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Abstract We give a simple proof of a general theorem of Kotake–Narasimhan for
elliptic operators in the setting of ultradifferentiable functions in the sense of Braun,
Meise and Taylor. We follow the ideas of Komatsu. Based on an example of Métivier,
we also show that the ellipticity is a necessary condition for the theorem to be true.
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1 Introduction and main result

The problem of iterates began when Komatsu [11] in 1960 characterized analytic
functions f in terms of the behaviour of successive iterates P(D) j f of the function
f for a linear partial differential elliptic operator P(D) with constant coefficients. He
proved that a C∞ function f is real analytic in � if and only if for every compact set
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K ⊂⊂ � there is a constant C > 0 such that

‖P(D) j f ‖L2(K ) ≤ C j+1( j !)m, ∀ j ∈ N0 := N ∪ {0},

where m is the order of the operator and ‖ · ‖L2(K ) is the L2 norm on K . This result
was generalized to the case of elliptic linear partial differential operators P(x, D)with
real analytic coefficients in � by Kotake and Narasimhan [14], and is known as “the
Theorem of Kotake–Narasimhan”. Komatsu [13] gave a simpler proof. Similar results
have been previously considered by Nelson [22]. Later these results were extended
to Gevrey functions by Newberger and Zielezny [23] in the case of operators with
constant coefficients. Lions andMagenes [20] considered the case ofDenjoy-Carleman
classes of Roumieu type for elliptic linear partial differential operators P(x, D) with
variable coefficients in the same Roumieu class, and Oldrich [24] treated the case of
Denjoy–Carleman classes of Beurling type with some loss of regularity with respect to
the coefficients. Métivier [21] proved that the result of Lions and Magenes for Gevrey
classes is true only for elliptic operators in the case of real analytic coefficients. Spaces
of Gevrey type given by the iterates of a differential operator are called generalized
Gevrey classes and were used by Langenbruch [16–19] for different purposes.

More recently, Juan-Huguet [9] extended the results of Komatsu [11], Newberger
and Zielezny [23] and Métivier [21] to the setting of non-quasianalytic classes in the
sense of Braun, Meise and Taylor [6] for operators with constant coefficients. In [9],
Juan-Huguet introduced the generalized spaces of ultradifferentiable functions E P∗ (�)

on an open subset� ofRn for a fixed linear partial differential operator P with constant
coefficients, and proved that these spaces are complete if and only if P is hypoelliptic.
Moreover, Juan-Huguet showed that, in this case, the spaces are nuclear. Later, the
same author in [10] established a Paley-Wiener theorem for the classes E P∗ (�), again
under the hypothesis of the hypoellipticity of P .

We used in [3] and [2] the results of Juan Huguet to define and characterize a wave
front set for the generalized spaces of ultradifferentiable functions E P∗ (�) when P is
hypoelliptic. In particular, for P elliptic we obtain a microlocal version of the theorem
of Kotake and Narasimhan. In order to remove the assumption on the hypoellipticity
of the operator, we considered in [1] a different setting of ultradifferentiable functions,
following the ideas of [4].

Here, we give a simple proof of the theorem of Kotake–Narasimhan [14, Theorem
1] in the setting of ultradifferentiable functions as introduced by Braun, Meise and
Taylor [6] for quasianalytic or non-quasianalytic weight functions. We will consider
subadditive weight functions, or more generally, weight functions which satisfy con-
dition (α0), that we define later (see for example Petzsche and Vogt [25, p. 19] or
Fernández and Galbis [7, p. 401]). We follow the lines of Komatsu [13].

Let us recall from [6] the definitions of weight functions ω and of the spaces of
ultradifferentiable functions of Beurling and Roumieu type:

Definition 1.1 A non-quasianalytic weight function is a continuous increasing func-
tion ω : [0,+∞[→ [0,+∞[ with the following properties:

(α) ∃ L > 0 s.t. ω(2t) ≤ L(ω(t) + 1) ∀t ≥ 0;
(β)

∫ +∞
1

ω(t)
t2

dt < +∞,
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(γ ) log(t) = o(ω(t)) as t → +∞;
(δ) ϕω : t → ω(et ) is convex.

We say that ω is quasianalytic if, instead of (β) it satisfies:

(β ′)
∫ +∞

1

ω(t)

t2
dt = +∞.

We will consider also the following property:

(α0) ∃C > 0, ∃ t0 > 0, ∀ λ ≥ 1, ∀ t ≥ t0 : ω(λt) ≤ λCω(t).

The property (α0) above is used in [25, p. 19] and [7, p. 401], for instance.Moreover,
a weight function ω satisfies (α0) if and only if it is equivalent to a subadditive (or
concave) weight function. In the following, we will assume that our weight functions
satisfy (α0), and there is no loss of generality to consider only subadditive weights.
This condition should be compared with [20, (1.4), p. 3] or [24, (2), p. 1], which is a
similar condition for Denjoy–Carleman classes.

Normally, we will denote ϕω simply by ϕ.
For a weight function ω we define ω : Cn → [0,+∞[ byω(z) := ω(|z|) and again

we denote this function by ω.
The Young conjugate ϕ∗ : [0,+∞[→ [0,+∞[ is defined by

ϕ∗(s) := sup
t≥0

{st − ϕ(t)}.

There is no loss of generality to assume that ω vanishes on [0, 1]. Then ϕ∗ has only
non-negative values, it is convex, ϕ∗(t)/t is increasing and tends to ∞ as t → ∞,
and ϕ∗∗ = ϕ.

Example 1.2 The following functions are, after a change in some interval [0, M],
examples of weight functions:

(i) ω(t) = td for 0 < d < 1.
(ii) ω(t) = (log(1 + t))s , s > 1.
(iii) ω(t) = t (log(e + t))−β , β > 1.
(iv) ω(t) = exp(β(log(1 + t))α), 0 < α < 1.

In what follows, � denotes an arbitrary subset of Rn and K ⊂⊂ � means that K is a
compact subset in �.

