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Abstract We study resolvents and spectral projections for quadratic differential
operators under an assumption of partial ellipticity. We establish exponential-type
resolvent bounds for these operators, including Kramers–Fokker–Planck operators
with quadratic potentials. For the norms of spectral projections for these operators, we
obtain complete asymptotic expansions in dimension one, and for arbitrary dimension,
we obtain exponential upper bounds and the rate of exponential growth in a generic
situation. We furthermore obtain a complete characterization of those operators with
orthogonal spectral projections onto the ground state.
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1 Introduction

1.1 Overview

An extensive body of recent work has focused on the size of resolvent norms, semi-
groups, and spectral projections for non-normal operators, where these objects are
not controlled by the spectrum of the operator; see [30]. Rapid resolvent growth for
quadratic operators such as

Pu = −Δu + V (x)u, V (x) = i |x |2

along rays inside the range of the symbol has been shown [3,32] and extended signif-
icantly [5,24]. Sharp upper bounds of exponential type were recently shown in [14].
The spectral projections of these operators were explored in [4], where precise rates of
exponential growth were found. We focus here on operators with purely quadratic sym-
bols, which are useful as accurate approximations for many operators whose symbols
have double characteristics.

A weaker hypothesis than ellipticity describes a broader class of operators which
includes many operators important to kinetic theory [8,9]. Hypotheses on the so-called
singular space of the symbol, particularly when that space is trivial, have been used
successfully to describe semigroups generated by such operators [11–13,22,25].

The purpose of the present work is threefold: first, we extend the analysis of [14] to
include these operators with trivial singular spaces, providing exponential-type upper
bounds for resolvents. Second, we describe the spectral projections of elliptic and
partially elliptic operators in a concrete way. Third, we exploit this description to
obtain information related to spectral projections and their norms, including exponen-
tial upper bounds, the rate of exponential growth in a generic situation, a complete
asymptotic expansion in dimension 1, and a characterization of those operators with
orthogonal projection onto the ground state.

1.2 Background on quadratic operators

The structure of quadratic forms

q(x, ξ) : Rn
x × R

n
ξ → C

and their associated differential operators is well-studied (see e.g. Chapter 21.5 of
[15]), and here we recall much of the standard terminology which will be used through-
out this work.

With the formulation

q(x, ξ) =
∑

|α+β|=2

qαβxαξβ, qαβ ∈ C,
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we can identify the semiclassical Weyl quantization of q, viewed as an unbounded
operator on L2(Rn), with the formula

qw(x, h Dx ) =
∑

|α+β|=2

qαβ
xα(h Dx )

β + (h Dx )
βxα

2
. (1.1)

The semiclassical parameter h > 0 is generally considered to be small and positive.
Homogeneity of the symbol q and the unitary (on L2(Rn)) change of variables

Uhu(x) = hn/4u(h1/2x) (1.2)

give the relation

Uhqw(x, h Dx )U
∗
h = hqw(x, Dx ), (1.3)

demonstrating that the semiclassical quantization of quadratic forms is unitarily equiv-
alent to a scaling of the classical (h = 1) quantization.

We have the standard symplectic form

σ((x, ξ), (y, η)) = ξ · y − η · x .

Associated with q is the “Hamilton map” or “fundamental matrix”

F = 1

2
Hq = 1

2

(
∂ξ ∂x q ∂2

ξ q
−∂2

x q −∂x∂ξq

)
, (1.4)

which is the unique linear operator on C
2n , antisymmetric with respect to σ in the

sense that

σ((x, ξ), F(y, η)) = −σ(F(x, ξ), (y, η)), ∀(x, ξ), (y, η) ∈ R
2n,

for which

q(x, ξ) = σ((x, ξ), F(x, ξ)), ∀(x, ξ) ∈ R
2n .

We will write F = F(q) when the quadratic form is perhaps unclear.
We here consider q which are partially elliptic both in that

Re q(x, ξ) ≥ 0, ∀(x, ξ) ∈ R
2n (1.5)

and in that the so-called singular space of q, defined in [11], is trivial:

S :=
∞⋂

k=0

ker((Re F)(Im F)k) = {0}. (1.6)
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We will say that q is elliptic if there exists C > 0 with

Re q(x, ξ) ≥ 1

C
|(x, ξ)|2, ∀(x, ξ) ∈ R

2n . (1.7)

We note that any elliptic quadratic form has ker(Re F) = {0}, and so the conditions
(1.5), (1.6) generalize the elliptic case. We also recall that, aside from some degenerate
cases only occurring when n = 1, the assumption q−1({0}) = {0} suffices to establish
that zq is elliptic for some z ∈ C with |z| = 1 (see, e.g., Lemma 3.1 of [29]).

Under the assumption (1.6), define k0 as the least nonnegative integer such that the
intersection defining S becomes trivial:

k0 = min

{
K ∈ N0 :

K⋂

k=0

ker((Re F)(Im F)k) = {0}
}
. (1.8)

By the Cayley–Hamilton theorem, k0 ≤ 2n − 1, and when q satisfies (1.5) and (1.6),
k0 = 0 if and only if q is elliptic.

In the case where q is partially elliptic and has trivial singular space as in (1.5) and
(1.6), we are assured that, counting with algebraic multiplicity,

#({Im λ > 0} ∩ Spec F) = #({Im λ < 0} ∩ Spec F) = n. (1.9)

We write Vλ = Vλ(q) for the generalized eigenspace of F corresponding to the
eigenvalue λ. We then have the associated subspaces

Λ± = Λ±(q) =
⊕

±Im λ>0

Vλ, (1.10)

which are Lagrangian, meaning that dimΛ± = n and σ |Λ± ≡ 0. Furthermore, when
q is elliptic as in (1.7), we have that Λ+ is positive in the sense that

− iσ(X, X) > 0 ∀X ∈ Λ+\{0}. (1.11)

In the corresponding sense, Λ− is negative. The extension of this fact to q obeying
(1.5) and (1.6) is essentially known in previous works; see the end of Section 2 of [13]
and references therein. For completeness, we here include a proof in Proposition 2.1.

