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Abstract We investigate global microlocal properties of localization operators and
Shubin pseudodifferential operators. The microlocal regularity is measured in terms
of a scale of Shubin-type Sobolev spaces. In particular, we prove microlocality and
microellipticity of these operators.
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1 Introduction

The microlocal approach to the study of singularities of a tempered distribution, that
is in terms of some wave front set, may be viewed as the study of a resolution of
singularities in the phase space. Several types ofwave front sets have been investigated,
including those that also encode growth singularities apart from singularities defined
by lack of derivatives.

One of these wave front sets was introduced in [9] and further investigated in [15],
therein called theGaborwave front setWFG(u) of a tempered distribution u. It consists
of phase space directions in which a tempered distribution deviates from being both
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smooth and rapidly decaying, i.e. a Schwartz function. It has been shown that the
Gabor wave front set may be characterized by the lack of rapid decay of the Gabor (or
short-time Fourier) transform in open cones of the phase space. A main application of
the Gabor wave front set concerns propagation of singularities for Schrödinger-type
equations, see e.g. [4,11,13,14,17].

A natural class of operators associated to the short-time Fourier transform is local-
ization operators (also called anti-Wick-quantized operators or Toeplitz operators),
see e.g. [3,6]. These may be interpreted as time-frequency multiplication operators
defined by a symbol.

It is a natural question to study the interplay of the Gabor wave front set and local-
ization operators, and this paper is intended to contribute to this field. Many of the
arising questions may be transferred to questions regarding pseudodifferential opera-
tors. This is usually achieved by exploiting the Weyl–Wick connection, which states
that any localization operator may be written as a Weyl-quantized pseudodifferential
operator with a symbol that is the convolution of the anti-Wick symbolwith theWigner
distribution of the window function.

The Shubin calculus of pseudodifferential operators has been used to prove results
on microlocality and microellipticity of pseudodifferential operators with respect to
the Gabor wave front set [9,15]. Roughly speaking these state that the application of a
time-frequency filter to a given signal does not createmore singularities than originally
present, andfilters out atmost singularities situated at pointswhere its symbol vanishes.

In this paper we study a finer resolution of singularities by replacing the Gabor
wave front set with the notion WFQs (u) ⊆ WFG(u), called the Sobolev–Gabor wave
front set of order s ∈ R, based on the scale of Shubin-type Sobolev spaces Qs . The
rapid decay in open cones in phase space, that negatively defines the Gabor wave front
set, is then replaced by polynomially weighted square integrability in open cones. The
Sobolev–Gabor wave front set was introduced by Nicola and Rodino [13]. It is in fact
a special case of a general modulation space construction where the exponent p = 2
is relaxed to 1 ≤ p ≤ ∞ [4].

While the Sobolev–Gabor wave front set has been used in [13] to study propagation
of singularities for Schrödinger equations, few of its other properties have been inves-
tigated and the present paper is intended to investigate some of its basic features. Our
main results concern microlocality and microellipticity of Shubin pseudodifferential
operators with respect to Sobolev–Gabor wave front sets, of orders that differ by the
order of the operator. Together with

WFG(u) =
⋃

s∈R
WFQs (u) ⊆ T ∗

R
d\0,

(see Proposition 3.6) we recover known microlocal and microelliptic results for the
Gabor wave front set.

The paper is structured as follows. In Sect. 2 we introduce notation and preliminary
results. In Sect. 3 the Sobolev–Gabor wave front set is described and related to the
Gabor wave front set, and several characterizations are investigated. Finally, in Sect. 4
we prove microlocality and microellipticity with respect to the Sobolev–Gabor wave
front set for pseudodifferential and localization operators.
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2 Preliminaries

An open ball of radius r > 0 and center at the origin in Rd is denoted Br , and the unit
sphere in R

d is denoted Sd−1. We write f (x) � g(x) provided there exists C > 0
such that f (x) ≤ Cg(x) for all x in the domain of f and g. The Japanese bracket on
R

d is defined by 〈x〉 = √
1 + |x |2. For it, Peetre’s inequality 〈x + y〉s � 〈x〉s〈y〉|s|,

s ∈ R, is valid.
The Fourier transform on the Schwartz spaceS (Rd) is normalized as

F f (ξ) = f̂ (ξ) =
∫

Rd
f (x)e−i x ·ξ dx, ξ ∈ R

d , f ∈ S (Rd),

and extended to its dual, the tempered distributionsS ′(Rd).
The inner product (·, ·) on L2(Rd) × L2(Rd) is conjugate linear in the second

argument.Wealsouse these notations to denote the (conjugate) linear actionofS ′(Rd)

onS (Rd).
In the following we recall some notions of time-frequency analysis and pseudodif-

ferential operators on R
d . For these topics [6–8,10,12,18] may serve as general

references.
Byψ0 ∈ S (Rd)we denote the L2-normalized standard Gaussian window function

ψ0(y) = π−d/4e− 1
2 |y|2 . Let u ∈ S ′(Rd) and ψ ∈ S (Rd)\0. The short-time Fourier

transform (STFT)1 Vψu of u with respect to the window function ψ , is defined as

Vψu : R
2d 
→ C, z 
→ Vψu(x, ξ) = (u,�(z)ψ),

where �(z) = Mξ Tx , z = (x, ξ) ∈ R
2d , is the time-frequency shift composed of the

translation operator Txψ(y) = ψ(y − x) and the modulation operator Mξψ(y) =
eiy·ξψ(y).

We have Vψu ∈ C∞(R2d) and there exists N ∈ N such that

|Vψu(z)| � 〈z〉N , z ∈ R
2d .