Definition 1.3 Let ω be a weight function. For a compact subset K in R
n which

coincides with the closure of its interior and λ > 0, we define the seminorm

pK ,λ( f ) := sup
α∈Nn

0

sup
x∈K

∣
∣
∣ f (α)(x)

∣
∣
∣ exp

(

−λϕ∗
( |α|

λ

))

,

where N0 := N ∪ {0}, and set

Eλ
ω(K ) := {

f ∈ C∞(K ) : pK ,λ( f ) < ∞}
,

which is a Banach space endowed with the pK ,λ(·)-topology.
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For an open subset � inRn , the class of ω-ultradifferentiable functions of Beurling
type is defined by

E(ω)(�) := {
f ∈ C∞(�) : pK ,λ( f ) < ∞, for every K ⊂⊂ � and every λ > 0

}
.

The topology of this space is

E(ω)(�) = proj
←−

K⊂⊂�

proj
←−
λ>0

Eλ
ω(K ),

and one can show that E(ω)(�) is a Fréchet space.
For an open subset� inRn , the class of ω-ultradifferentiable functions of Roumieu

type is defined by:

E{ω}(�) := {
f ∈ C∞(�) : ∀K ⊂⊂ � ∃λ > 0 such that pK ,λ( f ) < ∞}

.

Its topology is the following

E{ω}(�) = proj
←−

K⊂⊂�

ind−→
m∈N

E
1
m
ω (K ).

This is a complete PLS-space, that is, a complete space which is a projective limit of
LB-spaces. Moreover, E{ω}(�) is also a nuclear and reflexive locally convex space. In
particular, E{ω}(�) is an ultrabornological (hence barrelled and bornological) space.

The elements of E(ω)(�) (resp. E{ω}(�)) are called ultradifferentiable functions of
Beurling type (resp. Roumieu type) in �.

In the case that ω(t) := td (0 < d < 1), the corresponding Roumieu class is the
Gevrey class with exponent 1/d. In the limit case d = 1, the corresponding Roumieu
class E{ω}(�) is the space of real analytic functions on � whereas the Beurling class
E(ω)(R

n) gives the entire functions. Observe that Gevrey weights satisfy (α0).
Given a polynomial P ∈ C[z1, . . . , zn] of degree m, P(z) = ∑

|α|≤m aαzα, the
partial differential operator P(D) is defined as P(D) = ∑

|α|≤m aαDα , where D =
1
i ∂. Following [9], we consider smooth functions in an open set � such that there
exists C > 0 verifying for each j ∈ N0 := N ∪ {0},

‖P j (D) f ‖L2(K ) ≤ C exp

(

λϕ∗( jm
λ

)

)

,

where K is a compact subset in �, ‖ · ‖L2(K ) denotes the L2-norm on K and P j (D)

is the j-th iterate of the partial differential operator P(D) of order m, i.e.,

P j (D) = P(D) ◦ · · · ◦ P(D)
︸ ︷︷ ︸

j

.

If j = 0, then we set P0(D) f = f.
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The spaces of ultradifferentiable functions with respect to the successive iterates of
P are defined as follows.

Let ω be a weight function. Given a polynomial P , an open set � of Rn , a compact
subset K ⊂⊂ � and λ > 0, we define the seminorm

‖ f ‖K ,λ := sup
j∈N0

‖P j (D) f ‖2,K exp

(

−λϕ∗( jm
λ

)

)

(1.1)

and set

Eλ
P,ω(K ) = {

f ∈ C∞(K ) : ‖ f ‖K ,λ < +∞}
.

It is a normed space endowed with the ‖ · ‖K ,λ-norm.
The space of ultradifferentiable functions of Beurling type with respect to the iter-

ates of P is:

E P
(ω)(�) = {

f ∈ C∞(�) : ‖ f ‖K ,λ < +∞ for each K ⊂⊂ � and λ > 0
}
,

endowed with the topology given by

E P
(ω)(�) := proj

←−
K⊂⊂�

proj
←−
λ>0

Eλ
P,ω(K ).

If {Kn}n∈N is a compact exhaustion of � we have

E P
(ω)(�) = proj

←−
n∈N

proj
←−
k∈N

Ek
P,ω(Kn) = proj

←−
n∈N

En
P,ω(Kn).

This is a metrizable locally convex topology defined by the fundamental system of
seminorms

{‖ · ‖Kn ,n
}
n∈N.

The space of ultradifferentiable functions of Roumieu type with respect to the iter-
ates of P is defined by:

E P{ω}(�) = {
f ∈ C∞(�) : ∀K ⊂⊂ � ∃λ > 0 such that ‖ f ‖K ,λ < +∞}

.

Its topology is defined by

E P{ω}(�) := proj
←−

K⊂⊂�

ind−→
λ>0

Eλ
P,ω(K ).

In the following, ∗ will denote either {ω} or (ω).
The inclusion map E∗(�) ↪→ E P∗ (�) is continuous (see [9, Theorem 4.1]). The

space E P∗ (�) is complete if and only if P is hypoelliptic (see [9, Theorem 3.3]).
Moreover, under a mild condition onω introduced by Bonet et al. [5, 16 Corollary (3)],
E P∗ (�) coincides with the class of ultradifferentiable functions E∗(�) if and only if P
is elliptic (see [9, Theorem 4.12]).
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Now, let P(x, D) = ∑
|α|≤m aα(x)Dα be a linear partial differential operator of

order m with smooth coefficients in an open subset � ⊆ R
n , i.e. aα ∈ C∞(�) for all

multi-index α ∈ N
n
0 with |α| ≤ m. We consider the q-th iterates Pq = P ◦ · · · ◦ P of

P := P(x, D) and define the corresponding spaces of iterates as above:

E P
(ω)(�) := { u ∈ C∞(�) : ∀K ⊂⊂ �∀k ∈ N ∃ck > 0 s.t.

