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Abstract Special Lagrangian submanifolds are submanifolds of a Calabi–Yau man-
ifold calibrated by the real part of the holomorphic volume form. In this paper we
use elliptic theory for edge-degenerate differential operators on singular manifolds
to study the moduli space of deformations of special Lagrangian submanifolds with
edge singularities. We obtain a general theorem describing the local structure of the
moduli space. When the obstruction space vanishes the moduli space is a smooth,
finite dimensional manifold.
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1 Introduction

The study of moduli spaces of deformations of a special Lagrangian submanifold
in a Calabi–Yau manifold started with the work of McLean [26], where he studied
the deformation of compact special Lagrangian submanifolds (without boundary). He
proved that the moduli space is a finite dimensional, smooth manifold with dimension
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equal to the dimension of its space of harmonic 1-forms. The role of special Lagrangian
fibrations of Calabi–Yau manifolds in mirror symmetry and especially the presence of
singular fibers, motivated the study of special Lagrangian submanifolds with conical
singularities/ends [13,24,30,31]. Moreover in the simplest example of a Calabi–Yau
manifold, C

n , the fact that special Lagrangian submanifolds are minimal implies the
nonexistence of compact special Lagrangian submanifolds. Hence the search for spe-
cial Lagrangian submanifolds in C

n must be done in the category of non-compact or
singular spaces.

Broadly speaking, the study of moduli spaces of special Lagrangian deformations
is performed by identifying nearby special Lagrangian submanifolds with elements
in the zero set of a non-linear elliptic partial differential operator that governs the
deformations. By means of the Implicit Function theorem for Banach spaces, this is
reduced to the analysis of the linearised equation. Hence the study of moduli spaces
of deformations of a special Lagrangian submanifold requires a good understanding
of elliptic equations on the base space.

The theory of linear elliptic partial differential equations on smooth, compact
manifolds without boundary is well-developed: the construction of parametrices of
inverse order, a complete calculus of elliptic �DOs, elliptic regularity, the equiv-
alence between ellipticity and the existence of an a priori estimate, the equivalence
of ellipticity and Fredholmness and finally the celebrated Atiyah-Singer index for-
mula. All these elements are already classical tools when studying elliptic equations
on compact manifolds.

In contrast, in non-compact or singular spaces there is no canonical approach or
methods to study elliptic equations. Even the concept of ellipticity on a non-compact
or singular manifold is not canonical as it is in the compact case. The basic model
of singularity in the theory of PDEs on singular manifolds is the conical singularity.

Near a vertex, a manifold with conical singularities looks like R
+×X

{0}×X , where X is a
compact manifold without boundary. The usual approach in this case is to blow-up
the vertices to obtain a compact manifold with boundary, the stretched manifold, with
collar neighborhood R

+ × X .
The most common type of degenerate differential operator studied on the collar

neighborhood is the Fuchs type operator

P = r−m
∑

j≤m

a j (r) (−r∂r )
j

with coefficients a j ∈ C∞(R
+

,Diffm− j (X )), where Diffm− j (X ) is the set of clas-
sical differential operators of order m − j on the compact manifold X .

Many authors have studied this type of equationwith different approaches: Lockhart
andMcOwen [20,21],Melrose [27], Schulze [9,32,33],Kozlov,Mazya andRossmann
[16], among possibly others. The b-calculus of Melrose [27] and the cone algebra of
Schulze [32] are robust and systematic approaches to Fuchs operators with the goal of
constructing a calculus or an algebra of �DOs that contains parametrices of Fusch
type operators (see [22] for a comparison of both approaches).
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The edgification of a manifold with conical singularities produces a manifold with

edge singularities, where locally near the singularity it looks like the R
n ×

(
R

+×X
{0}×X

)
.

Here we also have a class of edge-degenerate differential operators. A typical example
is the Laplace–Beltrami operator associated to an edge metric r2gX +dr2+gE where
gE is a Riemannian metric on a smooth manifold E (the edge) without boundary (see
Sect. 3.1).

This paper is concerned with deformations of special Lagrangian submanifolds
with edge singularity (see Sect. 3.1 for the precise definition of a manifold with edge
singularity). The motivations to study special Lagrangian submanifolds with edge
singularities are the following: on one hand, it is a natural next step in the category
of singularities where there is a well-developed elliptic theory [9,32,33], hence the
analysis of the linearised equation that governs the deformations is accessible. An
alternative approach to study edge-degenerate operators developed by R. Mazzeo and
B. Vertman can be found in [25,28].

On the other hand we are interested in the deformation of calibrated vector bun-
dles, specially, special Lagrangian submanifolds obtained as a conormal bundle
N ∗(M) ⊂ T ∗(Rn) ∼= C

n of an austere submanifold M in R
n . In this direction,

Karigiannis and Leung [15] obtained special Lagrangian deformations of N ∗(M) by
affinely translating the fibers. One of the main examples of austere submanifolds in
R
n is the class of austere cones [6]. These cones are of the form R

+ ×X ⊂ R
n where

X ⊂ Sn−1 is an austere submanifold of the sphere. If we assume that the conormal
bundle is a trivial bundle near the vertex of the cone (for example if R

+ × X is an
orientable hypersurface in R

n then the conormal bundle is trivial) then it is diffeomor-
phic to R

+ × X × R
q where q is the codimension of R

+ × X in R
n . This implies

that we can consider N ∗(M) as a manifold with an edge singularity. More general,
we can consider special Lagrangian submanifolds M with edge singularity E in a
Calabi–Yau manifold X. For example if X is a Calabi–Yau manifold, E a compact
special Lagrangian submanifold in X and M a special Lagrangian submanifold with
conical singularity in C

n then M × E is a special Lagrangian submanifold in C
n ×X

singular along E .
In [9,32,33], Schulze and coauthors have developed a comprehensive elliptic theory

of edge-degenerate differential operators:

P = r−m
∑

j+|α|≤m

a jα(r, y) (−r∂r )
j (r Ds)

α .

with coefficients a jα ∈ C∞(R
+ × �, ,Diffm−( j+|α|) (X )).

In this paper we use Schulze’s approach to study deformation of special Lagrangian
submanifolds with edge singularities. We use Schulze’s approach to analyze the
Hodge–Laplace � and Hodge–deRham d + d∗ operators acting on sections of differ-
ential forms induced by edge-degenerate vector fields on M , see Sect. 5.

In previous works of Joyce, McLean, Marshall and Pacini, see [13,24,26,30,31],
finite dimension of the moduli space follows from the Fredholmness of the Hodge–
Laplace operator acting on (weighted) Sobolev spaces. As it was mentioned above,
there is no canonical notion of ellipticity in non-compact or singular manifolds, how-
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ever inmost approaches, once suitable Banach spaces have been defined, the ellipticity
of an operator is defined in such a way that it implies the Fredholm property of the
operator acting between those Banach spaces. In manifolds with conical singulari-
ties with local model R

+ × X , the concept of ellipticity is based on the symbolic
structure of the Fuchs operator. This is given by two symbols (σm

b (P), σm
M (P)(z)).

The first symbol σm
b (P) is the homogeneous boundary principal symbol and σm

M (P)(z)
is the Mellin conormal symbol. The symbol σm

M (P)(z) is an operator-valued symbol
given by a holomorphic family of continuous operators parametrized by z ∈ C and
acting on the base of the cone X , σm

M (P)(z) : Hs(X ) → Hs−m(X ). The elliptic-
ity of P on X∧ := R

+ × X implies that σm
M (P)(z) is a family of isomorphisms for

all z ∈ � n+1
2 −γ = {z ∈ C : Re(z) = n+1

2 − γ } for some weight γ ∈ R. In the
approaches of Melrose and Lockhart–McOwen similar symbolic structures are used
to define ellipticity. See Sect. 5.1 for a complete discussion of the symbolic structure.

In the analysis of edge-degenerate operators, the symbolic structure for an adequate
notion of ellipticity involves the edge symbol σm∧ (u, η). This is an operator-valued
symbol given by a family of continuous operators acting on cone-Sobolev spaces
Ks,γ (X∧) (see Definition 3.3) and parametrized by the cotangent bundle of the edge.
For (u, η) ∈ T ∗E\{0} we have a continuous operator

σm∧ (u, η) : Ks,γ (X∧) −→ Ks−m,γ−m(X∧).

Analogous to the conical case, a necessary condition for the ellipticity of P is that
σm∧ (u, η) is an isomorphism for every (u, η) ∈ T ∗E\{0}. However, this is rarely the
case (for example, in general, the Laplace–Beltrami operator induced by an edge
metric does not satisfy this condition). It is more natural to expect the family σm∧ (u, η)

to be only Fredholm for every (u, η) ∈ T ∗E\{0}.
In this case, in order to have a family of isomorphisms, we need to complete

the edge symbol with boundary and coboundary conditions.The need for completing
the symbols means that P is not Fredholm unless we impose complementary edge
boundary conditions. Moreover boundary and coboundary conditions are an essential
part of the regularity of solutions of elliptic edge-degenerate equations (see Sect. 5.2).
Therefore, if we are interested in studying moduli spaces of deformations of a special
Lagrangian submanifold with edge singularities, we need to consider deformations
with boundary conditions in the edge in order to obtain regular enough deformations
that allow the existence of a smooth, finite dimensional moduli space of deformations.
These boundary conditions are given by the trace pseudo-differential operator that
appears in the completion of the symbol. Moreover, solutions of elliptic equations
near singularities have a well-known conormal asymptotic expansion. Our case is not
an exception and our deformations have conormal asymptotic expansions near the
edge, see Sect. 7.

Once the symbol is completed (this is possible because, in our case, the topological
obstruction vanishes, see 5.3) we obtain a Fredholm operator in the edge algebra with a
parametrix (with asymptotics) of inverse order. At this pointwewant to use the Implicit
Function theorem for Banach spaces to obtain finite dimensionality and smoothness
of the moduli space of deformations. However, the possible non-surjectivity of the lin-
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eariseddeformationmapproduces anobstruction space.Thepresenceof anobstruction
space is not unexpected because even in the case of a compact manifold with isolated
conical singularities each of the singular cones contributes to the obstruction space.
This was studied in detail by Joyce [13].

Given a special Lagrangian submanifold in C
n with edge singularity, � : M −→

C
n , our moduli space has as parameters an admissible weight γ > dimX+3

2 and a trace
pseudo-differential operator, T , such that it belongs to a set of boundary condition for
an elliptic edge boundary value problem for the Hodge–deRham operator on M .

Our main result, Theorem 8.3 in Sect. 8, is a theorem describing the local structure
of the moduli spaceM(M, �, T , γ ) considering the possible obstructions (see Sect. 8
for the precise definition of the moduli space and further details).

Theorem 1.1 Locally near M the moduli space M(M, �, T , γ ) is homeomorphic
to the zero set of a smooth map G between smooth manifolds M1, M2 given as
neighborhoods of zero in finite dimensional Banach spaces. The map G : M1 −→
M2 satisfies G(0) = 0 and M(M, �, T , γ ) near M is a smooth manifold of finite
dimension when G is the zero map.

2 Special Lagrangian submanifolds and deformations

In this section we introduce the basics of deformation of special Lagrangian subman-
ifolds in C

n . We will use the definitions and notation of this section throughout this
paper. For further details on special Lagrangian geometry the reader is referred to
[10,14].

2.1 Special Lagrangian submanifolds in C
n

Let C
n := {(z1, . . . , zn) : zk ∈ C for all 1 ≤ k ≤ n} be the complex n-dimensional

space. We identify C
n with R

2n = R
n
x ⊕ R

n
y in the following, specific way

(x1, . . . , xn, y1, . . . yn) −→ (x1 + √−1y1, . . . , xn + √−1yn), (2.1)

hence with this identification zk = xk +√−1yk . Now let’s consider the automorphism
J : C

n −→ C
n given by J (z) = √−1z. Then, under the identificationC

n ∼= R
n
x ⊕R

n
y

we have

J =
[

0 −IdRn

IdRn 0

]
: R

n
x ⊕ R

n
y −→ R

n
x ⊕ R

n
y . (2.2)

Definition 2.1 Let ξ = ξ1 ∧ · · · ∧ ξn be an oriented, real n-plane in C
n , where

ξ1, . . . , ξn is an oriented, orthonormal basis of ξ . We say that ξ is a Lagrangian n-
plane if J (ξ) = ξ⊥ where

ξ⊥ = {η ∈ C
n : 〈η, v〉g

R2n
= 0 for all v ∈ ξ}. (2.3)
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Definition 2.2 An oriented n-submanifold ψ : M −→ C
n is a Lagrangian submani-

fold of C
n if each tangent plane ψ∗(TpM) ⊂ TC

n ∼= C
n is a Lagrangian n-plane in

C
n for every p ∈ M , where ψ∗ denotes the push-forward.

Definition 2.3 The complex n-form � = dz1 ∧ · · · ∧ dzn is called the holomorphic
volume form of C

n .

Definition 2.4 An oriented Langrangian submanifold M in C
n is called a special

Lagrangian submanifold with phase θ0 if the following equations are satisfied

{
Re(e−√−1θ0�)

∣∣
M = dVM

Im(e−√−1θ0�)
∣∣
M = 0

. (2.4)

Observe that given a special Lagrangian submanifold � : M −→ C
n with phase

θ i.e. a Lagrangian submanifold calibrated by Re(e−√−1θ�), the submanifold given
by

e−√−1 θ
n � : M −→ C

n

is a special Lagrangian submanifold with phase θ = 0.
Therefore by rotating a specialLagrangian submanifoldwith phase θ we transform it

into a special Lagrangian submanifold with phase zero. Henceforth, when we consider
special Lagrangian submanifolds in C

n , we shall focus and discuss only the case with
phase zero.

Let (X, ω, J, gX) be a Kähler manifold of complex dimension n with Kähler form
ω, complex structure J and Kähler metric gX . Recall that X is called a Calabi–Yau
manifold if the holonomy group of gX is a subgroup of SU(n), i.e.

Hol(gX) ⊆ SU(n).

Note that C
n is a Calabi–Yau manifold with the structure

(Cn, g
Cn , ω

Cn , �)

where g
Cn = |dz1|2 +· · ·+ |dzN |2, ωCn =

√−1
2

∑n
i=1 dzi ∧dz̄i and � = dz1 ∧· · ·∧

dzN .
Harvey and Lawson [10] characterized special Lagrangian submanifolds in a way

that has been extremely useful to study the deformation theory.

Proposition 2.5 Let (X, ω, J, gX , �X) be a Calabi–Yau manifold and M a n-
dimensional real submanifold. Then M admits an orientation making it into a special
Lagrangian submanifold if and only if

{
ω
∣∣
M ≡ 0

Im�X

∣∣
M ≡ 0

. (2.5)
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3 Manifolds with singularities

We are interested in the deformation of special Lagrangian submanifolds with sin-
gularities. In this section we provide the definitions and concepts related to singular
manifolds that we use throughout this paper. We refer the reader to chapter 1 and 2 of
[29] for further details.

We denote by

Diff(M) :=
⋃

l≥0

Diffl(M)

the algebra of classical differential operators on M .

Definition 3.1 A singular manifold is a pair (M,D) where M is a smooth manifold
possibly non-compact andD ⊂ Diff(M) is a subalgebra of differential operators such
that its restrictionD

∣∣
U at every open subset U with compact closure U ⊂ M is equal

to the restriction of the algebra of all differential operators Diff(M)
∣∣
U .

The algebra D is generated by a function space F such that C∞
0 (M) ⊂ F ⊂

C∞(M) and a space of vector fields V on M such that C∞
0 (M, T M) ⊂ V ⊂

C∞(M, T M). We obtain the function space F by embedding M into a compact
manifold with boundary M and defining F as the restriction of the space of smooth
functions on M i.e. F := C∞(M)

∣∣
M .

3.1 Examples

(i) Let’s consider a smooth manifoldMwith smooth boundary ∂M = X , dimX = m
and define M := M\∂M. Let gM be a conical metric on M i.e. gM is a Riemannian
metric on M such that on a collar neighborhood of ∂M given by (0, 1) ×X ⊂ M
we have

gM = r2gX + dr2

where gX is a Riemannian metric onX . Then gM extends to a smooth, symmetric
2-tensor on M that degenerates in each tangent direction to X .
Now, let V ∈ C∞(M, TM) be a vector field with length of the order of unity with
respect to gM , i.e.

|V(p)|gM ≤ C

for any p ∈ M and C > 0 independent of p.
On a neighborhood [0, 1) × U ⊂ [0, 1) × X it is easy to see that

V = A∂r +
m∑

k=1

Bk
1

r
∂k (3.1)
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where ∂k are the local coordinate vector fields onU ⊂ X andA,Bk ∈ C∞([0, 1)×
U).
The algebra of degenerate operatorsD is generated by functions on M smooth up
to r = 0 i.e. C∞(M)

∣∣
M and vector fields V such that on the collar neighborhood

[0, 1) × X are given by

V = A∂r + �

where A ∈ C∞([0, 1) × X ) and r� ∈ C∞([0, 1), TX ).

This algebra is called the algebra of cone-degenerate operators Diffcone(M). From
the local expressions abovewe have that every cone-degenerate operator P of order
l can be written in the collar neighborhood as

P = r−l
∑

i≤l

ai (r)(−r∂r )
i (3.2)

where ai ∈ C∞ ([0, 1),Diffl−i (X )
)
, with Diffl−i (X ) denoting the space of clas-

sical differential operators of order l− i onX . Cone-degenerate operators are also
called Fuchs-type operators.
We say that (M,Diffcone(M)) is a manifold with conical singularity.

(ii) LetM be a smooth compact manifold with boundary ∂M. LetX and E be smooth,
compact manifolds without boundary such that ∂M is the total space of a smooth
X -fibration over E

π : ∂M −→ E .

Observe that any collar neighborhood of the boundary [0, 1)×∂M has the structure
of aX -fibration over E×[0, 1). By fixing a collar neighborhood, we use the bundle
coordinates on [0, 1)× ∂M as admissible coordinates i.e. coordinates of the form
(r, σk, ul) where (ul , r) are coordinates on E × [0, 1) and (σk) local coordinates
on the fiber X .

