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Abstract The aim of this paper is twofold. Firstly, to show the existence of topological
isomorphism between the G-type spaces Gα

α(Rd+), α ≥ 1 and the subspaces of the

Gelfand-Shilov spaces Sα/2
α/2 (R

d), α ≥ 1, consisting of “even” functions. The same is
done for their dual spaces. Secondly, to obtain two structural theorems for the dual
spaces (Gα

α(Rd+))′, α ≥ 1.
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1 Introduction

The test space S(R+) for the space of tempered distributions supported by [0,∞) is
studied in [2,15,20]; recently, two of the authors have studied the space S(Rd+) over
[0,∞)d in [9]. We have studied in [10] G-type spaces, Gα

α(Rd+), α ≥ 1 and their dual
spaces, i.e. the spaces of ultradistributions over [0,∞)d , in terms of their Fourier-
Laguerre coefficients; cf. Durán [3] for the one-dimensional case. Actually, we extend
the results of [3] and give the full topological characterisation, in all dimensions, as
well as applications to pseudo-differential operators with radial symbols.

In this paper, we use the expansion of the Laguerre functions into finite sums of
Hermite functions and vice versa in order to prove that there exists a topological
isomorphism between Gα

α(Rd+), α ≥ 1 and the subspace of the Gelfand-Shilov spaces

Sα/2
α/2 (R

d), α ≥ 1, consisting of “even” functions, denoted as Sα/2
α/2, even(R

d). Also,
we describe their dual spaces in order to study pseudo-differential operators on the
G-type spaces in our future work. As a remark (Remark 3.5), we have shown that
the symbol class of pseudo-differential operators considered in [10] is in bijection
with a subspace of (Sα/2

α/2, even(R
d))′ (i.e. closely related to the Gelfand-Shilov even

ultradistributions). We refer to [5–8,11,19,21] for the expansions of Gelfand-Shilov
ultradistribution spaces.

Furthermore, we give two structural theorems for (Gα
α(Rd+))′, α ≥ 1 (Theorems

4.6, 4.8). The first one states that f ∈ (Gα
α(Rd+))′, α ≥ 1, if and only if it can be

written as

f =
⎛
⎜⎝

∑

k∈Nd
0

ck

(
xD2 + D − x

4
+ 1

2

)k

⎞
⎟⎠ F

with a suitable growth of the coefficients ck , where F ∈ L2(Rd+) and (xD2 + D −
x/4 + 1/2)k = ∏d

j=1(x j D
2
j + Dj − x j/4 + 1/2)k j , k ∈ N

d
0 . In fact, the theorem

gives a stronger result: if f ∈ (Gα
α(Rd+))′, α ≥ 1 varies in a bounded subset, then this

representation canbe chosen such that the operator is the same for all the elements of the
bounded subset and the function F varies in a bounded subset of L2(Rd+). The second
one is similar to the first, but instead of using the operator (xD2 + D − x/4+ 1/2)k ,
f ∈ (Gα

α(Rd+))′ is represented as an infinite sum of integrals of L2(Rd+)-functions
integrated against the test functions that are differentiated and then multiplied by
powers of x suitable number of times. As we shall see, Gα

α(Rd+), α ≥ 1 is given as an
injective inductive limit of Fréchet spaces (from now on abbreviated as (F)-space).
This theorem, loosely speaking, represents an element f of (Gα

α(Rd+))′, α ≥ 1, by
giving its action on each layer of the inductive limit in the following way
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〈 f, φ〉 =
∑

p,k∈Nd
0

∫
R
d+
FA,p,k(x)x

(p+k)/2Dpφ(x)dx

+
∑

|m|≤ j, |n|≤ j

∫
R
d+
F̃A,n,m(x)xmDnφ(x)dx,

where the L2(Rd+)-functions FA,p,k and F̃A,n,m depend on the layer.

We briefly describe the content. We state the notation and definitions of the basic
spaces in Sect. 2. Section 3 is devoted to the topological isomorphism announced
above. The structural theorems are proved in Sect. 4.

2 Preliminaries

2.1 Notations

We denote by N, Z, R and C the sets of positive integers, integers, real and complex

numbers, respectively; N0 = N ∪ {0}, R+ = (0,∞), Rd+ = (0,∞)d and R
d+ =

[0,∞)d . We use the standard multi-index notation. Let x = (x1, . . . , xd) ∈ R
d ,

k = (k1, . . . , kd) ∈ N
d
0 . Then |x | =

√
x21 + · · · + x2d , |k| = k1 + · · · + kd , k! =

k1! · · · kd !, xk = ∏d
i=1 x

ki
i , Dk = ∏d

i=1 ∂ki /∂xkii . Furthermore, if x, γ ∈ R
d+, we also

use xγ = ∏d
j=1 x

γ j
j . In this case, if x j = 0 and γ j = 0, we use the convention 00 = 1.

We define the Laguerre operator as

R =
d∏
j=1

(
x j D

2
x j + Dx j − x j

4
+ 1

2

)
.

For j ∈ N0 and γ > −1, the j-th Laguerre polynomial of order γ is defined by

Lγ

j (x) = x−γ ex

j !
d j

dx j
(e−x xγ+ j ), x ≥ 0,

or, equivalently,

Lγ

j (x) =
j∑

l=0

(
j + γ

j − l

)
(−x)l

l! , x ≥ 0.

For γ = (γ1, . . . , γd) ∈ R
d such that γ j > −1, j = 1, . . . , d and n ∈ N

d
0 ,

the d-dimensional n-th Laguerre polynomial of order γ is defined by Lγ
n (x) =

Lγ1
n1(x1) . . . Lγd

nd (xd). For γ = 0, we write Ln(x) instead of L0
n(x).

The j-th Laguerre function (of order 0) is defined by l j (x) = L j (x)e−x/2, x ≥ 0,

j ∈ N0 and in the d-dimensional case we have ln(x) = ln1(x1) . . . lnd (xd), x ∈ R
d+,
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n ∈ N
d
0 . The Laguerre functions form an orthonormal basis for L2(Rd+) and are

eigenfunctions for R i.e. Rkln(x) = (−1)|k|nkln(x), k, n ∈ N
d
0 , where

Rk =
d∏
j=1

(
x j D

2
x j + Dx j − x j

4
+ 1

2

)k j
, k ∈ N

d
0 , (2.1)

where, if k j = 0 then we have the identity operator in the j-th variable. The Laguerre
functions have a special role for the characterisation of the spaces Gα

α(Rd+), α ≥ 1,
considered below.

TheHermite polynomial Hj and the correspondingHermite function h j are defined
by

Hj (x) = (−1) j ex
2 d j

dx j
(e−x2),

h j (x) = (2 j j !√π)−1/2e−x2/2Hj (x), x ∈ R, j ∈ N0, respectively.

The d-dimensional Hermite polynomials Hn and Hermite functions hn are defined by

Hn(x) = Hn1(x1) . . . Hnd (xd),

hn(x) = hn1(x1) . . . hnd (xd), x ∈ R
d , n ∈ N

d
0 , respectively.

From [9], we recall that the space S(Rd+) consists of all f ∈ C∞(Rd+) such that all

derivatives Dp f , p ∈ N
d
0 , extend to continuous functions on Rd+ and

sup
x∈Rd+

xk |Dp f (x)| < ∞ ,∀k, p ∈ N
d
0 .