‖Pqu‖L2(K ) ≤ cke
kϕ∗(qm/k) ∀q ∈ N0} (1.2)

for the Beurling case, and

E P{ω}(�) := { u ∈ C∞(�) : ∀K ⊂⊂ � ∃k ∈ N, c > 0 s.t.

‖Pqu‖L2(K ) ≤ ce
1
k ϕ∗(qmk) ∀q ∈ N0} (1.3)

for the Roumieu case. We generalize some results of Juan–Huguet [9] for operators
with variable coefficients in the following way. First, we state our main result in the
Roumieu case:

Theorem 1.4 Let ω be a subadditive weight function, � ⊆ R
n a domain, i.e. open

and connected, and P(x, D) a linear partial differential operator of order m with
coefficients in E{ω}(�). Then:

(i) E{ω}(�) ⊆ E P{ω}(�);

(ii) if P(x, D) is elliptic, then E{ω}(�) = E P{ω}(�).

In the Beurling case we lose some regularity; compare to Oldrich [24, Teorema 1]:

Theorem 1.5 Letω be a subadditive weight function,� ⊆ R
n a domain and P(x, D)

a linear partial differential operator of order m with coefficients in E(ω)(�). Then:

(i) E(ω)(�) ⊆ E P
(ω)(�);

(ii) if P(x, D) is elliptic, then E P
(ω)(�) ⊆ E(σ )(�) for every subadditive weight

function σ(t) = o(ω(t)) as t → +∞.

Theorem 1.4 is the generalization to the class of ultradifferentiable functions
E{ω}(�) of the theorem of Kotake–Narasimhan for an elliptic linear partial differential
operator P(x, D) with coefficients in the same class E{ω}(�). We observe that the
ellipticity of P is not needed for the inclusion E{ω}(�) ⊆ E P{ω}(�). However, we show

in Example 3.1 that the ellipticity is necessary for the equality E{ω}(�) = E P{ω}(�) for
a large family of weights ω. We use the example of Metivier [21, p. 831] to show that
for suitable weight functions, which are not of Gevrey type in general, indeed weights
which are between two given concrete Gevrey weights, statement (ii) in Theorems 1.4
and 1.5 fails if P is not elliptic. Finally, we remark that there is no restriction to assume
that the weightω is quasianalytic, i.e. satisfies condition (β ′) and not (β), in Theorems
1.4 and 1.5. However, in Example 3.1 the weights are taken to be non-quasianalytic.
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2 Preliminary results

In order to prove Theorems 1.4 and 1.5 we collect in this section some preliminary
results. First of all, we shall prove some properties of the Young conjugate function
ϕ∗ defined in Sect. 1:

Proposition 2.1 Letω be a subadditiveweight function and define, for j ∈ N0,λ > 0,

a j,λ := eλϕ∗( j/λ)

j ! .

Then the following properties are satisfied:

(a) a j,λ · ah,λ ≤ a j+h,λ ∀ j, h ∈ N0, λ > 0;
(b) a j,λ ≤ a j+1,λ ∀ j ∈ N0, λ > 0;
(c) λ → a j,λ is decreasing for all j ∈ N0;
(d) a j+h,λ ≤ a j,λ/2 · ah,λ/2 ∀ j, h ∈ N0, λ > 0;
(e) for every ρ, λ > 0 there exists λ′, Dρ,λ > 0 such that

ρ j eλϕ∗( j/λ) ≤ Dρ,λe
λ′ϕ∗( j/λ′) ∀ j ∈ N0,

with Dρ,λ := exp{λ[log ρ + 1]}, where [log ρ + 1] is the integer part of log ρ + 1;
(f) for every j, h, r ∈ N0 with 0 ≤ h ≤ j , and for all λ > 0:

j !
h!a j−h,λ ≤ e

λϕ∗
(

j+r
λ

)

e
λϕ∗

(
h+r
λ

) ;

(g) for every j, h, r ∈ N0, λ > 0:

e
λϕ∗

(
j
λ

)

e
λϕ∗

(
r+h
λ

)

≤ e
λ
2 ϕ∗

(
j+h
λ/2

)

e
λ
2 ϕ∗

(
r

λ/2

)

.

(h) for every λ > 0 and q, r ∈ N0 with q ≥ r we have that

e
λϕ∗

(
q+1
λ

)

eλϕ∗( q
λ )

≥ e
λϕ∗

(
r+1
λ

)

eλϕ∗( r
λ )

.

Proof (a) has been proved in Lema 3.2.3 of [8].
(b) follows from (a) since a1,λ = eλϕ∗(1/λ) ≥ 1.
(c) follows from the fact that ϕ∗(s)/s is increasing (cf. [6]).
(d) follows from the convexity of ϕ∗:

a j+h,λ = e
λϕ∗

(
j+h
λ

)

( j + h)! ≤ j !h!
( j + h)!

e
λ
2 ϕ∗

(
2 j
λ

)

j !
e

λ
2 ϕ∗

(
2h
λ

)

h!
= 1
( j+h

h

)a j, λ
2
ah, λ

2
≤ a j, λ

2
ah, λ

2
.
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Point (e) follows from the next property of [8, Prop. 0.1.5(2) (a)]: for each y ≥ 0,
n ∈ N, and λ > 0,

λLnϕ∗ ( y

λLn

)
+ ny ≤ λϕ∗ ( y

λ

)
+ λ

n∑

h=1

Lh, (2.1)

where L > 0 is such thatω(et) ≤ L(1+ω(t)) for all t ≥ 0 (in our caseω is increasing
and subadditive, so that we can take L = 3). Indeed, from (2.1) with y = j Ln and
dividing by Ln :

λϕ∗
(
j

λ

)

+ nj ≤ λ

Ln
ϕ∗
(

j

λ/Ln

)

+ λ

n∑

h=1

Lh−n

and therefore

ρ j e
λϕ∗

(
j
λ

)

≤ e
λ
Ln ϕ∗

(
j

λ/Ln

)
+λn−nj+ j log ρ

.