For any quadratic q obeying (1.5) and (1.6), we may write the spectrum of
qw(x, h Dx ) as a lattice obtained from the eigenvalues of F in the upper half plane,
written λ1, . . . , λn . Define

μα = h

i

n∑

j=1

(2α j + 1)λ j . (1.12)

Then we have the formula

Spec qw(x, h Dx ) = {μα : α ∈ N
n
0}. (1.13)
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This was classically known in the elliptic case [1,29]. In the partially elliptic case,
this formula was proven in Theorem 1.2.2 of [11] under somewhat weaker hypotheses
than (1.6).

We also study the spectral projections of these operators. Following the notation of
Theorem XV.2.1 of [7] (see also Chapter 6 of [10]), let us assume that A is a closed
densely defined operator on H a Hilbert space, and Spec A = Ω1 ∪Ω2, where Ω1 is
contained in a bounded Cauchy domain Δ with Δ ∩Ω2 = ∅. Let Γ be the oriented
boundary of Δ. Then we call

PΩ1,A = (2π i)−1
∫

Γ

(ζ − A)−1 dζ (1.14)

the spectral (or Riesz) projection for A and Ω1.
Because the spectra we will study, given by (1.13), are discrete, we will generally

use the definition in the case thatΩ1 is finite. We emphasize that facts about the spec-
tral projections are independent of the semiclassical parameter after scaling, as (1.3)
provides that the projection for the classical operator andΩ1 is unitarily equivalent to
the projection for the semiclassical operator and hΩ1:

Uh PhΩ1,qw(x,h Dx )U
∗
h = PΩ1,qw(x,Dx ). (1.15)

We perform much of our analysis in weighted spaces of entire functions associated
with FBI transforms (see for example [20,27], or Chapter 12 of [28]). ForΦ : Cn → R,
we define

HΦ(C
n; h) = Hol(Cn) ∩ L2(Cn; e−2Φ(x)/h d L(x)). (1.16)

Here d L(x) = dRe x dIm x is Lebesgue measure on C
n , and we only need to con-

sider the most elementary case where Φ is quadratic when regarded as a function of
(Re x, Im x) ∈ R

2n , real-valued, and strictly convex. When functions do not need to
be holomorphic, we refer to

L2
Φ(C

n; h) = L2(Cn; e−2Φ(x)/h d L(x)),

and we will often omit (Cn; h) where we hope it can be understood.
When working in weighted spaces HΦ(Cn; h) or L2

Φ(C
n; h), we assume unless

otherwise stated that derivatives are holomorphic, meaning that

∂x = 1

2
(∂Re x − i∂Im x ).

We finish this section with some brief remarks on notation. We use (·, ·) for a
symmetric (bilinear) inner product, usually the dot product on C

n , and 〈·, ·〉H for a
Hermitian (sesquilinear) inner product on a Hilbert space H. We frequently refer to
adjoints of operators on a Hilbert space. When the space needs to be emphasized,
we add it as a subscript, for example writing A∗H. We use L(H) to denote the set
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of bounded linear operators mapping H to itself with the usual operator norm. We
frequently use a superscript † to indicate that an object is “dual” in a loose sense, but
the formal meaning may change from instance to instance.

Finally, when we say that a unitary operator U quantizes a canonical transformation
κ , we mean that

U pw(x, h Dx )U
∗ = (p ◦ κ−1)w(x, h Dx )

for appropriate symbols p and an appropriate definition of the semiclassical Weyl
quantization. In this work, we only apply this notion to (complex) linear canonical
transformations and to symbols which are homogeneous polynomials of degree no
more than 2, in which case formulas like (1.1) may be used. We therefore use only the
most rudimentary aspects of the theory of metaplectic operators; see for instance the
Appendix to Chapter 7 of [6] or Chapter 3.4 of [20].

1.3 Statement of results

We are now in a position to formulate the four main results of this work.
First, we extend the central result of [14] to include partially elliptic operators, at the

price of more rapid exponential growth. In fact, the result here is identical to the main
result in [14] save that exponential growth in h−1 is replaced by exponential growth
in h−1−2k0 . A remarkable recent estimate of Pravda-Starov [25] provides a subelliptic
estimate sufficient to establish the following theorem, which gives exponential-type
semiclassical resolvent bounds when the spectral parameter is bounded and avoids a
rapidly shrinking neighborhood of the spectrum.

Theorem 1.1 Let q : R
2n → C be a quadratic form which is partially elliptic with

trivial singular space in the sense of (1.5) and (1.6), and let k0 be defined as in (1.8).
If F(q) is diagonalizable, then for any C1,C2, L > 0 there exist h0 > 0 sufficiently

small and A > 0 sufficiently large where, if z ∈ C, |z| ≤ C2,

dist(z,Spec qw(x, h Dx )) ≥ 1

C1
exp(−Lh−1−2k0),

and h ∈ (0, h0], we have the resolvent bound

||(qw(x, h Dx )− z)−1||L(L2(Rn)) ≤ Aexp (Ah−1−2k0).

If F(q) is not assumed to be diagonalizable, then for any C1,C2, L > 0 there exist
h0 > 0 sufficiently small and A > 0 sufficiently large where, if z ∈ C, |z| ≤ C2,

dist(z,Spec qw(x, h Dx )) ≥ hL

C1
,
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and h ∈ (0, h0], we have the resolvent bound

||(qw(x, h Dx )− z)−1||L(L2(Rn)) ≤ A exp

(
Ah−1−2k0 log

1

h

)
.

We also have in [14] a unitary equivalence between L2(Rn) and a weighted space
HΦ2(C

n) of entire functions, defined in (1.16), which reduces the symbol q(x, ξ) to
a normal form q̃(x, ξ); we review this in Sect. 2.2. In that weighted space, we have
a simple characterization of the spectral projections for q̃w(x, h Dx ) as truncations of
the Taylor series.

Theorem 1.2 Let q : R
2n → C be quadratic and partially elliptic with trivial sin-

gular space as in (1.5) and (1.6). Let μα be as defined in (1.12). As described in
Proposition 2.2, the operator qw(x, h Dx ) acting on L2(Rn) is unitarily equivalent to
q̃w(x, h Dx ) acting on HΦ2(C

n; h) for some Φ2 : C
n → R real-valued, quadratic,

and strictly convex. Using the notation (1.14), write

Πz = P{z},q̃w(x,h Dx ) : HΦ2(C
n; h)→ HΦ2(C

n; h).

