For this purpose, we choose δ∗ < min{δ0, δ1, δ2}, and observe that,
by the definition of V (t, x),

‖〈Dx 〉νeδ∗η(〈Dx 〉) H̃−1(t, x, Dx )U (t, ·)‖2L2

≤ C‖eδ∗η(〈Dx 〉)e−ρ(t)ω(〈Dx 〉)V (t, ·)‖2L2 .

Next, we use that

‖eδ∗η(〈Dx 〉)e−ρ(t)ω(〈Dx 〉)V (t, ·)‖2L2 ≤ C‖eδ∗η(〈Dx 〉)e−ρ(0)ω(〈Dx 〉)V (0, ·)‖2L2

+C

t∫

0

‖eδ∗η(〈Dx 〉)〈Dx 〉νeρ(s)ω(〈Dx 〉) H̃−1(s, x, Dx )F(s, ·)‖2L2ds, (4.20)

which can be proved by applying eδ∗η(〈Dx 〉) to both sides of (4.17). Indeed, we have

∂t

(
eδ∗η(〈Dx 〉)V

)
= eδ∗η(〈Dx 〉)�(t, x, Dx )e

−δ∗η(〈Dx 〉)eδ∗η(〈Dx 〉)V

+ eδ∗η(〈Dx 〉)i〈Dx 〉νeρ(t)ω(〈Dx 〉) H̃−1(t, x, Dx )F(t, x),
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where �(t, x, Dx ) = i Ã(t, x, Dx ) − iB̌(t, x, Dx ) − κω(〈Dx 〉). Again, we use
assumptions (SH6-W) and (SH5-W) to apply Propositions 2.8 and 2.10 and obtain
that

eδ∗η(〈Dx 〉)�(t, x, Dx )e
−δ∗η(〈Dx 〉) ∼ �(t, x, Dx ) − Cδ∗η(〈Dx 〉).

Weuse (3.5) to satisfy the hypothesis of the sharp form ofGårding’s inequality without
any restrictions on t , more precisely, we have

Re[iB̌(t, x, ξ) + κω(〈ξ 〉) + Cδ∗η(〈ξ 〉)]
≥ Re[−CB(1 + ρ(t))ω(〈ξ 〉) + Cδ∗η(〈ξ 〉)]
= Re

[
δ∗η(〈ξ 〉)

(
C − CB(1 + ρ(t))

δ∗
ω(〈ξ 〉)
η(〈ξ 〉)

)]
≥ 0,

for sufficiently large |ξ |. Application of Gronwall’s Lemma then yields (4.20).
Lastly, we find that

‖eδ∗η(〈Dx 〉)e−ρ(0)ω(〈Dx 〉)V (0, ·)‖2L2

≤ C‖〈Dx 〉veδ∗η(〈Dx 〉) H̃−1(0, x, Dx )U (0, ·)‖2L2 ,

which is bounded due to (SH3-W). From these observations, we conclude that
U (T ∗, ·) ∈ H ν

η, δ∗ .
Since U (T ∗, ·) ∈ H ν

η, δ∗ , we are able to prove well-posedness of problem (4.17)
for t ∈ [T ∗, 2T ∗] and may conclude that U (2T ∗, ·) ∈ H ν

η, δ∗∗ , by using the same
argument as above, where δ∗∗ < δ∗. Iteration of this procedure then yields well-
posedness for all times t ∈ [0, T ] and we may conclude that the solution U =
U (t, x) to problem (4.3) belongs to C([0, T ]; H ν

η, δ), where δ < min{δ0, δ1, δ2}.
Since U (t, x) = (u0(t, x), . . . , um−1(t, x))T , with

u j (t, x) = 〈Dx 〉m−1− j (Dt − λ j (t, x, Dx )) . . . (Dt − λ1(t, x, Dx ))u(t, x),

we conclude that the original Cauchy problem (3.5) has a unique global (in time)
solution u = u(t, x), with

u ∈
m−1⋂

j=0

Cm−1− j ([0, T ]; H ν+ j
η, δ ),

where δ < min{δ0, δ1, δ2}. The proof of Theorem 3.2 is complete.
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