Now, we apply the scheme to construct singular manifolds. Let M = M\∂M and
equip M with an edge metric

gM = r2gX + dr2 + gE

where gE is a smooth Riemannian metric on E .
Observe that the edgemetric gM extends to a smooth symmetric 2-tensor onM that
degenerates on eachX -fiber over ∂M. In order to define the algebra of degenerate
differential operators on M we set F = C∞(M)

∣∣
M . In admissible coordinates on

the collar neighborhood [0, 1) × U × � ⊂ [0, 1) × ∂M, the set of vector fields
with length of the order of unity with respect to the edge metric gM is given by

V = A∂r +
m∑

k=1

Bk
1

r
∂k +

q∑

l=1

Cl∂ul (3.3)
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where A,Bk, Cl ∈ C∞([0, 1) × U × �), ∂k are local coordinate vector fields on
U ⊂ X and ∂ul are local coordinate vector fields on � ⊂ E .
The algebra generated by F and V is called the algebra of edge-degenerate oper-
ators Diffedge(M). In admissible coordinates, every edge-degenerate operator of
order l is given by

P = r−l
∑

i≤l

ai,α(r, u)(−r∂r )
i (r Du)

α (3.4)

where ai,α ∈ C∞ ([0, 1) × �,Diffl−i−|α|(X )
)
and Dul = −√−1∂ul .

We say that (M,Diffedge(M)) is a manifold with edge singularity.

3.2 Analysis on manifolds with edges

In this sectionwedescribe the necessary elements to study partial differential equations
on manifolds with conical or edge singularities. In particular we introduce the relevant
concepts and definitions needed for the analysis of deformations of singular special
Lagrangian submanifolds carried out in Sect. 4. We refer the reader interested in full
details and explanations to [33, chapters 2 and 3].

3.3 Sobolev spaces on singular manifolds

We start by introducing suitable Banach spaces on which cone-degenerate opera-
tors act. Recall that the Mellin transformation M is a continuous operator M :
C∞
0 (R+) −→ A(C) given by the integral formula

(M f )(z) =
∫ ∞

0
r z−1 f (r)dr,

where A(C) is the space of holomorphic functions on C.
Very often we need the restriction of the holomorphic function M f to subsets

isomorphic to R given by

�β = {z ∈ C : Re(z) = β}. (3.5)

The role of the Mellin transformation in cone-degenerate operators is given by
the following basic fact: (−r∂r ) f = M−1zM f for any f (r, σ ) ∈ C∞

0 (R+
r × R

m
σ ).

Therefore, any cone-degenerate differential operator P = r−l ∑
i≤l ai (r)(−r∂r )i is

given in terms of the Mellin transformation as follows

P = r−lM−1h(r, z)M,

where h(r, z) = ∑
i≤l ai (r)z

i .
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Definition 3.2 The local cone-Sobolev space of order s and weight γ , denoted by
Hs,γ (R+ × R

m), with s, γ ∈ R, is defined as the closure of C∞
0 (R+ × R

m) with
respect to the norm

‖ f ‖Hs,γ (R+×Rm )

:=

⎛

⎜⎜⎝
1

2π i

∫

�m+1
2 −γ

∫

Rm

(1 + |z|2 + |ξ |2)s
∣∣∣Mγ−m

2 ,r→zFσ→ξ f
∣∣∣
2
dzdξ

⎞

⎟⎟⎠

1
2

,

where Fσ→ξ denotes the Fourier transformation in the variable σ ∈ R
m and the

symbolMγ−m
2 ,r→z denotes the restrictedMellin transformation acting on the variable

r ∈ R
+.

The local cone-Sobolev spaces are Hilbert spaces with inner product given by

1

2π i

〈
(1 + |z|2 + |ξ |2) s

2Mγ−m
2 ,r→zFσ→ξ f,

(1 + |z|2 + |ξ |2) s
2 Mγ−m

2 ,r→zFσ→ξ g
〉

L2(R×Rm)
.

The relation between the local-cone spaces Hs,γ (R+ × R
m) and the standard

Sobolev spaces Hs(Rm+1) is given by the following transformation. First consider
the transformation

Sγ−m
2

: C∞
0 (R+ × R

m) −→ C∞
0 (Rt × R

m
x ) (3.6)

such that Sγ−m
2
( f )(t, x) := e−( 12−(γ−m

2 ))t f (e−t , x). This transformation extends to
a Banach space isomorphism between Hs,γ (R+ × R

m) and the standard Sobolev

spaces Hs(Rm+1). Therefore the norms ‖ f ‖Hs,γ (R+×Rm) and
∥∥∥Sγ−m

2
( f )

∥∥∥
Hs (Rm+1)

are equivalent.
In order to define the global cone-Sobolev space on a manifold with conical sin-

gularities M , we choose a finite open covering {Uλ , χλ} of X given by coordinate
neighborhoods such that χλ : Uλ −→ R

m and I × χλ : R
+ × Uλ −→ R

+ × R
m with

(I × χλ)(r, p) = (r, χλ(p)) are diffeomorphisms for every λ. Let {ϕλ} be a partition
of unity subordinate to {Uλ}. The global cone-Sobolev space near the conical singu-
larities is modelled on the spaceHs,γ (X∧) defined on the open cone X∧ := R

+ ×X
as the closure of C∞

0 (X∧) with respect to the norm

‖ f ‖Hs,γ (X∧) :=
(
∑

λ

∥∥∥(I × χ∗
λ
)−1ϕλ f

∥∥∥
2

Hs,γ (R+×Rm )

) 1
2

(3.7)

where m = dimX .
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In order to glue together the space Hs,γ (X∧) with the classical Sobolev space
away from the edge we use a cut-off function ω(r) ∈ C∞

0 (R
+

) such that ω(r) = 1
for 0 ≤ r < ε1 and ω(r) = 0 for r ≥ ε2 for some 0 < ε1 < ε2.

Definition 3.3 Given a compact manifold M with conical singularity, the cone-
Sobolev space of order s and weight γ is defined as follows

Hs,γ (M) := [ω]Hs,γ (X∧) + [1 − ω]Hs(2M).

The cone-Sobolev space on the open cone X∧ is defined in an analogous manner

Ks,γ (X∧) := [ω]Hs,γ (X∧) + [1 − ω]Hs
cone(X∧).

Both of these spaces are endowed with the topology of the non-direct sum.

Proposition 3.4 Let P ∈ Difflcone(M), then

P : Hs,γ (M) −→ Hs−l,γ−l(M)

is a continuous operator for any s, γ .

See [9, page 153].

TheR
+-action on the cone-Sobolev space is given by (κλ f )(r, σ ) :=λ

m+1
2 f (λr, σ ).

This defines a continuous one-parameter group of invertible operators with the strong
operator topology.

Definition 3.5 Edge-Sobolev spaces.

(i) We define the edge-Sobolev space on the open edgeX∧×R
q as the the completion

of the Schwartz space S(Rq ,Ks,γ (X∧)) with respect to the norm

‖ f ‖Ws,γ (X∧×Rq ) =
(∫

[η]2s
∥∥∥κ−1

[η] (Fu→η f (η))

∥∥∥
2

Ks,γ (X∧)
dη

) 1
2

.

(3.8)

(ii) Given a compact manifold M with edge singularity E the edge-Sobolev space
Ws,γ (M) is defined as the closure of C∞

0 (M) with respect to the norm

‖ f ‖Ws,γ (M) =
⎛

⎝
∑

j

∥∥ωφ j f
∥∥2Ws,γ (X∧×Rq )

+ ‖(1 − ω) f ‖2Hs (2M)

⎞

⎠

1
2

.

(3.9)

where φ j is a partition of unity associated to a finite open cover {� j } of E and ω is
the cut-off function supported near the edge.

Similarly we can defineWs,γ (M, E) with E an admissible vector bundle over M (see
Definition 4.3).



312 J. Rosario-Ortega

Proposition 3.6 Let P ∈ Diffledge(M), then

P : Ws,γ (M) −→ Ws−l,γ−l(M)

is a continuous operator for any s, γ .

See [32, section 3.1, proposition 5].

4 Deformation of special Lagrangian submanfolds with edges

In this section we consider the problem of deforming special Lagrangian submanfolds
with edges. We study and analyze the non-linear differential operator that governs the
special Lagrangian deformations and its linearisation.

4.1 Preliminaries

Given a Calabi–Yau manifold (X, ω, J, gX , �X) and a special Lagrangian submani-
fold

� : M −→ X,

we are interested in deformations of M , as a submanifold ofX, such that the deformed
submanifold is special Lagrangian. More precisely we are looking for submanifolds
� : M −→ X such that� is isotopic to� and�(M) := M� is special Lagrangian. If
we are able to find special Lagrangian deformations of M then we want to investigate
the structure of the space containing those special Lagrangian deformations i.e. the
moduli space of special Lagrangian deformations M(M, �). In general the moduli
spacewill be the space of special Lagrangian embeddings� : M −→ X (equivalent up
to diffeomorphism) isotopic to our original�. If we require the isotopy through special
Lagrangian submanifolds then we are considering only the connected component in
the moduli space containing M . If we do not require the intermediate submanifolds
to be special Lagrangian then we are considering all the connected components of the
moduli space.

If we consider nearby enough submanifolds then it is possible to obtained defor-
mations of M by moving it in a normal direction V given by a section of the normal
bundle V ∈ C∞(M,N (M)). This is possible thanks to the tubular neighborhood the-
orem (see [18, Ch 4, theorem 5.1]). Observe that the submanifold M is not required
to be closed, see [19, theorem 10.19].

Theorem 4.1 Let (X, gX) be a Riemannian manifold and M an embedded subman-
ifold. Then there exists an open neighborhood A of the zero section in N (M) and
an open neighborhood U of M in X such that the exponential map expg

X
: A ⊂

N (M) −→ U ⊂ X is a diffeomorphism.

Therefore any normal section V lying in A will produce an embedded submanifold
given by
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expg
X

(V) ◦ � : M −→ X

such that (expg
X

(V) ◦ �)(M) := MV ⊂ U . Once we have the deformed submanifold
MV we want to investigate if it is special Lagrangian. Equations (2.5) imply that MV
is special Lagrangian if and only if

{
(expg

X
(V) ◦ �)∗(ω) ≡ 0

(expg
X

(V) ◦ �)∗(Im�X) ≡ 0
. (4.1)

This provides us with two explicit equations that V must satisfy in order to produce
a special Lagrangian deformation of M . Taking advantage of the fact that M is a
Lagrangian submanifold we can use the bundle isomorphisms

T ∗M
g−1
X∼= T M

J∼= N (M)

so that we obtain that each differential form � ∈ C∞(M, T ∗M) defines a unique
section of the normal bundle

V� = J (g−1
X

(�)) ∈ C∞(M,N (M)).

Therefore, we can express the deformation problem as a non-linear operator P
acting on differential forms on M :

P : C∞(M, T ∗M)
∣∣
A

−→ C∞
(
M,

∧2
T ∗M

)
⊕ C∞ (

M,
∧n

T ∗M
)

(4.2)

given by

P(�) =
(
(expg

X
(V�) ◦ �)∗(ω), (expg

X
(V�) ◦ �)∗(Im�)

)
, (4.3)

where C∞(M, T ∗M)
∣∣
A
is the space of differential forms� such that their image under

the bundle map J ◦ g−1
X belongs to A.

The zero set of this operator contains those special Lagrangian deformations of M
lying in U , that is,

P−1(0)

=
{
� ∈ C∞(M, T ∗M)|A : expg

X
(V�) ◦ � : M −→ X is a S.L. embedding

}
.

Hence, the local structure of the moduli space M(M, �) near M is given by P−1(0),
the zero set of a non-linear operator. A classical result in non-linear functional analysis
that has been used to describe the zero set of non-linear operators in deformation of
calibrated submanifolds is the Implicit Function Theorem for Banach spaces (see, for
example, [17, chapter 14, theorem 2.1]).
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Theorem 4.2 Let X and Y be Banach spaces, A ⊂ X an open neighborhood of zero
and P : A ⊂ X −→ Y a Ck-map such that

(i) P(0) = 0
(ii) DP[0] : X −→ Y is surjective
(iii) DP[0] splits X i.e. X = Ker DP[0] ⊕ Z for some closed subspace Z

then there exist open subsets W1 ⊂ Ker DP[0], W2 ⊂ Z and a unique Ck-map
G : W1 ⊂ Ker DP[0] −→ W2 ⊂ Z such that

(i) 0 ∈ W1 ∩ W2
(ii) W1 ⊕ W2 ⊂ U
(iii) P−1(0) ∩ (W1 ⊕ W2) = {(x,G(x)) : x ∈ W1}.

Ideally, in order to apply Theorem 4.2, we expect to define Banach spaces of
differential forms X and Y such that the deformation operator P acts smoothly, adapt
the tubular neighborhood given by Theorem 4.1 such that an open neighborhood of
zero A ⊂ X fits into it. Moreover we would like that with this choice of Banach
spaces the linearisation of the deformation operator at zero DP[0] is a Fredholm
operator. Thus its kernel is a finite dimensional space and it splits X . Moreover if the
cokernel ofDP[0]vanishes, thenTheorem4.2 applies immediately and gives us that the
moduli space M(M, �), locally around M , is a finite dimensional, smooth manifold
with dimension equal to dimKerDP[0]. Moreover any infinitesimal deformation, i.e.
x ∈ W1 ⊂ Ker DP[0], can be lifted to an authentic deformation given by (x,G(x))

with P(x + G(x)) = 0 i.e. there are no obstructions.
This ideal situation turnedout to be true in the compact case. In [26],McLean studied

the deformation of a compact special Lagrangian submanifold inside a Calabi–Yau
manifoldX. McLean used the classical and well-developed elliptic theory on compact
manifolds to analyze the deformation operation and its linearisation.

In order to set up a deformation framework on a singular manifold M with edge
singularity, we shall use edge-degenerate differential forms. These forms are dual to
the edge-degenerate vector fields in (3.3) Sect. 3.1with respect to the edgemetric gM =
r2gX + dr2 + gE . More precisely, let’s consider the following space of differential
forms γ on the stretched manifold M such that they vanish on all tangent directions
to the fibers on ∂M:

C∞(T ∗∧M) := {γ ∈ C∞(T ∗
M) : γ |TXy = 0 ∀y ∈ E}.

The space C∞(T ∗∧M) is a locally free C∞(M)-module. By the Swan theorem [35],
this is the space of sections of a vector bundle T ∗∧M over M. The vector bundle T ∗∧M

is called the stretched cotangent bundle of the manifold with edges M (see [29, section
1.3.1]). In local coordinates (r, σk, ul) we have

γ = Adr +
m∑

k=1

Bkrdσk + Cldul

withA,Bk, Cl in C∞(M). Observe that these are differential forms that degenerate at
each direction tangent to X . We will denote by T ∗∧M the restriction of the stretched
cotangent bundle to M .
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At this point we have to make an assumption on the vector bundles we consider on
a manifold with edge (or conical) singularity.

Definition 4.3 Let M be a manifold with edge singularity.We say that a vector bundle
E over M is admissible if on a collar neighborhood (0, ε) × X × E the restriction
E |(0,ε)×X×E is the pull-back of a vector bundle EX over X .

Now let’s consider the stretched cotangent bundle T ∗∧M as an admissible vector bundle.
In order to do that let’s define

EX := ∧0X ⊕ T ∗X ⊕ ∧0X ⊕ ∧0X ⊕ ... ⊕ ∧0X︸ ︷︷ ︸
q-times

where q = dimE .
We shall assume that on the collar neighborhood

[0, ε) × X × E

the stretched cotangent bundle T ∗∧M is isomorphic to the pull-back vector bundle
π∗
R+×E EX where π

R+×E is the projection

π
R+×E : X∧ × E −→ X (4.4)

andX∧ = R
+ ×X . We shall also define the bundle EX∧ := π∗

R+EX as the pull-back
of the bundle EX by the projection

π
R+ : X∧ −→ X . (4.5)

In particular if the edge E is a parallelizable manifold then the stretched cotangent
bundle T ∗∧M is an admissible bundle.

Throughout this section we consider C
n with its standard Calabi–Yau structure

(Cn, g
Cn , ω

Cn , �)

where g
Cn = |dz1|2 +· · ·+ |dzn|2, ωCn =

√−1
2

∑n
i=1 dzi ∧ dz̄i and � = dz1 ∧ · · ·∧

dzn . We consider C
n with a fictitious edge structure as follows:

C
n = R

n ⊕ R
n ∼= R

+ × Sn−1

{0} × Sn−1 × R
n .

Associated with this edge structure we have the stretched space

C
n
Str :=

(
R

+ × Sn−1
)

× R
n

such that
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C
n
Str\∂C

n
Str = (

R
n\{0}) × R

n ∼= C
n\ ({0} × R

n) .

4.2 Submanifolds with edge singularities in C
n

LetM be a compactmanifoldwith edge singularityE (seeSect. 3.1). Then the boundary
of the stretched manifold M has a X -fibration structure over E , π : ∂M → E , where
X and E are compact smooth manifolds (without boundary) with q = dimE and m =
dimX . We assume thatX is diffeomorphic to an embedded submanifold of the sphere
Sn−1 with diffeomorphism given by θ : X −→ Sn−1 ⊂ R

n . Consider the cone X∧
with cross sectionX i.e.X∧ = X×R

+ and let’s define a diffeomorphism ofX∧ with a
cone C ⊂ R

n by ψ : X∧ −→ C ⊂ R
n where ψ(r, p) := (rθ1(p), . . . , rθn(p)) ∈ R

n .

We shall also assume that E is embedded in R
n by τ : E −→ R

n .

Definition 4.4 Let M be a compact manifold with edge singularity E .
(i) A smooth embedding � : M −→ C

n is called an edge embedding if on a
collar neighborhood (0, ε) × ∂M, which has the structure of a X∧-bundle over
E , the embedding � splits as �(r, p, v) = (ψ(r, p), τ (v)) with respect to the
identification C

n ∼= R
n
x ⊕ R

n
y .

(ii) If � : M −→ C
n is an edge embedding such that �(M) is a special Lagrangian

submanifold of C
n , we say that (M, �) is a special Lagrangian submanifold with

edge singularity.

4.3 The deformation operator

Let � : M −→ C
n be a compact special Lagrangian submanifold with edge singu-

larity, see Definition 4.4 in Sect. 4.2. In order to study the moduli space of special
Lagrangian deformations of M as a manifold with edge singularities, we have to study
small deformations of M inside C

n . These deformations are produced by sections of
the normal bundle ϕ ∈ N (M) via the exponential map expg

Cn
. The equations

{
ω

Cn

∣∣
M ≡ 0

Im�
∣∣
M ≡ 0

(4.6)

define a first order non-linear partial differential operator P such that ϕ must satisfy the
equation P(ϕ) = 0 in order to produce a special Lagrangian deformation (see (4.3)).
Because we are interested in small deformations we can use the Implicit Function
Theorem for Banach spaces (if applicable) to describe small solutions of the equation
P(ϕ) = 0 in terms of solutions of the linearised equation at zero i.e. DP[0](ϕ) = 0.
In particular, on a collar neighborhood (0, ε) × ∂M, equipped with the edge metric
gM = r2gX + dr2 + gE , we want to solve the equation DP[0](ϕ) = 0. This is a
problem of analysis of PDEs on singular spaces and this observation suggests the
approach to follow. First, we expect the operators P and DP[0] to be edge-degenerate
on (0, ε) × ∂M. This is achieved by using sections of the stretched cotangent bundle
T ∗∧M to produce small deformations. This is natural as differential forms in T ∗∧M
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have a degenerate behavior compatible with the edge singularity of M in the sense
that their degenerations are induced by the pairing of the edge metric gM with edge-
degenerate vector fields. Then, in order to invoke the Implicit Function Theorem for
Banach spaces we need that DP[0] is an elliptic operator in the edge calculus (hence
a Fredholm operator by Theorem 5.8 in Sect. 5.2). This is achieved by completing the
edge symbol σ 1∧(DP[0])with boundary and coboundary conditions as the Atiyah-Bott
obstruction vanishes, see Sect. 5 below.

