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Abstract Pseudo-differential operators on Z
N are introduced. We give the matrix

representations with respect to the Fourier basis and the unit impulse basis. Traces of
these operators are computed.
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1 Introduction

Let f be a signal in L2(Rn). Then the Fourier transform f̂ of f is defined by

f̂ (ξ) = (2π)−n/2
∫
Rn

e−i x×ξ f (x) dx, ξ ∈ R
n .

The Fourier inversion formula gives us back the signal f via

f (x) = (2π)−n/2
∫
Rn

eix×ξ f̂ (ξ) dξ, x ∈ R
n .

This is the basis for pseudo-differential operators on R
n or sometimes referred to

as time-varying filters. Indeed, let σ be a suitable function on R
n × R

n . Then the
pseudo-differential operator Tσ is defined by
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(Tσ f )(x) = (2π)−n/2
∫
Rn

eix×ξ σ (x, ξ) f̂ (ξ) dξ, x ∈ R
n .

In the casewhen σ is identically equal to 1, then Tσ is the identity in view of the Fourier
inversion formula. Pseudo-differential operators have been used in quantizations and
time-frequency analysis. Their usefulness notwithstanding, these operators are difficult
to workwith because of the convergence of the integrals.Moreover, useful information
such as eigenvalues is difficult or even impossible to compute. So, it is desirable to
obtain finite analogs of pseudo-differential operators. First of all, in applications the
numerical implementations of pseudo-differential operators require a finite setting.
Secondly, finite pseudo-differential operators are finite-dimensional matrices of which
the entries are given by the finite Fourier transforms defined in Sect. 2. Thus, the
computations of the eigenvalues can be performed using the fast Fourier transforms
and available algorithms. Furthermore, issues like Lp-boundedness, which pseudo-
differential operators have to deal with all the time, are irrelevant to finite pseudo-
differential operators. In this paper, we are particularly interested in constructing such
operators on L2(ZN ), where ZN is the discretization of a circle. These operators are
discrete analogs of pseudo-differential operators on the unit circle S1 with center at
the origin, which have been studied in [2,3]. Pseudo-differential operators on the torus∏n

j=1 S
1 are routine extensions of the ones on S

1.

2 Finite Fourier transforms

The starting point is the additive group ZN = {0, 1, . . . , N −1}, where N is a positive
integer greater than or equal to 2 and the group law is addition modulo N . It is an
abelian group of order n and it is cyclic, which may be viewed as the multiplicative
group of n-th roots of unity and can be drawn as n equally spaced points on a unit
circle. Thus ZN is a finite analog of the circle. A function z : ZN → C is completely

specified by z =

⎛
⎜⎜⎜⎝

z(0)
z(1)

...

z(N − 1)

⎞
⎟⎟⎟⎠. We can think of the set of all n-tuples with complex

entries as functions on ZN and we denote it by L2(ZN ). The inner product and norm
in L2(ZN ) are given by

(z, w) =
N−1∑
n=0

z(n)w(n)

and

||z||2 = (z, z) =
N−1∑
n=0

|z(n)|2
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for all z =

⎛
⎜⎜⎜⎝

z(0)
z(1)

...

z(N − 1)

⎞
⎟⎟⎟⎠ and w =

⎛
⎜⎜⎜⎝

w(0)
w(1)

...

w(N − 1)

⎞
⎟⎟⎟⎠ in L2(ZN ).

An obvious orthonormal basis for L2(ZN ) is {ε0, ε1, . . . , εN−1}, where

εm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

1
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, m = 0, 1, . . . , N − 1,

and εm has 1 in the mth position and zeros elsewhere. Another orthonormal basis for
L2(ZN ) is {e0, e1, . . . , eN−1}, where

em =

⎛
⎜⎜⎜⎝

em(0)
em(1)

...

em(N − 1)

⎞
⎟⎟⎟⎠ , m = 0, 1, . . . , N − 1,

and

em(n) = 1√
N
e2π imn/N , n = 0, 1, . . . , N − 1.

Definition 2.1 Let z ∈ L2(ZN ). Then we let ẑ ∈ L2(ZN ) be defined by

ẑ =

⎛
⎜⎜⎜⎝

ẑ(0)
ẑ(1)

...

ẑ(N − 1)

⎞
⎟⎟⎟⎠ ,

where

ẑ(m) =
N−1∑
n=0

z(n)e−2π imn/N , m = 0, 1, . . . , N − 1.

We call ẑ the finite Fourier transform of z.

Of particular importance to us is the following inversion formula,



208 J. Li

Theorem 2.2 Let z and ẑ be in L2(ZN ). Then

z(n) = 1

N

N−1∑
m=0

ẑ(m)e2π imn/N , n = 0, 1, . . . , N − 1.