Let ψ ∈ S (Rd) satisfy ‖ψ‖L2 = 1. The Moyal identity

(u, g) = (2π)−d
∫

R2d
Vψu(z) Vψ g(z) dz, g ∈ S (Rd), u ∈ S ′(Rd),

is sometimes written

u = (2π)−d
∫

R2d
Vψu(x, ξ) Mξ Txψ dx dξ, u ∈ S ′(Rd),

1 The STFT is also called Gabor transform in case ψ = ψ0 and is closely connected to the so-called
Bargmann and Fourier–Bros–Iagolnitzer transforms.
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with action understood to take place under the integral. In this form it is an inversion
formula for the STFT. It can also be written (2π)−d V ∗

ψ Vψ = I which is formulated
with the adjoint

V ∗
ψ F =

∫

R2d
F(z)�(z)ψ dz

that satisfies

(V ∗
ψ F, g)L2(Rd ) = (F, Vψ g)L2(R2d ),

for g ∈ S (Rd) and F ∈ (L∞
loc ∩ S ′)(R2d), and extends to F ∈ S ′(R2d).

Let a ∈ C∞(R2d) and m ∈ R. Then a is a Shubin symbol of order m, denoted
a ∈ Gm , if for all α, β ∈ N

d there exists a constant Cαβ > 0 such that

|∂α
x ∂

β
ξ a(x, ξ)| ≤ Cαβ〈(x, ξ)〉m−|α|−|β|, x, ξ ∈ R

d . (2.1)

The Shubin symbols form a Fréchet space where the seminorms are given by the
smallest possible constants in (2.1). We denote

G∞ =
⋃

m∈R
Gm

and obviously
⋂

m∈R
Gm = S (R2d).

For a ∈ Gm a Weyl-quantized pseudodifferential operator is defined by

aw(x, D)u(x) =
∫

R2d
ei(x−y)·ξ a

(
(x + y)/2, ξ

)
u(y) dy d̄ξ, u ∈ S (Rd),

when m < −d, where we use the convention d̄ξ = (2π)−ddξ . The definition extends
to general m ∈ R if the integral is viewed as an oscillatory integral. The operator
aw(x, D) then acts continuously on S (Rd) and extends by duality to a continuous
operator onS ′(Rd). We remark that this quantization procedure may be extended to a
weak formulation which yields continuous operators aw(x, D) : S (Rd) 
→ S ′(Rd),
even if a is only an element of S ′(R2d).

Let (a j ) j≥0 be a sequence of symbols such that a j ∈ Gm j and m j → −∞ as
j → +∞, and set m = max j≥0 m j . Then there exists a symbol a ∈ Gm , unique
modulo S (R2d), such that

a −
n−1∑

j=0

a j ∈ Gm′
n , n ≥ 1, m′

n = max
j≥n

m j .

This is called an asymptotic expansion and denoted a ∼ ∑
j≥0 a j .
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The Weyl calculus enjoys the property aw(x, D)∗ = aw(x, D) where aw(x, D)∗
denotes the formal adjoint. The Weyl product is the symbol product corresponding
to composition of operators, (a#b)w(x, D) = aw(x, D) bw(x, D). It is a bilinear
continuous map

# : Gm × Gn 
→ Gm+n, m, n ∈ R.

We have the following asymptotic expansion for the Weyl product of a ∈ Gm and
b ∈ Gn , m, n ∈ R:

a#b(x, ξ) ∼
∑

α,β≥0

(−1)|β|

α!β! 2−|α+β| Dβ
x ∂α

ξ a(x, ξ) Dα
x ∂

β
ξ b(x, ξ), (2.2)

where D j = −i∂ j , 1 ≤ j ≤ d.
The conical support conesupp(a) of a ∈ D ′(Rn) is defined as the set of all x ∈ R

n\0
such that any conic open set 	x ⊆ R

n\0 containing x satisfies:

supp(a) ∩ 	x is not compact in Rn .

We define the microsupport μ supp(a) of a symbol a ∈ Gm analogously to its
definition for Hörmander symbols [6, p. 118].2 If a ∈ Gm and z0 ∈ T ∗

R
d\0 then

z0 /∈ μ supp(a) provided there exists a conic open set 	 ⊆ T ∗
R

d\0 containing z0
such that

sup
z∈	

〈z〉N
∣∣∂αa(z)

∣∣ < ∞, α ∈ N
2d , N ≥ 0. (2.3)

Clearly we have for a ∈ G∞

μ supp(a) ⊆ conesupp(a).

Let a ∈ Gm . As in [18] we call a hypoelliptic of order m′ ≤ m if it fulfills the
estimates

|a(z)| ≥ C〈z〉m′
, |z| ≥ A,

|∂αa(z)| ≤ Cα|a(z)|〈z〉−|α|, α ∈ N
2d , |z| ≥ A, (2.4)

for suitable C, Cα, A > 0. The space of all such symbols is denoted H Gm,m′
. The

symbols in H Gm,m are called elliptic.
The concept of hypoellipticity is micro-localizable in the following sense:

Definition 2.1 Let a ∈ Gm . A point in the phase space z0 ∈ T ∗
R

d\0 is called non-
hypercharacteristic of order m′ ≤ m for a provided there exists an open conic set
	 ⊆ T ∗

R
d\0 such that z0 ∈ 	 and a fulfils the estimates (2.4) when z ∈ 	.

2 This notion is also called the wave front set of aw(x, D) in [8, Chapter 18.1] and the essential support of
aw(x, D) in [19].
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For a ∈ Gm andm′ ≤ m wedenote the hypercharacteristic set of a by charm′(a) and
define it as the set of all z ∈ T ∗

R
d\0 such that z is not non-hypercharacteristic. Note

that charm′′(a) ⊆ charm′(a) when m′′ ≤ m′. The special case charm(a) = char(a) is
called the characteristic set and was defined in [9].

Remark 2.2 Note that

μ supp(a)
⋃

⎛

⎝
⋂

m′≤m

charm′(a)

⎞

⎠ = T ∗
R

d\0, a ∈ Gm,

and charm′(a) = ∅ ⇔ a ∈ H Gm,m′
.

A class of operators related to pseudodifferential operators is that of localization
operators, also called anti-Wick-quantized operators [3,18]. For a ∈ S ′(R2d) we
define the corresponding localization operator Aa weakly by its action on f, g ∈
S (Rd) via

(Aa f, g) = (2π)−d(aVψ0 f, Vψ0g) = (2π)−d(V ∗
ψ0

aVψ0 f, g),

that is, Aa = (2π)−d V ∗
ψ0

aVψ0 . The next result (cf. [12, Section 1.7.2]) says that Aa can
be written as a Weyl pseudodifferential operator with a symbol that is the convolution
of a and a Gaussian.