Equipped with this system of seminorms S(Rd+) becomes an (F)-space. By s we
denote the space of all complex sequences {an}n∈Nd

0
such that

sup
n∈Nd

0

(|n| + 1) j |an| < ∞, ∀ j ∈ N0, (2.2)

which becomes an (F)-space when equipped with the seminorms (2.2). There
is a topological isomorphism between S(Rd+) and s given by f �→ {〈 f, ln〉}n∈Nd

0
.

Moreover, for f ∈ S(Rd+),
∑

n∈Nd
0
〈 f, ln〉ln converges absolutely to f inS(Rd+) (cf. [9,

Theorem3.1]). Also, the strong dual (S(Rd+))′ ofS(Rd+) is topologically isomorphic to
the strong dual s′ of s via the isomorphism T �→ {〈T, ln〉}n∈Nd

0
and for T ∈ (S(Rd+))′,∑

n∈Nd
0
〈T, ln〉ln converges absolutely to T in (S(Rd+))′ (cf. [9, Theorem 3.2]).

Letα ≥ 1 and a > 1.We define sα,a as the space of all complex sequences {an}n∈Nd
0

for which ‖{an}n∈Nd
0
‖sα,a = supn∈Nd

0
|an|a|n|1/α < ∞. Equipped with this norm sα,a

becomes a Banach space (from now on, abbreviated as (B)-space). We define sα =
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lim −→
a→1+ sα,a . In particular, sα is a (DFN )-space and its strong dual (sα)′ is the (FN )-

space of all complex valued sequences {bn}n∈Nd
0
such that

∑
n∈Nd

0
|bn|a−|n|1/α < ∞,

for each a > 1.
For α, A > 0, denote by Sα,A

α,A (Rd) the (B)-space of all ϕ ∈ C∞(Rd) with norm

‖ϕ‖Sα,A
α,A

= sup
n,m∈Nd

0

‖xmDnϕ(x)‖L2(Rd )

A|n|+|m|n!αm!α < ∞.

The Gelfand-Shilov space Sα
α (Rd), α ≥ 0 (cf. [6–8] and the recent paper of J. Toft

and his collaborators [5]) is defined as an inductive limit of Sα,A
α,A (Rd) with respect to

A:

Sα
α (Rd) = lim−→

A→∞
Sα,A

α,A (Rd).

The space Sα
α (Rd) is nontrivial if and only if α ≥ 1/2. In this case, we have the fol-

lowing dense and continuous inclusion: Sα
α (Rd) ↪→ S(Rd). We denote by (Sα

α (Rd))′

the strong dual of Sα
α (Rd). Moreover, hn ∈ S1/2

1/2 (R
d), n ∈ N

d
0 and the space Sα

α (Rd)

can be given through the Hermite expansions when it is nontrivial. In fact, we have the
following result which proof is similar to the proof of [13, Theorem 3.4 and Corollary
3.5] and we omit it.

Proposition 2.1 Let α ≥ 1/2. The map Sα
α (Rd) → s2α , f �→ {〈 f, hn〉}n∈Nd

0
, is a

topological isomorphism. For f ∈ Sα
α (Rd),

∑
n∈Nd

0
〈 f, hn〉hn converges absolutely to

f in Sα
α (Rd).

The map (Sα
α (Rd))′ → (s2α)′, T �→ {〈T, hn〉}n∈Nd

0
, is a topological isomorphism.

For T ∈ (Sα
α (Rd))′,

∑
n∈Nd

0
〈T, hn〉hn converges absolutely to T in (Sα

α (Rd))′.

Wewill be particularly interested in the subspaceSα
α, even(R

d) ofSα
α (Rd) consisting

of all “even” functions in Sα
α (Rd), i.e. of all ψ ∈ Sα

α (Rd) such that

ψ(x1, . . . , x j−1,−x j , x j+1, . . . , xd) = ψ(x), (2.3)

for all x = (x1, . . . , xd) ∈ R
d , j = 1, . . . , d.

Proposition 2.2 The spaceSα
α, even(R

d) is a closed subspace ofSα
α (Rd). In particular,

it is a (DFS)-space. Moreover, Sα
α, even(R

d) consists of those ψ ∈ Sα
α (Rd) which can

be represented as ψ = ∑
n∈Nd

0
a2nh2n where {a2n}n∈Nd

0
∈ s2α .

Remark 2.3 Before we give the proof of this proposition, we want to explain the
meaning of {a2n}n∈Nd

0
∈ s2α . It should be understood as the sequence {bk}k∈Nd

0
∈ s2α

such that the elements with indexes k = 2n, n ∈ N
d
0 , are equal to a2n and all the rest

are equal to 0. In the sequel, whenever we use this notation, it will have this exact
meaning.
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Proof The fact thatSα
α, even(R

d) is a closed subspace ofSα
α (Rd) is trivial. It is a (DFS)-

space as a closed subspace of a (DFS)-space. If ψ = ∑
n∈Nd

0
anhn ∈ Sα

α (Rd), then

an = ∫
Rd ψ(x)hn(x)dx and {an}n∈Nd

0
∈ s2α (cf. Proposition 2.1). Since h j (t) is even

when j is even and is odd when j is odd, the last assertion in the proposition follows.
��

For the moment, we denote by X the subspace of (Sα
α (Rd))′ consisting of all

T ∈ (Sα
α (Rd))′ such that T = ∑

n∈Nd
0
a2nh2n , for some {a2n}n∈Nd

0
∈ (s2α)′. Of

course, these are exactly the “even” tempered ultradistributions, i.e. the elements of
(Sα

α (Rd))′ which remain unchanged under the antipode mappings in each coordinate
(cf. (2.3)). It is easy to verify that X is a closed subspace of (Sα

α (Rd))′ and consequently,
an (FS)-space.

Proposition 2.4 The strong dual of Sα
α, even(R

d) is topologically isomorphic to X.

Proof By Proposition 2.2, Sα
α, even(R

d) is a (DFS)-space which is a closed subspace
of the (DFS)-space Sα

α (Rd). Hence [14, Theorem A.6.5., p. 255] implies that the
strong dual (Sα

α, even(R
d))′ of Sα

α, even(R
d) is topologically isomorphic to the (FS)-

space (Sα
α (Rd))′/(Sα

α, even(R
d))⊥, where

(Sα
α, even(R

d))⊥ = {T ∈ (Sα
α (Rd))′| 〈T, ψ〉 = 0, ∀ψ ∈ Sα

α, even(R
d)}

is the orthogonal space to Sα
α, even(R

d). By T̂ ∈ (Sα
α (Rd))′/(Sα

α, even(R
d))⊥ we

denote the coset of T ∈ (Sα
α (Rd))′. We define the mapping I : X →

(Sα
α (Rd))′/(Sα

α, even(R
d))⊥, I (T ) = T̂ . It is easy to verify that I is injective. For

T̂ ∈ (Sα
α (Rd))′/(Sα

α, even(R
d))⊥, let T = ∑

n bnhn . Then, T1 = ∑
n b2nh2n ∈ X

and T − T1 ∈ (Sα
α, even(R

d))⊥. Hence I (T1) = T̂ , which proves the surjectiv-
ity of I . Moreover, I is continuous since it decomposes as X → (Sα

α (Rd))′ →
(Sα

α (Rd))′/(Sα
α, even(R

d))⊥, where the first mapping is the canonical injection and the
second is the naturalmapping. Since X and (Sα

α (Rd))′/(Sα
α, even(R

d))⊥ are (F)-spaces,
the open mapping theorem proves that I is a topological isomorphism. ��
Remark 2.5 From now on, we will identify (Sα

α, even(R
d))′ (the strong dual of

Sα
α, even(R

d)) with X . It follows directly from the proof of the previous proposition that
each T ∈ (Sα

α, even(R
d))′ can be represented as

∑
n∈Nd

0
b2nh2n , where {b2n}n∈Nd

0
∈

(s2α)′ and for ϕ = ∑
n∈Nd

0
a2nh2n ∈ Sα

α, even(R
d), we have 〈T, ϕ〉 = ∑

n∈Nd
0
a2nb2n .