To simplify the Fourier inversion formula in Theorem 2.2, we define

Fm =

⎛
⎜⎜⎜⎝

Fm(0)
Fm(1)

...

Fm(N − 1)

⎞
⎟⎟⎟⎠ , m = 0, 1, . . . , N − 1,

in L2(ZN ), where

Fm(n) = 1

N
e2π imn/N , n = 0, 1, . . . , N − 1. (2.1)

Obviously, {F0, F1, . . . , FN−1} is orthogonal, but not orthonormal in L2(ZN ). Being
an orthogonal set of N elements in the N -dimensional vector space L2(ZN ),
{F0, F1, . . . , FN−1} is a basis for L2(ZN ) and we call it the Fourier basis for L2(ZN ).
By Theorem 2.2, we get for k = 0, 1, . . . , N − 1,

Fk =
N−1∑
m=0

F̂k(m)Fm .

Therefore

F̂k(m) =
{
1, k = m,

0, k �= m,

and

F̂k(m) = εm .

Using the Fourier basis for L2(ZN ) defined in (2.1), the Fourier inversion formula in
Theorem 2.2 becomes

z =
N−1∑
m=0

ẑ(m)Fm . (2.2)

Details on the results in this section can be found in [5].
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3 Pseudo-differential operators

Nowwe look at Theorem2.2more carefully in the perspective of representation theory.
Since ZN is an abelian group with respect to addition modulo N , it follows that the
irreducible and unitary representations of ZN are one-dimensional. In fact, they are
given by the elements in orthonormal basis {e0, e1, . . . , eN−1} for L2(ZN ), which can
then be identified with ZN . Thus, the dual group of ZN is the group ZN itself. We can
now give the definition of pseudo-differential operators on the group ZN .

Let σ be a function on the phase space ZN ×ZN . Then Tσ , the pseudo-differential
operator on ZN corresponding to the symbol σ , is defined by

(Tσ z)(n) =
N−1∑
m=0

σ(n,m)ẑ(m)Fm(n),

for all z ∈ L2(ZN ), where

ẑ(m) =
N−1∑
n=0

z(n)e−2π imn/N , m = 0, 1, . . . , N − 1.

3.1 Matrix representations

We give the matrix of the pseudo-differential operator Tσ : L2(ZN ) → L2(ZN ) with
respect to the Fourier basis {F0, F1, . . . , FN−1} for L2(ZN ).

For k = 0, 1, . . . , N − 1, we get

(Tσ Fk)(n) = 1

N

N−1∑
m=0

σ(n,m)F̂k(m)e2π imn/N

= 1

N
σ(n, k)e2π ikn/N

= σ(n, k)Fk(n)

for n = 0, 1, . . . , N − 1. Denoting the Fourier transform of σ with respect to the first
variable by F1σ , we get by Theorem 2.2

(Tσ Fk)(n) =
N−1∑
j=0

F1σ( j, k)Fj (n)Fk(n)

= 1

N 2

N−1∑
j=0

F1σ( j, k)e2π i( j+k)n/N
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for n = 0, 1, . . . , N − 1. Changing the summation index j to m by means of the
equation j + k = m, and using the periodicity of σ with respect to the first variable,

(Tσ Fk)(n) = 1

N 2

N−1+k∑
m=k

F1σ(m − k, k)e2π imn/N

= 1

N 2

N−1∑
m=0

F1σ(m − k, k)e2π imn/N

= 1

N

N−1∑
m=0

F1σ(m − k, k)Fm(n)

for n = 0, 1, . . . , N − 1.

Tσ Fn = 1

N

N−1∑
m=0

F1σ(m − n, n)Fm, n = 0, 1, . . . , N − 1.

So the matrix (Tσ )F of the pseudo-differential operator Tσ with respect to the Fourier
basis is given by

(Tσ )F

= 1

N

⎛
⎜⎜⎜⎝

(F1σ)(0 − 0, 0) . . . (F1σ)(0 − (N − 1), 0)
(F1σ)(1 − 0, 1) . . . (F1σ)(1 − (N − 1), 1)

...
...

...

(F1σ)((N − 1) − 0, N − 1) . . . (F1σ)((N − 1) − (N − 1)), (N − 1))

⎞
⎟⎟⎟⎠

= 1

N

⎛
⎜⎜⎜⎝

(F1σ)(0, 0) (F1σ)(N − 1, 0) . . . (F1σ)(1, 0)
(F1σ)(1, 1) (F1σ)(0, 1) . . . (F1σ)(2, 1)

...
...

...
...

(F1σ)(N − 1, N − 1) (F1σ)(N − 2, N − 1) . . . (F1σ)(0, N − 1)

⎞
⎟⎟⎟⎠

= 1

N
(F1σ(m − n, n))0≤m,n≤N−1.