Then

Πzu(x) =
∑

α : μα=z

(α!)−1(∂αu(0))xα. (1.17)

The motivation behind establishing Theorem 1.2 is to provide information about
the spectral projections, particularly the operator norms thereof. The approach of using
dual bases for eigenvectors was used in [4] in finding exact rates of exponential growth
for the operators described in Examples 2.6 and 3.6; we follow a similar approach here.
The most tractable projections seem to be for eigenvalues with multiplicity 1, meaning
the expansion in (1.17) consists of a single term. Note that this is true for every μα
simultaneously if and only if the eigenvalues of F(q)which lie in the upper half-plane
are rationally independent, which is a generic condition.

As explained above in (1.15), there is no reason to describe the norms of spectral
projections semiclassically; we therefore state the result with h = 1. We furthermore
see in Proposition 4.1 that the set of Φ2 which may be obtained from Proposition 2.2
is exactly the set of strictly convex real-valued quadratic forms Φ. We therefore treat
such a Φ as the object of study in the following theorem.

Theorem 1.3 Let Φ : Cn → R be strictly convex, real-valued, and quadratic. Write

Παu(x) = (α!)−1(∂αu(0))xα : HΦ(C
n; 1)→ HΦ(C

n; 1).

Then there exists another quadratic strictly convex weight Φ† and a constant CΦ for
which, for all α ∈ N

n
0 , we have the formula

||Πα||L(HΦ(Cn;1)) = CΦ
α!2|α| ||x

α||HΦ(Cn;1)||xα||H
Φ† (Cn;1). (1.18)
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Here CΦ = (2π)−n det(1−C∗+C+)−1/4 for C+ ∈ C
n×n a symmetric matrix associated

withΦ. In view of Proposition 4.1, one may deduce the definitions of C+ andΦ† from
Remark 4.2 and (4.39).

This result has three simple corollaries, which we formally state in Sect. 1.4. First,
we have exponential upper bounds for the spectral projections of any elliptic or par-
tially elliptic operator. Second, we have a complete asymptotic expansion for spectral
projections in dimension one, where eigenvalues are automatically simple. Finally,
we have a formula for the rate of exponential growth, regardless of dimension, in the
generic situation when eigenvalues are simple.

It is useful for analysis of qw(x, h Dx ) to have some orthogonal decomposition of
L2(Rn) into qw(x, h Dx )-invariant subspaces. That collections of Hermite functions
of fixed degree form such a decomposition for Kramers–Fokker–Planck operators
with quadratic potential was known since [26], as described in Section 5.5 of [8]. We
explore one such operator in Example 2.7, and we have the same decomposition for
an operator whose Hamilton map has Jordan blocks in Example 2.8.

The question of orthogonal spectral projections for partially elliptic operators has
been raised in the recent work [22], which focuses on semigroup bounds for such
operators. Working under the assumptions that the ground state of qw(x, h Dx )matches
that of qw(x, h Dx )

∗ and that the operator is totally real, the authors of [22] show strong
similarity, on the level of semigroups, between the behavior of the spectral projection
for qw(x, h Dx ) and {μ0} and the behavior of the orthogonal projection onto the span
of the corresponding eigenfunction.

Inspired by this work, we observe that the analysis here beginning at Theorem 1.2
and leading towards Theorem 1.3 puts us in a position to describe necessary and
sufficient conditions on q for this projection to be orthogonal.

Theorem 1.4 Let q : R2n → C be quadratic and partially elliptic with trivial singular
space as in (1.5) and (1.6). Recall the definitions of Λ± = Λ±(q) in (1.10) and μα
in (1.12). Let Πμ0 be the spectral projection for qw(x, h Dx ) and {μ0}, as in (1.14).
Then the following are equivalent:

1. the ground states of the operator and the adjoint match,

ker(qw(x, h Dx )− μ0) = ker(qw(x, h Dx )
∗ − μ0);

2. the stable manifolds associated with q are conjugate, Λ+ = Λ−; and
3. the projection Πμ0 is orthogonal on L2(Rn).

Remark 1.5 A further decomposition immediately follows if any of these conditions
hold. Studying the unitarily equivalent operator q̃w(x, h Dx ) acting on HΦ2(C

n; h),
we have that the spaces of polynomials homogeneous of fixed degree,

Em = span{xα : |α| = m},

are orthogonal q̃w(x, h Dx )-invariant subspaces of HΦ2(C
n; h) which together have

dense span. We also have that
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Spec(q̃w(x, h Dx )|Em ) = {μα : |α| = m}.

Some illustrations using this decomposition may be found in Sect. 2.6.

1.4 Corollaries on the growth of spectral projections

In Sect. 5 we derive three simple corollaries of Theorem 1.3.
First, we have an exponential upper bound for spectral projections for the quadratic

operators we have been considering. We note that, following Remark 3.7, we do not
expect this bound to be sharp in dimension n ≥ 2 in general.

Corollary 1.6 Let q : R
2n → C be quadratic and partially elliptic with trivial

singular space as in (1.5) and (1.6). Letμα be as defined in (1.12). Using (1.14), write

Πz = P{z},qw(x,h Dx ) : L2(Rn)→ L2(Rn).

For Φ2 taken from Proposition 2.2 and Φ†
2 derived from Φ2 as in Theorem 1.3, let

A1 = inf|ω|=1
4Φ2(ω), A2 = inf|ω|=1

4Φ†
2 (ω).

Then

||Πμα ||L(L2(Rn)) ≤ O(1+ |α|n−1)(A1 A2)
−|α|/2.

In (spatial) dimension 1, we have a complete asymptotic expansion for spectral
projections as the size of the eigenvalue becomes large.

Corollary 1.7 Let q : R2 → C be quadratic and partially elliptic with trivial singular
space as in (1.5) and (1.6). By (1.9), there exists only one (algebraically simple)
eigenvalue of F with positive imaginary part; call this eigenvalue λ. Let

μN = λ

i
(2N + 1).

Using (1.14), write

ΠN = P{μN },qw(x,Dx ) : L2(R1)→ L2(R1).