4.4 The non-linear deformation operator

Given a compact special Lagrangian submanifold with edge singularity � : M −→
C
n , let N (M) ⊂ T (Cn) be the normal bundle. By using the identification C

n ∼=
R
n
x ⊕ R

n
y we have T ∗(Cn) ∼= T ∗(Rn

x ⊕ R
n
y). Now, the complex structure J induces

an isomorphism of vector bundles J : T (M) −→ N (M), hence we have a bundle
isomorphism J ◦�∗◦g∗

M
: T ∗(M) −→ N (M) ⊂ T (Rn

x ⊕R
n
y)|M where g∗

M
is the dual

metric on the cotangent bundle T ∗M inducing a bundle map g∗
M

: T ∗M −→ T M .

Lemma 4.5 Let � ∈ C∞(M, T ∗M) with local expression in an edge neighborhood
(0, ε) × U × � ⊂ X∧ × E , in local coordinates (r, σ, u), be given by

�(r, σ, u) = A(r, σ, u)dr +
m∑

k=1

Bk(r, σ, u)dσk +
q∑

l=1

Cl(r, σ, u)dul ,

then, its image under the map J ◦ �∗ ◦ g∗
M is given by the following expression in the

restriction of the tangent bundle T (Rn
x ⊕ R

n
y)
∣∣
(0,ε)×U×�

V� := J (�∗(g∗
M (�))) =

n∑

i=1

−C̃i (r, σ, u)∂xi + (A(r, σ, u)θ◦
i + 1

r
B̃i (r, σ, u))∂yi

where B̃i and C̃l are the components of the corresponding pushforwards

θ∗

(
g∗
X

(
m∑

k=1

Bk(r, σ, u)dσk

))
,

τ∗

(
g∗
E

( q∑

l=1

Cl(r, σ, u)dul

))

and (θ◦
1 , . . . θ◦

n ) = θ(σ1, . . . σm).

Proof It follows from the expression of the dual edgemetric g∗
M

= 1
r2
g∗
X +∂r ⊗∂r +g∗

E
that

g∗
M

(�) = A∂r + 1

r2

m∑

k=1

B̂k∂k +
q∑

l=1

Ĉl∂ul
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where
∑m

k=1 B̂k∂k = g∗
X (

∑m
k=1 Bkdσk) and

∑q
l=1 Ĉl∂ul = g∗

E (
∑q

l=1 Cldul). Let p ∈
(0, ε)×U×� and take a curveJ : I ⊂ R −→ M given byJ (t) = (r(t), σ(t), u(t)),
such that J (0) = p and J ′(0) = g∗

M
(�(p)). Then

� ◦ J : I ⊂ R −→ C
n ∼= R

n
x ⊕ R

n
y

defines a curve given by

(� ◦ J )(t) = �(r(t), σ(t), u(t))

= (r(t)θ1(σ(t)), . . . , r(t)θn(σ(t)), τ1(u(t)), . . . , τn(u(t))),

therefore

(� ◦ J )′(0)
= (r ′(0)θ1(σk(0)) + r(0)θ ′

1(σk(0)), . . . , r ′(0)θn(σk(0)) + r(0)θ ′
n(σk(0)),

τ ′
1(ul(0)), . . . , τ ′

n(ul(0)))

=
(
Aθ◦

1 + 1

r
B̃1, . . . ,Aθ◦

n + 1

r
B̃n, C̃1, . . . , C̃n

)
∈ R

n
x ⊕ R

n
y

∼= Tp(R
n
x ⊕ R

n
y).

By applying the standard complex structure J on C
n under the identification (2.2)

we obtain the result. ��

Proposition 4.6 If� ∈ Ws,γ (M, T ∗∧M) then V� belongs toWs,γ (M,N (M)) where
N (M) is endowed with the restriction of the standard flat metric g

Cn = g
R2n

.

Proof We have to prove that ‖V�‖Ws,γ (M,N (M)) < ∞. By (3.9) we have to estimate
near the edge with the edge-Sobolev norm

‖ωV�‖Ws,γ (M,N (M))

and away from the edge with the classical Sobolev norm

‖(1 − ω)V�‖Hs (2M,N (M)) .

Let {� j , β j } and {Uλ, χλ} be finite coverings of E and X respectively, given by
coordinate neighborhoods such that

β j : � j → R
q

and

I × χλ : R
+ × Uλ −→ R

+ × R
m
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are diffeomorphism and let {φ j } and {ϕλ} be corresponding subordinate partitions of
unity. Let ω(r) be the cut-off function defining the edge-Sobolev space (see Defini-
tion 3.3). In an edge neighborhood R

+ × Uλ × � j we have

�(r, σ, u) = A(r, σ, u)dr +
m∑

k=1

Bk(r, σ, u)rdσk +
q∑

l=1

Cl(r, σ, u)dul ,

and the fact that � ∈ Ws,γ (M, T ∗∧M) implies that ωφ jϕλA, ωφ jϕλBk and ωφ jϕλCl
belong toWs,γ (M). This follows from (3.7) and (3.9).

By Lemma 4.5 we have

V�(r, σ, u) =
n∑

i=1

−C̃i (r, σ, u)∂xi + (A(r, σ, u)θ◦
i + B̃i (r, σ, u))∂yi . (4.7)

By 3.8, near the edge we want to estimate the terms

∥∥∥ωφ jϕλB̃k

∥∥∥
2

Ws,γ (X∧×Rq )
=

∫

R
q
η

[η]2s
∥∥∥κ−1

[η]Fu→η(ωφ jϕλB̃k)

∥∥∥
2

Hs,γ (X∧)
dη

and

∥∥∥ωφ jϕλC̃l
∥∥∥
2

Ws,γ (X∧×Rq )
=

∫

R
q
η

[η]2s
∥∥∥κ−1

[η]Fu→η(ωφ jϕλC̃l)
∥∥∥
2

Hs,γ (X∧)
dη.

First, we observe that

∥∥∥κ−1
[η]Fu→η(ωφ jϕλB̃k)

∥∥∥
2

Hs,γ (X∧)
(4.8)

≈
∑

λ

∥∥∥((I × χλ)∗)−1κ−1
[η] )ϕλωFu→η(φ j B̃k)(η)

∥∥∥
2

Hs,γ (R+×Rm)
(4.9)

by (3.7). By Lemma 4.5 B̃k is obtained by applying θ∗g∗
X . This pull-back and push-

forward acts locally on the componentsBk bymultiplying by gi jX and partial derivatives
of the component functions of θ : X → Sn−1 ⊂ R

n . We claim that both of these
operations preserve the membership inWs,γ (M). Indeed, in local coordinates Uλ we
have g∗

X = ∑m
i, j=1 g

i j
X ∂i ⊗ ∂ j and

g∗
X

(
m∑

k=1

Bk(r, σ, u)dσk

)
=

m∑

j=1

(
m∑

k=1

gkjX Bk(r, σ, u)

)
∂ j .
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The norm
∥∥∥((I × χλ)∗)−1κ−1

[η] ϕλωFu→η(φ j g
k j
X Bk)(η)

∥∥∥Hs,γ (R+×Rm)

is equivalent to

∥∥∥ϕλg
kj
X Sγ−m

2

(
((I × χλ)∗)−1κ−1

[η] ωFu→η(φ jBk)(η)
)∥∥∥

Hs (Rm+1)

by (3.6). The functions gkjX are bounded on the support of ϕλ, hence they are bounded
functions on R

m+1 under the coordinate map I × χλ. By the general theory of mul-
tipliers on Sobolev spaces Hs(Rm+1), ([2, theorem 1.9.1 and 1.9.2]), multiplication
by any bounded function defines a bounded operator, therefore there exists a constant
Ckj depending only on gkjX such that

∥∥∥((I × χλ)∗)−1κ−1
[η] ϕλωFu→η(φ j g

k j
X Bk)(η)

∥∥∥Hs,γ (R+×Rm)

≤ Ckj

∥∥∥((I × χλ)∗)−1κ−1
[η] ϕλωFu→η(φ jBk)(η)

∥∥∥Hs,γ (R+×Rm)
.

By hypothesis

∫

R
q
η

[η]2s
∥∥∥((I × χλ)∗)−1κ−1

[η] ϕλωFu→η(φ jBk)(η)

∥∥∥
2

Hs,γ (R+×Rm )
dη < ∞

then, by (4.8), g∗ preserves Ws,γ (M) near the edge.
The push-forward θ∗ is induced by a diffeomorphism θ : X −→ Sn−1 ⊂ R

n .
Locally this push-forward acts on the components of vector fields by multiplications
by the derivatives of the component functions θk , hence the same argument as above
applies and we conclude that ωφ j B̃k ∈ Ws,γ (M).

Now, the components C̃l are obtained by applying τ∗g∗
E to the components Cl . Given

g∗
E = ∑

gi jE (u)∂ui ⊗ ∂u j , it acts on the components Cl by multiplication by gi jE (u).
In the same way the push-forward τ∗ acts through multiplication by derivatives of

its components ∂τ i

∂ul
. When composed with the coordinate function βk , the maps

(φkg
i j
E ) ◦ β−1

k : R
q −→ R

and

(
φk

∂τ i

∂ul

)
◦ β−1

k : R
q −→ R

belong toS(Rq) as they have compact support. By [33, theorem1.3.34],multiplication
by an element in S(Rq) defines a continuous operator onWs,γ (X∧ ×R

q). Hence, by
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the same argument as in the first part of the proof, τ∗g∗
E preserves Ws,γ (M) near the

edge and ωφkϕλC̃l ∈ Ws,γ (M).
Away from the edge on the compact manifold M\ ((0, ε) × ∂M) take a finite cov-

ering of coordinate neighborhoods {Wi } with a subordinate partition of unity {μi }.
Then

‖(1 − ω)V�‖2Hs (2M,N (M)) =
∑

i

‖μiV�‖2Hs (Rn ,Rq ) . (4.10)

As on each of those patches of local coordinates the support of μiV� is compact,
clearly ‖(1 − ω)V�‖2Hs (2M,N (M)) < ∞. ��
Proposition 4.7 Let � ∈ C∞

0 (T ∗∧M) and V� = J (�∗(g∗
M (�))) ∈ C∞(N (M)).

Then the pull-back of the standard Kähler form ω
Cn by the map exp(V�) ◦ � is

given in terms of edge-degenerate differential operators of order 1 by the following
expression in a neighborhood (0, ε) × Uλ × � j near the edge:

(exp(V�) ◦ �)∗ (ωCn )

=
m∑

k=1

( n∑

i=1

Pk,i (A) + Qk,i (B̃i ) + (Sk,i (A) + Tk,i (B̃i ))Rk,i (C̃i )

+ (Lk,i (A) + Mk,i (B̃i ))Ok,i (C̃i )
)
rdr ∧ dσk

+
q∑

l=1

( n∑

i=1

Pl,i (A) + Ql,i (B̃i ) + (Sl,i (A) + Tl,i (B̃i ))Rl,i (C̃i )

+ (Ll,i (A) + Ml,i (B̃i ))Ol,i (C̃i )
)
dr ∧ dul

+
m∑

k=1

q∑

l=1

( n∑

i=1

Pk,l,i (A) + Qk,l,i (B̃i ) + Uk,l,i (C̃i ) + (Sk,l,i (A)

+ Tk,l,i (B̃i ))Rk,l,i (C̃i ) + (Lk,l,i (A) + Mk,l,i (B̃i ))Ok,l,i (C̃i )
)
rdσk ∧ dul

+
m∑

k=1

m∑

j=1

( n∑

i=1

Pk, j,i (A) + Qk, j,i (B̃i ) + (Sk, j,i (A) + Tk, j,i (B̃i ))Rk, j,i (C̃i )

+ (Lk, j,i (A) + Mk, j,i (B̃i ))Ok, j,i (C̃i )
)
r2dσk ∧ dσ j

+
q∑

s=1

q∑

l=1

( n∑

i=1

Ps, j,i (C̃i ) + (Ss, j,i (A) + Ts, j,i (B̃i ))Rs, j,i (C̃i )

+ (Ls, j,i (A) + Ms, j,i (B̃i ))Os, j,i (C̃i )
)
dus ∧ dul

whereA, B̃i , C̃i , i = 1, . . . , n are the components of V� in a neighborhood of the edge
as in (4.7) and the operators L•,M•,O•,P•,Q•,R•, S•,T•,U• belong toDiff1edge(M).
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Proof Let � = Adr + ∑m
k=1 Bkrdσk + ∑q

l=1 Cldul in local coordinates near the
edge, then

V� = J�∗(g∗
M (�)) =

n∑

i=1

−C̃i (r, σ, u)∂xi + (A(r, σ, u)θ◦
i + B̃i (r, σ, u))∂yi

and

(exp(V�) ◦ �)(r, σ, u)

= (rθ1 − C̃1, . . . , rθn − C̃n, τ1 + Aθ1 + B̃1, . . . , τn + Aθn + B̃n).

The standard Kähler form in C
n is given by

ω
Cn =

n∑

i=1

dxi ∧ dyi ,

then a direct computation shows that

(exp(V�) ◦ �)∗(ωCn ) =
n∑

i=1

(exp(V�) ◦ �)∗(dxi ∧ dyi )

=
n∑

i=1

d
(
rθi (σ ) − C̃i (r, σ, u)

)
∧ d

(
τi (ul) + Aθi (σ ) + B̃i

)

=
m∑

k=1

( n∑

i=1

1

r
(θi∂k(θi ) + θi∂k + θi∂k(θi )(−r∂r )) (A)

+ 1

r

(
θi∂k + ∂k(θi )(−r∂r )(B̃i )

)
− 1

r

(
(∂k(θi ) + θi∂k) (A) + ∂k(B̃i )

)
∂r (C̃i )

+ 1

r
∂k(C̃)

(
θi∂r (A) + ∂r (B̃i )

))
rdr ∧ dσk

+
q∑

l=1

( n∑

i=1

θ2i ∂ul (A) + θi∂ul (B̃i ) − ∂ul (τi )∂r (C̃i )

− ∂r (C̃i )
(
θi∂ul (A) + ∂ul (B̃i )

)
+ ∂ul (C̃i )

(
θi∂r (A) + ∂r B̃i

))
dr ∧ dul

+
m∑

k=1

q∑

l=1

( n∑

i=1

1

r

(
∂k(θi )θi (r∂ul )

)
(A) + 1

r

(
∂k(θi )(r∂ul )

)
(B̃i )

− 1

r
∂ul (τi )∂k(C̃i ) − 1

r
∂k(C̃i )

(
θi∂ul (A) + ∂ul (B̃i )

)

+ ∂ul (C̃i )
(
(∂k(θi ) + θi∂k)(A) + ∂k(B̃i )

))
rdσk ∧ dul
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+
m∑

j=1

m∑

k=1

( n∑

i=1

1

r

(
θi∂ j (θi )∂k − θi∂k(θi )∂ j

)
(A)

+ 1

r

(
∂ j (θi )∂k − ∂k(θi )∂ j

)
(B̃i )

− 1

r
∂ j (C̃i )

(
1

r
(∂k(θi ) + θi∂k) (A) + 1

r
∂k(B̃i )

)

+ 1

r
∂k(C̃i )

(
1

r

(
∂ j (θi ) + θi∂ j

)
(A) + 1

r
∂ j (B̃i )

))
r2dσ j ∧ dσk

+
q∑

λ=1

q∑

l=1

( n∑

i=1

(−∂ul (τi )∂uλ + ∂uλ(τi )∂ul
)
(C̃i )

− ∂uλ(C̃i )
(
θi∂ul (A) + ∂ul (B̃i )

)
+ ∂ul (C̃i )

(
θi∂uλ(A) + ∂uλ(B̃i )

))
duλ ∧ dul .

Each of these terms are edge-degenerate differential operators acting on the com-
ponents of � and products of these as it is claimed in the proposition. Note that we
have used the fact that

(exp(V0) ◦ �)∗ (ωCn ) = 0

to remove products in each term that do not contain any of the component functions
A, B̃i and C̃i . ��

Corollary 4.8 The map

PωCn : C∞
0 (T ∗∧M) −→ C∞

0

(
M,

∧2
T ∗∧M

)

defined by Pω
Cn

(�) := (exp(V�) ◦ �)∗ (ω
Cn ), extends to a continuous non-linear

operator

PωCn : Ws,γ (M, T ∗∧M) −→ Ws−1,γ−1
(
M,

∧2
T ∗∧M

)

for s > dimX+dimE+3
2 and γ > dimX+1

2 .

Proof Let’s consider a sequence {�i }i∈N ⊂ C∞
0 (T ∗∧M) such that it is a Cauchy

sequence inWs,γ (M, T ∗∧M). Then, in a neighborhood near the edge, the components
of the elements of the sequence {�i }i∈N define Cauchy sequences inWs,γ (M) i.e.
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∥∥∥ωφ jϕλAi − ωφ jϕλA j
∥∥∥Ws,γ (M,T ∗∧M)

< ε,

∥∥∥ωφ jϕλB̃i
k − ωφ jϕλB̃ j

k

∥∥∥Ws,γ (M,T ∗∧M)
< ε for all k = 1, 2, . . . ,m

and
∥∥∥ωφ jϕλC̃il − ωφ jϕλC̃ j

l

∥∥∥Ws,γ (M,T ∗∧M)
< ε for all l = 1, 2, . . . , q

for all i, j > N (ε). Away from the edge we have

∥∥(1 − ω)(�i − � j )
∥∥
Hs (2M,T ∗M)

< ε.

We want to estimate

∥∥PωCn (�i ) − PωCn (� j )
∥∥Ws−1,γ−1(M,T ∗∧M)

.

Observe that the conditions on s and γ imply that the edge-Sobolev spaces are
Banach algebras (11.39), hence multiplication is well-defined and we have the esti-
mate ‖ f g‖s,γ ≤ Cs,γ ‖ f ‖s,γ ‖g‖s,γ with a constant Cs,γ depending only on s and γ .
To simplify the notation we will use ‖·‖s,γ to denote ‖·‖Ws,γ (M,T ∗∧M) .