Proposition 2.3 (The Weyl–Wick connection) If a ∈ S ′(R2d) then Aa = bw(x, D)

where

b = π−de−|·|2 ∗ a. (2.5)

If a ∈ Gm then b ∈ Gm,

b ∼
∑

α∈N2d

cα∂αa (2.6)

with c0 = 1, charm′(b) ⊆ charm′(a) when m′ ≤ m, and μ supp(b) ⊆ μ supp(a).

Proof The formulas (2.5) and (2.6) are proved in [12, Proposition 1.7.9 and Theo-
rem 1.7.10], respectively (cf. [18, Theorem 24.1]). If a ∈ Gm then b ∈ Gm follows
from (2.5) and Peetre’s inequality.

To prove the statement about the hypercharacteristic set, let m′ ≤ m and suppose
0 �= z0 /∈ charm′(a). Then there exists a conic open set	 ⊆ T ∗

R
d\0 andC, Cα, A > 0

such that z0 ∈ 	 and the estimates (2.4) are valid when z ∈ 	. From the asymptotic
expansion (2.6), picking n ≥ m − m′ + 1, we have

b =
∑

0≤|α|≤n−1

cα∂αa + an (2.7)

where an ∈ Gm−n ⊆ Gm′−1.
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Using (2.4) this gives if z ∈ 	 and |z| ≥ A

|b(z)| =
∣∣∣∣∣∣
a(z) +

∑

0<|α|≤n−1

cα∂αa(z) + an(z)

∣∣∣∣∣∣

≥ |a(z)| −
⎛

⎝
∑

0<|α|≤n−1

|cα| |∂αa(z)| + |an(z)|
⎞

⎠

≥ |a(z)|
(
1 − C1〈z〉−1 − |an(z)|

|a(z)|
)

≥ |a(z)|(1 − C2〈z〉−1) (2.8)

for constants C1, C2 > 0. Possibly augmenting A > 0 we thus have the estimate

|b(z)| ≥ C3〈z〉m′
, z ∈ 	, |z| ≥ A,

for C3 > 0, thus confirming the first of the two estimates corresponding to (2.4) for b
and z ∈ 	.

Concerning the second estimate that must be shown in order to prove that z0 /∈
charm′(b), let β ∈ N

2d . From (2.7) we estimate, again using (2.4), for z ∈ 	 and
|z| ≥ A,

|∂βb(z)| ≤
∑

0≤|α|≤n−1

|cα| |∂α+βa(z)| + |∂βan(z)|

� |a(z)|〈z〉−|β|
(
1 + 〈z〉m−n

|a(z)|
)

� |a(z)|〈z〉−|β| (1 + 〈z〉m−m′−n
)

� |a(z)|〈z〉−|β|. (2.9)

Combining (2.8) and (2.9) yields finally, again after possibly augmenting A > 0,

∣∣∣∣
∂βb(z)

b(z)

∣∣∣∣ � 〈z〉−|β|, z ∈ 	, |z| ≥ A.

This verifies the second estimate of (2.4) for b and z ∈ 	, and thus we have proved
z0 /∈ charm′(b) which completes the proof of charm′(b) ⊆ charm′(a).

Finally, to prove μ supp(b) ⊆ μ supp(a) we let 0 �= z0 /∈ μ supp(a). Thus there
exists a conic open set 	 ⊆ T ∗

R
d\0 containing z0 such that (2.3) holds. Let 	′ ⊆

T ∗
R

d\0 be an open cone such that z0 ∈ 	′ and 	′ ∩ S2d−1 ⊆ 	. Let α ∈ N
2d and

ε > 0. We split the convolution integral as
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πd∂αb(z) =
∫

〈w〉≤ε〈z〉
∂αa(z − w) e−|w|2 dw

︸ ︷︷ ︸
:=I1

+
∫

〈w〉>ε〈z〉
∂αa(z − w) e−|w|2 dw

︸ ︷︷ ︸
:=I2

.

If z ∈ 	′, |z| ≥ 1 and 〈w〉 ≤ ε〈z〉 then z −w ∈ 	 if ε > 0 is chosen sufficiently small.
Using (2.3) this gives for any N ≥ 0

|I1| �
∫

〈w〉≤ε〈z〉
〈z − w〉−N e−|w|2 dw � 〈z〉−N

∫

〈w〉≤ε〈z〉
〈w〉N e−|w|2 dw

� 〈z〉−N , z ∈ 	′, |z| ≥ 1. (2.10)

The remaining integral we estimate for any N ≥ 0 as

|I2| �
∫

〈w〉>ε〈z〉
〈z − w〉m−|α| e−|w|2 dw

� 〈z〉−N
∫

〈w〉>ε〈z〉
〈z〉|m|+N 〈w〉|m| e−|w|2 dw

� 〈z〉−N
∫

〈w〉>ε〈z〉
〈w〉2|m|+N e−|w|2 dw

� 〈z〉−N , z ∈ R
2d . (2.11)

Combining (2.10) and (2.11) shows that z0 /∈ μ supp(b), which proves μ supp(b) ⊆
μ supp(a). ��

The Shubin–Sobolev spaces Qs(Rd), s ∈ R, were introduced by Shubin [18] (cf.
[12]). They can be defined as the modulation space M2,2

s (Rd) [7]

Qs(Rd) = {u ∈ S ′(Rd) : 〈·〉s Vϕu ∈ L2(R2d)}

where ϕ ∈ S (Rd)\0 is fixed, with norm

‖u‖Qs = ∥∥〈·〉s Vϕu
∥∥

L2(R2d )
= ‖u‖M2,2

s
.