2.2 Test spaces

In this subsection we give the definition of the space Gα
α(Rd+), α ≥ 1, and its basic

properties (for details we refer to [10]). Let A > 0. We denote by Gα,A
α,A(Rd+) the space

of all φ ∈ S(Rd+) such that
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sup
p,k∈Nd

0

‖x (p+k)/2Dpφ(x)‖L2(Rd+)

A|p+k|k(α/2)k p(α/2)p
< ∞.

Equipped with the seminorms

σA, j (φ) = sup
p,k∈Nd

0

‖x (p+k)/2Dpφ(x)‖L2(Rd+)

A|p+k|k(α/2)k p(α/2)p
+ sup

|p|≤ j
|k|≤ j

sup
x∈Rd+

|xk Dpφ(x)|, j ∈ N0,

Gα,A
α,A(Rd+) becomes an (F)-space. (The extra term in σA, j forces all derivatives of

φ ∈ Gα,A
α,A(Rd+) to be continuously extendable to the closure of Rd+ and φ to be well

defined element of S(Rd+).) When A1 < A2, G
α,A1
α,A1

(Rd+) is continuously injected into

Gα,A2
α,A2

(Rd+). As a locally convex space (from now on abbreviated as l.c.s.), we define

Gα
α(Rd+) = lim −→

A→∞ Gα,A
α,A(Rd). The space Gα

α(Rd+) is continuously and densely

injected into S(Rd+) and the Laguerre functions are in Gα
α(Rd+) (cf. [10, Section 3]).

Theorem 2.6 ([10, Theorem 5.7]) Let α ≥ 1. Let f ∈ L2(Rd+) and an =∫
R
d+ f (t)ln(t)dt, n ∈ N

d
0 . Then f ∈ Gα

α(Rd+) if and only if there exist c > 0 and

a > 1 such that |an| ≤ ca−|n|1/α .

Moreover, since Gα
α(Rd+) is isomorphic (as a l.c.s.) to sα , important topological

properties of Gα
α(Rd+) and its strong dual (Gα

α(Rd+))′ follow.

Theorem 2.7 ([10, Theorem 6.1]) Let α ≥ 1. The mapping ι : Gα
α(Rd+) → sα ,

ι( f ) = {〈 f, ln〉}n∈Nd
0
, is a topological isomorphism between Gα

α(Rd+) and sα . In

particular, Gα
α(Rd+) is a (DFN )-space and (Gα

α(Rd+))′ is an (FN )-space.
For each f ∈ Gα

α(Rd+),
∑

n∈Nd
0
〈 f, ln〉ln is summable to f in Gα

α(Rd+).

Theorem 2.8 ([10, Theorem 6.2]) Let α ≥ 1. The mapping ι̃ : (Gα
α(Rd+))′ → (sα)′,

ι̃(T ) = {〈T, ln〉}n∈Nd
0
, is a topological isomorphism.

Moreover,
∑

n∈Nd
0
〈T, ln〉ln is summable to T in (Gα

α(Rd+))′.

The last three results are crucial and we will often tacitly apply them throughout
the rest of this article.

Remark 2.9 In the sequel, we will use the following estimate

∞∑
j=0

s j

j !α ≤ eαs1/α , s ≥ 0, α ≥ 1. (2.4)
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Moreover,

sup
j∈N0

s j

j !α =
(
sup
j∈N0

s j/α

j !

)α

≥
⎛
⎝1

2

∞∑
j=0

(s1/α) j

2 j j !

⎞
⎠

α

= 2−αe(α/2)s1/α , s ≥ 0, α ≥ 1,

i.e. there exists c > 0 such that

sup
j∈N0

s j

j !α ≥ cecs
1/α

, s ≥ 0, α ≥ 1. (2.5)

3 Topological isomorphism between Gα
α(Rd+) and Sα/2

α/2, even(Rd)

From now on, we fix α ≥ 1. The goal of this section is to give the explicit topological
isomorphism between Gα

α(Rd+) and Sα/2
α/2, even(R

d).
Throughout this section, we denote by v and w the following mappings:

v : Rd → R
d+, v(x) = (x21 , . . . , x

2
d ),

w : Rd+ → R
d+, w(x) = (

√
x1, . . . ,

√
xd).

For γ = (γ1, . . . , γd) ∈ R
d such that −γ j /∈ N, j = 1, . . . , d and m ∈ N

d
0 , we use

the abbreviation

(
γ

m

)
=

d∏
j=1

(
γ j

m j

)
.

Moreover, we introduce the following notation 1/2 = (1/2, . . . , 1/2) ∈ R
d+ and

3/2 = (3/2, . . . , 3/2) ∈ R
d+.

Proposition 3.1 Let φ = ∑
n∈Nd

0
anln be an element of Gα

α(Rd+). Then φ ◦ v is in

Sα/2
α/2, even(R

d) and

φ ◦ v =
∑

n∈Nd
0

b2nh2n,

where {b2n}n∈Nd
0

∈ sα is given by

b2n = (−1)|n|πd/4√(2n)!
2|n|n!

∑

k∈Nd
0

ak+n

(
k − 1/2

k

)
, n ∈ N

d
0 . (3.1)
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Moreover, the mapping φ �→ φ ◦ v, Gα
α(Rd+) → Sα/2

α/2, even(R
d), is a continuous

injection.

Proof By [4, (39), p. 192], for n ∈ N
d
0 we have

Ln(x) =
∑
m≤n

(
m − 1/2

m

)
L−1/2
n−m (x), x ∈ R

d+.

Recall, [4, (2), p. 193]

L−1/2
j (t2) = (−1) j

22 j j ! H2 j (t), t ∈ R, j ∈ N0.

Thus, for x ∈ R
d , n ∈ N

d
0 ,

ln(v(x)) = πd/4
∑
m≤n

(
m − 1/2

m

)
(−1)|n−m|√(2n − 2m)!

2|n−m|(n − m)! h2(n−m)(x)

= πd/4
∑
m≤n

(
n − m − 1/2

n − m

)
(−1)|m|√(2m)!

2|m|m! h2m(x). (3.2)

Let ψ(x) = φ(v(x)), x ∈ R
d . Clearly, ψ ∈ C(Rd). Observe that,

ψ(x) = φ(v(x)) =
∑

n∈Nd
0

anln(v(x))

= πd/4
∑

n∈Nd
0

an
∑
m≤n

(
n − m − 1/2

n − m

)
(−1)|m|√(2m)!

2|m|m! h2m(x).