Now, near the edge, the components of the operator PωCn are given by expressions
of the form P + Q + (S + T) · R where P,Q,R,S,T ∈ Diff1edge(M). By estimating
one of these expressions we can apply the same argument to all components.

Given P,Q,R,S,T in Diff1edge(M) andA,B, C,A′,B′, C′ inWs,γ (M) by the con-
tinuity these operators (Proposition 3.6) and the elementary identity ab − a′b′ =
1
2 (a + a′)(b − b′) + 1

2 (a − a′)(b + b′) we have

‖ P(A) + Q(B) + (S(A) + T(B))R(C) − (
P(A′) + Q(B′)

+(S(A′) + T(B′))R(C′)
) ‖s−1,γ−1

≤ ‖P‖ ∥∥A − A′∥∥
sγ + ‖Q‖ ∥∥B − B′∥∥

s,γ

+ ∥∥(S(A) + T(B))R(C) − (S(A′) + T(B′))R(C′)
∥∥
s−1,γ−1

≤ ‖P‖ ∥∥A − A′∥∥
s,γ + ‖Q‖ ∥∥B − B′∥∥

s,γ

+ 1

2

(
‖R‖ ‖S‖ ∥∥A − A′∥∥

s,γ + ‖R‖ ‖T‖ ∥∥B − B′∥∥
s,γ

) ∥∥C + C′∥∥
s,γ

+ 1

2

(
‖R‖ ‖S‖ ∥∥A + A′∥∥

s,γ + ‖R‖ ‖T‖ ∥∥B + B′∥∥
s,γ

) ∥∥C − C′∥∥
s,γ .

Therefore, if {�i } is a Cauchy sequence inWs,γ (M, T ∗∧M) then

{P(Ai ) + Q(Bi ) + (S(Ai ) + T(Bi ))R(Ci )}i∈N
is a Cauchy sequence inWs−1,γ−1(M)which implies that {ω(r)PωCn (�i )}i is Cauchy
too.
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Away from the edgewe are in the setting of standard Sobolev spaces Hs(2M, T ∗∧M)

and the operator PωCn is given by products of two differential operators of order 1.
By using their continuity on Hs(2M, T ∗M), the fact that standard Sobolev spaces are
Banach algebras for s > dimM

2 and a similar argument give us that {(1−ω)PωCn (�i )}i
is Cauchy in Hs(2M, T ∗M). Therefore the corollary follows immediately. ��

Proposition 4.9 Let � ∈ C∞
0 (T ∗∧M) and V� = J�∗(g∗

M (�)) ∈ C∞(N (M)). Then,
on a neighborhood (0, ε) × Uλ × � j near the edge, the pull-back of the imaginary
part of the holomorphic volume form in C

n

Im� = Im(dz1 ∧ · · · ∧ dzn),

by the map exp(V�) ◦ � is given as a sum of n products of the form

Pi1(Fi1)Pi2(Fi2) · · · · · Pin (Fin )

where Pi j ∈ Diff1edge(M) and Fi j ∈ Ws,γ (M).

Proof The holomorphic volume form in C
n is given by

Im� = Im(dz1 ∧ · · · ∧ dzn) = Imd(x1 + iy1) ∧ · · · ∧ d(xn + iyn)

=
∑

|I |=odd

cI dyI ∧ dx1 ∧ · · · ∧ d̂xI ∧ . . . dxn

where the sum is taken over all increasingly ordered multi-indexes I of odd length k,
I = (i1, . . . , ik), the hat means that we omit the corresponding terms and cI = ±1.
Then

(exp(V�) ◦ �)∗ (Im�)

=
∑

|I |=odd

cI (exp(V�) ◦ �)∗
(
dyI ∧ dx1 ∧ · · · ∧ d̂xI ∧ . . . dxn

)

=
∑

|I |=odd

cI d(τi1 + Aθi1 + B̃i1) ∧ · · · ∧ d(τik + Aθik + B̃ik ) ∧ d(rθ1 − C̃1) ∧ . . .

∧ ̂d(rθI − C̃I ) ∧ · · · ∧ d(rθn − C̃n).

Each of the terms in the sum is a n-form on (0, ε) × Uλ × � j , hence

cI (exp(V�) ◦ �)∗
(
dyI ∧ dx1 ∧ · · · ∧ d̂xI ∧ . . . dxn

)

= FI (r, σ, u)rmdr ∧ dσ1 ∧ · · · ∧ dσm ∧ du1 ∧ · · · ∧ duq ,

where FI (r, σ, u) is the determinant of the following matrix
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂r (τi1 + Aθi1 + B̃i1) . . . ∂r (rθ1 − C̃1) . . .
̂

∂r (rθI − C̃I ) . . . ∂r (rθn − C̃n)
... . . .

... . . .
... . . .

...

1
r ∂ j (τi1 + Aθi1 + B̃i1) . . . 1

r ∂ j (rθ1 − C̃1) . . .
̂1

r ∂ j (rθI − C̃I ) . . . 1
r ∂ j (rθn − C̃n)

... . . .
... . . .

... . . .
...

∂uq (τi1 + Aθi1 + B̃i1) . . . ∂uq (rθ1 − C̃1) . . .
̂

∂uq (rθI − C̃I ) . . . ∂uq (rθn − C̃n)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore FI (r, σ, u) is the sum of products of the form

P1(τi1 + Aθi1 + B̃i1) . . . Pn(rθn − C̃n)

with all the operators Pk , k = 1, . . . , n, in Diff1edge(M). By expanding these products
and observing that the sum of all terms of the form

P1(τi1) . . . Pn(rθn),

i.e. all those products not containing any of the functionsA, B̃• or C̃•, is equal to zero
as

(exp(V0) ◦ �)∗ (Im�) = 0;

we obtain that FI (r, σ, u) is the sum of products of the form

Pi1(Fi1)Pi2(Fi2) · · · · · Pin (Fin ) (4.11)

where Pi j ∈ Diff1edge(M) and Fi j ∈ Ws,γ (M) as claimed. ��
Corollary 4.10 The map

PIm� : C∞
0 (T ∗∧M) −→ C∞

0

(
M,

∧n
T ∗∧M

)

given by PIm�(�) := (exp(V�) ◦ �)∗ (Im(�)) extends to a continuous non-linear
operator

PIm� : Ws,γ (M, T ∗∧M) −→ Ws−1,γ−1
(
M,

∧n
T ∗∧M

)

for s > dimX+dimE+3
2 and γ > dimX+1

2 .

Proof Given � and �′ in C∞
0 (T ∗∧M), near the edge, we have

PIm�(�) − PIm�(�′)

=
(
∑

I

Pi1(Fi1) . . . Pin (Fin ) − Pi1(F
′
i1) . . . Pin (F

′
in )

)
rmdr ∧ dσ1 . . .

· · · ∧ dσm ∧ du1 ∧ · · · ∧ duq .
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By applying the elementary identity ab−a′b′ = 1
2 (a+a′)(b−b′)+ 1

2 (a−a′)(b+b′)
we can decompose each term of the sum in factors, each of them containing one of
the subtractions

Pin−k (Fin−k ) − Pin−k (Fin−k ) (4.12)

for k = 0, . . . , n.
Now, if {�i }i∈N ⊂ C∞

0 (T ∗∧M) is a Cauchy sequence in the Sobolev space

Ws,γ (M, T ∗∧M) as in Corollary 4.8, the sequences Pi j (F
(k)
i j

) are Cauchy in

Ws−1,γ−1(M) (by the continuity of edge-degenerate operators on edge-Sobolev
spaces, see Proposition 3.6) and

∥∥∥Pin−k (F
(k)
in−k

) − Pin−k (F
(k′)
in−k

)

∥∥∥
s−1,γ−1

< ε

for all k, k′ > N (ε). Therefore, by the Banach algebra property (11.39) and
(4.12), we have that {ω(r)PIm�(�k)}k∈N is a Cauchy sequence in the Sobolev space
Ws−1,γ−1(M,

∧n T ∗∧M). Away from the edge a completely similar argument using
the classical Sobolev spaces Hs(2M, T ∗M) implies that {(1 − ω)PIm�(�k)}k∈N is
Cauchy in the space Hs(2M, T ∗M) and the corollary follows immediately. ��

Corollaries 4.8 and 4.10 tell us that we have a continuous non-linear deformation
operator:

P :=
Pω

Cn
Ws−1,γ−1

(
M,

∧2 T ∗∧M
)

⊕ : Ws,γ (M, T ∗∧M) −→ ⊕
PIm� Ws−1,γ−1

(
M,

∧n T ∗∧M
)

for s > dimX+dimE+3
2 and γ > dimX+1

2 .

In fact, this operator is smooth as the following corollary shows.

Corollary 4.11 The non-linear deformation operator

Pω
Cn

Ws−1,γ−1
(
M,

∧2 T ∗∧M
)

⊕ : Ws,γ (M, T ∗∧M) −→ ⊕
PIm� Ws−1,γ−1

(
M,

∧n T ∗∧M
)
.

is smooth.

Proof Recall that from Proposition 4.7 the components of the operator Pω
Cn

are given

by expressions of the form P + Q + (S + T) · R where P,Q,R,S,T ∈ Diff1edge(M).

Therefore, given f, ν ∈ Ws,γ (M) we have

(P + Q + (S + T) · R)( f + ν) − (P + Q + (S + T) · R)( f )

= P(ν) + Q(ν) + R( f )(S(ν) + T(ν)) + S( f )R(ν) + T( f )R(ν)

+ S(ν)R(ν) + T(ν)R(ν).
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Observe that by the continuity of S

∥∥∥∥
S(ν)R(ν)

‖ν‖
∥∥∥∥
s−1,γ−1

≤ ‖S‖s,γ ‖R(ν)‖s−1,γ−1 ,

hence by the continuity of R we have lim‖ν‖→0
S(ν)R(ν)

‖ν‖ = 0 and the same holds for
T(ν)R(ν). This implies that the Fréchet derivative of the operator P+Q+ (S+T) ·R
at f is given by

D (P + Q + (S + T) · R) [ f ] = P + Q + R( f )(S + T) + S( f )R + T( f )R

and from this expression is clear that

D (P + Q + (S + T) · R) [•] : Ws,γ (M) −→ L
(
Ws,γ (M),Ws−1,γ−1(M)

)

is a continuous operator. Moreover, observe that the second derivative is constant.
More precisely, the second derivative of P + Q + (S + T) · R at f ∈ Ws,γ (M) is the
linear, continuous map

D2 (P + Q + (S + T) · R) [ f ] ∈ L
(
Ws,γ (M),L

(
Ws,γ (M),Ws−1,γ−1(M)

))

such that

(D (P + Q + (S + T) · R) [ f + ν] − D (P + Q + (S + T) · R) [ f ]
− D2 (P + Q + (S + T) · R) [ f ](ν)

)/
‖ν‖

goes to zero in L
(
Ws,γ (M),Ws−1,γ−1(M)

)
when ‖ν‖ → 0.

A direct computation shows that

D (P + Q + (S + T) · R) [ f + ν] − D (P + Q + (S + T) · R) [ f ]
= R(ν)(S + T) + S(ν)R + T(ν)R

hence by uniqueness of derivatives we have

D2 (P + Q + (S + T) · R) [ f ](ν) = R(ν)(S + T) + S(ν)R + T(ν)R

for any ν ∈ Ws,γ (M) and all f ∈ Ws,γ (M). Thus the second derivative is constant
and given by

D2 (P + Q + (S + T) · R) [ f ](g, h) = R(g)(S + T)(h) + (S + T)(g)R(h)

for any f ∈ Ws,γ (M). We conclude that Pω
Cn

is smooth.
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Now, the operator PIm� is given as a sum of products P1(F1)P2(F2) · · · · · Pn(Fn)
where Pi ∈ Diff1edge(M) and Fi ∈ Ws,γ (M). Then we have that the expression

P1(F1 + ν)P2(F2 + ν) · · · · · Pn(Fn + ν) − P1(F1)P2(F2) · · · · · Pn(Fn)

is a sum of products of the operators Pi evaluated at Fi or at ν with at least one ν in
each product. Those products containing 2 or more terms with ν does not contribute
to the Frechet derivative as in the first part of the proof. Hence the Fréchet derivative
is computed only with products having one term with ν which produce continuous
linear operators of the form Pi1(Fi1)Pi2(Fi2) · · · · · Pin−1(Fin−1)Pin . Furthermore, it is
easily seen that the nth derivative of each of the products P1(F1)P2(F2) · · · · · Pn(Fn)
is constant and equal to

∑

(i1,...,in)∈Sn
Pi1Pi2 · · · · · Pin

where the sum is taken over the group of permutations with n elements. From this it
follows that PIm� is smooth. ��

Observe that any element α ∈ Ws−1,γ−1(M,
∧n T ∗∧M) is given as α = fVolM

where f ∈ Ws−1,γ−1(M) and fkVolM −→ fVolM in the edge-Sobolev space
Ws−1,γ−1(M,

∧n T ∗∧M) if and only if fk −→ f in the spaceWs−1,γ−1(M). Hence
we can consider the operator PIm� as an operator acting between the following spaces:

PIm� : Ws,γ (M, T ∗∧M) −→ Ws−1,γ−1(M).

5 The linear operator DP[0]

In this section we consider the operator DP[0], the linearisation at zero of the defor-
mation operator P = Pω

Cn
⊕ PIm�. A careful analysis of this operator is necessary as

we want apply the Implicit Function Theorem for Banach spaces to this linear opera-
tor in order to describe solutions (nearby zero) of the non-linear equation P( f ) = 0
in term of Ker DP[0]. McLean’s results in [26] implies that the linearisation of the
deformation operator at zero acting on C∞

0 (M, T ∗∧M) is given by the Hodge–deRham
operator i.e.

DP[0]
∣∣∣
C∞
0 (M,T ∗∧M)

= d + d∗.

In this section we analyse the extension of this operator to edge-Sobolev spaces,
its ellipticity and the Fredholm property.

Observe that on a collar neighborhood any � ∈ C∞
(∧k T ∗∧M

)
can be written as

� = dr∧rk−1�X +dr∧�E +dr∧
k−2∑

i=1

r i�i
X ,E+

k−1∑

j=1

r j �̃
j
X ,E +rk�̃X +�̃E (5.1)
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where:

(i) �X is a smooth section of the bundle π∗
R+×E (

∧k−1 T ∗X );
(ii) �E is a smooth section of the bundle π∗

R+×X (
∧k−1 T ∗E);

(iii) �i
X ,E is the wedge product of a smooth section of the pull-back bundle

π∗
R+×E (

∧i T ∗X ) with a smooth section of the pull-back bundle

π∗
R+×X (

∧k−1−i T ∗E);
(iv) �̃

j
X ,E is the wedge product of a smooth section of the pull-back bundle

π∗
R+×E (

∧ j T ∗X ) with a smooth section of the bundle π∗
R+×X (

∧k− j T ∗E);
(v) �̃X is a smooth section of the bundle π∗

R+×E (
∧k T ∗X );

(vi) �̃E is a smooth section of the bundle π∗
R+×X (

∧k T ∗E).

Recall that π
R+×X and π

R+×E are the corresponding projections

π
R+×X : X∧ × E −→ E

π
R+×E : X∧ × E −→ X .

More generally, the bundle
∧• T ∗∧M can be decomposed in the following way:

∧•
T ∗∧M = dr ∧

m∑

k=0

rkπ∗
R+×E

(∧k
T ∗X

)
⊕ dr ∧ π∗

R+×X
(∧•

T ∗E
)

⊕ dr ∧
m∑

k=1

rkπ∗
R+×E

(∧k
T ∗X

)
∧ π∗

R+×X
(∧•

T ∗E
)

⊕
m∑

k=1

rkπ∗
R+×E

(∧k
T ∗X

)
∧ π∗

R+×X
(∧•

T ∗E
)

⊕
m∑

k=1

rkπ∗
R+×E (

∧k
T ∗X ) ⊕ π∗

R+×X (
∧•

T ∗E).

With respect to this splitting we can compute an explicit expression for d + d∗ acting
on C∞

0 (M,
∧• T ∗∧M) to prove the following proposition.

Proposition 5.1 The operator DP[0]
∣∣∣
C∞
0 (M,T ∗∧M)

= d + d∗ extends to a continuous

linear operator acting between edge-Sobolev spaces

DP[0] : Ws,γ (M,
∧• T ∗∧M) −→ Ws−1,γ−1(M,

∧• T ∗∧M) .

Proof By using the splitting (5.1) and arranging in a vector the components of the
differential form � ∈ C∞

0 (M,
∧k T ∗∧M) in the following way

(
�X , �E , �1

X ,E , . . . , �k−2
X ,E

�̃1
X ,E , . . . , �̃k−1

X ,E , �̃X , �̃E

)
,

a direct computation shows that the Hodge–deRham operator acting on � is given by
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d + d∗ =
[
A B
C D

]
,

where the operator matrices are given by

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
r (dX + d∗

X ) 0 0 0 · · · · · · −d∗
E

0 − 1
r (dE + d∗

E ) − 1
r d

∗
X 0 · · · · · · 0

0 − 1
r d

∗
X −(dE + 1

r d
∗
X ) 0 0 · · ·

.

.

.

.

.

. 0 −(d∗
E + 1

r dX ) −(dE + 1
r d

∗
X ) 0 · · · 0

.

.

.
.
.
. 0

. . .
. . .

. . . 0
.
.
.

.

.

.
.
.
. 0 −(d∗

E + 1
r dX ) −(dE + 1

r d
∗
X ) 0

.

.

.
.
.
.

.

.

.
.
.
. 0 − 1

r dX −dE
−dE 0 0 · · · 0 0 − 1

r dX

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0 k
r + ∂r 0

0 · · · · · · 0 0 ∂r

1
r + ∂r 0 · · · ... 0 0

0
. . .

. . . 0
... 0

...
. . . 0

... 0
0 · · · 0 k−1

r + ∂r 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
r − ∂r 0 · · · 0

... 0
. . .

. . .
. . .

...
...

... 0
. . .

. . . 0
...

... · · · · · · 0 k−2
r − ∂r

0 0 · · · · · · · · · 0
0 0 · · · · · · · · · 0

k
r − ∂r 0 · · · · · · · · · 0
0 −∂r 0 · · · · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dE + d∗
E

1
r d

∗
X 0 · · · · · · 0 1

r dX
1
r dX dE + d∗

E
1
r d

∗
X 0 · · · ... 0

0
. . .

. . .
. . .

. . .
... 0

...
...

...
... · · · 1

r dX dE + d∗
E

1
r d

∗
X 0

...
... · · · 0 1

r dX dE 0
...