In dimension 1, the C+ of Theorem 1.3 must be a complex number with |C+| < 1. After
dividing out the rate of exponential growth identified in [4], there exists a complete
asymptotic expansion

(
1− |C+|
1+ |C+|

)N/2

||ΠN ||L(L2(R1)) ∼
∞∑

j=0

c j N− j−1/2
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as N →∞, for some {c j }∞j=0 a sequence of real numbers depending only on C+. We
furthermore compute that

c0 = (2π |C+|)−1/2
(

1+ |C+|
1− |C+|

)1/4

.

In the case of higher dimensions, the maximization problem leading to Corollary 1.7
is much more difficult. In the generic case of simple eigenvalues, we are nonetheless
able to identify the rate of exponential growth for spectral projections along rays
{μλβ : λβ ∈ N

n
0} for β ∈ (R+)n fixed as λ→∞.

While this provides significant information on the exponential growth of spectral
projections for a broad class of non-normal quadratic operators, the author feels that
this result in higher dimensions is rather preliminary and hopes to return to the subject
in later work.

Corollary 1.8 Let Φ : Cn → R be strictly convex, real-valued, and quadratic. Write

Παu(x) = (α!)−1(∂αu(0))xα : HΦ(C
n; 1)→ HΦ(C

n; 1).

Let Φ† be the dual weight as in Theorem 1.3.
Consider β ∈ (R+)n\{0} normalized so that |β| = ∑n

j=1 β j = 1. For those
λ ∈ R+ for which λβ ∈ N

n
0 , we have the following exponential rate of growth in the

limit λ→∞:

λ−1 log ||Πλβ ||L2(Rn)

= 1

2
log

(
sup
|ω|=1

(4Φ(ω))−1|ωβ |2
)
+ 1

2
log

(
sup
|ω|=1

(4Φ†(ω))−1|ωβ |2
)

−
∑

j : β j �=0

β j logβ j +O(λ−1 log λ).

As with multi-indices, we define |ωβ |2 =∏n
j=1 |ω j |2β j .

Furthermore, consider q : R
2n → C quadratic and partially elliptic with trivial

singular space as in (1.5) and (1.6), with μα defined in (1.12). Due to the unitary
equivalence in Proposition 2.2 with Φ2 provided therein, the same rate of growth
holds for the norm of the classical (h = 1) spectral projections

||P{μλβ },qw(x,Dx )||L(L2(Rn)) = ||Πλβ ||L(HΦ2 (C
n;1))

so long as we assume that the eigenvalue μλβ ∈ Spec qw(x, Dx ) is simple.

1.5 Plan of the paper

Section 2 is devoted to proving Theorem 1.1 and recapitulating the necessary machin-
ery used in [14]. Also included are examples in Sect. 2.3 and illustrations of partial
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ellipticity in Sect. 2.6. Section 3 contains the proof of Theorem 1.2 as well as an ele-
mentary exponential upper bound for spectral projections which is related to the work
[4]. Section 4 focuses on the properties of dual bases for projection onto monomials
in weighted spaces, and it contains proofs of Theorems 1.3 and 1.4. Finally, Sect. 5
contains computations based on these results which prove Corollaries 1.6, 1.7, and 1.8
and numerical computations based on Corollary 1.8.

2 Resolvent bounds in the partially elliptic case

One may extend the upper bounds obtained in [14] for resolvents of elliptic quadratic
operators to upper bounds for partially elliptic quadratic operators after two steps:
duplicating the reduction to normal form and finding some replacement for an ellip-
tic estimate. The former can be done after demonstrating that the stable (linear
Lagrangian) manifolds Λ± defined in (1.10) are positive and negative Lagrangian
planes as defined in (1.11), which follows more or less directly from reasoning in
[29]. A subelliptic estimate, sufficient to establish Theorem 1.1, may be deduced from
a remarkable recent result of Pravda-Starov [25].

In this section, we will assume that our quadratic symbol

q : R2n → C

is partially elliptic with trivial singular space as in (1.5) and (1.6).
We begin by proving sign definiteness ofΛ±(q). Afterwards, we recall the reduction

to normal form in [14] and remark on some additional information which may be
derived from this reduction. Following this, we present three examples which will be
used throughout the rest of the paper. Next, we prove the weak elliptic estimate for
high-energy functions. Finally, recalling the low-energy finite dimensional analysis of
[14], we are able to prove Theorem 1.1.

Afterwards, in Sect. 2.6, we see some evidence that the elliptic estimate in Propo-
sition 2.10 may not give a sharp rate of growth in Theorem 1.1. However, the phe-
nomenon of subellipticity formalized in [25] appears to be sharp, presenting a genuine
obstacle in adapting the standard ellipticity argument found in Proposition 2.10.

2.1 Sign definiteness of Λ±(q)

To reproduce the reduction to normal form in [14], one must have sign definiteness of
Λ±(q) defined in (1.10). We include a direct proof here.

Proposition 2.1 Let q : R
2n → C be a quadratic form and F = 1

2 Hq its Hamilton
map defined in (1.4). Assume that q satisfies (1.5) and (1.6), and recall the associated
manifoldsΛ±(q) defined in (1.10). ThenΛ±(q) are positive and negative Lagrangian
planes in C

2n as defined in (1.11).
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Proof We begin by noting, as in the proof of Lemma 3 in [23] or in Remark 2.2 of
[31], that (1.5) implies that, whenever X ∈ R

2n ,

Re q(X) = 0 ⇐⇒ (Re F)X = 0. (2.1)

We also recall that, when q obeys (1.5) and (1.6), there exists δ0 > 0 and a con-
tinuous family of complex linear canonical transformations {κδ}0≤δ≤δ0 acting on C

2n

beginning with the identity, κ0 = 1C2n , and positive constants {Cδ}0<δ≤δ0 for which

Re (q ◦ κδ)(X) ≥ 1

Cδ
|X |2, δ > 0.

Details may be found in, for example, [12], Section 2, or [31], Section 2.1. These
canonical transformations induce a similarity transformation on the Hamilton map,

F(q ◦ κδ) = κ−1
δ F(q)κδ,

and so

Λ±δ := Λ±(q ◦ κδ), 0 ≤ δ ≤ δ0

enjoy the relation

Λ±δ = κ−1
δ (Λ±0 ).