Wewill prove that the double series is absolutely convergent in L∞(Rd). By Cramér’s
inequality [4, (19), p. 208], we have |hn(x)| ≤ 1, for all n ∈ N

d
0 , x ∈ R

d . For j ∈ N,
we have

(
j − 1/2

j

)
= (2 j − 1)!!

2 j j ! ≤ (2 j)!!
2 j j ! = 1. (3.3)

This inequality trivially holds for j = 0 since, in this case, the left hand side is equal
to 1. Hence,

∣∣∣∣an
(
n − m − 1/2

n − m

)
(−1)|m|√(2m)!

2|m|m! h2m(x)

∣∣∣∣ ≤ |an|, x ∈ R
d , n ≥ m.

Since {an}n∈Nd
0
is in sα (cf. Theorem 2.6), the double series in the equality for ψ(x)

converges absolutely in L∞(Rd). Thus, we can change the order of summation in
order to obtain
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ψ(x) = πd/4
∑

m∈Nd
0

(−1)|m|√(2m)!
2|m|m! h2m(x)

∑
n≥m

an

(
n − m − 1/2

n − m

)

=
∑

m∈Nd
0

b2mh2m(x),

where

b2m = (−1)|m|πd/4√(2m)!
2|m|m!

∑

n∈Nd
0

an+m

(
n − 1/2

n

)
, m ∈ N

d
0 .

If φ varies in a bounded subset B of Gα
α(Rd+), then the sequence {an}n∈Nd

0
varies

in a bounded subset of sα (cf. Theorem 2.7). Since sα is a (DFS)-space there exist
C, a > 1 such that |an| ≤ Ca−|n|1/α , ∀n ∈ N

d
0 . The Cauchy-Schwarz inequality yields

|n|1/α + |m|1/α ≤ 2(|n| + |m|)1/α, ∀n,m ∈ N
d
0 . (3.4)

Thus a−|n+m|1/α ≤ √
a−|n|1/α√a−|m|1/α . Hence, there exist a′,C ′ > 1 such that

|an+m | ≤ C ′a′−|n|1/αa′−|m|1/α . Using (3.3), we can estimate b2m as follows

|b2m | ≤ C ′a′−|m|1/α ∑

n∈Nd
0

a′−|n|1/α ≤ C ′′a′′−|2m|1/α , m ∈ N
d
0 ,

where a′′ = a′1/21/α . Hence, when φ varies in B, the sequence {b2m}m∈Nd
0
varies in

a bounded subset of sα . Thus, the mapping φ �→ φ ◦ v, Gα
α(Rd+) → Sα/2

α/2, even(R
d),

is well defined and it maps bounded sets into bounded sets (cf. Propositions 2.1 and
2.2). As Gα

α(Rd+) is bornological, the mapping is continuous. Clearly, this mapping is
injective. ��
Proposition 3.2 Let ψ = ∑

n∈Nd
0
a2nh2n ∈ Sα/2

α/2, even(R
d). Then, ψ|Rd+ ◦ w ∈

Gα
α(Rd+) and

ψ|Rd+ ◦ w =
∑

n∈Nd
0

bnln,

where {bn}n∈Nd
0

∈ sα is given by

bn = (−1)|n|2|n|

πd/4

∑

k∈Nd
0

(
k − 3/2

k

)
(−1)|k|2|k|(k + n)!a2k+2n√

(2k + 2n)! , n ∈ N
d
0 . (3.5)

Moreover, the mapping ψ �→ ψ|Rd+ ◦ w, Sα/2
α/2, even(R

d) → Gα
α(Rd+), is a continuous

injection.
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Proof We represent h2n as a finite Laguerre series. The equality [4, (2), p. 193] implies

H2n(x) = (−1)|n|22|n|n!L−1/2
n (v(x)), x ∈ R

d , n ∈ N
d
0 .

Thus, by using [4, (39), p. 192], we have

H2n(x) = (−1)|n|22|n|n!
∑
m≤n

(
n − m − 3/2

n − m

)
Lm(v(x)), x ∈ R

d , n ∈ N
d
0 ,

i.e.

h2n(w(x)) = (−1)|n|

πd/4

√
22|n|n!2
(2n)!

∑
m≤n

(
n − m − 3/2

n − m

)
lm(x), (3.6)

where x ∈ R
d+, n ∈ N

d
0 . Let ψ = ∑

n∈Nd
0
a2nh2n ∈ Sα/2

α/2, even(R
d). Then {a2n}n∈Nd

0
∈

sα (cf. Proposition 2.2). Hence, there exist C, a > 1 such that

|a2n| ≤ Ca−|2n|1/α , ∀n ∈ N
d
0 . (3.7)

Let φ(x) = ψ(w(x)), x ∈ R
d+. Clearly, φ ∈ C(Rd+). We have

φ(x) =
∑

n∈Nd
0

(−1)|n|a2n
πd/4

√
22|n|n!2
(2n)!

∑
m≤n

(
n − m − 3/2

n − m

)
lm(x). (3.8)

By [4, (3), p. 205], |ln(x)| ≤ 1, for all x ∈ R
d+, n ∈ N

d
0 . Similarly as in (3.3), we have

∣∣∣∣
(
n − m − 3/2

n − m

)∣∣∣∣ ≤ 1, for all n ≥ m, n,m ∈ N
d .

Since,

(
2 j

j

)
∼ 4 j

√
jπ

, as j → ∞,

we obtain
∣∣∣∣∣∣
(−1)|n|

πd/4

√
22|n|n!2
(2n)!

(
n − m − 3/2

n − m

)
lm(x)

∣∣∣∣∣∣
≤ C1(|n| + 1)d/2, (3.9)

n,m ∈ N
d
0 , n ≥ m, for some C1 > 1. By (3.7), we can conclude that the series on

the right hand side in (3.8) converges absolutely in L∞(Rd+). Thus, we can change the
order of summation in order to obtain φ(x) = ∑

m∈Nd
0
bmlm(x), where
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bm = (−1)|m|2|m|

πd/4

∑

n∈Nd
0

(
n − 3/2

n

)
(−1)|n|2|n|(n + m)!a2n+2m√

(2n + 2m)! .

Toestimatebm wecanperformanalogous technique as for (3.9).Hence, for allm ∈ N
d
0 ,

we obtain

|bm | ≤ C2

∑

n∈Nd
0

(|n + m| + 1)d/2a−|2n+2m|1/α ≤ C3

∑

n∈Nd
0

a′−|n+m|1/α ,

for some 1 < a′ < a. Now, (3.4) implies that there exist C ′′, a′′ > 1 such that
|bm | ≤ C ′′a′′−|m|1/α , ∀m ∈ N

d
0 , i.e. {bm}m∈Nd

0
∈ sα . Thus, φ ∈ Gα

α(Rd+). If ψ varies

in a bounded subset B of Sα/2
α/2, even(R

d), then (3.7) holds with the same C, a > 1 for

all the sequences {a2n}n∈Nd
0
generated by ψ ∈ B (since Sα/2

α/2, even(R
d) is a subspace

of the (DFS)-space Sα/2
α/2 (R

d)). Thus, from the above proof, it follows that {bm}m∈Nd
0

varies in a bounded subset of sα , i.e. φ varies in a bounded subset of Gα
α(Rd+). Hence,

the mapping ψ �→ ψ
R
d+ ◦ w, Sα/2

α/2, even(R
d) → Gα

α(Rd+), is well defined and maps

bounded sets into bounded sets. As Sα/2
α/2, even(R

d) is a (DFS)-space (cf. Proposition
2.2), it is bornological. Hence, the mapping is continuous. The proof for the injectivity
is trivial. ��

Combining the above two propositions, we obtain the following result.