Another ϕ ∈ S (Rd)\0 gives an equivalent norm.
According to [1, Lemma 2.3] an equivalent norm can be formulated in terms of

localization operators. To wit, we have

Qs(Rd) = {u ∈ S ′(Rd) : A〈·〉s u ∈ L2(Rd)}

with norm

‖u‖Qs = ∥∥A〈·〉s u
∥∥

L2(Rd )
.
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As a third alternative Qs may be defined by

Qs(Rd) = {u ∈ S ′(Rd) : aw(x, D)u ∈ L2(Rd)}

for any symbol a ∈ H Gs,s . Different choices of such a symbol and an asso-
ciated (left) parametrix P for aw(x, D), meaning Paw(x, D) = I + R with
R : S ′(Rd) 
→ S (Rd) a continuous operator (regularizer), yield equivalent norms
‖u‖Qs ,a,R = ‖aw(x, D)u‖L2 + ‖Ru‖L2 .

We list some well-known properties of the Shubin–Sobolev spaces, see [2,12,18].

Proposition 2.4 (Properties of Shubin–Sobolev spaces)

1. If a ∈ Gm then aw(x, D) is a continuous map Qs(Rd) 
→ Qs−m(Rd) for s ∈ R.

2. If m > 0, the embedding Qs(Rd) ⊆ Qs−m(Rd) is compact for s ∈ R.
3. We have

⋃

s∈R
Qs(Rd) = S ′(Rd)

⋂

s∈R
Qs(Rd) = S (Rd).

3 The Sobolev–Gabor wave front set

The Gabor wave front set of u ∈ S ′(Rd) is defined as (cf. [9])

WFG(u) =
⋂

a∈G∞: aw(x,D)u∈S
char(a) ⊆ T ∗

R
d\0.

The following characterization was showed in [9]. We have 0 �= z0 /∈ WFG(u) if and
only if there exists an open conic set 	 ⊆ T ∗

R
d\0 such that z0 ∈ 	 and

sup
z∈	

〈z〉N |Vψ0u(z)| < ∞, N ≥ 0.

Thismeans thatVψ0u decays super-polynomially in	. The characterization is invariant
under a change of window function from ψ0 to any function ψ ∈ S (Rd)\0 [15].

The Gabor wave front set differs from the usual C∞-wave front and its global
counterpart, the scattering- or SG-wave front set in several aspects.We refer the reader
to [9,15,16] for comparisons of these notions. A list of important properties of the
Gabor wave front set follows.

1. If u ∈ S ′(Rd) then WFG(u) = ∅ if and only if u ∈ S (Rd) [9, Proposition 2.4].
2. If u ∈ S ′(Rd), m ∈ R and a ∈ Gm then

WFG(aw(x, D)u) ⊆ WFG(u) ∩ μ supp(a)

⊆ WFG(aw(x, D)u)
⋃

char(a). (3.1)
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3. We have

WFG(μ(χ)u) = χWFG(u), χ ∈ Sp(d,R), u ∈ S ′(Rd), (3.2)

where Sp(d,R) is the group of real symplectic matrices, and where χ 
→ μ(χ) is
the metaplectic representation [6], that satisfies

μ(χ)−1aw(x, D) μ(χ) = (a ◦ χ)w(x, D), a ∈ S ′(R2d).

These properties are proved in [9,15], except

WFG(aw(x, D)u) ⊆ μ supp(a), a ∈ Gm, u ∈ S ′(Rd). (3.3)

The inclusion

WFG(aw(x, D)u) ⊆ conesupp(a).

is shown in [9, Proposition 2.5].
To prove the sharpening (3.3), let 0 �= z0 ∈ T ∗

R
d\μ supp(a). Then z0 ∈ 	 where

	 ⊆ T ∗
R

d\0 is an open cone and (2.3) holds. Let b ∈ G0 satisfy supp(b) ⊆ 	

and z0 /∈ char(b). Combining (2.2) with (2.3) gives b#a ∈ S (R2d). Hence
bw(x, D)aw(x, D)u ∈ S (Rd) which shows that z0 /∈ WFG(aw(x, D)u). We have
now proved (3.3).

Next we define the Sobolev–Gabor wave front set that is the main object of study
in this paper. It was introduced by Nicola and Rodino [13] and studied with respect to
propagation of singularities for Schrödinger equations.

Definition 3.1 If u ∈ S ′(Rd) and ϕ ∈ S (Rd)\0 then the Sobolev–Gabor wave
front set WFQs (u) of order s ∈ R is defined as follows. For z0 ∈ T ∗

R
d\0 we have

z0 /∈ WFQs (u) if there exists an open cone	 ⊆ R
2d\0 containing z0 such that 〈·〉s Vϕu

restricted to 	 belongs to L2(R2d), i.e.

∫

	

〈z〉2s |Vϕu(z)|2 dz < ∞.

Obviously WFQs (u) ⊆ WFG(u) is a closed conic subset of T ∗
R

d\0, and for
t ≥ s we have WFQs (u) ⊆ WFQt (u). Moreover we have WFQs (u) = ∅ if and only if
u ∈ Qs(Rd). ThusWFQs (u)may be interpreted as the phase space directions in which
a tempered distribution fails to belong to Qs . This observation will be elaborated in
Proposition 3.5.

Proposition 3.2 If u ∈ S ′(Rd) and s ∈ R then WFQs (u) does not depend on the
window function ϕ ∈ S (Rd)\0.
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Proof Suppose ϕ ∈ S (Rd)\0 and 0 �= z0 /∈ WFQs (u) defined by means of ϕ ∈
S (Rd). Then

∫

	

〈z〉2s |Vϕu(z)|2 dz < ∞ (3.4)

for some open cone 	 ⊆ T ∗
R

d\0 containing z0. Let ψ ∈ S (Rd)\0 and let 	′ ⊆
T ∗

R
d\0 be an open cone such that z0 ∈ 	′ and 	′ ∩ S2d−1 ⊆ 	. We will show that

∫

	′
〈z〉2s |Vψu(z)|2 dz < ∞ (3.5)

which means that WFQs (u) can be defined by ψ as well as ϕ, which is the claimed
independence of window function.

By [7, Lemma 11.3.3] we have

|Vψu(z)| ≤ (2π)−d‖ϕ‖−2
L2 |Vϕu| ∗ |Vψϕ|(z), z ∈ R

2d .