... · · · · · · 0 1
r dX dE

...

0 · · · · · · 0 d∗
E

1
r (dX + d∗

X ) 0
1
r d

∗
X 0 · · · · · · 0 0 dE + d∗

E

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.



332 J. Rosario-Ortega

Observe that each of the elements in these matrices is an element of the algebra
Diff1edge(M,

∧• T ∗∧M). From this, it follows that d+d∗ belongs toDiff1edge
(∧• T ∗∧M

)

which implies that DP[0] extends to a continuous linear operator between the corre-
sponding edge-Sobolev spaces. ��

In order to verify some properties of the symbolic structure of d + d∗ it shall be
useful to have similar explicit expressions for the Hodge-Laplacian associated with
the edge metric gM acting on

∧• T ∗∧M .

Proposition 5.2 The Hodge–Laplace operator �gM

∣∣∣
C∞
0 (M,T ∗∧M)

extends to a contin-

uous linear operator acting between edge-Sobolev spaces

�gM
: Ws,γ

(
M,

∧• T ∗∧M
) −→ Ws−2,γ−2

(
M,

∧• T ∗∧M
)
.

Proof By arranging the components of � ∈ C∞
0 (M,

∧k T ∗∧M) in the same way as in
the previous proposition, a direct computation shows that the Hodge-Laplacian acting
on k-forms

�gM
: C∞

0

(
M,

∧k
T ∗∧M

)
−→ C∞

0

(
M,

∧k
T ∗∧M

)

is given by

�gM
=

[
A′ B′
C′ D′

]
,

where the operator matrices are given by

A′ =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
r2

�X+d∗
EdE−∂2r + (k−1)(k−2)

r2
0 0 0 · · · · · · 1

r (d∗
EdX + dX d∗

E )

0 �E+ 1
r2

d∗
X dX−∂2r

1
r (d∗

X dE + dEd∗
X ) 0 · · · · · · 0

0 1
r (d∗

EdX + dX d∗
E ) 1

r2
�X + �E − ∂2r 0 · · · · · · ...

... 0 0

...
...

. . .
. . .

. . . 0
...

... 1
r (d∗

X dE + dEd∗
X )

1
r (d∗

X dE + dEd∗
X ) 0 · · · · · · 0 1

r (d∗
EdX + dX d∗

E ) 1
r2

�X+�E−∂2r + (k−2)2−(k−2)
r2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B′ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 −1
r d∗

E
−2
r2

d∗
X 0

−2
r2

d∗
X 0 · · · 0 0

.

.

.

0
. . .

. . .
.
.
.

.

.

.
.
.
.

.

.

.
. . . 0

.

.

.
.
.
.

0 · · · 0 −2
r d∗

X 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

C′ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −2
r2

dX 0 · · · · · · 0

.

.

. 0
. . .

. . .
.
.
.

.

.

.
.
.
.

. . .
. . . 0

.

.

.
.
.
. · · · 0 −2

r2
dX

−2
r2

dX 0 · · · · · · · · · 0
0 0 · · · · · · · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦
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D′ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
r2

�X+�E−∂2r
1
r (d∗

X dE + dEd∗
X ) 0 · · · · · · 0 1

r (d∗
EdX + dX d∗

E )

1
r (d∗

EdX + dX d∗
E )

... 0

0
. . .

. . .
. . .

...
...

...
...

...
...

. . .
. . .

. . .
...

...
... 0

...
... · · · 0 1

r (d∗
X dE + dEd∗

X )
...

0 · · · · · · 0 1
r (d∗

EdX + dX d∗
E ) 1

r2
�X+d∗

EdE−∂2r − k(k−1)
r2

0
1
r (d∗

X dE + dEd∗
X ) · · · · · · · · · 0 0 �E+ 1

r2
d∗
X dX−∂2r

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Again each of the operators in the matrices is an element of the algebra
Diff2edge(M,

∧• T ∗∧M), hence the result follows.

5.1 Symbolic structure of edge-degenerate differential operators

In this section we collect the basic facts about the symbolic structure of edge-
degenerate differential operators the we use in the following sections. The reader
is referred to [33, chapters 2 and 3] for a full presentation.

Let’s consider a cone-degenerate differential operator (see (3.2))

P = r−l
∑

i≤l

ai (r)(−r∂r )
i .

As an element in Diff(M) it has its classical principal homogeneous symbol given by

σ l(P)(r, x, ρ, ξ) = r−l
∑

i+|α|=l

ai,α(r, x)(−√−1rρ)iξα

with smooth coefficients ai,α(r, x) up to r = 0. In order to reflect the singular behavior
on the symbolic structure two additional symbols are introduced. First we have the
homogeneous boundary symbol

σ l
b(P)(r, x, ρ̃, ξ) :=

∑

i+|α|=l

ai,α(r, x)(−√−1ρ̃)iξα

defined on the cotangent bundle of the stretched manifold T ∗
M and smooth up to

r = 0.
The second symbol is the Mellin symbol σ l

M (P). Recall that any cone-degenerate
operator P = r−l ∑

i≤l ai (r)(−r∂r )i is given in terms of the Mellin transformation as
follows

P = r−lM−1h(r, z)M,

where h(r, z) = ∑
i≤l ai (r)z

i . At the singular set i.e. when r = 0 we have a holomor-
phic family of operators
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h(0, z) : C −→ L
(
Hs(X ), Hs−l(X )

)
.

This holomorphic operator-valued function is theMellin symbol of P i.e. σ l
M (P)(z) :=

h(0, z).
Now consider an edge-degenerate differential operator (see (3.4) above)

P = r−l
∑

i+|α|≤l

ai,α(r, u)(−r∂r )
i (r Du)

α.

In the same way as the cone-degenerate case it has a classical homogeneous principal
symbol and a homogeneous boundary symbol

σ l(P)(r, x, u, ρ, ξ, η) = r−l
∑

i+|α|+|β|=l

ai,α,β(r, x, u)(−√−1rρ)i (rη)α

σ l
b(P)(r, x, u, ρ̃, ξ, η̃) =

∑

i+|α|+|β|=l

ai,α,β(r, x, u)(−√−1ρ̃)i η̃α

satisfying the relation

σ l
b(P)(r, x, u, ρ, ξ, η) = rlσ l(P)(r, x, r−1ρ, ξ, r−1η).

In the edge settingwe have the edge symbol σ l∧(P) that is defined as an operator-valued
function acting on spaces one level below in the singular hierarchy, in this case those
operators act on the cone-Sobolev spaces Ks,γ (X∧) as cone-degenerate operators.
More precisely we have

σ l∧(P) : T ∗E\{0} −→ L
(
Ks,γ (X∧),Ks−l,γ−l(X∧)

)

given by

σ l∧(P)(u, η) = r−l
∑

i+|α|≤l

ai,α(0, u)(−r∂r )
i (rη)α.

This is a family of cone-degenerate operators parametrized by the cotangent bundle
of the edge E .

5.2 Ellipticity on manifolds with conical and edge singularities

In this subsection we present the definition and principal implications of ellipticity
for cone and edge-degenerate differential operators. We use these results to study the
regularity of our moduli spaces in Sect. 7. Further details can be found in [33, chapter
2 and 3].

Definition 5.3 A cone-degenerate operator of order l, P ∈ Difflcone(M), is called
elliptic with respect to the weight γ if
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(i) σ l
b(P)(ρ̃, ξ) �= 0 on T ∗

M\{0}
(ii) the Mellin symbol σ l

M (P)(z) = h(0, z) defines a family of Banach space isomor-
phisms in L

(
Hs(X ), Hs−l(X )

)
for some s ∈ R and all z ∈ � dimX+1

2 −γ
.

Definition 5.4 If γ ∈ R such that the Mellin symbol is invertible along � dimX+1
2 −γ

we say that γ is an admissible weight.

Now we have some important implications of being elliptic.

Theorem 5.5 Let P be a cone-degenerate operator of order l.

(i) (Fredholm property) P is elliptic with respect to the weight γ if and only if

P : Hs,γ (M) −→ Hs−l,γ−l(M)

is Fredholm for every s ∈ R.
(ii) (Parametrix) If P is elliptic then there exists a parametrix of order−l with asymp-

totics.
(iii) (Elliptic regularity) If P is elliptic with respect to γ and P f = g with g ∈

Hs−l,γ−l
O (M) and f ∈ H−∞,γ (M) for some s ∈ R and some asymptotic type O

associated with γ − l then f ∈ Hs,γ
Q (M) with an asymptotic type Q associated

with γ .

Remark 5.6 Let’s consider a cone-degenerate operator P and f ∈ Hs,γ (M) such that
P f = 0. The parametrixwith asymptotics implies that (PP− I )( f )= f ∈ H∞,γ

O (M).
Therefore solutions of cone-degenerate differential equations are smooth on the regular
part of M and have conormal asymptotics expansions near the vertex of the cone.

In order to introduce the notion of ellipticity in the edge singular setting we need to
make some assumptions. Assume that there exist vector bundles J+ and J− over E
and operator families parametrized by T ∗E\{0} acting as follows

σ l∧(T)(u, η) : Ks,γ (X∧) −→ J+
u ,

σ l∧(C)(u, η) : J−
u −→ Ks−l,γ−l(X∧),

σ l∧(B)(u, η) : J−
u −→ J+

u ;

such that

[
σ 1∧(P)(u, η) σ l∧(C)(u, η)

σ l∧(T)(u, η) σ l∧(B)(u, η)

]
:
Ks,γ (X∧)

⊕
J−
u

−→
Ks−l,γ−l(X∧)

⊕
J+
u

(5.2)

is a family of continuous operators for every (u, η) ∈ T ∗E\{0}.
The existence of the vector bundles J± and operators acting between the fibers

and cone-Sobolev spaces will be discussed in Sect. 5.3. Here we only mention that
there is a topological obstruction (see Theorem 5.12) that must be satisfied in order to
guarantee the existence of J± and the operators.
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Definition 5.7 An edge-degenerate differential operator P ∈ Diffledge(M) of order l
for which (5.2) exists, is called elliptic with respect to the weight γ if

(i) σ l
b(P) �= 0 on T ∗

M\{0}
(ii) the operator matrix (5.2) defines an invertible operator for some s ∈ R and each

(u, η) ∈ T ∗E\{0}.
Theorem 5.8 Let P be an edge-degenerate operator of order l.

(i) (Fredholm property) P is elliptic with respect to the weight γ if and only if the
operator

AP :=
[
P C
T B

]
= F−1

η→u

[
σ 1∧(P)(u, η) σ l∧(C)(u, η)

σ l∧(T)(u, η) σ l∧(B)(u, η)

]
Fu′→η (5.3)

acting on the spaces

AP :
Ws,γ (M)

⊕
Hs(E, J−)

−→
Ws−l,γ−l(M)

⊕
Hs−l(E, J+)

is Fredholm for every s ∈ R.
(ii) (Parametrix) If P is elliptic then there exists a parametrix of order−l with asymp-

totics for AP.
(iii) (Elliptic regularity) If P is elliptic with respect to γ and AP f = g with

g ∈
Ws−l,γ−l

O (M)

⊕
Hs−l(E, J+)

and f ∈
W−∞,γ (M)

⊕
H−∞(E, J−)

for some s ∈ R and some asymptotic type O associated with γ − l then

f ∈
Ws,γ

Q (M)

⊕
Hs(E, J−)

with an asymptotic type Q associated with γ .

Remark 5.9 Analogously to Remark 5.6 we have that solutions to the edge-degenerate
equation AP f = 0 belong to W∞,γ

O (M), hence they are smooth and have conormal
asymptotics near the edge E .

5.3 The symbolic structure of DP[0]

Recall fromSect. 5.1 that the symbolic structure of the edge-degenerate operatorDP[0]
is given by the pair
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(
σ 1
b (DP[0]) (r, σ, u, ρ̃, ξ, η̃), σ 1∧ (DP[0]) (u, η)

)

where σ 1
b (DP[0]) is a bundle map on π∗

T∗M(
∧• T ∗∧M).

The edge symbol σ 1∧ (DP[0]) is a family of continuous linear operators acting on
cone-Sobolev spaces and parametrized by the cosphere bundle over E :

σ 1∧ (DP[0]) : S∗E −→ L
(
Ks,γ (X∧,

∧•
T ∗∧M),Ks−1,γ−1(X∧,

∧•
T ∗∧M)

)
.

The ellipticity of the operator DP[0] shall require the invertibility of its symbolic
structure. From Propositions 5.1 and 5.2 we obtain the first part of the desired result.

Proposition 5.10

σ 1
b (DP[0])(r, σ, u, ρ̃, ξ, η̃) :

∧•
T ∗

∧,(r,σ,u)M −→
∧•

T ∗
∧,(r,σ,u)M

is a bundle isomorphism for every non-zero (r, σ, u, ρ̃, ξ, η̃) ∈ T ∗
M up to r = 0.

Proof To prove this result we shall use the symbolic structure of the Hodge–Laplace
operator

(
σ 2
b (�gM

)(r, σ, u, ρ̃, ξ, η̃), σ 2∧(�gM
)(u, η)

)
.

From [33, theorem 3.4.56] we have the natural expected symbolic relation

σ 2
b (�gM

) = σ 1
b (DP[0]) ◦ σ 1

b (DP[0]) (5.4)

σ 2∧(�gM
) = σ 1∧(DP[0]) ◦ σ 1∧(DP[0]) (5.5)

asDP[0] = d+d∗ and�gM = (d+d∗)◦(d+d∗). Now, from thematrices representing
�gM

in Proposition 5.2 we have that the elements in B′ and C′ are operators of order
1 hence they do not intervene in the computation of σ 2

b (�gM ). Hence let’s focus on
the operators in A′ and D′.

Observe that for any α ∈ ∧• T ∗∧M

σ 2
b (d∗

EdX + dX d∗
E )(r, σ, u, ρ̃, ξ, η̃)(α) = η̃∗�(ξ ∧ α) + ξ ∧ (η̃∗�α)

= (η̃∗�ξ) ∧ α − ξ ∧ (η̃∗�α) + ξ ∧ (η̃∗�α)

= 0

as η̃∗ ∈ TE and ξ ∈ T ∗X . Moreover

σ 2
b (d∗

EdE )(η̃)(�X ) = η̃∗�(η̃ ∧ �X )

= �X + η̃ ∧ (η̃∗��X )

= �X
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and in the same way

σ 2
b (d∗

X dX )(ξ)(�E ) = �E .

Therefore σ 2
b (�gM

)(r, σ, u, ρ̃, ξ, η̃) is a diagonal matrix with entries given by

σ 2
b (�X + d∗

EdE − ∂2r )(r, σ, u, ρ̃, ξ, η̃) = |ξ |2gX + 1 + |ρ̃|2

σ 2
b (�E + d∗

X dX − ∂2r )(r, σ, u, ρ̃, ξ, η̃) = |η̃|2gE + 1 + |ρ̃|2

and

σ 2
b (�X + �E − ∂2r )(r, σ, u, ρ̃, ξ, η̃) = |ξ |2gX + |η̃|2gE + |ρ̃|2 .

Hence

σ 2
b (�gM

)(r, σ, u, ρ̃, ξ, η̃) :
∧•

T ∗
∧,(r,σ,u)M −→

∧•
T ∗

∧,(r,σ,u)M

is an isomorphism for every non-zero (r, σ, u, ρ̃, ξ, η̃) ∈ T ∗
M up to r = 0. By (5.4)

we have that

σ 1
b (DP[0])(r, σ, u, ρ̃, ξ, η̃) :

∧•
T ∗

∧,(r,σ,u)M −→
∧•

T ∗
∧,(r,σ,u)M

has the same property. ��
In order to obtain information about the invertibility of the edge symbol σ 1∧(DP[0])

we will use Proposition 5.10 together with theorem 2.4.18 and theorem 3.5.1 in [33].
These theorems state the existence of admissibleweights γ ∈ R such that σ 1∧(DP[0]) is
a Fredholm operator on the corresponding cone-Sobolev spaces of any order.We adapt
those theorems to our setting in the following result. Its proof follows immediately
from theorem 2.4.18 and theorem 3.5.1 in [33].

Theorem 5.11 The condition that

σ 1
b (DP[0])(r, σ, u, ρ̃, ξ, η̃) :

∧•
T ∗

∧,(r,σ,u)M −→
∧•

T ∗
∧,(r,σ,u)M

is an isomorphism for every non-zero (r, σ, u, ρ̃, ξ, η̃) ∈ T ∗∧M up to r = 0, implies
that there exists a countable set � ⊂ C, where � ∩ K is finite for every K ⊂⊂ C,
such that

σ 1
M

(
σ 1∧(DP[0])(u, η)

)
(z) : Hs(X ,

∧•
T ∗∧M) −→ Hs−1(X ,

∧•
T ∗∧M)

is an isomorphism (invertible, linear, continuous operator) for every z ∈ C\� and all
s ∈ R. This implies that there is a countable subset D ⊂ R given by D = �∩R, with
the property that D ∩ {z : a ≤ Rez ≤ b} is finite for every a ≤ b, such that
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σ 1∧(DP[0])(u, η) : Ks,γ (X∧,
∧•

T ∗∧M) −→ Ks−1,γ−1(X∧,
∧•

T ∗∧M)

is a family of Fredholm operators for each γ ∈ R\D and (u, η) ∈ S∗E with η �= 0.

Theorem 5.11 tell us that for an admissible weight γ , the wedge symbol
σ 1∧(DP[0])(u, η) defines a Fredholm operator for each (u, η) ∈ S∗E . However, if
we require the ellipticity of DP[0] we need to have a family of invertible operators. In
some cases this can be achieved by adding boundary and coboundary operators that
defines an elliptic edge boundary value problem. This can be done in the following
way.