It immediately follows that {Λ±δ }0≤δ≤δ0 is a continuous family of Lagrangian planes.
When δ > 0, positivity of Λ+δ and negativity of Λ−δ follow from ellipticity of q ◦ κδ .
To apply a deformation argument in [29], we wish to show that Λ±0 ∩ R

2n = {0}.
We know from Lemma 3.7 of [29] that λ �= −μ implies that Vλ(q) and Vμ(q) are

orthogonal with respect to σ , and therefore thatΛ±0 are Lagrangian planes. (This may
also be seen by applying κδ to Λ±δ .)

Because generalized eigenspaces of an operator are invariant under that operator,
we see that X ∈ Λ+0 implies that F X ∈ Λ+0 . Since Λ+0 is Lagrangian, we see that

X ∈ Λ+0 �⇒ q(X) = σ(X, F X) = 0.

If we assume furthermore that X ∈ Λ+0 ∩ R
2n , we have that Re q(X) = 0 and so

(Re F)X = 0 as well. But then

−i F X = (Im F)X ∈ Λ+0 ∩ R
2n .

By induction we therefore see that, whenever X ∈ Λ+0 ∩ R
2n , we have that

(Im F)k X ∈ Λ+0 ∩ R
2n, k = 0, . . . , 2n − 1.
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We have already seen that ker Re F contains Λ+0 ∩ R
2n , and so we conclude that,

whenever X ∈ Λ+0 ∩ R
2n , we have X ∈ S = {0}.

We may then appeal to the deformation argument following Lemma 3.8 in [29],
which shows that if {Wδ}0≤δ≤δ0 is a continuous family of Lagrangian planes for which
Wδ ∩ R

2n = {0}, then all the Wδ are positive so long as one is. Since Λ+δ is positive
for δ ∈ (0, δ0], we know that Λ+0 = Λ+(q) is positive. The same reasoning provides
that Λ−(q) is a negative Lagrangian plane, completing the proof.

2.2 Review of reduction to normal form

Having established sign definiteness of Λ±, a reduction to normal form may then
proceed exactly as in Section 2 of [14]. We state the result as a proposition, following
Proposition 2.1 in that work, and review the proof to record some minor details. We
then make some minor remarks providing further information which will be used in
the sequel. The relevant symbol classes are

S(R2n, 〈(x, ξ)〉m) := {p ∈ C∞(R2n) : |∂αx,ξ p(x, ξ)| ≤ Oαβ(〈(x, ξ)〉m)}.

However, as mentioned in Sect. 1.2, in this work we only require the use of symbols
which are polynomials in (x, ξ).

Proposition 2.2 Let q(x, ξ) : R
2n → C be quadratic and partially elliptic in the

sense of (1.5) and (1.6). Then there exists a complex linear canonical transformation
� for which

q̃(x, ξ) := (q ◦ �−1)(x, ξ) = (Mx) · ξ

for M ∈ C
n×n block-diagonal with each block being a Jordan one. Furthermore,

the eigenvalues of M are precisely those of 2F in the upper half-plane. Associated
with the transformation � are a real-valued quadratic strictly convex weight function
Φ2 : Cn → R and a unitary operator

T : L2(Rn)→ HΦ2(C
n)

quantizing � in that

T pw(x, h Dx )T ∗ = (p ◦ �−1)w(x, h Dx ), ∀p ∈ S(R2n, 〈(x, ξ)〉m). (2.2)

Proof We repeat the proof of Proposition 2.1 in [14] solely to make certain small
details and minor changes of notation explicit. There are three pieces in the reduction
to normal form: quantizing a real canonical transformation straighteningΛ−, an FBI-
Bargmann transform reducing q to a polynomial simultaneously homogeneous of
degree 1 in x and of degree 1 in ξ , and a change of variables reducing the matrix in
the resulting symbol to Jordan normal form.
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That Λ− = Λ−(q) is a negative Lagrangian plane is equivalent to having

Λ− = {(y, A−y) : y ∈ C
n}

for some

A− ∈ C
n×n, At− = A−, −Im A− > 0

with the last in the sense of positive definite matrices. A real linear canonical trans-
formation such as

κ =
(

(−Im A−)1/2 0
−(−Im A−)−1/2Re A− (−Im A−)−1/2

)
(2.3)

gives κ(Λ−) = {(y,−iy)}. We have that κ may be quantized by a standard unitary
operator on L2(Rn), which reduces Λ±(q) to κ(Λ±(q)) accordingly.

Since κ is real canonical, κ(Λ+) remains positive, and so κ(Λ+) = {(y, A+y)} for
some symmetric A+ ∈ C

n×n with positive definite imaginary part. Straightening

κ(Λ+) �→ {(0, ξ)}ξ∈Cn

while simultaneously straightening

κ(Λ−) �→ {(x, 0)}x∈Cn

is accomplished by an FBI-Bargmann transform

TA+u(x) = CA+h−3n/4
∫

Rn

e
i
h ϕA+ (x,y)u(y) dy (2.4)

for

ϕA+(x, y) = i

2
(x − y)2 − 1

2
(x, (1− i A+)−1 A+x).

This FBI-Bargmann transform quantizes the canonical transformation, in block matrix
form,

�A+ =
(

1 −i
−(1− i A+)−1 A+ (1− i A+)−1

)
. (2.5)

From [14], we have that the range of the FBI-Bargmann transform (2.4) is HΦ1(C
n),

where

Φ1(x) = 1

2
((Im x)2 + Im (x, Bx))
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for

B = (1− i A+)−1 A+.

We rearrange Φ1 as follows:

Φ1(x) = −1

8
(x − x̄)2 + 1

4i
((x, Bx)− (x̄, Bx̄))

= 1

4
(x, x̄)− 1

8
(x, (1+ 2i B)x)− 1

8
(x̄, (1− 2i B)x̄)

= 1

4
(|x |2 − Re (x, (1+ 2i B)x)).