Similarly, we give the matrix of the pseudo-differential operator Tσ : L2(ZN ) →
L2(ZN ) with respect to the unit impulse basis {ε0, ε1, . . . , εN−1}.

For k = 0, 1, . . . , N − 1, we get

(Tσ εk)(n) =
N−1∑
m=0

σ(n,m)ε̂k(m)Fm(n)

= 1

N
σ(n, k)ε̂k(m)e2π imn/N .
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The entries of the matrix denoted by [alk] is computed

(Tσ εk, εl) =
N−1∑
n=0

N−1∑
m=0

σ(n,m)ε̂k(m)Fm(n)εl

= 1

N

N−1∑
n=0

N−1∑
m=0

σ(n,m)ε̂k(m)e2π imn/N εl(n),

where l is the row index and k is the column index in the matrix.
Since εk has 1 in the kth position and zeros elsewhere,

ε̂k(m) =
N−1∑
n=0

εk(n)e−2π imn/N

= e−2π ikm/N .

Hence, denoting the Fourier transform of σ with respect to the second variable by
F2σ

alk = (Tσ εk, εl) = 1

N

N−1∑
n=0

N−1∑
m=0

σ(n,m)e−2π ikm/Ne2π imn/N εl(n)

= 1

N

N−1∑
m=0

σ(l,m)e−2π i(k−l)m/N

= 1

N
(F2σ)(l, k − l). (3.1)

The matrix (Tσ )IU of the pseudo-differential operator Tσ with respect to the unit
impulse basis is given by

(Tσ )U I

= 1

N

⎛
⎜⎜⎜⎝

(F2σ)(0, 0) (F2σ)(0, 1) . . . (F2σ)(0, N − 1)
(F2σ)(1, N − 1) (F2σ)(1, 0) . . . (F2σ)(1, N − 2)

...
...

...
...

(F2σ)(N − 1, 1) (F2σ)(N − 1, 2) . . . (F2σ)(N − 1, 0)

⎞
⎟⎟⎟⎠ ,

where l, k = 0, 1, . . . , N − 1.

3.2 Trace of the pseudo-differential operator Tσ

Using the matrices hitherto computed, we can obtain the explicit eigenvalues using
MATLAB or other softwares [1,4]. But we are still interested in computing the trace
of a finite pseudo-differential operator in order to see that the formulas are compatible
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with the ones for pseudo-differential operators onRn under suitable conditions on the
symbols. The beauty of the finite analogs is that no restrictions on the symbols are
required.

The trace of Tσ , which is independent from the choice of the bases, can be computed
as follows.

Theorem 3.1 Let σ be a symbol in L2(ZN ×ZN ). Then the trace tr(Tσ ) of the linear
operator Tσ associated with the symbol σ is given by

tr(Tσ ) = 1

N

N−1∑
n=0

N−1∑
m=0

σ(n,m).

Proof Let {ϕ0, ϕ1, . . . , ϕN−1} be any orthonormal basis for L2(ZN ). Then

tr(Tσ ) =
N−1∑
j=0

(Tσ ϕ j , ϕ j )

=
N−1∑
j=0

N−1∑
n=0

N−1∑
m=0

σ(n,m)ẑ(m)Fm(n)ϕ̄ j (n).

Since

ẑ(m) = N (z, Fm)

and

Fm(n) =
N−1∑
j=0

(Fm, ϕ j )ϕ j (n),

tr(Tσ ) =
N−1∑
j=0

N−1∑
n=0

N−1∑
m=0

σ(n,m)N (ϕ j , Fm)Fm(n)ϕ̄ j (n)

=
N−1∑
n=0

N−1∑
m=0

σ(n,m)NFm(n)

N−1∑
j=0

(ϕ j , Fm)ϕ̄ j (n)

=
N−1∑
n=0

N−1∑
m=0

σ(n,m)NFm(n)

N−1∑
j=0

(Fm, ϕ j )ϕ j (n)

=
N−1∑
n=0

N−1∑
m=0

σ(n,m)NFm(n)F̄m(n)
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= N
N−1∑
n=0

N−1∑
m=0

σ(n,m)|Fm(n)|2

= 1

N

N−1∑
n=0

N−1∑
m=0

σ(n,m).

This completes the proof. ��
Another way to calculate the trace of Tσ is to sum the diagonal entries of the matrix

in (3.1), i.e. when l = k.

tr(Tσ ) = 1

N

N−1∑
l=0

N−1∑
m=0

σ(l,m)e−2π i(k−l)m/N

= 1

N

N−1∑
l=0

N−1∑
m=0

σ(l,m).

Obviously, the trace is the summation of the chosen symbol.
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