Theorem 3.3 The mapping φ �→ φ ◦ v, Gα
α(Rd+) → Sα/2

α/2, even(R
d) is a topo-

logical isomorphism. If φ = ∑
n∈Nd

0
anln, then φ ◦ v = ∑

n∈Nd
0
b2nh2n, where

{b2n}n∈Nd
0

∈ sα is givenby (3.1). The inverse of thismapping is givenbyψ �→ ψ|Rd+◦w,

Sα/2
α/2, even(R

d) → Gα
α(Rd+). If ψ = ∑

n∈Nd
0
a2nh2n, then ψ ◦ w = ∑

n∈Nd
0
bnln, where

{bn}n∈Nd
0

∈ sα is given by (3.5).

If we denote by I the isomorphism ψ �→ ψ|Rd+ ◦ w, Sα/2
α/2, even(R

d) → Gα
α(Rd+)

with I−1 : φ �→ φ ◦v,Gα
α(Rd+) → Sα/2

α/2, even(R
d) being its inverse, then the transpose

tI is an isomorphism between (Gα
α(Rd+))′ and (Sα/2

α/2, even(R
d))′. By Proposition 2.4

(and the remark after), for T = ∑
n anln ∈ (Gα

α(Rd+))′ there exists {b2n}n∈Nd
0

∈ (sα)′

such that tIT = ∑
n b2nh2n ∈ (Sα

α (Rd))′. Then, (3.6) implies

b2n = 〈tIT, h2n〉 = (−1)|n|2|n|n!
πd/4

√
(2n)!

∑
m≤n

(
n − m − 3/2

n − m

)
am . (3.10)
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Similarly, given T = ∑
n a2nh2n ∈ (Sα

α, even(R
d))′, t (I−1)T ∈ (Gα

α(Rd+))′. Hence,
t (I−1)T = ∑

n bnln , for some {bn}n∈Nd
0

∈ (sα)′. The equality (3.2) implies

bn = 〈t (I−1)T, ln〉 = πd/4
∑
m≤n

(
n − m − 1/2

n − m

)
(−1)|m|√(2m)!

2|m|m! a2m . (3.11)

Since t (I−1) = (tI)−1, we proved the following theorem.

Theorem 3.4 The transpose tI of the isomorphism I : ψ �→ ψ|Rd+ ◦ w,

Sα/2
α/2, even(R

d) → Gα
α(Rd+), is a topological isomorphism tI : (Gα

α(Rd+))′ →
(Sα/2

α/2, even(R
d))′. The image of

∑
n anln ∈ (Gα

α(Rd+))′ under this isomorphism is∑
n b2nh2n, where {b2n}n∈Nd

0
∈ (sα)′ is given by (3.10). The inverse of this isomor-

phism (tI)−1 maps
∑

n a2nh2n ∈ (Sα/2
α/2, even(R

d))′ into
∑

n bnln ∈ (Gα
α(Rd+))′, where

{bn}n∈Nd
0

∈ (sα)′ is given by (3.11).

Remark 3.5 Let σn , n ∈ N
d
0 , be measurable functions on R

d+ such that σn(ρ)/(1 +
ρ)n/2 ∈ L2(Rd+), for all n ∈ N

d
0 and for each A > 0,

∑

n∈Nd
0

∥∥∥σn(ρ)/(1 + ρ)n/2
∥∥∥
L2(Rd+)

A|n|nαn/2 < ∞.

Then, by [10, Lemma 7.5]
∑

n∈Nd
0
σn converges absolutely in (Gα

α(Rd+))′ to some σ .

Moreover, the same result also states that σ̃n(x, ξ) = σn(2x21 +2ξ21 , . . . , 2x2d +2ξ2d ) is

measurable on R
2d and

∑
n σ̃n converges absolutely in (Sα/2

α/2 (R
2d))′ to some σ̃ . The

Weyl pseudodifferential operatorwith symbol σ̃ iswell defined and continuesmapping
from Sα

α (Rd) into Sα
α (Rd), it extends to a continuous mapping from (Sα

α (Rd))′ into
(Sα

α (Rd))′ and it is given by Wσ̃ f = ∑
k fkσkhk , where f = ∑

k fkhk ∈ (Sα
α (Rd))′

and σk = (2π)d/2(−1)|k|2−d〈σ, lk〉 (see [10, Theorem 7.6]). By Theorem 3.4, each
σ given as above originates from a unique even tempered ultradistribution by the
isomorphism (tI)−1 : (Sα/2

α/2, even(R
d))′ → (Gα

α(Rd+))′.

4 Structural theorems

4.1 The first structural theorem

In order to give the first structural theorem, we need to introduce some additional
terminology.

Let {Mp}p∈N0 be a sequence of positive numbers such that satisfies the following
condition (see [12]):

(M.1) M2
p ≤ Mp−1Mp+1, p ∈ N.

Notice that the condition (M.1) is equivalent to the assumption that the sequence
mp = Mp/Mp−1, p ∈ N, increases monotonically. Furthermore, if the sequence
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mp = Mp/Mp−1, p ∈ N, tends to infinite, then we define the associated function of
Mp as (cf. [12]):

M(t) = sup
p∈N0

ln
t pM0

Mp
, t ∈ (0,∞).

It is a monotonically increasing continuous function which vanishes for sufficiently
small t > 0 and increasesmore rapidly than ln t p for any p as t → ∞.Weare interested
only in the sequences of type {p!α}p∈N0 , with α ≥ 1. So, from now on, we specialise
Mp = p!α , p ∈ N0. Thus M(·) will be the associated function of {p!α}p∈N0 . Given
a sequence of positive numbers {rp}p∈N which monotonically increases to infinity,
the sequence with zeroth term equal to 0!α = 1 and p-th term equal to p!α ∏p

j=1 r j ,
p ∈ N, also satisfies (M.1) and one can define its associated function, which we
denote by Nrp (·).

Before we state the next result, notice that the operator Rk , k ∈ N
d
0 , is continuous

on S(Rd+) and on S ′(Rd+) (recall (2.1) for the definition of Rk).

Lemma 4.1 For each k ∈ N
d
0 , R

k acts continuously on Gα
α(Rd+).

Proof If φ = ∑
n∈Nd

0
anln varies in a bounded subset ofGα

α(Rd+), then {an}n∈Nd
0
varies

in a bounded subset of sα . Since
∑

n∈Nd
0
anln converges absolutely to φ in S(Rd+), we

have Rkφ = ∑
n an R

kln = ∑
n an(−1)|k|nkln and the series converges absolutely in

S(Rd+). It can be easily proved that {an(−1)|k|nk}n∈Nd
0
is in sα and when {an}n∈Nd

0

varies in a bounded subset of sα so does {an(−1)|k|nk}n∈Nd
0
. Hence, Rk is well defined

as a mapping from Gα
α(Rd+) into itself and it maps bounded sets into bounded sets. As

Gα
α(Rd+) is bornological, Rk is continuous. ��
By duality, we can define the transpose t Rk of Rk as a continuous opera-

tor on (Gα
α(Rd+))′. If T = ∑

n∈Nd
0
bnln , then one easily verifies that t RkT =∑

n bn(−1)|k|nkln (since {bn}n∈Nd
0

∈ (sα)′, the sequence {bn(−1)|k|nk}n∈Nd
0
also

belongs to (sα)′ and thus the right hand side is a well defined element of (Gα
α(Rd+))′).