Denoting g := Vψϕ ∈ S (R2d), this and Minkowski’s inequality give

∫

	′
〈z〉2s |Vψu(z)|2 dz �

∫

z∈	′

(∫

w∈R2d
〈z〉s |Vϕu(z − w)| |g(w)| dw

)2

dz

≤
(∫

w∈R2d
|g(w)|

(∫

z∈	′
〈z〉2s |Vϕu(z − w)|2 dz

)1/2

dw

)2

. (3.6)

For ε > 0 we split the region of integration in the inner integral as

∫

z∈	′
〈z〉2s |Vϕu(z − w)|2 dz = I1 + I2 + I3,

where I1 is the integral over 	′ ∩ B1, I2 that over all z ∈ 	′\B1 that satisfy 〈w〉 ≤ ε〈z〉
and I3 is the integral over the remainder of 	′. We estimate I1, I2 and I3 separately.

Since for some M ≥ 0

|Vϕu(z)| � 〈z〉M , z ∈ R
2d ,

Peetre’s inequality allows us to estimate I1 � 〈w〉2M .
Concerning I2, z ∈ 	′, |z| ≥ 1 and 〈w〉 ≤ ε〈z〉 together imply z − w ∈ 	 provided

ε > 0 is sufficiently small. Thus, again using Peetre’s inequality,

I2 =
∫

z∈	′, |z|≥1, 〈w〉≤ε〈z〉
〈z〉2s |Vϕu(z − w)|2 dz

� 〈w〉2|s|
∫

z∈	′, |z|≥1, 〈w〉≤ε〈z〉
〈z − w〉2s |Vϕu(z − w)|2 dz
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≤ 〈w〉2|s|
∫

z∈	

〈z〉2s |Vϕu(z)|2 dz

� 〈w〉2|s|,

in the final step using (3.4).
Finally we estimate I3:

I3 =
∫

z∈	′, |z|≥1, 〈w〉>ε〈z〉
〈z〉2s |Vϕu(z − w)|2 dz

�
∫

z∈	′, |z|≥1, 〈w〉>ε〈z〉
〈z〉2s 〈z − w〉2M dz

� 〈w〉2M
∫

z∈	′, |z|≥1, 〈w〉>ε〈z〉
〈z〉2s+2M+2d+1 〈z〉−2d−1 dz

� 〈w〉2M+2s+2M+2d+1
∫

R2d
〈z〉−2d−1 dz

� 〈w〉4M+2s+2d+1.

Thus I1, I2 and I3 are each bounded by some power of 〈w〉, which inserted into
(3.6), keeping in mind g ∈ S (R2d), shows that (3.5) holds as claimed. ��

As a consequence of this result we note that the symplectic invariance (3.2) for the
Gabor wave front set extends to the Sobolev–Gabor wave front set of any order s ∈ R.
In fact, by [20, Lemma 3.7] we have

∣∣Vμ(χ)ϕ (μ(χ)u) (χ z)
∣∣ = ∣∣Vϕu(z)

∣∣

for ϕ ∈ S (Rd), u ∈ S ′(Rd), χ ∈ Sp(d,R) and z ∈ R
2d , and μ(χ) is a continuous

operator on S (Rd) (cf. [6, Proposition 4.27]).
In the following we discuss how the Sobolev–Gabor wave front set may be char-

acterized by means of pseudodifferential and localization operators. We first deduce a
series of results that assure that the involved symbols may be modified as long as they
fulfill certain support and hypoellipticity criteria around a given point of interest.

First we recall that if m′ ≤ m and a ∈ H Gm,m′
, then there exists a parametrix

p ∈ H G−m′,m such that p#a − 1 ∈ S (R2d) and a#p − 1 ∈ S (R2d) (cf. [18,
Theorem 25.1]). This result may be micro-localized in the following sense.

Proposition 3.3 Suppose a ∈ Gm and charm′(a) �= T ∗
R

d\0 for some m′ ≤ m. Let
	 ⊆ T ∗

R
d\0 be a closed conic set such that charm′(a) ∩ 	 = ∅. Then there exists

A > 0 such that for any χ ∈ G0 with supp(χ) ⊆ 	\BA, there exists b ∈ G−m′
such

that

b#a = χ + r

where r ∈ S (R2d).
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Under the additional assumption 	\ char(χ) �= ∅, b may be chosen to satisfy
char−m(b) ∩ 	′ = ∅ for any open cone 	′ ⊆ T ∗

R
d\0 such that 	′ ∩ S2d−1 ⊆

	\ char(χ).

Proof The proof follows along the lines of that of [5, Theorem 2.3.3], where the
analysis is carried out for the class of SG-symbols that are micro-hypoelliptic in a
certain sense.

Let us briefly recall the main steps of the parametrix construction. As a first approx-
imation set b0 := a−1χ . The estimates

|∂α(a−1)(z)| ≤ Cα|a(z)|−1〈z〉−|α|, α ∈ N
2d , z ∈ 	, |z| ≥ A,

are consequences of the hypoellipticity estimates (2.4) and induction. They imply the
estimates

|∂αb0(z)| ≤ Cα|a(z)|−1〈z〉−|α|, α ∈ N
2d , |z| ≥ A,

and consequently b0 ∈ G−m′
.

Then, by (2.2) and again the hypoellipticity estimates (2.4) it follows that b0#a =
χ + r0 + r0,S with r0 ∈ G−2 satisfying supp(r0) ⊆ supp(χ) and r0,S ∈ S (R2d).
Subsequently, setting b1 := −a−1r0, we notice that we obtain the estimates

|∂αb1(z)| ≤ Cα|a(z)|−1〈z〉−2−|α|, α ∈ N
2d , |z| ≥ A,

and consequently b1 ∈ G−m′−2. This gives

(b0 + b1)#a = χ + r0 + r0,S − r0 + r1 + r1,S = χ + r1 + r0,S + r1,S

with r1 ∈ G−4, supp(r1) ⊆ supp(χ) and r1,S ∈ S (R2d). Constructing in this way
recursively b j+1 := −a−1r j ∈ G−m′−2( j+1) and r j+1 ∈ G−2( j+2) with supp(r j+1) ⊆
supp(χ), j = 1, 2, . . . , one obtains a sequence of symbols (b j ) j≥0. Finally set b ∼∑∞

j=0 b j ∈ G−m′
. The symbol b satisfies b#a = χ + r with r ∈ S (R2d). This

concludes the first part of the proof.
It remains to verify the second claim, under the additional assumption	\ char(χ) �=

∅. This assumption implies |χ(z)| ≥ ε > 0 when z ∈ 	′\BA′ for some A′ > A for
any open cone 	′ ⊆ T ∗

R
d\0 such that 	′ ∩ S2d−1 ⊆ 	\ char(χ).