We will use the expression

Φ1(x) = 1

4
(|x |2 − Re (x,C+x)) (2.6)

with

C+ = 1+ 2i B = (1− i A+)−1(1+ i A+). (2.7)

We may see that Φ1 is strictly convex through the following useful computation,
recalling that A+ is symmetric:

1− C∗+C+ = 1− (1+ i A∗+)−1(1− i A∗+)(1+ i A+)(1− i A+)−1

= (1+ i A∗+)−1 ((1+ i A∗+)(1− i A+)− (1− i A∗+)(1+ i A+)
)
(1− i A+)−1

= (1+ i A∗+)−1(4 Im A+)(1− i A+)−1. (2.8)

We then see through a change of variables that positive definiteness of Im A+ is
equivalent to positive definiteness of 1− C∗+C+. We therefore have that |C+x | < |x |
for all x ∈ C

n\{0}. Then, by the Cauchy–Schwarz inequality, when x �= 0 we have

Φ1(x) ≥ 1

4
(|x |2 − |x | |C+x |) > 0,

establishing strict convexity of Φ1.
The canonical transformation (2.5) relates symbols p : R

2n → C with FBI-side
symbols (p ◦ �−1

A+) : ΛΦ1 → C, with

ΛΦ1 = �A+(R
2n) =

{(
x,

2

i
∂xΦ1(x)

)
: x ∈ C

n
}

(2.9)

where derivatives here are holomorphic. After conjugation with the FBI-Bargmann
transform (2.4), we have reduced q to (M1x) ·ξ , where M1 is not necessarily in Jordan
normal form.
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Finally, for some invertible G ∈ C
n×n chosen so that G−1 M1G is in Jordan normal

form, we use a final linear change of variables

HΦ1 � u(x) �→ | det G|u(Gx) ∈ HΦ2 (2.10)

quantizing the canonical transformation

κG : C2n � (x, ξ) �→ (G−1x,Gtξ) ∈ C
2n . (2.11)

The resulting weight is Φ2(x) = Φ1(Gx), which is strictly convex since Φ1(x) is.
We note that a real-valued quadratic form Φ is uniquely determined by the two

matrices Φ ′′xx and Φ ′′̄xx , since in this case

Φ(x) = (Φ ′′̄xx x, x̄)+ Re (Φ ′′xx x, x).

(See Sect. 4.1 for more details.) We therefore only need to record that

(Φ2)
′′̄
xx =

1

4
G∗G, (Φ2)

′′
xx = −

1

4
Gt C+G. (2.12)

The associated canonical transformation, using (2.3), (2.5), and (2.11), is

� = κG ◦ �A+ ◦ κ.

As in [14], we note that �|Λ+ is an isomorphism

� : Λ+ → {ξ = 0} = {(x, 0) : x ∈ C
n}.

Since

F(q̃) = 1

2

(
M 0
0 −Mt

)

and F(q̃) = �F(q)�−1, we see that M acting on C
n and 2F(q) acting on Λ+ are

similar linear operators and therefore isospectral. By the definition (1.10) of Λ+, we
then have

Spec M = Spec(2F(q)|Λ+) = (Spec 2F(q)) ∩ {Im λ > 0}.

We furthermore remark that the change of variables (2.10) is a degree-preserving
isomorphism on polynomials. For this reason, it will sometimes be simpler to work
on HΦ1 instead of HΦ2 .

Remark 2.3 From Section 4 of [14] we record the specific formula

q̃w(x, h Dx ) = q̃wD(x, h Dx )+ q̃wN (x, h Dx )
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with

q̃wD(x, h Dx ) =
n∑

j=1

2λ j x j h Dx j +
h

i

n∑

j=1

λ j

and

q̃wN (x, h Dx ) =
n−1∑

j=1

γ j x j+1h Dx j , γ j ∈ {0, 1}.

As usual, the λ j are the eigenvalues of F(q) for which Im λ j > 0. We furthermore
remark that it is clear from the fact that M is in Jordan normal form that γ j = 0 when
λ j �= λ j+1.

Remark 2.4 In order to see how complex Gaussians

u0(x) = exp

(
i

2h
(x, Fx)

)
, F ∈ C

n×n, Ft = F (2.13)

transform under T , or under any unitary transformation quantizing a complex linear
canonical transformation �, it suffices to note that such a Gaussian may be uniquely
identified (up to a constant factor) as an ODE solution of the equation

�w(x, h Dx )u = 0, �(x, ξ) = Fx − ξ.

Therefore T u0 must satisfy a similar equation with �̃ = � ◦ �−1; writing

�−1(x, ξ) = (Ax + Bξ,Cx + Dξ),

we have that

�̃(x, ξ) = (F A − C)x − (D − F B)ξ.

When (D − F B)−1 exists, we see that T u0 must also be a complex Gaussian

T u0(x) = C exp

(
i

2h
(x, F̃ x)

)

with a new

F̃ = (D − F B)−1(F A − C).

Symmetry of F̃ , recalling that F is symmetric, may be checked by noting that

(D − F B)(F̃ − F̃ t )(Dt − Bt F)

= F(B At − ABt )F + F(ADt − BCt )+ (C Bt − D At )F + (DCt − C Dt ).
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That

(�−1)t is canonical ⇐⇒
⎧
⎨

⎩

ABt − B At = 0
ADt − BCt = 1
C Dt − DCt = 0

follows as usual from the equivalent statement

�−1 J (�−1)t = J, J =
(

0 −1
1 0

)
.

This is seen to be equivalent to having � canonical by taking inverses of both sides of
�−1 J (�−1)t = J , which completes the proof of symmetry of F̃ .

The case F = 0, where u0 is constant, will play an important role in the sequel as
the ground state of q̃w(x, h Dx ).

The case where D− F B above is not invertible should then degenerate into having
u0 behave as a delta function in certain directions, as may be seen by taking the
Fourier transform as an example, but we will not encounter that situation here. This
fact may be deduced from the fact that the unitary transformation quantizing the real
canonical transformation κ in (2.3) preserves L2(Rn) functions and therefore preserves
the class of Gaussians given by {F : Ft = F, Im F > 0} and from the fact that the
FBI transform takes these Gaussians to entire functions on C

n , precluding the delta
function situation.