We come to the conclusion that t Rk coincides with Rk when T ∈ Gα
α(Rd) ⊆

(Gα
α(Rd+))′. Hence, from now on, we will write Rk instead of t Rk .
Following Komatsu [12], we call an entire function P : C

d → C, P(z) =∑
n∈Nd

0
cnzn , an ultrapolynomial of class {p!α} if for every h > 0 there exists C > 0

such that |cn| ≤ Ch|n|/|n|!α . By [12, Proposition 4.5], P is an ultrapolynomial of class
{p!α} if and only if for every h > 0 there exists C > 0 such that |P(z)| ≤ CeM(h|z|),
∀z ∈ C

d . Now, notice that Remark 2.9 yields that P is an ultrapolynomial of class
{p!α} if and only if for every h > 0 there exists C > 0 such that |P(z)| ≤ Ceh|z|1/α ,
∀z ∈ C

d .
Next, for a given ultrapolynomial P(z) = ∑

n cnz
n of class {p!α}, wewill show that

the operator
∑

n cn R
n , denoted by P(R), is a well defined and continuous operator on

Gα
α(Rd+) and (Gα

α(Rd+))′. In the proof we will use the fact that Lb(Gα
α(Rd+),Gα

α(Rd+))
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and Lb((Gα
α(Rd+))′, (Gα

α(Rd+))′) are complete (cf. [18, Corollary 1, p. 344]; notice
that Gα

α(Rd+) and (Gα
α(Rd+))′ are bornological and complete spaces).

Lemma 4.2 Let P(z) = ∑
n∈Nd

0
cnzn be an ultrapolynomial of class {p!α}. Then,∑

n∈Nd
0
cn Rn converges absolutely in both Lb(Gα

α(Rd+),Gα
α(Rd+)) and

Lb((Gα
α(Rd+))′, (Gα

α(Rd+))′).

Proof Since Gα
α(Rd+) is a barrelled and complete space, its topology is given by the

system of seminormsφ �→ supT∈B′ |〈T, φ〉|, where B ′ ranges over all bounded subsets
of (Gα

α(Rd+))′. Hence, the topology of Lb(Gα
α(Rd+),Gα

α(Rd+)) is given by the system
of seminorms

� �→ sup
T∈B′
φ∈B

|〈T,�(φ)〉|,

where B and B ′ range over all bounded subsets of Gα
α(Rd+) and (Gα

α(Rd+))′, respec-
tively.

To prove that
∑

n∈Nd
0
cn Rn converges absolutely in Lb(Gα

α(Rd+),Gα
α(Rd+)), we

have to prove that for each such B and B ′,
∑

n∈Nd
0

|cn| sup
T∈B′
φ∈B

|〈T, Rnφ〉| < ∞. (4.1)

Fix such B and B ′. Let φ = ∑
n an,φln , φ ∈ B and T = ∑

n bn,T ln , T ∈ B ′. Thus,
{{an,φ}n| φ ∈ B} is bounded in sα and {{bn,T }n| T ∈ B ′} is bounded in (sα)′. There
exist a,C > 1 such that |an,φ | ≤ Ca−|n|1/α , for all n ∈ N

d
0 , φ ∈ B. For this a, choose

1 < b ≤ a1/4. Then, there exists C1 > 0 such that |bn,T | ≤ C1b|n|1/α for all n ∈ N
d
0 ,

T ∈ B ′. Moreover, there exist s,C2 > 1 such that |m||n| ≤ C2s|n|b|m|1/α |n|!α , for all
n,m ∈ N

d
0 . Hence,

sup
T∈B′
φ∈B

|〈T, Rnφ〉| ≤ sup
T∈B′
φ∈B

∑

m∈Nd
0

|am,φ ||bm,T ||m||n| ≤ C3s
|n||n|!α, ∀n ∈ N

d
0 .

Since P is an ultrapolynomial of class {p!α}, the last inequality implies (4.1).
The topology of Lb((Gα

α(Rd+))′, (Gα
α(Rd+))′) is given by the system of seminorms

� �→ sup
T∈B′
φ∈B

|〈�(T ), φ〉|,

where B and B ′ range over all bounded subsets of Gα
α(Rd+) and (Gα

α(Rd+))′, respec-
tively. In Lb((Gα

α(Rd+))′, (Gα
α(Rd+))′),

∑
n∈Nd

0
cn Rn converges absolutely if we prove

that for each such B and B ′
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∑

n∈Nd
0

|cn| sup
T∈B′
φ∈B

|〈RnT, φ〉| < ∞.

This can be done by using the same technique as above. ��
Before we prove the main result of this subsection, we state the following three

technical lemmas. The first one is proved in [17].

Lemma 4.3 ([17, Lemma 2.4]) Let g : [0,∞) → [0,∞) be an increasing function
such that satisfies the following estimate: for every h > 0 there exists C > 0 such
that g(t) ≤ M(ht) + lnC. Then there exists a subordinate function ε(t) such that
g(t) ≤ M(ε(t)) + lnC ′, for some constant C ′ > 1.

For the definition of a subordinate function see [12, Definition 3.11].

Lemma 4.4 Let B be a bounded subset of (sα)′. There exist a sequence of positive
numbers {rp}p∈N which monotonically increases to infinity and C ′ > 1 such that

|bn| ≤ C ′eNrp (|n|), for all n ∈ N
d
0 , {bn}n∈Nd

0
∈ B.

Proof Since B is a bounded subset of (sα)′, for every h > 0 there exists C > 1
such that |bn| ≤ CeM(h|n|), for all n ∈ N

d
0 , {bn}n ∈ B ′ (cf. Remark 2.9). Define

f : [0,∞) → [0,∞) as

f (t) = sup
|k|≤t

{bn}n∈B
ln+ |bk |, t ∈ [0,∞).

One easily verifies that f is a nonnegative monotonically increasing function and for
every h > 0 there exists C > 0 such that f (t) ≤ M(ht) + C . Thus, we can apply
Lemma 4.3 to obtain the existence of a subordinate function ε : [0,∞) → [0,∞) and
C1 > 1 such that f (t) ≤ M(ε(t)) + C1, t ∈ [0,∞). Now, [12, Lemma 3.12] implies
the existence of a sequence Np, p ∈ N0, of positive numbers which satisfies (M.1)
such that M(ε(t)) ≤ N (t), t ∈ (0,∞) (N (·) is the associated function of the sequence
Np) and NpMp−1/(Np−1Mp) → ∞ as p → ∞. Define r ′

p = NpMp−1/(Np−1Mp),
p ∈ N. Since r ′

p → ∞, one can find a monotonically increasing sequence of positive
numbers {rp}p∈N which tends to infinity and rp ≤ r ′

p, p ∈ N. Then,

f (t) ≤ N (t) + C1 = sup
p∈N0

ln
t pN0

Np
+ C1 = sup

p∈N0

ln
t p

Mp
∏p

j=1 r
′
j

+ C1

≤ sup
p∈N0

ln
t p

Mp
∏p

j=1 r j
+ C1 = Nrp (t) + C1.