For each (u, η) ∈ S∗E we have that σ 1∧(DP[0])(u, η) is a Fredholm operator, then

Ker
(
σ 1∧(DP[0])(u, η)

)
⊂ Ks,γ (X∧,

∧•
T ∗∧M)

is a finite dimensional subspace. Let N (u, η) = dim Ker
(
σ 1∧(DP[0])(u, η)

)
and

choose an isomorphism

k(u, η) : C
N (u,η) −→ Ker

(
σ 1∧(DP[0])(u, η)

)
,

then

(
σ 1∧(DP[0]) k) (y, η) :
Ks,γ

(
X∧,

∧• T ∗∧M
)

⊕ −→ Ks−1,γ−1
(
X∧,

∧• T ∗∧M
)

C
N (u,η)

is a surjective operator. Now, because the set of surjective operators is an open set and

the space S∗E is compact, there exists N+ ∈ N and c ∈ L
(
C

N+
,Ks−1,γ−1(X∧,

∧•

T ∗∧M)
)
such that

(
σ 1∧(DP[0]) c) (y, η) :

Ks,γ
(
X∧,

∧• T ∗∧M
)

⊕
C

N+
−→ Ks−1,γ−1

(
X∧,

∧•
T ∗∧M

)

(5.6)
is Fredholm and surjective for each (y, η) ∈ S∗E (see [33, theorem 1.2.30] for further
details). Because

(
σ 1∧(DP[0]) c) (y, η) is Fredholm and surjective we have that the

kernel of
(
σ 1∧(DP[0]) c) (y, η) has constant dimension equal to its index for every

(y, η) ∈ S∗E :

dim Ker
(
σ 1∧(DP[0]) c) (y, η) = Ind

(
σ 1∧(DP[0]) c) (y, η) := N−

for all (u, η) ∈ S∗E . The finite dimensional spaces Ker
(
σ 1∧(DP[0]) c) (y, η) define a

smooth vector bundle over S∗E (see section 1.2.4 in [33]).
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Now consider the trivial bundle of dimension N+ over S∗E , here we denote it
simply as C

N+
. The formal difference of these vector bundles defines an element in

the K-theory of S∗E

[
Ker

(
σ 1∧(DP[0]) c)] −

[
C

N+] ∈ K (S∗E).

This element in the K-group represents a topological obstruction to the existence of
an elliptic edge boundary value problem for the operator DP[0]. More precisely we
have the following theorem. For its proof and more details about the obstruction of
ellipticity in the edge calculus see [29, section 6.2].

Theorem 5.12 A necessary and sufficient condition for the existence of an elliptic
edge problem for DP[0] is given by

[
Ker

(
σ 1∧(DP[0]) c)] −

[
C

N+] ∈ π∗
S∗E K (E) (5.7)

where π
S∗E : S∗E −→ E is the natural projection and π∗

S∗E K (E) is the subgroup of
K (S∗E) generated by vector bundles lifted from E by means of π

S∗E .

Now, assume for the moment that the condition in Theorem 5.12 is satisfied. Then
the bundle defined by Ker

(
σ 1∧(DP[0]) c) (y, η) is stably equivalent to a vector bundle

J− lifted from E . Then, by adding zeros to c if needed, we can assume that the vector
bundle given by Ker

(
σ 1∧(DP[0]) c) (y, η) is isomorphic to J−. By extending this

isomorphism by zero on the orthogonal complement of Ker
(
σ 1∧(DP[0]) c) (y, η) we

obtain a map

(
t(u, η) b(u, η)

) :
Ks,γ

(
X∧,

∧• T ∗∧M
)

⊕
C

N+
−→ J−

(u,η) (5.8)

such that

[
σ 1∧(DP[0])(u, η) c(u, η)

t(u, η) b(u, η)

]
:

Ks,γ
(
X∧,

∧• T ∗∧M
)

⊕
C

N+
−→

Ks−1,γ−1
(
X∧,

∧• T ∗∧M
)

⊕
J−
(u,η)

is an invertible, linear operator for every η �= 0.
Then, the operator

ADP[0] =
[
DP[0] C
T B

]
= F−1

η→u

[
σ 1∧(DP[0])(u, η) c(u, η)

t(u, η) b(u, η)

]
Fu′→η

acting on the spaces
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[
DP[0] C
T B

]
:
Ws,γ (M,

∧• T ∗∧M)

⊕
Hs(E, C

N+
)

−→
Ws−1,γ−1(M,

∧• T ∗∧M)

⊕
Hs−1(E, J−)

is an elliptic edge operator ( see Definition 5.7) for all s ∈ R and γ the admissible
weight chosen at the beginning.

In order to prove the claim that condition (5.7) is satisfied we have the following
theorem which is contained in [29, theorem 6.30].

Theorem 5.13 If the Atiyah-Bott obstruction vanishes for an edge-degenerate oper-
ator A on the stretched manifold M, then there exists an elliptic edge problem for
A.

In our case DP[0] is the Hodge–deRham operator, the vanishing of the Atiyah-Bott
obstruction for this operator was proved by Atiyah et al. [4], hence the topological
condition (5.7) is satisfied.

6 Conormal deformations and regularity

6.1 Conormal asymptotics

In this subsection we recall the basic facts of conormal asymptotics. For a complete
presentation see [33, section 2.3].

A sequence O = {(p j ,m j )} j∈N in C × Z
+ is called an asymptotic type for the

weight data γ ∈ R if

Rep j <
dimX + 1

2
− γ

and Rep j → −∞ when j → ∞.

Definition 6.1 Let O = {(p j ,m j )} j∈N be an asymptotic type for the weight γ ∈ R.

The cone-Sobolev space with conormal asymptotics O , denoted by Ks,γ
O (X∧), is

defined as the set of all f ∈ Ks,γ (X∧) such that for every l ∈ N there is N (l) ∈ N

such that

f (r, σ, y) − ω(r)
N (l)∑

j=0

m j∑

k=0

c j,k(σ )r−p j logk(r) ∈ Ks,γ+l(X∧)

with c j,k(σ ) ∈ C∞(X ).

The spaceKs,γ
O (X∧) has the structure of a Fréchet space given as an inductive limit

of spaces with asymptotics of finite type Ks,γ
Ok

(X∧) where Ok = {(p j ,m j ) ∈ O :
dimX+1

2 − γ − k < Rep j < dimX+1
2 − γ }, see [9, sec. 8.1.1] for details. By using this

inductive limit structure we define the edge-Sobolev space with conormal asymptotics
O as the inductive limit of Fréchet spaces
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Ws,γ (
R
q ,Ks,γ

O (X∧)
) := lim←−

k

Ws,γ
(
R
q ,Ks,γ

Ok
(X∧)

)
.

In particular, if f ∈ W∞,γ

O (M) then for every l ∈ N there is N (l) ∈ N such that

f (r, σ, y) − ω(r)
N (l)∑

j=0

m j∑

k=0

c j,k(σ )v j,k(y)r
−p j logk(r) ∈ W∞,γ+l(M)

with c j,k(σ ) ∈ C∞(X ) and v j,k(y) ∈ H∞(E), see [33, proposition 3.1.33].

6.2 Conormal asymptotic embeddings

Given a special Lagrangian submanifold ofC
n with edge singularity, (M, �) (see 3.1),

in this section we define the moduli space of special Lagrangian deformations of
(M, �). Broadly speaking, we want to have in the moduli space all nearby special
Lagrangian submanifolds with edge singularity. This rough idea has two aspects that
must be considered for the moduli space. First, as the manifold M is non-compact,
the important aspect to consider when defining the concept of nearby submanifold
is the behavior on the collar neighborhood (0, ε) × X × E . Here we shall define the
concept of nearby submanifold bymeans of its asymptotic behavior with respect to the
conormal variable r and weight γ . Second, the property of being special Lagrangian
is completely determined by the equations (2.5). As we mentioned in Remarks 5.6
and 5.9 in Sect. 5.2, solutions of the linearised deformation equation have conormal
asymptotics (Sect. 6.1). This asymptotic behavior is transferred to the induced metric
of the deformed submanifold making the induced metric asymptotic to the original
edge metric gM in a very special way that reflects the fact it comes from the solution of
an edge-degenerate PDEon a singular space.All of these considerations are formalized
in the following definition.

Definition 6.2 Given an embedding ϒ : M −→ C
n we say that ϒ is conormal

asymptotic to (M, �) with rate γ if:

(i) For every multi-index α we have

∣∣∣∂α
(r,σ,u) (ϒ(r, σ, u) − �(r, σ, u))

∣∣∣ = O(rγ−|α|) ∀(r, σ, u) ∈ (0, ε) × X × E;

(ii) ϒ∗g
Cn = r2gX +dr2+gE +β where β is a symmetric 2-tensor onϒ(M) = Mϒ

such that their components βi j have conormal asymptotic expansions on the collar
neighborhood (0, ε) ×X × E with respect to some asymptotic type associated to
γ .

Because we want to describe a small neighborhood of (M, �) in the moduli space
by means of the Implicit Function Theorem 4.2 applied to a neighborhood of zero in
edge-Sobolev spaces, we want to make sure that smooth elements in edge-Sobolev
spaces with small norm will produce submanifolds. In order to show this, we will
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define a neighborhood of deformations i.e. we will define a small neighborhood of M
in C

n such that small deformations will be inside this neighborhood. Because of the
geometric singularities of the manifold M and the behavior of the elements in edge-
Sobolev spaces, this neighborhood will be constructed as an edge neighborhood to
guarantee that small submanifolds induced by edge-degenerate forms will fit inside it.

Proposition 6.3 There exists an open edge neighborhood of the zero section in
the normal bundle N ((0, ε) × X × E) such that it is given by V × W where
V ⊂ N ((0, ε) × X ) ⊂ TR

n
x is an open conical set and W ⊂ N (E) ⊂ TR

n
y is

an open set both of them being neighborhoods of the zero section in the corresponding
normal bundles and diffeomorphic to an open edge set Ṽ × W̃ ⊂ R

n
x ⊕R

n
y

∼= C
n with

diffeomorphism given by the exponential map expg
Cn
. Moreover, for every γ > m+3

2

and s >
q+m+1

2 + cγ , where cγ is the positive constant defined in (10.7), there exists
ϑ > 0 depending on s and γ such that

{
V�

∣∣
(0,ε)×X×E : � ∈ Ws,γ (M, T ∗∧M) and ‖�‖s,γ < ϑ

}
⊂ V × W.

Proof First let’s define the conical open neighborhood V ⊂ N ((0, ε) × X ) ⊂ TR
n
x .

The tubular neighborhood Theorem 4.1 applied to X as a compact submanifold in
R
n gives us an open neighborhood of the zero section in N (X ). Take l0 > 0 to be

the maximum l such that the uniform neighborhood {X ∈ N (X ) : |X |g
Rn

< l} is
inside the tubular neighborhood. By applying the R

+-action defined on the cone X∧
to this uniform neighborhood we can obtain the desired open conical neighborhood
V of the zero section in the normal bundle N ((0, ε) × X ) ⊂ TR

n
x . Now, for any

section V of the normal bundle N (X ) lying in V we have |V(r, σ, u)|g
Cn

< C1 · r
for all (r, σ, u) ∈ (0, ε) × X × E , where the constant C1 is independent of V . The
constant C1 can be taken to be the maximum l > 0 chosen above. Now choose a
uniform tubular neighborhood of the zero section in the normal bundle N (E) given
by {Y ∈ N (E) : |Y |g

Rn
< ϑ} for some ϑ > 0. Clearly this is possible because E

is compact. If necessary we can choose a smaller ε such that ϑ > C1ε. Define W as
this uniform neighborhood of the zero section W = {Y ∈ N (E) : |Y |g

Rn
< ϑ}. Then

V × W is our open edge neighborhood of the zero section in N ((0, ε) × X × E).
To prove the second part of the proposition let � ∈ Ws,γ (M, T ∗∧M) with s >

q+m+1
2 + cγ and consider its local expression in a neighborhood (0, ε) × U × � ⊂

(0, ε) × X × E given by

�(r, σ, u) = A(r, σ, u)dr +
m∑

k=1

Bk(r, σ, u)rdσk +
q∑

l=1

Cl(r, σ, u)dul ,

where ωφ jϕλA, ωφ jϕλBk and ωφ jϕλCl belong to Ws,γ (M) as in Lemma 4.5. Then
by Proposition 10.6 there exists a constant C > 0 depending only on s and γ such
that

|A(r, σ, u)| ≤ C ‖�‖s,γ rγ−m+1
2 (6.1)
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|B(r, σ, u)| ≤ C ‖�‖s,γ rγ−m+1
2 (6.2)

|C(r, σ, u)| ≤ C ‖�‖s,γ rγ−m+1
2 (6.3)

for all (r, σ, u) ∈ (0, ε) × X × E . Hence by Lemma 4.5 there exists a constant C ′
depending only on s and γ such that

∣∣∣C̃(r, σ, u)

∣∣∣ ≤ C ′ ‖�‖s,γ rγ−m+1
2 (6.4)

∣∣∣A(r, σ, u)θi + B̃i (r, σ, u)

∣∣∣ ≤ C ′ ‖�‖s,γ rγ−m+1
2 . (6.5)

Then, by (6.4) and because 0 < ε < 1, we have that

∣∣∣C̃(r, σ, u)

∣∣∣ ≤ C1r (6.6)

for all (r, σ, u) ∈ (0, ε) × X × E if

γ > log

(
C1

C ′ ‖�‖s,γ

)
1

log(r)
+ m + 3

2
. (6.7)

Note that if ‖�‖s,γ is small enough, then (6.7) is satisfied and this implies (6.6). More

precisely, if C1
C ′ ≥ ‖�‖s,γ then (6.7) is satisfied as log(r) < 0 for r ≤ ε. Therefore

C1
C ′ ≥ ‖�‖s,γ implies

∣∣∣C̃(r, σ, u)

∣∣∣ ≤ C1r.

Analogously, C1
C ′ > ‖�‖s,γ implies that

∣∣∣A(r, σ, u)θi + B̃i (r, σ, u)

∣∣∣ ≤ C1r

for any γ > m+3
2 . Then it follows from our chose of ϑ that

∣∣∣A(r, σ, u)θi + B̃i (r, σ, u)

∣∣∣ ≤ ϑ

for all (r, σ, u) ∈ (0, ε) × X × E . ��
Observe that the manifold M\ ((0, ε) × ∂M) is compact hence we can extend our

edge neighborhood V×W to this compact space to get a open neighborhood of the zero
section in N (M) such that near the edge this neighborhood corresponds to the edge
open neighborhood constructed above. We denote this neighborhood as A. Moreover
this proposition implies that any smooth form � ∈ Ws,γ (M, T ∗∧M) as above with
‖�‖s,γ < ϑ produces a smooth embedded submanifold inside the neighborhood of
deformations A. This submanifold is defined by the embedding expg

Cn
(V�) ◦ �.
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7 Regularity of deformations

Let’s consider an elliptic edge problem (see Sect. 5.3) for the operator DP[0] acting
on edge-Sobolev spaces with admissible weigh γ > m+1

2 ,

ADP[0] =
[
DP[0] C
T B

]
:

Ws,γ (M,
∧• T ∗∧M)

⊕
Hs(E, C

N+
)

−→
Ws−1,γ−1(M,

∧• T ∗∧M)

⊕
Hs−1(E, J−)

.

Then, by augmenting the deformation operator P = Pω
Cn

⊕ PIm� with the trace
operator

T : Ws,γ
(
M,

∧•
T ∗∧M

)
−→ Hs−1(E, J−),

we obtain a non-linear boundary value problem for P:

[
Pω

CN
⊕ PIm�

T

]
: A ⊂ Ws,γ (M, T ∗∧M) −→

Ws−1,γ−1
(
M,

∧• T ∗∧M
)

⊕
Hs−1(E, J−)

whose linearisation at zero is given by

[
DP[0]
T

]
: Ws,γ (M, T ∗∧M) −→

Ws−1,γ−1
(
M,

∧• T ∗∧M
)

⊕
Hs−1(E, J−)

.

In this section we consider some properties of solutions of the equation

[
Pω

CN
⊕ PIm�

T

]
(�) = 0 (7.1)

where � ∈ Ws,γ (M, T ∗∧M). We are mainly interested in those solutions given by the
Implicit Function Theorem for Banach spaces (when applicable) i.e. we assume that
� = �1 + �2 where �1 is solution of the linear boundary value problem

[
DP[0]
T

]
(�1) = 0 (7.2)

and �2 belongs to the Banach space complement in Ws,γ (M, T ∗∧M) defined by a
splitting (not unique) induced by the finite dimensional space KerADP[0]. First we
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have some straightforward observations. The ellipticity of the operator ADP[0] (Theo-
rem 5.13) and the fact that

ADP[0]
[
�1
0

]
= 0

implies that �1 ∈ W∞,γ (M, T ∗∧M) by elliptic regularity (Theorem 5.8). Moreover,
becauseWs,γ (M, T ∗∧M) ⊂ Hs

loc(M, T ∗∧M) for all s ∈ R ([9, section 9.3, proposition
5]), standard Sobolev embeddings (Theorem 10.1) imply that �1 is smooth. The
ellipticity of ADP[0] implies the existence of a parametrix BDP[0] with asymptotics O
(Theorem 5.8) i.e.

BDP[0]ADP[0] − I :
Ws,γ (M,

∧• T ∗∧M)

⊕
Hs(E, C

N+
)

−→
W∞,γ

O (M,
∧• T ∗∧M)

⊕
H∞(E, J−)

.

Consequently, any element in the kernel of the operator ADP[0] belongs toW∞,γ

O (M,∧• T ∗∧M) for some asymptotic type O associated to γ . In particular

�1 ∈ W∞,γ

O (M, T ∗∧M). (7.3)

Now let’s consider the regularity properties of �2.
Let � ∈ Ws,γ (M, T ∗∧M) such that

(Pω
Cn

⊕ PIm�)(�) = 0. (7.4)

Hence expg
Cn

(V�) ◦ � : M −→ C
n is a special Lagrangian submanifold. Harvey

and Lawson pointed out in [10, theorem 2.7] thatC2 special Lagrangian submanifolds
in C

n are real analytic, in particular they are smooth. Therefore, by choosing s large
enough, (7.4) implies that � ∈ C∞(M, T ∗∧M) which, together with (7.3), allow us to
conclude that �2 is smooth.

Even though �1 + �2 is solution of the non-linear edge boundary value problem
(7.1) we cannot conclude immediately that � has a conormal asymptotic expansion
near the singular setE . The edge calculus tell us that solutions of the linearised equation
(7.2), here denoted by�1, have such asymptotics. It turns out that it is possible to prove
that �2 also has a conormal expansion i.e. the whole solution of the non-linear edge
boundary value problem has conormal expansion. In order to prove this we follow and
adapt to our very specific setting in the next two propositions the general argument in
[7, theorem 5.1]. The author thanks Frédéric Rochon for pointing out and explaining
his work.

Observe that

[
Pω

CN
⊕ PIm�

T

]
(�1 + �2) =

[
0
0

]
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implies that T (�2) = 0 because T (�1) = 0 due to the fact that �1 is solution of
the linearised equation (7.2). By writing the non-linear equation as Pω

CN
⊕ PIm� =

DP[0] + Q (see Proposition 4.7 and (4.11)) where Q is a non-linear operator locally
defined by the sum of products of 2 or more operators in Diff1edge(M) acting on �1 or
�2 we have

(DP[0] + Q)(�2) = −Q(�1) −
∑

j≥2

Qi1(�•) · · ·Qi j (�•). (7.5)

In order to avoid cumbersome notation to keep track of the specific asymptotic types,
we say that an element belongs to Ws,γ

As (M, T ∗∧M) if it belongs to the edge-Sobolev
space with some asymptotic type associated to γ .