We note the following properties that hold due to the construction of b j ∈ G−m′−2 j ,
j = 0, 1, 2, . . . in the first part of the proof, together with the new assumptions on χ .
We have

|b0(z)| ≥ ε|a(z)|−1, z ∈ 	′, |z| ≥ A′, (3.7)

and

|∂αb j (z)| � |a(z)|−1〈z〉−2 j−|α|, α ∈ N
2d , z ∈ 	′, |z| ≥ A′, j = 0, 1, 2, . . .

(3.8)
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Pick an integer n > (m − m′)/2. We have

b = b0 +
n−1∑

j=1

b j + bn,r

where bn,r ∈ G−m′−2n ⊆ G−m .
We obtain from (3.7) and (3.8) for some C, C1, C2 > 0

|b(z)| ≥ |b0(z)| −
n−1∑

j=1

|b j (z)| − |bn,r (z)|

≥ ε|a(z)|−1

⎛

⎝1 − C
n−1∑

j=1

〈z〉−2 j − C |a(z)|〈z〉−m′−2n

⎞

⎠

≥ ε|a(z)|−1

⎛

⎝1 − C
n−1∑

j=1

〈z〉−2 j − C〈z〉m−m′−2n

⎞

⎠

≥ C1|a(z)|−1

≥ C2〈z〉−m, z ∈ 	′, |z| ≥ A′, (3.9)

after possibly increasing A′ > 0.
Secondly we have the estimate for any α ∈ N

2d , again using (3.8),

|∂αb(z)| ≤
n−1∑

j=0

|∂αb j (z)| + |∂αbn,r (z)|

� |a(z)|−1〈z〉−|α|
⎛

⎝
n−1∑

j=0

〈z〉−2 j + |a(z)|〈z〉−m′−2n

⎞

⎠

� |a(z)|−1〈z〉−|α|
⎛

⎝
n−1∑

j=0

〈z〉−2 j + 〈z〉m−m′−2n

⎞

⎠

� |a(z)|−1〈z〉−|α|, z ∈ 	′, |z| ≥ A′. (3.10)

Combining (3.9) and (3.10) yields

∣∣∣∣
∂αb(z)

b(z)

∣∣∣∣ � 〈z〉−|α|, z ∈ 	′, |z| ≥ A′, α ∈ N
2d .

This completes the verification of char−m(b) ∩ 	′ = ∅. ��
Lemma 3.4 Let u ∈ S ′(Rd), s ∈ R, z0 ∈ T ∗

R
d\0 and suppose a ∈ G0 satisfies

z0 /∈ char(a) and aw(x, D)u ∈ Qs(Rd). Then there exists an open conic set 	 ⊆
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T ∗
R

d\0 containing z0 such that bw(x, D)u ∈ Qs(Rd) for any b ∈ G0 such that
supp(b) ⊆ 	.

Proof By Proposition 3.3 there exists an open conic set 	′ ⊆ T ∗
R

d\0 containing z0
and A > 0 such that if χ ∈ G0 satisfies supp(χ) ⊆ 	′\BA then there exists c ∈ G0

such that c#a = χ + r with r ∈ S (R2d).
Let 	 ⊆ T ∗

R
d\0 be an open conic set such that z0 ∈ 	 and 	 ∩ S2d−1 ⊆ 	′.

Suppose χ ∈ G0 satisfy supp(χ) ⊆ 	′\BA and χ(z) = 1 for z ∈ 	 and |z| ≥ 2A,
and let b ∈ G0 satisfy supp(b) ⊆ 	.

Then b(1−χ) ∈ C∞
c (R2d), and b#χ = bχ +r with r ∈ S (R2d) since b(z)χ(z) =

b(z) when |z| ≥ 2A. Consequently we have, with r j ∈ S (R2d), j = 1, 2, 3,

bw(x, D) = (bχ)w(X, D) + rw
1 (x, D)

= bw(x, D) χw(X, D) + rw
2 (x, D)

= bw(x, D) cw(X, D) aw(x, D) + rw
3 (x, D).

The result now follows from aw(x, D)u ∈ Qs(Rd), the fact that operators of order
zero are continuous on Qs(Rd), and the fact that operators with Weyl symbols in
S (R2d) are regularizing. ��

We have now reached a point where we can characterize the Sobolev–Gabor wave
front set by means of pseudodifferential and localization operators.

Proposition 3.5 Let u ∈ S ′(Rd) and s ∈ R. The following are equivalent:
1. 0 �= z0 /∈ WFQs (u);
2. There exists b ∈ G0 such that z0 /∈ char(b) and bw(x, D)u ∈ Qs(Rd);
3. There exists a ∈ Gs such that z0 /∈ char(a) and Aau ∈ L2(Rd).

Proof (1) ⇒ (3): By definition

∫

	

〈z〉2s |Vψ0u(z)|2 dz < ∞

for some open conic set 	 ⊆ T ∗
R

d\0 containing z0. We may pick a ∈ G0 supported
in 	 such that z0 /∈ char(a) and conclude that the function z 
→ a(z)〈z〉s Vψ0u(z)
belongs to L2(R2d). Since V ∗

ψ0
: L2(R2d) 
→ L2(Rd) is a continuous operator we

consequently have

(2π)−d V ∗
ψ0

(
a〈·〉s Vψ0u

) = Aa〈·〉s u ∈ L2(Rd).

Since multiplication by the elliptic symbol 〈·〉s is an isomorphism G0 
→ Gs and
z0 /∈ char(〈·〉sa) due to z0 /∈ char(a), we obtain (3).

(3) ⇒ (2): By (2.5) we have bw(x, D)u = Aau ∈ L2(Rd) for b = π−de−|·|2 ∗a ∈
Gs and z0 /∈ char(b). Claim (2) follows by applying (〈·〉−s)w(x, D) to both sides.