By the definition of f , this readily implies the conclusion of the lemma. ��
The next lemma is proved in [16]; here R stands for the set of all sequences of

positive numbers which increase monotonically to infinity.
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Lemma 4.5 ([16, Lemma 2.1], Roumieu case) Let r ′ ≥ 1 and (kp) ∈ R. There exists
an ultrapolynomial P(z) of class {Mp} such that P does not vanish onRd and satisfies
the following estimate:

There exists C > 0 such that for all x ∈ R
d and α ∈ N

d ,

∣∣Dα (1/P(x))
∣∣ ≤ C

α!
r ′|α| e

−Nkp (|x |)
.

As a special case, we see that for any given sequence of positive numbers {rp}p∈N
which increases monotonically to infinity, one can find an ultrapolynomial P(z) of
class {p!α} and C > 0 such that |P(x)| ≥ CeNrp (|x |) for all x ∈ R

d .

Theorem 4.6 Let B ′ ⊆ (Gα
α(Rd+))′ be a bounded set. There exists an ultrapolynomial

P(z) of class {p!α} and a bounded set B in L2(Rd+) such that for each T ∈ B ′ there
exists FT ∈ B satisfying T = P(R)FT in (Gα

α(Rd+))′.
Conversely, given a bounded set B in L2(Rd+) and an ultrapolynomial P(z) of class

{p!α}, P(R)F belongs to (Gα
α(Rd+))′ for each F ∈ B and the set {P(R)F | F ∈ B} is

bounded in (Gα
α(Rd+))′.

Proof Let T = ∑
n∈Nd

0
bn,T ln , T ∈ B ′. The set {{bn,T }n∈Nd

0
| T ∈ B ′} is bounded in

(sα)′. Lemma 4.4 implies that there exists a sequence of positive numbers {rp}p∈N
which increasesmonotonically to infinite such that |bn,T | ≤ C ′eNrp (|n|), for all n ∈ N

d
0 ,

T ∈ B ′. We define the sequence {r ′
p}p∈N by r ′

j = min{1, r1}, j = 1, . . . , d + 1 and
r ′
j = r j−d−1, j ≥ d + 2, j ∈ N. Then, {r ′

p}p∈N increases monotonically to infinity,

r ′
p ≤ rp, p ∈ N and there exists C̃1 ≥ 1 such that

(td+1 + 1)eNrp (t) ≤ C̃1e
Nr ′p (2α t) + eNrp (t), t ∈ [0,∞).

Hence, if we define kp = r ′
p/2

α , p ∈ N, the sequence {kp}p∈N increases monotoni-

cally to infinity and there exists C̃2 > 1 such that

(td+1 + 1)eNrp (t) ≤ C̃2e
Nkp (t)

, t ∈ [0,∞).

By Lemma 4.5, we can choose an ultrapolynomial P(z) = ∑
n∈Nd

0
cnzn of class {p!α}

such that |P(x)| ≥ CeNkp (|x |), for all x ∈ R
d . Lemma 4.2 verifies that P(R) acts

continuously on Gα
α(Rd+) and on (Gα

α(Rd+))′. Observe that

∑

n∈Nd
0

∣∣∣∣
bn,T

P(−n)

∣∣∣∣
2

≤ C1

∑

n∈Nd
0

e2Nrp (|n|)e−2Nkp (|n|) ≤ C2, ∀T ∈ B ′.
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Hence, FT = ∑
n∈Nd

0
(bn,T /P(−n))ln ∈ L2(Rd+) and the set {FT | T ∈ B ′} is bounded

in L2(Rd+). As L2(Rd+) ⊆ (Gα
α(Rd+))′, P(R)FT ∈ (Gα

α(Rd+))′. Moreover,

P(R)ln =
∑

m∈Nd
0

cm Rmln =
∑

n∈Nd
0

cm(−n)mln = P(−n)ln .

Hence,

P(R)FT =
∑

n∈Nd
0

bn,T

P(−n)
P(R)ln =

∑

n∈Nd
0

bn,T ln = T .

The converse part of the theorem is trivial. ��

4.2 The second structural theorem

Before we prove the second structural theorem, we need several preliminary results.
Firstly, using the Sobolev embedding theorem, we will prove that the topology of
S(Rd+) can be defined by L2-seminorms instead of supremum seminorms. We need
to verify that Rd+ satisfies the strong local Lipschitz condition (cf. [1, Definition 4.9,
p. 83]) in order to obtain the assertion. For the moment, denote C = R

d+. On the
hyperplane x1 + · · · + xd = 0 take d − 1 orthonormal vectors ξ1, . . . , ξd−1 and
let ξd = (−1/

√
d, . . . ,−1/

√
d) (given in the x1, . . . , xd coordinate system). Then,

ξ1, . . . , ξd is an orthonormal basis forRd . Notice that the boundary of C is exactly the
graph, given in the (ξ1, . . . , ξd)-coordinate system of a continuous piecewise linear
function f in ξ1, . . . , ξd−1 such that the domain of each piece is a polyhedral cone.
Thus, this function is Lipschitz continuous on R

d−1 and C is represented by the
inequality ξd < f (ξ1, . . . , ξd−1). This proves that C = R

d+ satisfies the strong local
Lipschitz condition. Thus, the Sobolev embedding theorem [1, Theorem 4.12, p. 85]
is applicable onRd+, i.e. for all j ∈ N0, the Sobolev space H j+ j0(Rd+) is continuously

injected into C j (Rd+), where 2 j0 > d ≥ 2( j0−1) (here, C j (Rd+) denotes the (B)-space
of all functions which have bounded uniformly continuous derivatives up to order j ;
the norm is given by sup|k|≤ j supx∈Rd+ |Dkϕ(x)|). This implies that the topology on

S(Rd+) can be given by the family of seminorms

ϕ �→
⎛
⎝ ∑

|m|≤ j, |n|≤ j

‖xmDnϕ‖2
L2(Rd+)

⎞
⎠

1/2

, j ∈ N0.

Now, we can give an alternative representation (again as an inductive limit) ofGα
α(Rd+)

which will enable us to prove the second structural theorem. For A > 0, we denote
by G̃α,A

α,A(Rd+) the space of all f ∈ S(Rd+) such that
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∑

p,k∈Nd
0

‖x (p+k)/2Dp f (x)‖2
L2(Rd+)

A2|p+k|kαk pαp
< ∞.

From the alternative definition of the topology of S(Rd+) given above, the space

G̃α,A
α,A(Rd+) with the seminorms

σ̃A, j ( f ) =
⎛
⎜⎝

∑

p,k∈Nd
0

‖x (p+k)/2Dp f (x)‖2
L2(Rd+)

A2|p+k|kαk pαp

+
∑

|m|≤ j, |n|≤ j

‖xmDn f (x)‖2
L2(Rd+)

⎞
⎠

1/2

, j ∈ N0,

becomes an (F)-space. When A1 < A2, G̃
α,A1
α,A1

(Rd+) is continuously injected into

G̃α,A2
α,A2

(Rd+). Clearly, G̃α,A
α,A(Rd+) is continuously injected intoGα,A

α,A(Rd+) andGα,A
α,A(Rd+)

is continuously injected into G̃α,2A
α,2A(Rd+). Hence, Gα

α(Rd+) = lim −→
A→∞ G̃α,A

α,A(Rd+) as
a l.c.s.