Choosing nρ := [log ρ + 1] ∈ N so that −nρ + log ρ ≤ 0, for λ′ = λ/Lnρ we thus
have that

ρ j e
λϕ∗

(
j
λ

)

≤ eλnρ e
λ′ϕ∗

(
j

λ′
)

(2.2)

so that (e) is proved.
In order to prove ( f ), let us first remark that

j !
h!a j−h,λ ≤ ( j + r)!

(h + r)!a j−h,λ (2.3)

since h ≤ j .
From (2.3) we have that

j !
h!a j−h,λ ≤ ( j + r)!

e
λϕ∗

(
j+r
λ

) · e
λϕ∗

(
h+r
λ

)

(h + r)! · e
λϕ∗

(
j+r
λ

)

e
λϕ∗

(
h+r
λ

) a j−h,λ

= ah+r,λ a j−h,λ

a j+r,λ
· e

λϕ∗
(

j+r
λ

)

e
λϕ∗

(
h+r
λ

) ≤ e
λϕ∗

(
j+r
λ

)

e
λϕ∗

(
h+r
λ

)

by the already proved point (a). Therefore ( f ) holds true.
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Property (g) follows from the convexity of ϕ∗. Indeed, from (a)

e
λϕ∗

(
j
λ

)

e
λϕ∗

(
r+h
λ

)

= a j,λ ar+h,λ j !(r + h)!
≤ a j+r+h,λ j !(r + h)! = e

λϕ∗
(
2 j+r+h

2λ

)
j !(r + h)!

( j + r + h)!
≤ e

λ
2 ϕ∗

(
j+h
λ/2

)
+ λ

2 ϕ∗
(

r
λ/2

)
1

( j+r+h
j

)

≤ e
λ
2 ϕ∗

(
j+h
λ/2

)

e
λ
2 ϕ∗

(
r

λ/2

)

.

Let us finally prove (h). We first remark that, by the convexity of ϕ∗,

2ϕ∗
(
r + 1

λ

)

= 2ϕ∗
(

r

2λ
+ r + 2

2λ

)

≤ ϕ∗ ( r
λ

)
+ ϕ∗

(
r + 2

λ

)

i.e.

ϕ∗
(
r + 1

λ

)

− ϕ∗ ( r
λ

)
≤ ϕ∗

(
r + 2

λ

)

− ϕ∗
(
r + 1

λ

)

.

Arguing recursively we get

ϕ∗
(
r + 1

λ

)

− ϕ∗ ( r
λ

)
≤ ϕ∗

(
q + 1

λ

)

− ϕ∗ (q
λ

)
(2.4)

for every q ∈ N with q ≥ r .
Clearly (2.4) implies (h) and the proof is complete. ��

Remark 2.2 Note that we did not use the subadditivity of the weight ω to prove points
(c), (d), (e), (h) of Proposition 2.1.

For the proof of Theorem 1.4 we shall follow the ideas of [13], so we define, for
a domain � ⊆ R

n , q ∈ N0, δ > 0 and f ∈ C∞(G), with G a relatively compact
subdomain of �,

‖∇q f ‖δ =
∑

|α|=q

‖Dα f ‖L2(Gδ)
,

where

Gδ := {x ∈ G : dist(x, ∂G) > δ}

and ‖ · ‖L2(Gδ)
= 0 if Gδ = ∅.
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If P = P(x, D) is an elliptic linear partial differential operator of order m with
C∞ coefficients, then the following a priori estimates, for δ, σ > 0 and 0 ≤ r ≤ m,
have been proved in [12]:

‖∇m f ‖δ+σ ≤ C(‖P f ‖σ + δ−m‖ f ‖σ ) (2.5)

‖∇m−r f ‖δ+σ ≤ Cεr (‖∇m f ‖σ + (δ−m + ε−m)‖ f ‖σ ), (2.6)

for arbitrary ε > 0, where the constant C > 0 depends only on the operator P and the
set G.

Then we define the semi-norm N pm(u) by

N pm(u) := sup
0<δ≤1

δ pm‖∇ pmu‖δ.

The following inequality holds:

Proposition 2.3 Let � ⊆ R
n be a domain and P(x, D) an elliptic linear partial

differential operator of order m with coefficients in E{ω}(�). For u ∈ C∞(�), there
exist k ∈ N and a positive constant C0 such that

N pm(u) ≤ C0

⎧
⎨

⎩
N (p−1)m(Pu) +

p−1∑

q=0

e
1
k ϕ∗(pmk)

e
1
k ϕ∗(qmk)

Nqm(u)

⎫
⎬

⎭
. (2.7)

for every p ∈ N.

Proof By definition of the semi-norm N (p+1)m(u) and by (2.5) we have

N (p+1)m(u) = sup
(p+2)δ≤1

((p + 2)δ)(p+1)m‖∇(p+1)mu‖(p+2)δ

≤ sup
(p+2)δ≤1

(
p + 2

p

)(p+1)m

(pδ)(p+1)mC(‖P∇ pmu‖(p+1)δ

+δ−m‖∇ pmu‖(p+1)δ)

≤ 9mC sup
(p+2)δ≤1

{(pδ)(p+1)m‖P∇ pmu‖(p+1)δ

+pm(pδ)pm‖∇ pmu‖(p+1)δ}, (2.8)

since
(
p+2
p

)p+1 ≤ 9.
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We set P [r ] := ∑
|α|=r supG |Dα

x P|. Since ‖ · ‖(p+1)δ ≤ ‖ · ‖pδ and pm(pm)! ≤
((p + 1)m)!, from (2.8) and Leibniz’ formula we get:

N (p+1)m(u) ≤ 9mC sup
(p+2)δ≤1

{

(pδ)(p+1)m
[

‖∇ pm Pu‖(p+1)δ

+
pm∑

r=1

(
pm

r

)

‖P [r ]∇ pm−r u‖(p+1)δ

]