Proposition 7.1 Let ξ1 ∈ W∞,γ−1
As (M,

∧• T ∗∧M) and �2 ∈ W∞,γ (M, T ∗∧M) such
that

(DP[0] + Q)(�2) = ξ1. (7.6)

Assume that γ is an admissible weight for DP[0] and there exists β > 0 such that
Q(�2) ∈ W∞,γ+β(M,

∧• T ∗∧M) and γ + β + 1 is an admissible weight. Then
�2 = E1 + E2 with E2 ∈ W∞,γ

As (M, T ∗∧M) and E1 ∈ W∞,γ+β+1(M, T ∗∧M).

Proof Let’s consider the Fredholm operator defined by DP[0] acting on edge-Sobolev
spaces with weight γ + β + 1

ADP[0],γ+β+1 :
Ws+1,γ+β+1(M,

∧• T ∗∧M)

⊕
Hs+1(E, C

N+
)

−→
Ws,γ+β(M,

∧• T ∗∧M)

⊕
Hs(E, J−)

.

Because CokerADP[0],γ+β+1 is finite dimensional and C∞
0 (M,

∧• T ∗∧M) is a dense
subset of the edge-Sobolev spaces we have

[−Q(�2)

0

]
= ADP[0],γ+β+1

[
E1
e1

]
+

[
F
f

]

with

[
E1
e1

]
∈

Ws+1,γ+β+1(M,
∧• T ∗∧M)

⊕
Hs+1(E, C

N+
)

and F ∈ C∞
0 (M,

∧• T ∗∧M), f ∈ C∞
0 (E, C

N+
). Observe that this implies

ADP[0],γ+β+1

[
E1
e1

]
∈

W∞,γ+β(M,
∧• T ∗∧M)

⊕
H∞(E, C

N+
)

as Q(�2) ∈ W∞,γ+β(M, T ∗∧M).
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Hence by elliptic regularity (Theorem 5.8)

[
E1
e1

]
∈

W∞,γ+β+1(M,
∧• T ∗∧M)

⊕
H∞(E, C

N+
)

.

Now define

[
E2
e2

]
:=

[
�2
0

]
−

[
E1
e1

]
, then by (7.6)

ADP[0],γ
[
E2
e2

]
=

[
ξ1 − Q(�2)

0

]
− ADP[0],γ

[
E1
e1

]
.

Observe that as ADP[0],γ and ADP[0],γ+β+1 are 2 × 2 operator matrices with DP[0]
in the upper left corner they differ by Green operators with asymptotics acting on
the corresponding spaces (see [33, theorem 3.4.3]). Hence we can write ADP[0],γ =
ADP[0],γ+β+1 −GDP[0],γ+β+1 +GDP[0],γ , where GDP[0],γ+β+1 is the Green operator
matrix with the elliptic boundary conditions for DP[0] acting on spaces with weight
γ + β + 1 and analogously for GDP[0],γ . This implies

ADP[0],γ
[
E2
e2

]
=

[
ξ1
0

]
+

[
F
f

]
− (−GDP[0],γ+β+1 + GDP[0],γ )

[
E1
e1

]

therefore, by the mapping properties of Green operators (see [33, theorem 3.4.3]) we
have

ADP[0],γ
[
E2
e2

]
∈ W∞,γ−1

As (M,
∧•

T ∗∧M).

By elliptic regularity we conclude

[
E2
e2

]
∈

W∞,γ
As (M,

∧• T ∗∧M)

⊕
H∞(E, C

N+
)

and �2 = E1 + E2 as claimed. ��
Proposition 7.2 Let �1 ∈ W∞,γ

As (M, T ∗∧M) and �2 ∈ W∞,γ (M, T ∗∧M) with an
admissible weight γ > m+5

2 such that

(DP[0] + Q)(�1 + �2) = 0 (7.7)

and DP[0](�1) = 0. Then �2 ∈ W∞,γ
As (M, T ∗∧M).

Proof Equation (7.7) can be written as

(DP[0] + Q)(�2) = −Q(�1) −
∑

j≥2

Qi1(�•) · · ·Qi j (�•), (7.8)
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(see (7.5)). The right hand side of (7.8) consists of products where at least one of the
operators in each of these products is acting on �1, let’s say Q1(�1). Now, the term
Q1(�1) has asymptotics (associated to γ − 1) and the other elements Qik (�•) in the
products satisfy the estimate (10.10) near the edge. Hence by [33, theorem 2.3.13],
multiplication by elements in C∞

0 (M) induces a continuous operator on Sobolev
spaces with asymptotics (with possibly different asymptotic type but associated to
the same weight). Therefore we conclude that the right hand side in (7.8) belongs to
W∞,γ−1

As (M, T ∗∧M).

Now, the fact that γ > m+5
2 together with (11.40) implies that Q(�2) ∈

W∞,γ+β(M, T ∗∧M) for some β > 0. If necessary we can choose β small enough such
that γ +β +1 is an admissible weight for DP[0]. Then, Proposition 7.1 implies �2 =
E1 + E2 with E1 belonging toW∞,γ+β+1(M, T ∗∧M) and E2 ∈ W∞,γ

As (M, T ∗∧M).

Define S1 := �2−E2 = E1 and observe that (7.8) and a similar argument as above
implies

(DP[0] + Q)(S1) := ξ2 ∈ W∞,γ−1
As (M, T ∗∧M).

Moreover, (11.40) and γ > m+5
2 imply that Q(S1) belongs to the spaceW∞,γ+β+1+β ′

(M, T ∗∧M) for some β ′ > 0. Then by following the same argument as in Proposi-
tion 7.1 we have

S1 = E3 + E4

with E3 ∈ W∞,γ+β+β ′+2(M, T ∗∧M) and E4 = W∞,γ
As (M, T ∗∧M). Hence we have

found an element E2 + E4 ∈ W∞,γ
As (M, T ∗∧M) such that

�2 − (E2 + E4) = E3 ∈ W∞,γ+β+β ′+2(M, T ∗∧M).

We continue this recursion argument by setting S2 = S1 − E4 = �2 − E2 − E4 = E3
and

(DP[0] + Q)(S2) = ξ3.

Therefore by means of this iterative process we conclude that for every l > 0 there
exists E ∈ W∞,γ

As (M, T ∗∧M) such that �2 − E ∈ W∞,γ+l(M, T ∗∧M). Therefore
�2 ∈ W∞,γ

As (M, T ∗∧M). ��

8 The moduli space

In this sectionwe define themoduli spacewe are interested in and prove themain result
of this paper. Let (M, �) be a special Lagrangian submanifold with edge singularity
i.e. M is a manifold with edge singularity (Sect. 3.1) and � : M −→ C

n is an edge
special Lagrangian embedding (see Definition 4.4).
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Definition 8.1 Given an admissible weight γ > m+5
2 , we define the moduli space

of conormal asymptotic special Lagrangian deformations of (M, �) with rate γ and
elliptic boundary trace conditionT as the spaceof smooth embeddingsϒ : M −→ C

n ,
isotopic to � and conormal asymptotic to (M, �) with rate γ , such that they satisfy
the boundary condition T (ϒ) = 0 where T is a trace pseudo-differential operator:

T : Ws,γ (M, T ∗∧M) −→ Hs−1(E, J−) (8.1)

with s > max
{
m+1+q

2 + cγ ,
m+3+q

2

}
such that T belongs to a set of boundary con-

ditions for an elliptic edge boundary value problem for the operator DP[0] on the
edge-Sobolev spaceWs,γ (M, T ∗∧M).Wedenote thismoduli space asM(M, �, T , γ ).

Given a special Lagrangian submanifold with edge singularity (M, �), the moduli
space of conormal asymptotic special Lagrangian deformations depends on the param-
eters γ and T . The role of the weight γ is explained in the definition of conormal
asymptotic embedding (see Definition 6.2). The existence of a trace operator T and
its role in the elliptic theory of edge degenerate equations was discussed in Sect. 5.3.
Here we want to include further details about T . The edge symbol defining T was
defined in (5.8) as a family of continuous linear maps t(u, η) : Ks,γ (X∧) −→ J−

(u,η)

continuously parametrized by T ∗E\{0}. Note that as J− is a finite rank vector bundle,
the operators t(u, η) are finite rank operators (in particular compact operators). The
trace operator T was locally defined by

T = Op(t(u, η)) = F−1
η→u t(u, η)Fu′→η.

Now recall from Sect. 5.3 that the fibers of the vector bundle J− consist mainly
of isomorphic images of finite dimensional kernels of Fredholm operators acting on
the extension of cone-Sobolev spaces defined by (5.6). The operator-valued symbols
t(u, η) correspond to the projection of the cone-Sobolev space Ks,γ (X∧) onto the
finite dimensional kernel of (5.6). By considering a local trivialization of J− over an
open subset � ⊂ E and using the fact that t(u, η) are projections, it is possible to
prove the following proposition.

Proposition 8.2 Locally on � ⊂ E , the trace operator T in (8.1) acts on each of
the components of the stretched cotangent bundle T ∗∧M as an integral operator with
kernel in C∞(� × X∧ × �) ⊗ C

N−
.

This proposition and its proof is contained in the more general result presented in [33,
proposition 3.4.6]. The reader is referred to that book for details.

Given a operator-valued trace symbol t(u, η), the trace operator T is uniquemodule
negligible operators from the point of view of ellipticity and smoothness. See [29,
section 6.1] for details.

Theorem 8.3 Locally near M the moduli space M(M, �, T , γ ) is homeomorphic
to the zero set of a smooth map G between smooth manifolds M1, M2 given as
neighborhoods of zero in finite dimensional Banach spaces. The map G : M1 −→
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M2 satisfies G(0) = 0 and M(M, �, T , γ ) near M is a smooth manifold of finite
dimension when G is the zero map.

Proof As γ is an admissible weight we have that

ADP[0] =
[
DP[0] C
T B

]
:

Ws,γ (M,
∧• T ∗∧M)

⊕
Hs(E, C

N+
)

−→
Ws−1,γ−1(M,

∧• T ∗∧M)

⊕
Hs−1(E, J−)

is a Fredholm operator. Thus the cokernel is a finite dimensional space and it can be
identified with a finite dimensional subspace in the codomain of ADP[0] (denoted as
CokerADP[0]) such that it splits the codomain in the following way

Ws−1,γ−1(M,
∧• T ∗∧M)

⊕
Hs−1(E, J−)

= ImADP[0] ⊕ CokerADP[0]. (8.2)

Now consider the Banach space

⎛

⎝
Ws,γ (M,

∧• T ∗∧M)

⊕
Hs(E, C

N+
)

⎞

⎠ ⊕ CokerADP[0].

Consider the following extension P̂ of the deformation operator to this space

P̂ :
⎛

⎝
Ws,γ (M,

∧• T ∗∧M)

⊕
Hs(E, C

N+
)

⎞

⎠ ⊕ CokerADP[0] −→
Ws−1,γ−1(M,

∧• T ∗∧M)

⊕
Hs−1(E, J−)

given by

P̂

([
�

g

]
,

[
v

w

])
= AP

[
�

g

]
+

[
v

w

]
,

where we are using the notation AP for the operator

[
P C
T B

]
.

Hence

DP̂[0]
([

�

g

]
,

[
v

w

])
=

[
DP[0] C
T B

] [
�

g

]
+

[
v

w

]

and

Ker DP̂[0] = KerADP[0] × {0}.
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Observe that DP̂[0] is surjective and Ker DP̂[0] is finite dimensional. Then

⎛

⎝
Ws,γ (M,

∧• T ∗∧M)

⊕
Hs(E, C

N+
)

⎞

⎠ ⊕ CokerADP[0] =
(
Ker DP̂[0] ⊕ N

)
⊕ CokerADP[0]

for some closed subspace N .
By the Implicit Function Theorem 4.2 there exists U1 ⊂ KerADP[0], U2 = U ′

2 ×
U ′′
2 ⊂ N ⊕ CokerADP[0] and a smooth map G1 × G2 : U1 −→ U ′

2 × U ′′
2 such that

P̂
−1

(0) ∩ (U1 × U2) =
{([

a
b

]
,G1

([
a
b

])
,G2

([
a
b

]))
:
[
a
b

]
∈ U1

}

⊂ Ker DP̂[0] ⊕ N ⊕ CokerADP[0].

This give us a description of the elements in the null set of the non-linear operator
P̂ in a neighborhood of zero in terms of elements in Ker DP̂[0]. In order to pass to
solutions of the deformation operator P in terms of Ker DP[0] we have the following.

Observe that
([

a
b

]
,G1

([
a
b

])
,G2

([
a
b

]))
∈ P̂

−1
(0) ∩ (U1 × U2),

implies

P̂

([
a
b

]
,G1

([
a
b

])
,G2

([
a
b

]))

= AP

([
a
b

]
,G1

([
a
b

]))
+ G2

([
a
b

])
= 0.

Hence the termG2

([
a
b

])
(that belongs to CokerADP[0]) represents an obstruction to

lifting the infinitesimal solution

[
a
b

]
to an authentic solution

([
a
b

]
,G1

([
a
b

]))

of the non-linear operator AP. Therefore if all obstructions vanish i.e. if

G2 : U1 ⊂ KerADP[0] −→ U ′′
2 ⊂ CokerADP[0] (8.3)

is the zero map we have

A−1
P (0) ∩ (U1 × U ′

2) =
{([

a
b

]
,G1

([
a
b

]))
:
[
a
b

]
∈ U1

}
.

and the set A−1
P (0) ∩ (U1 × U ′

2) is diffeomorphic to U1 ⊂ KerADP[0].
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Consequently, if the obstructions vanish, small solutions of the non-linear boundary
value problem (7.1) are given by

A−1
P (0) ∩ (U1 × U ′

2) ∩
⎛

⎝
Ws,γ (M, T ∗∧M)

⊕
{0}

⎞

⎠

=
{
(�1,G1(�1)) :

[
Pω

CN
⊕ PIm�

T

]
(�1 + G1(�1)) = 0

}
.

This is a non-empty open neighborhood of zero inWs,γ (M, T ∗∧M) diffeomorphic
to an open set of the finite dimensional space

Ker

[
DP[0]
T

]
. (8.4)

Thus we can conclude that when G2 is the zero map the moduli space is a smooth
manifold of finite dimension less or equal to the dimension of the kernel of the linear
boundary value problem

[
DP[0]
T

]
: Ws,γ (M, T ∗∧M) −→

Ws−1,γ−1(M,
∧• T ∗∧M)

⊕
Hs−1(E, J−)

.

��

9 Conclusions and final remarks

In this paper we have put the problem of deforming special Lagrangain submanifolds
with edge singularities into the framework of the edge calculus developed by B.-W.
Schulze. Our main theorem, Theorem 8.3 in Sect. 8, says that when the map (8.3)

G2 : U1 ⊂ KerADP[0] −→ U ′′
2 ⊂ CokerADP[0]

is the zero map, the moduli space M(M, �, T , γ ) is a smooth manifold of finite
dimension. For every small solution �1 of the linearised boundary value problem
ADP[0], the map G2 gives us an obstruction

G2(�2) ∈ U ′′
2 ⊂ CokerADP[0],

to lift the linearised solution to a solution of the non-linear deformation operator with
boundary condition. When the obstruction space U ′′

2 vanishes it follows immediately
that there are no obstructions, as the map G2 is trivially the zero map, and the moduli
space is smooth and finite dimensional.

A careful analysis of the obstruction space is needed to determine under which
conditions it vanishes. In Joyce [13] analyzed the obstruction space of themoduli space
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of deformations of special Lagrangian submanifolds with conical singularities. He
found that the obstruction space depends only on the cones thatmodel the singularities.
In the edge singular case we expect a similar result i.e. the obstruction space depends
only on the geometric structures that model the singularity, namely, the cone X∧ and
the edge E .

If the obstruction space vanishes (therefore CokerADP[0] = {0}) the moduli
space is a smooth manifold of finite dimension. The next step is to determine its
expected dimension. From Theorem 8.3 we only know that dimM(M, �, T , γ ) ≤
dim KerADP[0] = IndADP[0]. In order to compute the dimension we need to consider
the index of edge-degenerate operators and Hodge theory in the edge singular context.
In this direction we consider the material related to index theory in [29, chapter 5]
quite relevant for this purpose. Moreover, some elements of Hodge theory on mani-
folds with edge singularities have been studied in [11,34]. These references might be
helpful to compute the expected dimension of our moduli spaceM(M, �, T , γ ).
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10 Appendix 1: Vector-valued Sobolev embeddings

In Sects. 4 and 6 we used results from this “Appendix”. Most of the results here are
based on vector-valued Sobolev embeddings. In the first section of this “Appendix” we
recall the basics of vector-valued Sobolev embeddings and derive some consequences
related to cone and edge-Sobolev spaces. In the second part we prove the estimate
(11.1) following a similar result of Dreher and Witt [8]. This estimate implies the
BanachAlgebra property of our edge-Sobolev spaces onM , (11.39), and the regularity
of the product of elements in Ws,γ (M), (11.40). In order to simplify the notation we
will denote a ≈ b and a � b if a = κb or a ≤ κb respectively with a positive constant
κ depending only on s and γ .

Let’s consider the classical Sobolev spaces Wm,p(Rq) (see [5] for a detailed intro-
duction). A classical tool in the analysis of partial differential equations on R

q is the
set of Sobolev embeddings, see [5, section 9.3].

Theorem 10.1 Let m ∈ Z, m > 1 and p ∈ [1, +∞).

If
q

p
> m then Wm,p(Rq) ↪→ Lk(Rq) where

1

q
= 1

p
− m

q
. (10.1)

If
q

p
= m then Wm,p(Rq) ↪→ Lk(Rq) for all k ∈ [p, +∞). (10.2)

If
q

p
< m then Wm,p(Rq) ↪→ L∞(Rq) and Wm,p(Rq) ↪→ Cr (Rq) (10.3)

where r = [s − q
2 ] i.e. r is the integer part of s − q

2 .
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In this “Appendix” we are interested in the vector-valued version of this theorem
i.e. given a Banach space B we want a version for the B-valued Sobolev spaces
Wm,p(Rq ,B). There are many books and monographs dealing with vector-valued
spaces of all kinds like L p(Rq ,B), Ck(Rq ,B) and S(Rq ,B), see [3,12,36]. In many
cases they work in the more general context where B is a Fréchet or locally convex
Hausdorff space. For our specific purposes we follow closely [23]. Here Kreuter ana-
lyzes carefully the validity of Theorem 10.1 for the spaces Wm,p(Rq ,B) whereB is
a Banach space.