For completeness, particularly for the application to Hermite functions in Sect. 2.4,
we explicitly compute the matrix DF − B for the transformations which constitute �
in Proposition 2.2. We then can see that DF − B obtained from � will be invertible
whenever Im F > 0 in the sense of positive definite matrices. From (2.3) we have

κ−1 =
(

(−Im A−)−1/2 0
(Re A−)(−Im A−)−1/2 (−Im A−)1/2

)
,

meaning that B = 0 and so D − F B = (−Im A−)1/2 which is always invertible.
Furthermore, for κ , we have

F̃ = (−Im A−)−1/2(F − Re A−)(−Im A−)−1/2,

and since (−Im A−)−1/2 is a real positive definite matrix, we see that Im F > 0 if and
only if Im F̃ > 0. Next, from (2.5), we see that

�−1
A+ =

(
(1− i A+)−1 i

A+(1− i A+)−1 1

)
,

and so D − F B = 1 − i F which is certainly invertible if Im F > 0. (One can
furthermore easily check that Im F > 0 means that the resulting F̃ = 0 if and only if
F̃ = A+.) Finally, the transformation κ−1

G given by (2.11) obviously has B = 0 and
D = G−t which is always invertible; naturally, the formula for F̃ here may be more
easily obtained from the associated change of variables.
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We are therefore assured that T from Proposition 2.2 always carries a Gaussian
given by (2.13) to another Gaussian.

We make a final note that

xαexp (i(x, Fx)/2h)
T�→(kw(x, h Dx ))

αexp (i(x, F̃ x)/2h)

for some linear k(x, ξ) : R
2n → C

n . As a consequence, if p(x) is a polynomial of
degree N ,

p(x)exp

(
i

2h
(x, Fx)

)
T�→ p̃(x)exp

(
i

2h
(x, F̃ x)

)

with p̃ a polynomial of degree less than or equal to N . Because this procedure may
reversed, we see that deg p̃ = N .

Remark 2.5 In our first application of the proof of Proposition 2.2 and Remark 2.4,
we can now easily show that the set C[x1, . . . , xn] of polynomials in n variables is
dense in HΦ2(C

n; h). Since the invertible linear change of variables (2.10) induces
an isomorphism on the space of polynomials, it suffices to show that polynomials
are dense in HΦ1 . As discussed in Remark 2.4, the constant functions are uniquely
determined by the equation

�w(x, h Dx )u = 0, �(x, ξ) = ξ.

Inverting the FBI-Bargmann transform quantizing �A+ provides a unitary map

HΦ1(C
n; h) ⊇ C[x1, . . . , xn] → C[x1, . . . , xn]u0 ⊆ L2(Rn),

where the image of 1 ∈ HΦ1(C
n; h), denoted u0 ∈ L2(Rn), is uniquely determined

up to constants by the equation

(� ◦ �A+)
w(x, h Dx )u0 = 0.

We compute that

� ◦ �A+ = (1− i A+)−1(−A+x + ξ),

so (up to a constant factor)

u0(x) = exp

(
i

2h
(x, A+x)

)
.

Density of C[x1, . . . , xn]u0 in L2(Rn) is established in Lemma 3.12 of [29]. Density
of C[x1, . . . , xn] in HΦ1(C

n; h) follows by the unitary equivalence, completing the
proof.

In view of Proposition 4.1, we see that polynomials are dense in HΦ(Cn; h) for any
real-valued quadratic strictly convex Φ.
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2.3 Examples

We begin by describing the reduction to normal form in three examples: the rotated
harmonic oscillator studied in [4], a Kramers–Fokker–Planck operator with quadratic
potential like those studied in [9] (among many other works), and small perturbations of
an operator for which F(q) has Jordan blocks, studied in [14]. The rotated harmonic
oscillator is a model operator in dimension 1 against which Corollary 1.7 may be
checked. Next, the Kramers–Fokker–Planck operator is of physical interest, is partially
elliptic but not elliptic, and may be analyzed via an orthogonal decomposition in view
of Theorem 1.4. Finally, the perturbations of the operator with a Jordan block admit a
similar decomposition, and the unperturbed operator has rapid resolvent growth while
having orthogonal spectral projections with large ranges.

The reader who wishes to continue with the proof of Theorem 1.1 is invited to skip
this section.

Example 2.6 We first consider the operator on L2(R1) given by

Q1(h) = −e−2iθh2 d2

dx2 + e2iθ x2 (2.14)

with symbol

q1(x, ξ) = e−2iθ ξ2 + e2iθ x2. (2.15)

The symbol is elliptic for θ ∈ (−π/4, π/4). In [4], exact rates of the exponential
growth for the spectral projections associated with this operator were computed, and
we will compare the results in this paper to those previously known results.

We begin with the observation that

F =
(

0 e−2iθ

−e2iθ 0

)
,

with eigenvalues ±i and eigenspaces

Λ± = {(y,±ie2iθ y) : y ∈ C
n}.

We have then thatΛ− = {(y, A−y)}y∈Cn for A− = −ie2iθ , and so following (2.3)
gives

κ =
(

(cos 2θ)1/2 0
−(cos 2θ)−1/2(sin 2θ) (cos 2θ)−1/2

)
.

As a consequence,

κ(Λ−) = {(y,−iy)}y∈Cn , κ(Λ+) = {(y, (i − 2 tan 2θ)y)}y∈Cn .
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Therefore we can compute from

A+ = i − 2 tan 2θ

that

C+ = (1− i A+)−1(1+ i A+) = 1

2
(−1+ e−4iθ ).

In one dimension, there is no need for an FBI-side change of variables reducing to
Jordan normal form, so it suffices to use

Φ1(x) = 1

4
(|x |2 − Re (x,C+x)).

We conclude that Q1(h) from (2.14) is unitarily equivalent to

Q̃1(h) = 2i xh Dx + h

acting on HΦ1(C
1). We note that the symbol of Q̃1(h) is θ -independent.

Example 2.7 We next consider a specific semiclassical Kramers–Fokker–Planck oper-
ator with quadratic potential

Q2(h) = 1

2
(v2 − h2∂2

v )+ hv∂x − 1

2
hx∂v (2.16)

acting on L2(R2), for simplicity. The classical derivation from [19] may be found
in, for instance, Section 13 of [9]. We have chosen γ = 1 and V (x) = x2/4. The
corresponding symbol is

q2(x, v, ξ, η) = 1

2
(v2 + η2)+ i(vξ − 1

2
xη).