+ pm(pδ)pm‖∇ pmu‖pδ

}

≤ 9mC sup
(p+2)δ≤1

{(
p

p + 1

)pm

[(p + 1)δ]pm

×
(

p

p + 2

)m

[(p + 2)δ]m‖∇ pm Pu‖(p+1)δ

+ (pδ)(p+1)m
pm∑

r=1

(
pm

r

)

‖P [r ]∇ pm−r u‖(p+1)δ

+ ((p + 1)m)!
(pm)! N pm(u)

}

≤ 9mC

{

N pm(Pu)

+ sup
(p+2)δ≤1

(pδ)(p+1)m
pm∑

r=1

(
pm

r

)

‖P [r ]∇ pm−r u‖(p+1)δ

+ ((p + 1)m)!
(pm)! N pm(u)

}

. (2.9)

Taking into account that the coefficients of P(x, D) are in E{ω}(�), we can write
the following estimates, for (p + 2)δ ≤ 1 and for some k ∈ N and c > 0:

pm∑

r=1

(
pm

r

)

‖P [r ]∇ pm−r u‖(p+1)δ ≤ c
pm∑

r=1

(
pm

r

)

e
1
k ϕ∗(rk)

m∑

s=0

‖∇ pm+s−r u‖(p+1)δ

≤ c
pm∑

r=1

(pm)!
(pm − r)!ar, 1k

m∑

s=0

‖∇ pm+s−r u‖(p+1)δ. (2.10)

By the change of indexes r = (p − q)m + t we obtain that (cf. also [13])

pm∑

r=1

(
pm

r

)

‖P [r ]∇ pm−r u‖(p+1)δ ≤ c(m + 1)
p∑

q=1

m∑

t=1

(pm)!
(qm − t)!a(p−q)m+t, 1k

×‖∇(q+1)m−t u‖(p+1)δ

+ cm
m∑

t=1

(pm)!apm, 1k
‖∇m−t u‖(p+1)δ



308 C. Boiti, D. Jornet

= c(m + 1)
m∑

t=1

(pm)!
(pm − t)!at, 1k

×‖∇(p+1)m−t u‖(p+1)δ

+ c(m + 1)
p−1∑

q=1

m∑

t=1

(pm)!
(qm − t)!a(p−q)m+t, 1k

×‖∇(q+1)m−t u‖(p+1)δ

+ cm
m∑

t=1

(pm)!apm, 1k
‖∇m−t u‖(p+1)δ. (2.11)

From (2.11), by properties (b) and (d) of Proposition 2.1 we get:
pm∑

r=1

(
pm

r

)

‖P [r ]∇ pm−r u‖(p+1)δ ≤ S1 + S2 + S3 (2.12)

with

S1 := c(m + 1)
m∑

t=1

(pm)!
(pm − t)!am, 1k

‖∇(p+1)m−t u‖(p+1)δ

S2 := cam, 1
2k

(m + 1)
p−1∑

q=1

m∑

t=1

(pm)!
(qm − t)!a(p−q)m, 1

2k
‖∇(q+1)m−t u‖(p+1)δ

S3 := cm
m∑

t=1

(pm)!apm, 1k
‖∇m−t u‖(p+1)δ.

By property (c) of Proposition 2.1 and by (2.6), setting

C2 := 9mcC(m + 1)am, 1
2k

,

we have the estimate

9mC(pδ)(p+1)mS1 ≤ C2

m∑

t=1

(pm)!
(pm − t)! (pδ)

(p+1)m‖∇(p+1)m−t u‖(p+1)δ

≤ C2C
m∑

t=1

(pm)t (pδ)(p+1)mεt (‖∇(p+1)mu‖pδ

+ (δ−m + ε−m)‖∇ pmu‖pδ)

= C2C
m∑

t=1

(pm)tεt
{
(pδ)(p+1)m‖∇(p+1)mu‖pδ

+(pm + (pδ)mε−m)(pδ)pm‖∇ pmu‖pδ
}
,

since (pm)! ≤ (pm − t)!(pm)t .



A simple proof of Kotake–Narasimhan theorem in some classes. . . 309

Therefore, for ε = (pm)−1(2mCC2)
−1/t and (p + 2)δ ≤ 1:

9mC(pδ)(p+1)mS1 ≤
m∑

t=1

1

2m

{
N (p+1)m(u)

+
(
pm +

( p

p + 2

)m[(p + 2)δ]m

×(pm)m(2mCC2)
m/t
)
N pm(u)

}

≤
m∑

t=1

1

2m

{
N (p+1)m(u)

+ (
pm + (pm)m(2mCC2)

m/t) N pm(u)
}

≤ 1

2
N (p+1)m(u) + C3 p

mN pm(u)

≤ 1

2
N (p+1)m(u) + C3

((p + 1)m)!
(pm)! N pm(u) (2.13)

for some C3 > 0, because of pm(pm)! ≤ ((p + 1)m)!.
In order to estimate S2, let us first prove the following estimate, for 1 ≤ q ≤ p−1,

(p + 1)δ = (q + 1)δ′ and (p + 2)δ ≤ 1:

(pδ)(p+1)m ≤ (2e)m(qδ′)(q+1)m . (2.14)

Indeed,

(pδ)(p+1)m = p(p+1)mδ(p+1)m

q(q+1)m
(
p+1
q+1

)(q+1)m
δ(q+1)m

· (qδ′)(q+1)m

=
(

p

p + 1

q + 1

q

)(q+1)m

(pδ)(p−q)m(qδ′)(q+1)m

≤
(

1 + 1

q

)qm (

1 + 1

q

)m ( p

p + 2

)(p−q)m

×[(p + 2)δ](p−q)m(qδ′)(q+1)m

≤ em2m(qδ′)(q+1)m .