Proposition 4.7 Let A > 0. For each T ∈ (G̃α,A
α,A(Rd+))′, there exists j ∈ N0 and

FA,p,k ∈ L2(Rd+), p, k ∈ N
d
0 and F̃A,n,m ∈ L2(Rd+), n,m ∈ N

d
0 with |n| ≤ j ,

|m| ≤ j , such that

∑

p,k∈Nd
0

A2|p+k| pαpkαk‖FA,p,k‖2L2(Rd+)
+

∑
|m|≤ j, |n|≤ j

‖F̃A,n,m‖2
L2(Rd+)

< ∞ (4.2)

and for all φ ∈ G̃α,A
α,A(Rd+),

〈T, φ〉 =
∑

p,k∈Nd
0

∫
R
d+
FA,p,k(x)x

(p+k)/2Dpφ(x)dx

+
∑

|m|≤ j, |n|≤ j

∫
R
d+
F̃A,n,m(x)xmDnφ(x)dx . (4.3)

Conversely, given j ∈ N0 and a set of L2(Rd+)-functions {FA,p,k | p, k ∈ N
d
0} ∪

{F̃A,n,k | n,m ∈ N
d
0 , |n| ≤ j, |m| ≤ j} such that (4.2) holds, there exists T ∈

(G̃α,A
α,A(Rd+))′ given by (4.3).

Proof For j ∈ N0, we define

U j =
⊔

(p,k)∈N2d
0

R
d
+,p,k

⊔ ⊔

(n,m)∈N2d
0|n|≤ j, |m|≤ j

R
d+,n,m,
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where, as standard,
⊔

denotes disjoint union. Each member of this disjoint union is
an exact copy of Rd+. We equip U j with the disjoint union topology. Since there are
countably many copies of Rd+, U j is Hausdorff locally compact space and an each
open set in U j is σ -compact. We define a Borel measure μ j on U j by

μ j (E) =
∑

(p,k)∈N2d
0

A−2|p+k| p−αpk−αk |E ∩ R
d
+,p,k |

+
∑

(n,m)∈N2d
0|n|≤ j, |m|≤ j

|E ∩ R
d+,n,m |,

where |E ∩ R
d
+,p,k | and |E ∩ R

d+,n,m | is the Lebesgue measure of E ∩ R
d
+,p,k and

|E ∩R
d+,n,m |, respectively (clearly, E is a Borel set in U j if and only if E ∩R

d
+,p,k and

E ∩R
d+,n,m are Borel sets in Rd

+,p,k and R
d+,n,m , respectively, for all p, k, n,m ∈ N

d
0 ,|m| ≤ j , |n| ≤ j). As readily seen, μ j is locally finite, σ -finite and μ j (K) < ∞

for every compact set K in U j . By the properties of U j , μ j is regular (both inner
and outer regular). Now, observe that, for each j ∈ N0, G̃

α,A
α,A(Rd+) is continuously

injected into L2(U j , μ j ) by themappingJ j : φ �→ F, whereF is defined byF|Rd+,p,k
=

x (p+k)/2Dpφ(x) and F|Rd+,n,m
= xmDnφ(x), p, k, n,m ∈ N

d
0 , |m| ≤ j , |n| ≤ j . In

fact,

(σ̃A, j (φ))2 =
∑

p,k∈Nd
0

‖x (p+k)/2Dpφ(x)‖2
L2(Rd+)

A2|p+k|kαk pαp

+
∑

|m|≤ j, |n|≤ j

‖xmDnφ(x)‖2
L2(Rd+)

=
∫

U j

|F|2dμ j = ‖F‖2L2(U j ,μ j )
. (4.4)

If T ∈ (G̃α,A
α,A(Rd+)), there exist j ∈ N0 and C > 0 such that |〈T, φ〉| ≤ C σ̃A, j (φ).

From (4.4), T induces a continuous functional on J j (G̃
α,A
α,A(Rd+)) when this space is

equipped with the topology induced by L2(U j , μ j ). By the Hahn-Banach theorem,
we can extend T to a continuous functional T on the whole L2(U j , μ j ) and hence
T ∈ L2(U j , μ j ). Denote

FA,p,k = A−2|p+k| p−αpk−αkT|Rd+,p,k
, F̃A,n,m = T|Rd+,n,m

,

where p, k, n,m ∈ N
d
0 , |m| ≤ j , |n| ≤ j. Then, FA,p,k, F̃A,n,m ∈ L2(Rd+), for all

p, k, n,m ∈ N
d
0 , |m| ≤ j , |n| ≤ j and (4.2) holds since this is exactly ‖T‖2

L2(U j ,μ j )
.

For φ ∈ G̃α,A
α,A(Rd+), we have
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〈T, φ〉 = T(J j (φ)) =
∫

U j

J j (φ)Tdμ j

=
∑

p,k∈Nd
0

∫
R
d+
FA,p,k(x)x

(p+k)/2Dpφ(x)dx

+
∑

|m|≤ j, |n|≤ j

∫
R
d+
F̃A,n,m(x)xmDnφ(x)dx .

The converse part follows trivially. ��
Theorem 4.8 Let T ∈ (Gα

α(Rd+))′. Then, for each A > 0 there exist j = j (A) ∈ N0

and a set of L2(Rd+)-functions

{FA,p,k | p, k ∈ N
d
0} ∪ {F̃A,n,m | n,m ∈ N

d
0 , |n| ≤ j, |m| ≤ j} (4.5)

such that (4.2) holds and the restriction of T to each G̃α,A
α,A(Rd+) is given by (4.3).

If for each A > 0, there exist j = j (A) ∈ N0 and a set of L2(Rd+)-functions (4.5)

such that (4.2) holds, then for each A > 0 there exists TA ∈ (G̃α,A
α,A(Rd+))′ given by

(4.3). Furthermore, if for each A1 < A2, the restriction of TA2 to G̃
α,A1
α,A1

(Rd+) coincides

with TA1 , then there exists T ∈ (Gα
α(Rd+))′ such that for each A > 0 the restriction of

T to G̃α,A
α,A(Rd+) is TA, i.e. for φ ∈ G̃α,A

α,A(Rd+), 〈T, φ〉 is given by (4.3).

Proof The first part follows directly from Proposition 4.7, since the restriction of T to
each G̃α,A

α,A(Rd+), A > 0, is continuous. For the second part, observe that the existence

of TA ∈ (G̃α,A
α,A(Rd+))′, for each A > 0, given by (4.3) is verified by Proposition 4.7.

Furthermore, if TA, A > 0, satisfies that for each A1 < A2 the restriction of TA2 to
G̃α,A1

α,A1
(Rd+) coincides with TA1 , then one can define a linear functional T : Gα

α(Rd+) →
C by 〈T, φ〉 = 〈TA, φ〉 when φ ∈ G̃α,A

α,A(Rd+). Because of this condition, this is indeed
a well defined linear mapping into C. The continuity of T follows from the fact that
each restriction of T to G̃α,A

α,A(Rd+) is TA, A > 0, which is continuous as a mapping

from G̃α,A
α,A onto C and the fact that Gα

α(Rd+) is the inductive limit of G̃α,A
α,A(Rd+) as

A → ∞. ��
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