Recall that the vector-valued space of distributions is defined as the space of contin-
uous operators from C∞

0 (Rq) to B i.e. we have D′(Rq ,B) := L(C∞
0 (Rq),B). The

vector-valued L p-spaces, L p(Rq ,B), are defined by means of the Bochner integral.
The Bochner integral is constructed by means ofB-valued step functions in a similar
way to the standard Lebesgue integral. See [1, Appendix A.4] for details. The vector-
valued Ck-spaces, Ck(Rq ,B), are defined with respect to the Fréchet derivative. The
vector-valued Sobolev space is defined by

Wm,p(Rq ,B) := {
f ∈ L p(Rq ,B) : ∂α f ∈ L p(Rq ,B) ∀ |α| ≤ m

}
(10.4)

where the derivatives of f are taken in the distribution sense i.e. weak derivatives.
Here we recall the definition of the Radon-Nikodym property and some results

related to it. It turns out that the key property that B must satisfy in order to have
vector-valued Sobolev embeddings forWm,p(Rq ,B) is theRadon-Nikodymproperty.
For extended details the reader is referred to [23, chapter 2].

Definition 10.2 A Banach space B has the Radon-Nikodym property if every Lips-
chitz continuous function f : I −→ B is differentiable almost everywhere, where
I ⊂ R is an arbitrary interval.

Proposition 10.3 Every reflexive space has the Radon-Nikodym property. In particu-
lar the spaces L p(Rq) with 1 < p < ∞ and Hilbert spaces have the Radon-Nikodym
property.

Corollary 10.4 The Sobolev embeddings in Theorem 10.1 are valid for the spaces
Wm,p(Rq , L p(Rq)) with 1 < p < ∞ and Wm,p(Rq ,H) where H is a Hilbert space.

As a consequence of these vector-valued results we have the following applications
to cone and edge-Sobolev spaces.

Proposition 10.5 If f ∈ Hs,γ (X∧) (see (3.7)) and s > m+1
2 then there exists C > 0

depending only on s and γ such that we have the following estimate on (0, 1) × X
∣∣∣∂α′

r ∂α′′
σ f (r, σ )

∣∣∣ ≤ C ‖ f ‖Hs,γ (X∧) r
γ−m+1

2 −|α′| (10.5)

for all (r, σ ) ∈ (0, 1) × X and
∣∣α′∣∣ + ∣∣α′′∣∣ ≤ [s − m+1

2 ].
Proof We canwork locally onR

+×Uλ where {Uλ} is a finite open covering ofX , {ϕλ}
is a subbordinate partition of unity and we considerωϕλ f . For simplicity we write just
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f instead of ωϕλ f . At the end we take the smallest constant among those obtained
for each element in the finite covering. Take f ∈ Hs,γ (X∧) then by (3.6) we have
Sγ−m

2
f ∈ Hs(R1+m).Therefore if s > m+1

2 by (10.3) we have Sγ−m
2
f ∈ L∞(R1+m)

and

sup
(t,σ )∈R1+m

∣∣∣∂α
(t,σ )(Sγ−m

2
f )(t, σ )

∣∣∣ �
∥∥∥Sγ−m

2
f
∥∥∥
Hs (R1+m)

� ‖ f ‖Hs,γ (X∧) (10.6)

for all |α| ≤ [s − m+1
2 ]. Now by definition (see (3.6))

(Sγ−m
2
f )(t, x) = e−( 12−(γ−m

2 ))t f (e−t , x)

with r = e−t . Thus (10.5) follows immediately. ��
In general, if B is a Banach space and {κλ}λ∈R+ ∈ C

(
R

+,L(B)
)
is a continuous

one-parameter group of invertible operators we have that there exist positive constants
K , c such that

‖κλ‖L(B) ≤
{
Kλc for λ ≥ 1
Kλ−c for 0 < λ ≤ 1

. (10.7)

See [33, proposition 1.3.1] for details.

WhenB = Hs,γ (X∧) and (κλ f )(r, σ ) = λ
m+1
2 f (λr, σ )we can use 3.6 to compute

‖κλ‖Hs,γ (X∧) = λγ (see [32, section 1.1]). By the proof of proposition 1.3.1 in [33]
it is easy to see that the constant c in (10.7) depends only on the weight γ . When
B = Hs,γ (X∧) we denote this constant by cγ .

As a consequence of (10.7), we have the following continuous embeddings

Ws,γ (X∧ × R
q) −→ Hs−cγ (Rq ,Ks,γ (X∧)) (10.8)

Hs(Rq ,Ks,γ (X∧)) −→ Ws+cγ ,γ (X∧ × R
q) (10.9)

for all s ∈ R where Hs(Rq ,Ks,γ (X∧)) is the standard vector-valued Sobolev space
with norm given by

‖ f ‖Hs (Rq ,Ks,γ (X∧)) :=
⎛

⎝
∫

Rq

[η]2s ∥∥Fu→η f (η)
∥∥2Ks,γ (X∧)

dη

⎞

⎠

1
2

.

The reader is refer to [33, proposition 1.3.1 and remark 1.3.21] for details.

Proposition 10.6 If g ∈ Ws,γ (M) (see (3.9)) and s >
m+1+q

2 + cγ where cγ is the
constant defined in (10.7), then there exists C ′ > 0 depending only on s and γ such
that we have the following estimate on (0, 1) × X × E

∣∣∣∂α′
r ∂α′′

(σ,u)g(r, σ, u)

∣∣∣ ≤ C ′ ‖g‖Ws,γ (M) r
γ−m+1

2 −|α′| (10.10)

for all (r, σ, u) ∈ (0, 1) × X × E and
∣∣α′∣∣ + ∣∣α′′∣∣ ≤ [s − m+1

2 ].
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Proof We work locally on (0, 1) × Uλ × � j as in Proposition 4.6 Sect. 4.4. Take
g ∈ Ws,γ (M). Again by (10.3) and s > m+1

2 we have that for each u ∈ R
q

(Sγ−m
2
g)(u) ∈ Hs(R1+m)

and ∥∥∥(Sγ−m
2
g)(u)

∥∥∥
L∞(Rm+1)

� ‖g(u)‖Hs,γ (X∧) . (10.11)

Now (10.8) implies g ∈ Hs−cγ (Rq ,Hs,γ (X∧)) and s >
q
2 + cγ together with (10.3)

and Corollary 10.4 implies that we have a continuous embedding

Hs−cγ (Rq ,Hs,γ (X∧)) ↪→ L∞(Rq ,Hs,γ (X∧))

as Hs,γ (X∧) is a Hilbert space, see Definition 3.2 in Sect. 3.2.
Consequently

‖g‖L∞(Rq ,Hs,γ (X∧)) = sup
u∈Rq

{‖g(u)‖Hs,γ
}

(10.12)

� ‖g‖Hs−cγ (Rq ,Hs,γ (X∧)) (10.13)

� ‖g‖Ws,γ (X∧×Rq ) . (10.14)

Hence (10.11), (10.14) and the change of variable r = e−t implies (10.10) as in
Proposition 10.5. ��

11 Appendix 2: Banach algebra property of edge-Sobolev spaces

In [8] Dreher and Witt used a variant of the edge-Sobolev spaces we use in this paper.
In that paper they are interested in applications to weakly hyperbolic equations. Their
spaces are defined on (0, T ) × R

n . In this context they proved (proposition 4.1 in
[8]) that their edge-Sobolev spaces have the structure of a Banach algebra. With some
modifications and by using vector-valued Sobolev embeddings it is possible to extend
their result to our edge-Sobolev spaces on M . This extension follows closely the proof
of Witt and Dreher. For completeness we include the details of this extension in our
context as we used the estimates (11.40) and (11.39) in Chapter 3 and 4.

Proposition 11.1 Let f, g ∈ Ws,γ (M) with s ∈ N and s >
q+m+3

2 . Then f g ∈
Ws,2γ−m+1

2 (M) and we have the following estimate

‖ f g‖Ws,2γ−m+1
2 (M)

≤ C ‖ f ‖Ws,γ (M) ‖g‖Ws,γ (M) (11.1)

with a constant C > 0 depending only on s and γ .

Proof By means of finite open covers and partitions of unity on X and E we need to
estimate in terms of ωϕλφ j f and ωϕλφ j g as in Proposition 4.7 Sect. 4.4. To avoid
unnecessary long expressions we will denote them simply by f and g. To save space
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in long expressions we use the notation f̂ to denote the Fourier transformation with
respect to the conormal variable η i.e. f̂ = Fu→η f. We will estimate on an open set
(0, ε) × Uλ × � j . Then the global estimate is obtained by adding these terms. Take
f, g ∈ C∞

0 (M). By definition of our edge-Sobolev (3.8) norm and by (3.6) we have

‖ f g‖2
Ws,2γ−m+1

2 (M)
≈

∫

R
q
η

[η]2s
∥∥∥κ−1

[η]Fu→η( f g)(η)

∥∥∥
2

Hs,2γ−m+1
2 (R+×Rm)

dη (11.2)

≈
∑

|α|≤s

∫

R
q
η

∫

Rt

∫

Rm
σ

[η]2s−(m+1)
∣∣∣∂α

(
e−(m+1

2 −γ )2tFu→η( f g)([η]−1e−t , (11.3)

σ, η)
)∣∣∣
2
dσdtdη (11.4)

Here we will estimate the term with α = 0. The estimates on the other terms α �= 0
are similar. For each term in (11.4) we have

∫

R
q
η

∫

Rt

∫

Rm
σ

[η]2s−(m+1)
∣∣∣e−(m+1

2 −γ )2tFu→η( f g)

∣∣∣
2
dη (11.5)

=
∫

Rt

∫

Rm
σ

e−(m+1
2 −γ )4t

∥∥∥[η]s−m+1
2 Fu→η( f g)

∥∥∥
2

L2(R
q
η)
dσdt. (11.6)

Now, the hypothesis s >
q+m+3

2 allows us to use lemma 4.6 in [8]. Basically, this
lemma implies that for fixed (t, σ ) we have the following estimate

∥∥∥�(η) ̂f g(t, σ )(η)

∥∥∥
L2(R

q
η)

≤ ‖ f (t, σ )(u)‖L∞(R
q
u ) · ∥∥�(η)ĝ(t, σ )(η)

∥∥
L2(R

q
η)

+ ‖g(t, σ )(u)‖L∞(R
q
u ) ·

∥∥∥�(η) f̂ (r, σ )(η)

∥∥∥
L2(R

q
η)

+ C0

∥∥∥�(η) f̂ (t, σ )(u)/[η]
∥∥∥
L2(R

q
η)

· ∥∥�(η)ĝ(t, σ )(η)
∥∥
L2(R

q
η)

with C0 > 0 and �(η) = [η]s−m+1
2 .

Applying this estimate to (11.6) we have

⎛

⎜⎝
∫

Rt

∫

Rm
σ

e−(m+1
2 −γ )4t

∥∥∥[η]s−m+1
2 Fu→η( f g)

∥∥∥
2

L2(R
q
η)
dσdt

⎞

⎟⎠

1
2

(11.7)

≤
(∫

Rt

∫

Rm
σ

(
e−(m+1

2 −γ )2t ‖ f (t, σ )(u)‖L∞(R
q
u ) · ∥∥�(η)ĝ(t, x)(η)

∥∥
L2(R

q
η)

+

(11.8)
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+ e−(m+1
2 −γ )2t ‖g(t, σ )(u)‖L∞(R

q
u ) ·

∥∥∥�(η) f̂ (t, σ )(η)

∥∥∥
L2(R

q
η)

(11.9)

+ e−(m+1
2 −γ )2tC0

∥∥∥�(η) f̂ (t, σ )(u)/[η]
∥∥∥
L2(R

q
η)

(11.10)

· ∥∥�(η)ĝ(t, σ )(η)
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L2(R

q
η)

)2

dσdt

) 1
2

. (11.11)

By theMinkowski inequality we have that (11.7) is less or equal to the following terms

(∫

Rt

∫

Rm
σ

e−(m+1
2 −γ )4t ‖ f (t, σ )(u)‖2

L∞(R
q
u )

· ∥∥�(η)ĝ(t, σ )(η)
∥∥2
L2(R

q
η)
dσdt

) 1
2

(11.12)

+
(∫

Rt

∫

Rm
σ

e−(m+1
2 −γ )4t ‖g(t, σ )(u)‖2

L∞(R
q
u )

·
∥∥∥�(η) f̂ (t, σ )(η)

∥∥∥
2

L2(R
q
η)
dσdt

) 1
2

(11.13)

+
(∫

Rt

∫

Rm
σ

e−(m+1
2 −γ )4tC0

∥∥∥�(η) f̂ (t, σ )(u)/[η]
∥∥∥
2

L2(R
q
η)

(11.14)

· ∥∥�(η)ĝ(t, σ )(η)
∥∥2
L2(R

q
η)
dσdt

) 1
2

, (11.15)

hence, by the inequality in (11.7), we have

⎛

⎜⎝
∫

Rt

∫

Rm
σ

e−(m+1
2 −γ )4t

∥∥∥[η]s−m+1
2 Fu→η( f g)

∥∥∥
2

L2(R
q
η)
dσdt

⎞

⎟⎠

1
2

(11.16)

≤
∥∥∥e−(m+1

2 −γ )t f (t, σ, u)

∥∥∥
L∞(Rm+1×R

q
u )

(11.17)

·
∥∥∥e−(m+1

2 −γ )t�(η)ĝ(t, σ )(η)

∥∥∥
L2(Rm+1,L2(R

q
η))

(11.18)

+
∥∥∥e−(m+1

2 −γ )t g(t, σ, u)

∥∥∥
L∞(Rm+1×R

q
u )

(11.19)

·
∥∥∥e−(m+1

2 −γ )t�(η) f̂ (t, σ )(η)

∥∥∥
L2(Rm+1,L2(R

q
η))

(11.20)

+ C0

∥∥∥e−(m+1
2 −γ )t�(η) f̂ (t, σ )(u)/[η]

∥∥∥
L∞(Rm+1,L2(R

q
η))

(11.21)

·
∥∥∥e−(m+1

2 −γ )t�(η)ĝ(t, σ )(η)

∥∥∥
L2(Rm+1,L2(R

q
η))

. (11.22)
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The edge-Sobolev norm of f and g written as in (11.6) implies that

∥∥∥e−(m+1
2 −γ )t�(η)ĝ(t, σ )(η)

∥∥∥
L2(Rm+1,L2(R

q
η))

≤ ‖g‖Ws,γ (M) (11.23)

and ∥∥∥e−(m+1
2 −γ )t�(η) f̂ (t, σ )(η)

∥∥∥
L2(Rm+1,L2(R

q
η))

≤ ‖ f ‖Ws,γ (M) , (11.24)

hence we only need to deal with the L∞ terms.
To analyze the L∞ terms recall that by hypothesis s >

q
2 so we have the standard

continuous Sobolev embedding Hs(Rq) ↪→ L∞(Rq). Consequently for fixed (t, σ )

we have

∥∥∥e−(m+1
2 −γ )t g(t, σ )(η)

∥∥∥
2

L∞(R
q
u )

�
∥∥∥e−(m+1

2 −γ )t g(t, σ )(η)

∥∥∥
2

Hs (R
q
u )

(11.25)

=
∥∥∥〈η〉se−(m+1

2 −γ )t ĝ(t, σ )(η)

∥∥∥
2

L2(R
q
η)

, (11.26)

therefore

∥∥∥e−(m+1
2 −γ )t g(t, σ )(η)

∥∥∥
2

L∞(Rm+1×R
q
u )

(11.27)

�
∥∥∥〈η〉se−(m+1

2 −γ )t hatg(t, σ )(η)

∥∥∥
2

L∞(Rm+1,L2(R
q
η))

(11.28)

�
∥∥∥〈η〉se−(m+1

2 −γ )t ĝ(t, σ )(η)

∥∥∥
2

Ws,2(Rm+1,L2(R
q
η))

(11.29)

=
∑

|β|≤s

∥∥∥〈η〉s∂β

(t,σ )

(
e−(m+1

2 −γ )t ĝ(t, σ )(η)
)∥∥∥

2

L2(Rm+1,L2(R
q
η))

(11.30)

≤ ‖g‖2Ws,γ (M) . (11.31)

In (11.29) we have used the vector-valued version of the standard Sobolev embedding
(see Sect. 10). In the same way we obtain

∥∥∥e−(m+1
2 −γ )t f (t, σ )(η)

∥∥∥
2

L∞(Rm+1×R
q
u )

(11.32)

� ‖ f ‖2Ws,γ (M) . (11.33)

Then (11.31) and (11.33) implies that (11.18) and (11.20) are bounded by

C(s, γ ) ‖ f ‖2Ws,γ (M) ‖g‖2Ws,γ (M) . (11.34)

Thus the only term remaining is (11.22).
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Again using the vector-valued Sobolev embedding we have

∥∥∥e−(m+1
2 −γ )t�(η) f̂ (t, σ )(u)/[η]

∥∥∥
2

L∞(Rm+1,L2(R
q
η))

(11.35)

�
∥∥∥e−(m+1

2 −γ )t�(η) f̂ (t, σ )(u)/[η]
∥∥∥
2

Ws,2(Rm+1,L2(R
q
η))

(11.36)

=
∑

|β|≤s
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�(η)

[η] ∂
β

(t,x)

(
e−(m+1

2 −γ )t f̂ (t, σ )(u)
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2

L2(Rm+1,L2(R
q
η))

(11.37)

� ‖ f ‖2Ws,γ (M) (11.38)

as
∣∣∣�(η)

[η]
∣∣∣
2 = [η]2s−(m+1) · [η]−2 � [η]2s−(m+1). Thus (11.38) and (11.23) implies

that (11.22) is bounded by (11.34). ��
Corollary 11.2 If s ∈ N with s >

q+m+3
2 and γ ≥ m+1

2 then the edge Sobolev
spaceWs,γ (M) is a Banach algebra under point-wise multiplication i.e. given f, g ∈
Ws,γ (M) we have

‖ f g‖Ws,γ (M) ≤ C ′ ‖ f ‖Ws,γ (M) ‖g‖Ws,γ (M) (11.39)

with a constant C ′ depending only on s and γ .

Proof ��

By (11.1) we have f g ∈ Ws,2γ−m+1
2 . Note that γ ≥ m+1

2 if and only if 2γ − m+1
2 ≥ γ

from which the corollary follows immediately.

Corollary 11.3 Let f, g ∈ Ws,γ (M) such that s ∈ Nwith s >
q+m+3

2 and γ > m+1
2 .

Then
f g ∈ Ws,γ+β(M) (11.40)

for β > 0 given by β = γ − m+1
2 .

Proof By (11.1) we have f g ∈ Ws,2γ−m+1
2 . Moreover γ > m+1

2 implies 2γ − m+1
2 =

γ + β with β = γ − m+1
2 > 0.
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