Therefore (2.14) is proved and, for 1 ≤ q ≤ p − 1, (p + 1)δ = (q + 1)δ′ and
(p + 2)δ ≤ 1:

9mC(pδ)(p+1)mS2

≤ C2

p−1∑

q=1

m∑

t=1

(pm)!
(qm − t)!a(p−q)m, 1

2k
(pδ)(p+1)m‖∇(q+1)m−t u‖(p+1)δ
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≤ (2e)m
p−1∑

q=1

(pm)!
(qm)! a(p−q)m, 1

2k

×C2

m∑

t=1

(qm)!
(qm − t)! (qδ′)(q+1)m‖∇(q+1)m−t u‖(q+1)δ′ .

By (2.13) with q and δ′ instead of p and δ respectively, and because of properties
( f ) and (b) of Proposition 2.1 we finally get the following estimate for S2:

9mC(pδ)(p+1)mS2

≤ D
p−1∑

q=1

(pm)!
(qm)! a(p−q)m, 1

2k

{
1

2
N (q+1)m(u) + C ′

3
((q + 1)m)!

(qm)! Nqm(u)

}

≤ D′
p−1∑

q=1

(
e

1
2k ϕ∗(2(p+1)mk)

e
1
2k ϕ∗(2(q+1)mk)

N (q+1)m + e
1
2k ϕ∗(2(p+1)mk)

e
1
2k ϕ∗(2qmk)

Nqm(u)

)

≤ 2D′
p−1∑

q=1

e
1
2k ϕ∗(2(p+1)mk)

e
1
2k ϕ∗(2qmk)

Nqm(u) + D′ e
1
2k ϕ∗(2(p+1)mk)

e
1
2k ϕ∗(2pmk)

N pm(u) (2.15)

for some C ′
3, D, D′ > 0.

Let us now estimate S3. By (2.6) with ε = 1 and because of properties (e), ( f )
(with h = 0) and (b) of Proposition 2.1, for (p + 2)δ ≤ 1:

9mC(pδ)(p+1)mS3

≤ C2

m∑

t=1

(pm)!apm, 1k
(pδ)(p+1)m‖∇m−t u‖(p+1)δ

≤ CC2

m∑

t=1

(pm)!(pδ)pmapm, 1k

(
(pδ)m‖∇mu‖pδ + pm(1 + δm)‖u‖pδ

)

≤ CC2

m∑

t=1

(pm)!apm, 1k

(
Nm(u) + 2pmN 0(u)

)

≤ CC2m(pm)!apm, 1k
Nm(u) + 2CC2m((p + 1)m)!apm, 1k

N 0(u)

≤ CC2m
e
1
k ϕ∗((p+1)mk)

e
1
k ϕ∗(mk)

Nm(u) + 2CC2m((p + 1)m)!a(p+1)m, 1k
N 0(u)

≤ D̃e
1
k ϕ∗((p+1)mk)

(
Nm(u) + N 0(u)

)
, (2.16)

for some D̃ > 0.
Substituting (2.13), (2.15) and (2.16) in (2.12) and then in (2.9) and applying (b)

of Proposition 2.1, we finally get:
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N (p+1)m(u) ≤ C5N
pm(Pu) + 1

2
N (p+1)m(u) + C5

p∑

q=0

e
1
k′ ϕ

∗((p+1)mk′)

e
1
k′ ϕ

∗(qmk′)
Nqm(u),

for some k′ ∈ N and C5 > 0, concluding the proof. ��
We shall also need, in the following, the next result:

Proposition 2.4 Let P(x, D) be an elliptic linear partial differential operator of order
m with coefficients inE{ω}(�). For u ∈ C∞(�), there are k ∈ N and a positive constant
C1 > 0 such that

N pm(u) ≤ C p
1

p∑

q=0

(
p

q

)
e
1
k ϕ∗(pmk)

e
1
k ϕ∗(qmk)

N 0(Pqu) (2.17)

for every p ∈ N0.

Proof Let us proceed by induction on p. For p = 0 it’s trivial. Let us assume (2.17)
to be true for 0, 1, . . . , p − 1 and let us prove it for p.

Applying (2.7) for q ∈ {1, . . . , p − 1} instead of p, we have that

Nm(u) ≤ C0

{
N 0(Pu) + e

1
k ϕ∗(mk)N 0(u)

}

...

N (p−1)m(u) ≤ C0

⎧
⎨

⎩
N (p−2)m(Pu) +

p−2∑

q=0

e
1
k ϕ∗((p−1)mk)

e
1
k ϕ∗(qmk)

Nqm(u)

⎫
⎬

⎭
.

Substituting in (2.7) and taking into account (b) of Proposition 2.1:

N pm(u)

≤ C0

{

N (p−1)m(Pu) + e
1
k ϕ∗(pmk)

e
1
k ϕ∗((p−1)mk)

N (p−1)m(u) + · · · + e
1
k ϕ∗(pmk)N 0(u)

}

≤ C0

{

N (p−1)m(Pu) + e
1
k ϕ∗(pmk)

e
1
k ϕ∗((p−1)mk)

C0

[

N (p−2)m(Pu)

+ e
1
k ϕ∗((p−1)mk)

e
1
k ϕ∗((p−2)mk)

N (p−2)m(u) + · · · + e
1
k ϕ∗((p−1)mk)N 0(u)

]

+ · · · + e
1
k ϕ∗(pmk)N 0(u)

}

≤ C0N
(p−1)m(Pu) + C2

0
e
1
k ϕ∗(pmk)

e
1
k ϕ∗((p−1)mk)

N (p−2)m(Pu)

+C2
0

e
1
k ϕ∗(pmk)

e
1
k ϕ∗((p−2)mk)

N (p−2)m(u) + · · · + C0(C0 + 1)e
1
k ϕ∗(pmk)N 0(u)
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...