(2) ⇒ (1): Let ϕ ∈ S (Rd)\0. By Lemma 3.4 wemay assume that b ∈ G0 satisfies
b(z) = 1 when z ∈ 	 and |z| ≥ 1 where 	 ⊆ T ∗

R
d\0 is an open conic neighborhood
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of z0 and bw(x, D)u ∈ Qs(Rd). We write 1 = b + r , where r ∈ G0 satisfies r(z) = 0
for z ∈ 	 and |z| ≥ 1. Then

Vϕu = Vϕbw(x, D)u + Vϕrw(x, D)u.

The assumption bw(x, D)u ∈ Qs means

∫

R2d
〈z〉2s |Vϕbw(x, D)u(z)|2 dz < ∞.

It thus suffices to show that Vψrw(x, D)u, restricted to some open cone containing
z0, is of rapid decay. This follows from [15, Corollary 3.9 and Remark 3.10]. ��

We are now in a position to compare the Sobolev–Gabor wave front set with the
Gabor wave front set. We denote for a conical subset 	 ⊆ T ∗

R
d\0 by 	 ⊆ T ∗

R
d\0

its closure in T ∗
R

d\0. We have the following equality:

Proposition 3.6 If u ∈ S ′(Rd) then

WFG(u) =
⋃

s∈R
WFQs (u) ⊆ T ∗

R
d\0.

Proof “⊇”: This is an immediate consequence of WFQs (u) ⊆ WFG(u) for all s ∈ R,
combined with the fact that WFG(u) ⊆ T ∗

R
d\0 is a closed subset.

“⊆”: We may assume
⋃

s∈RWFQs (u) �= T ∗
R

d\0. Let 0 �= z0 /∈ ⋃
s∈RWFQs (u).

By assumption, since
⋃

s∈RWFQs (u) ⊆ T ∗
R

d\0 is closed and conic, there exists an
open conic set 	 ⊆ T ∗

R
d\0 containing z0 such that 	 ∩ ⋃

s∈RWFQs (u) = ∅. Pick
b ∈ G0 with supp(b) ⊆ 	 such that z0 /∈ char(b). We claim bw(x, D)u ∈ S (Rd).

To prove this we fix s ∈ R and note, again using Proposition 3.5 and Lemma 3.4,
that for any z ∈ 	 ∩ S2d−1 there exists an open cone 	z ⊆ T ∗

R
d\0 and az ∈ G0 such

that z /∈ char(az), z ∈ supp(az) ⊆ 	z and aw
z (x, D)u ∈ Qs(Rd). By compactness we

have a finite covering of the form

	 ⊆
n⋃

k=1

	k

where 	k = 	zk for some corresponding points zk ∈ 	k ∩ S2d−1, 1 ≤ k ≤ n. We may
assume that these points satisfy z j /∈ 	k for j �= k.

A partition of unity gives

n∑

k=1

ak(z) = 1, z ∈ 	, |z| ≥ 1,

for ak ∈ G0 such that supp(ak) ⊆ 	k , zk /∈ char(ak) (cf. [15, Remark 2.5]) and
aw

k (x, D)u ∈ Qs(Rd) by Lemma 3.4, for 1 ≤ k ≤ n.
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By (2.2) we get

b#
n∑

k=1

ak = b
n∑

k=1

ak + r1 = b + r2

where r1, r2 ∈ S (R2d). Thus

bw(x, D)u =
n∑

k=1

bw(x, D) aw
k (x, D)u − rw

2 (x, D)u ∈ Qs(Rd)

by virtue of aw
k (x, D)u ∈ Qs(Rd) for 1 ≤ k ≤ n, the continuity on Qs(Rd) of

operators of order zero, and the continuity rw
2 (x, D) : S ′(Rd) 
→ S (Rd) ⊆ Qs(Rd).

Since s ∈ R is arbitrary we have bw(x, D)u ∈ S (Rd), which shows that z0 /∈
WFG(u). We have thus shown

WFG(u) ⊆
⋃

s∈R
WFQs (u).

��

4 Microlocal and micro-hypoelliptic properties

The Gabor wave front set is governed by the microlocal and microelliptic inclusions
(3.1) with respect to pseudodifferential operators with Shubin symbols. We now prove
analogous statements for the Sobolev–Gabor wave front set for pseudodifferential as
well as localization operators.

Proposition 4.1 If u ∈ S ′(Rd), m, s ∈ R and a ∈ Gm then

WFQs−m (aw(x, D)u) ⊆ WFQs (u) and WFQs−m (Aau) ⊆ WFQs (u).

Proof The proof is inspired by that of [5, Theorem 5.4]. By Proposition 2.4 we have
u ∈ Qt (Rd) for some t ∈ R. Pick an integer N ≥ 1 such that t + 2N ≥ s. Assume
0 �= z0 /∈ WFQs (u). By Proposition 3.5 there exists b ∈ G0 such that z0 /∈ char(b)

and bw(x, D)u ∈ Qs(Rd). We have (bw(x, D))N u ∈ Qs , by the Qs-continuity of
pseudodifferential operators of order zero, and z0 /∈ char(bN ) holds, where bN =
b# · · · #b is the N -fold Weyl product of N copies of b.

Next we study (bw(x, D))N aw(x, D)u which at a first glance can be said to belong
to Qt−m(Rd). We may write

(bw(x, D))N aw(x, D)u = (bw(x, D))N−1 aw(x, D)︸ ︷︷ ︸
order m

bw(x, D)u︸ ︷︷ ︸
∈Qs

+ (bw(x, D))N−1[bw(x, D), aw(x, D)]u.
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It follows that

(bw(x, D))N aw(x, D)u = (bw(x, D))N−1[bw(x, D), aw(x, D)]u + v

where v ∈ Qs−m . The order of [bw(x, D), aw(x, D)] is m −2. We have thus replaced
aw(x, D) by an operator of lower order, and

(bw(x, D))N aw(x, D)u ∈ Qt−m+2 + Qs−m .