≤
p−1∑

q=0

e
1
k ϕ∗(pmk)

e
1
k ϕ∗((q+1)mk)

C p−q
0 Nqm(Pu) + (C0 + 1)pe

1
k ϕ∗(pmk)N 0(u)

≤
p−1∑

q=0

e
1
k ϕ∗(pmk)

e
1
k ϕ∗((q+1)mk)

C p−q
1 Nqm(Pu) + C p

1 e
1
k ϕ∗(pmk)N 0(u)

with C1 := C0 + 1.
Therefore, by the induction assumption and because of property (h) of Proposi-

tion 2.1,

N pm(u) ≤
p−1∑

q=0

e
1
k ϕ∗(pmk)

e
1
k ϕ∗((q+1)mk)

C p−q
1 Cq

1

q∑

r=0

(
q

r

)
e
1
k ϕ∗(qmk)

e
1
k ϕ∗(rmk)

N 0(Pr Pu)

+C p
1 e

1
k ϕ∗(pmk)N 0(u)

≤ C p
1

p−1∑

r=0

p−1∑

q=r

e
1
k ϕ∗(pmk)

e
1
k ϕ∗((r+1)mk)

(
q

r

)

N 0(Pr+1u)

+C p
1 e

1
k ϕ∗(pmk)N 0(u). (2.18)

Let us now remark that
∑p−1

q=r

(q
r

) = ( p
r+1

)
and hence substituting in (2.18), we finally

have:

N pm(u) ≤ C p
1

p−1∑

r=0

(
p

r + 1

)
e
1
k ϕ∗(pmk)

e
1
k ϕ∗((r+1)mk)

N 0(Pr+1u) + C p
1 e

1
k ϕ∗(pmk)N 0(u)

= C p
1

p∑

r ′=0

(
p

r ′

)
e
1
k ϕ∗(pmk)

e
1
k ϕ∗(r ′mk)

N 0(Pr ′
u),

so that (2.17) is valid with C1 = 1 + C0. ��

3 Proof of Theorems 1.4 and 1.5

We can now proceed with the

Proof of Theorem 1.4 Let us first prove that if P(x, D) is elliptic then E P{ω}(�) ⊆
E{ω}(�). Let u ∈ C∞(�) satisfy (1.3) for every K ⊂⊂ �. In particular it satisfies
(1.3) for every relatively compact subdomain G ⊂ �. From Proposition 2.4, for every
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fixed δ > 0 and for all p ∈ N0

‖∇ pmu‖δ ≤ δ−pmN pm(u) ≤ δ−pmC p
1

p∑

q=0

(
p

q

)
e
1
k ϕ∗(pmk)

e
1
k ϕ∗(qmk)

N 0(Pqu)

≤ δ−pmC p
1

p∑

q=0

(
p

q

)
e
1
k ϕ∗(pmk)

e
1
k ϕ∗(qmk)

‖Pqu‖L2(G)

≤ δ−pmC p
1

p∑

q=0

(
p

q

)
e
1
k ϕ∗(pmk)

e
1
k ϕ∗(qmk)

ce
1
k ϕ∗(qmk)

≤ c(δ−1C1/m
1 21/m)pme

1
k ϕ∗(pmk)

≤ cDδ e
1
k′ ϕ

∗(pmk′) = C̃e
1
k′ ϕ

∗(pmk′) (3.1)

for some k′ ∈ N, Dδ , C̃ > 0, because of (e) of Proposition 2.1.
By (2.6) (with σ = δ, ε = 1, f = ∇ pmu), and by (3.1), for all 1 ≤ t ≤ m − 1,

t ′ = m − t , q = pm + t we have, by the convexity of ϕ∗:

‖∇qu‖2δ = ‖∇ pm+t u‖2δ = ‖∇m−t ′∇ pmu‖2δ
≤ C

(
‖∇(p+1)mu‖δ + (δ−m + 1)‖∇ pmu‖δ

)

≤ CC̃
[
e

1
k′ ϕ

∗((p+1)mk′) + (δ−m + 1)e
1
k′ ϕ

∗(pmk′)
]

≤ CC̃(2 + δ−m)e
1
k′ ϕ

∗(((p+1)m+t)k′)

≤ CC̃(2 + δ−m)e
1
2k′ ϕ

∗(2(pm+t)k′)e
1
2k′ ϕ

∗(2mk′)

= Cδe
1
k′′ ϕ

∗(qk′′) (3.2)

for Cδ = CC̃(2 + δ−m)e
1
2k′ ϕ

∗(2mk′) and k′′ = 2k′.
From (3.1) and (3.2), and by Sobolev inequality (cf. [15, Lemma 2.5]), we thus

have that u ∈ E{ω}(G2δ) for every fixed δ > 0 and hence u ∈ E{ω}(�).
Let us now show (i). Let u ∈ E{ω}(�) and prove by induction on p that there exists

k ∈ N such that for every q ∈ N0 there is Cq > 0 such that for every K ⊂⊂ �

‖∇q P pu‖L2(K ) ≤ Cqe
1
k ϕ∗((q+pm)k) ∀p, q ∈ N0. (3.3)

Indeed, for p = 0 (3.3) is valid because u ∈ E{ω}(�). Let us assume (3.3) to be
true for p, and all q ∈ N0, and prove it for p + 1:

‖∇q P p+1u‖L2(K ) = ‖∇q [P(P pu)]‖L2(K ) =
q∑

r=0

(
q

r

)

‖P [r ]∇q−r P pu‖L2(K )

≤
q∑

r=0

(
q

r

)

ce
1
k ϕ∗(rk)

m∑

s=0

‖∇q+s−r (P pu)‖L2(K )
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= c
q∑

r=0

q!
(q − r)!ar, 1k ‖∇

q+m−r (P pu)‖L2(K )

+ c
q∑

r=0

q!
r !(q − r)!e

1
k ϕ∗(rk)

m−1∑

s=0

‖∇q+s−r (P pu)‖L2(K ) (3.4)

for some c > 0 since P(x, D) has coefficients in E{ω}(�). By property (b) of Propo-
sition 2.1 we have that, for 0 ≤ r ≤ q,

q!
(q − r)!ar, 1k ≤ q!

(q − r)!aq, 1k
≤ q!aq, 1k

and hence, substituting in (3.4) and separating the derivatives ∇σ (P pu) for σ ≥ m
and 0 ≤ σ ≤ m − 1:

‖∇q P p+1u‖L2(K ) ≤ c
q∑

r=0

q!
(q − r)!ar, 1k ‖∇

q+m−r (P pu)‖L2(K )

+mc
q∑

r=0

q!
(q − r)!ar, 1k ‖∇

q+m−r (P pu)‖L2(K )

+mcq!aq, 1k

m−1∑

σ=0

‖∇σ P pu‖L2(K )

= (m + 1)c
q∑

r=0

q!
(q − r)!ar, 1k ‖∇

q+m−r (P pu)‖L2(K )

+mcq!aq, 1k

m−1∑

σ=0

‖∇σ (P pu)‖L2(K ).

By the inductive assumption (3.3) and by property (a) of Proposition 2.1 we have
therefore that

‖∇q P p+1u‖L2(K ) ≤ (m + 1)c
q∑

r=0

q!
(q − r)!ar, 1k Cqe

1
k ϕ∗((q+m−r+pm)k)

+mcq!aq, 1k

m−1∑

σ=0

Cqe
1
k ϕ∗((σ+pm)k)

= (m + 1)cCq

[ q∑

r=0

q!
(q − r)! (q + (p + 1)m − r)!ar, 1k aq+(p+1)m−r, 1k

+
m−1∑

σ=0

q!(σ + pm)!aq, 1k
aσ+pm, 1k

]
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≤ (m + 1)cCq

[ q∑

r=0

q!
(q − r)! (q + (p + 1)m − r)!aq+(p+1)m, 1k

+
m−1∑

σ=0

q!(σ + pm)!aq+σ+pm, 1k

]

= (m + 1)cCq

[ q∑

r=0

q!
(q − r)!

(q + (p + 1)m − r)!
(q + (p + 1)m)!

+
m−1∑

σ=0

q!(σ + pm)!
(q + (p + 1)m)!

]

e
1
k ϕ∗((q+(p+1)m)k)

≤ cCq(m + 1)(m + q)e
1
k ϕ∗((q+(p+1)m)k),

since

q!
(q − r)!

(q + (p + 1)m − r)!
(q + (p + 1)m)! =

(q
r

)

(q+(p+1)m
r

) ≤ 1,

and

q!(σ + pm)!
(q + (p + 1)m)! ≤ 1

(q+(p+1)m
q

) ≤ 1.

Therefore (3.3) is proved by induction and, in particular, (1.3) holds true for q = 0.
The proof of Theorem 1.4 is therefore complete. ��
Proof of Theorem 1.5 The proof of (i) is similar to the Roumieu case, Theorem 1.4(i),
for Cq,k and ck instead of Cq and c.

However, since the constant C1 of (2.17) depends on k, we cannot deduce formula
(3.1) from (e) of Proposition 2.1. To prove (i i)we first remark that E{ω}(�) ⊆ E(σ )(�)

for σ(t) = o(ω(t)) as t → ∞ by [6, Prop. 4.7]. Therefore by Theorem 1.4(ii) we have

E P
(ω)(�) ⊆ E P{ω}(�) ⊆ E{ω}(�) ⊆ E(σ )(�)

which concludes the proof in the Beurling case. ��
We conclude proving that ellipticity is necessary in Theorems 1.4(ii) and 1.5(ii):

Example 3.1 Let P(x, D) be a linear partial differential operator with real analytic
coefficients of order m not elliptic in (x0, ξ0) ∈ � × R

n , for a domain � ⊆ R
n and

‖ξ0‖ = 1, i.e.

Pm(x0, ξ0) = 0,

where Pm is the principal part of P . We are going to prove that there exist a function
u and a subadditive weight ω, which is not a Gevrey weight in general and is between
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two givenGevreyweights, and such that u ∈ E P{ω}(�)\E{ω}(�), and that u ∈ E P
(ω)(�)\

E(σ )(�), for some subadditive weight function σ = o(ω). Consequently, the ellipticity
of P is needed for statement (i i) of Theorems 1.4 and 1.5. To construct ω and the
function u we follow [21]: for any fixed s > 1 we choose σ ∈ (1, s) and ε > 0 such
that

0 < ε <
m(s − σ)

2ms − σ
<

1

2
.

Then we take δ > 0 so that B(x0, 2δ) ⊂⊂ � and ϕ ∈ E(t1/σ )(R
n) with suppϕ ⊂

B(0, 2δ). For η = m−ε
ms we finally define, as in [21],

u(x) :=
∫ +∞

1
ϕ
(
ρε(x − x0)

)
e−ρη

eiρ〈x−x0,ξ0〉dρ .

It was proved in [21] that

(Dα
ξ0
u)(x0) = 1

η
�

(
α + 1

η

)

+ o(1), (3.5)

where � is the gamma function, so that u /∈ E{t1/s′ }(U ) in any neighborhood U of x0
for any s′ < 1/η (nor, in particular, for s′ = s), but u ∈ E{tη}(Rn). Moreover, it was
proved in [21] that u ∈ E P

{t1/s }(�).

Let us now consider any subadditive weight function ω(t) such that ω(t) = o(t1/s)
and t1/s

′ = o(ω(t)) for s′ > s > 1. For instance, ω(t) = t1/s/ log t . In general, such
a weight exists by [6, Proposition 1.9].

We have that E(ω)(�) ⊆ E{ω}(�) ⊆ E{t1/s′ }(�) and E{t1/s }(�) ⊆ E(ω)(�) ⊆
E{ω}(�) by [6, Prop. 4.7]. Analogously E P

{t1/s }(�) ⊆ E P
(ω)(�) ⊆ E P{ω}(�), so that

u ∈ E P{ω}(�)\E{ω}(�) and ellipticity is necessary in Theorem 1.4 (ii).

Moreover, if σ(t) := t1/s
′
we clearly have u ∈ E P

(ω)(�)\E(σ )(�). Since σ(t) =
o(ω(t)) as t → ∞, this proves that ellipticity is necessary in Theorem 1.5 (ii).
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