Repeating the argument by induction gives

(bw(x, D))N aw(x, D)u ∈ Qt−m+2N + Qs−m ⊆ Qs−m,

since t +2N ≥ s. By virtue of Proposition 3.5 this proves z0 /∈ WFQs−m (aw(x, D)u),
so we have shown

WFQs−m (aw(x, D)u) ⊆ WFQs (u).

The statement about localization operators follows from Proposition 2.3. ��
Our final result is a reverse inclusion to Proposition 4.1, a micro-hypoellipticity

statement:

Theorem 4.2 If u ∈ S ′(Rd), m, s ∈ R and a ∈ Gm then

WFQs (u) ⊆
⋂

m′≤m

WFQs−m′ (aw(x, D)u) ∪ charm′(a)

and

WFQs (u) ⊆
⋂

m′≤m

WFQs−m′ (Aau) ∪ charm′(a).

Proof Suppose 0 �= z0 /∈ WFQs−m′ (aw(x, D)u) ∪ charm′(a) for some m′ ≤ m. By

Proposition 3.5 there exists c ∈ G0 with z0 /∈ char(c) and cw(x, D)aw(x, D)u ∈
Qs−m′

(Rd). By an argument similar to the proof of charm′(b) ⊆ charm′(a) in Propo-
sition 2.3, involving (2.2), it follows from z0 /∈ char(c) and z0 /∈ charm′(a) that
z0 /∈ charm′(c#a).

Thus by Proposition 3.3 there exist χ ∈ G0 with z0 /∈ char(χ), and b ∈ G−m′
with

z0 /∈ char−m(b), such that

b#c#a = χ + r

where r ∈ S (R2d). Hence

χw(x, D)u = bw(x, D)cw(x, D)aw(x, D)u − rw(x, D)u.
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We have rw(x, D)u ∈ S ⊆ Qs , and bw(x, D)cw(x, D)aw(x, D)u ∈ Qs since
cw(x, D)aw(x, D)u ∈ Qs−m′

and b ∈ G−m′
.

Hence χw(x, D)u ∈ Qs(Rd) so according to Proposition 3.5 we have shown that
z0 /∈ WFQs (u). This proves the first inclusion for pseudodifferential operators.

To prove the second inclusion for localization operators, let z0 /∈ WFQs−m′ (Aau)∪
charm′(a) for some m′ ≤ m. Then

z0 /∈ WFQs−m′ (bw(x, D)u) ∪ charm′(b)

where b = π−da ∗ e−|·|2 according to Proposition 2.3. The second inclusion now
follows from the first. ��

A special case of Theorem 4.2 combined with Proposition 4.1 gives two inclusions
that are Sobolev–Gabor wave front set versions of the inclusions (3.1).

Corollary 4.3 If u ∈ S ′(Rd), m, s ∈ R and a ∈ Gm then

WFQs−m (aw(x, D)u) ⊆ WFQs (u) ⊆ WFQs−m (aw(x, D)u) ∪ char(a)

and

WFQs−m (Aau) ⊆ WFQs (u) ⊆ WFQs−m (Aau) ∪ char(a).

We note that Proposition 3.6 and Corollary 4.3 combined imply (3.1).
As a final consequence we obtain from Theorem 4.2 with the same technique

the following corollary, which says that hypoellipticity of a symbol implies micro-
hypoellipticity with respect to the Gabor wave front set of the corresponding operator.
This is the Gabor wave front set version of [5, Corollary 2.5.6].

Corollary 4.4 If m ∈ R, a ∈ Gm, m′ ≤ m and charm′(a) = ∅ then

WFG(u) = WFG(aw(x, D)u) = WFG(Aau), u ∈ S ′(Rd).

An example provides an interpretation of the previous results from a time-frequency
point of view.

Example 4.5 Let m ≥ 0 and let 	1, 	2 ⊆ T ∗
R

d\0 be two open cones such that
	1∪	2 = T ∗

R
d\0 and	1\	2 and	2\	1 have non-empty interiors. Pick two positive

symbols χ1 ∈ G0 and χ2 ∈ G−m such that

• χ1(z) = 1 for z ∈ 	1\	2,
• χ1(z) = 0 for z ∈ 	2\(	1 ∪ B1),
• char−m(χ1 + χ2) = ∅.
Figuratively speaking, A := Aχ1+χ2 is the prototype of a filter, that when applied

to a signal u ∈ S ′(Rd) preserves the time-frequency contributions in 	1\	2 and
dampens the signal in 	2\	1. Such a splitting for d = 1 is visualized in Fig. 1. In the
following, this will be interpreted from a microlocal point of view.
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Γ2

x

ξ

Γ1

Fig. 1 A splitting of the time-frequency plane by a filter

First of all, the total singularities are preserved WFG(u) = WFG(Au) by Corol-
lary 4.4. Furthermore

WFQs (Au) ∩ 	1\	2 = WFQs (u) ∩ 	1\	2

by Proposition 4.1 and Theorem 4.2, meaning that A preserves the Sobolev–Gabor
order of singularities in 	1\	2.

For 	2\	1 the order changes. We claim

WFQs+m (Au) ∩ 	2\	1 = WFQs (u) ∩ 	2\	1. (4.1)

Indeed, by Theorem 4.2 we have WFQs (u) ⊆ WFQs+m (Au). If conversely 0 �= z0 /∈
WFQs (u) and z0 ∈ 	2\	1 then pick a pseudodifferential operator B := bw(x, D)with
symbol b ∈ G0 supported in 	2\	1 such that z0 /∈ char(b). Then B A = B Aχ2 + R
where R is regularizing, which follows from the asymptotic expansions (2.6) and (2.2),
since the supports of b and χ1 have compact intersection.

Thus B A is a pseudodifferential operator of order−m and z0 /∈ char(b), and hence,
since by Proposition 4.1 and Theorem 4.2,

WFQs+m (Au) ⊆ WFQs+m (B Au) ∪ char(b) ⊆ WFQs (u) ∪ char(b)

we obtain z0 /∈ WFQs+m (Au). This proves (4.1).
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Summing up we have shown that A preserves the Sobolev–Gabor orders of singu-
larities in 	1\	2 and decreases the Sobolev–Gabor orders of singularities in 	2\	1
by m.
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