In this situation we have

F2 =

⎛

⎜⎜⎝

0 i/2 0 0
−i/4 0 0 1/2

0 0 0 i/4
0 −1/2 −i/2 0

⎞

⎟⎟⎠ .

We may then check that the eigenvalues of F2 are given by

Spec(F2) =
{
±1

4
± i

4

}
,
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with eigenvectors determined by

ker(F2 − λ) = span vλ, vλ :=
(

1,
2λ

i
,

i

4λ

(
4λ2

i
+ i

2

)
,

4λ2

i
+ i

2

)
.

We can easily determine A− by writing

(− v1/4−i/4 →
− v−1/4−i/4 →

)
= (

B1 B2
)

for B1, B2 ∈ C
2×2. Then

A− = B−1
1 B2 =

(−i/2 0
0 −i

)
.

The same procedure applied to eigenvalues with positive imaginary part shows that
Λ+(q2) = Λ−(q2), which is condition 2 in Theorem 1.4.

We therefore take

κ =

⎛

⎜⎜⎝

1/
√

2 0 0 0
0 1 0 0
0 0

√
2 0

0 0 0 1

⎞

⎟⎟⎠

to obtain

q2,R(x, v, ξ, η) := (q2 ◦ κ−1)(x, v, ξ, η) = 1

2
(v2 + η2)+ i√

2
(vξ − xη).

The same procedure applied to F(q2,R) = κF(q2)κ
−1 shows that

A+ =
(

i 0
0 i

)
.

We therefore may conjugate with an FBI-Bargmann transform quantizing the linear
transformation

�i =

⎛

⎜⎜⎝

1 0 −i 0
0 1 0 −i

−i/2 0 1/2 0
0 −i/2 0 1/2

⎞

⎟⎟⎠

obtained from (2.5). This results in the symbol

q̃2,0(x, v, ξ, η) = (q2,R ◦ �−1
i )(x, v, ξ, η) = ivη − i√

2
xη + i√

2
vξ, (2.17)
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where q̃w2,0(x, v, h Dx , h Dv) is viewed as an operator on

HΦ1(C
2; h), Φ1(x) = 1

4
|(x, v)|2

since C+ = 0 from (2.7). Note that

q̃2,0(x, v, ξ, η) = (M1(x, v)) · (ξ, η), M1 =
(

0 i/
√

2
−i/

√
2 i

)
,

and that the eigenvalues of M1 are the same as those of 2F(q) which lie in the upper
half-plane.

Then the matrix G corresponding to the change of variables κG may be computed
via the assumption that

(q̃2,0 ◦ κ−1
G )(x, v, ξ, η) = (M(x, v)) · (ξ, η)

where M is diagonal because the eigenvalues of M1 are distinct. Letting

G =
(
(1+ i)/

√
2 (1− i)/

√
2

1 1

)
(2.18)

gives our final result, that Q2(h) is unitarily equivalent to the operator

Q̃2(h) = q̃w2 (x, v, h Dx , h Dv)

for

q̃2(x, v, ξ, η) = 1+ i

2
xξ + −1+ i

2
vη

acting on HΦ2(C
2; h) with

Φ2(x, v) = 1

4
|G(x, v)|2 = 1

2
|(1+ i)x + (1− i)v|2 + |x + v|2.

We also note that our choice of G was not unique. For instance, replacing G with rG
for any r > 0 would suffice.

Example 2.8 As a final example, we discuss an elliptic quadratic form whose Hamil-
ton map contains Jordan blocks, also studied in Section 4 of [14]. The example is
notable for exhibiting rapid resolvent growth while having orthogonal spectral projec-
tions whose ranges have high dimension. Under small perturbations which split the
eigenvalues of the Hamilton map, the resulting split spectral projections are no longer
orthogonal and in fact have norms with rapid exponential growth in 1/h.

The easiest place to begin is on the FBI transform side, as we are free to write

q̃3(x, ξ) = (Mx) · ξ, (x, ξ) ∈ R
4 (2.19)
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for M already in Jordan normal form:

M =
(

2i 1
0 2i

)
.

We regard q̃w3 (x, h Dx ) as acting on

HΦ1(C
2; h), Φ1(x) = 1

4
|x |2.

If one wishes, one may invert the FBI-Bargmann transform and canonical transforma-
tion used in Example 2.7 to obtain a unitarily equivalent operator on L2(R2); a similar
formula in terms of creation-annihilation operators is in found in [14].

As an example of a small perturbation, we consider the operator

q̃3,ε(x, ξ) = q̃3(x, ξ)+ εx2ξ2.

Instead of passing back to the real side and beginning to straighten Λ− anew, we
merely note that

Mε =
(

2i 1
0 2i + ε

)

may be diagonalized by the change of variables given by

Gε =
(

1 1
0 ε

)
. (2.20)

Ellipticity of the operator on HΦ1 given by (Mεx) · ξ when ε ∈ R is easy to check on
the FBI transform side. By (2.9), we have that

ξ(x) = 2

i
∂xΦ1(x) = 2

i
∂x

(
1

4
x x̄

)
= 1

2i
x̄,

and so

Re((Mεx) · ξ) = |x |2 + Re

(
1

2i
x2 x̄1

)
, ∀(x, ξ) ∈ ΛΦ1 .

Ellipticity follows from the Cauchy–Schwarz inequality.
We will see in Sect. 4.4 that, in this case, Theorem 1.3 depends on

Φ2(x) = 1

4
|Gεx |2, Φ

†
2 (x) =

1

4
|(G∗

ε)
−1x |2.

This means that the large condition number ||Gε|| ||(G∗
ε)
−1||, which occurs because

Mε is nearly a Jordan block, should result in a very large rate of exponential growth
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in h−1 for spectral projections for q̃w3,ε(x, h Dx ). This dependence is verified for 0 <
ε � 1 in Sect. 5.4.

We furthermore may examine the case where the operator q̃w3,0(x, h Dx ), obtained

by setting ε = 0, acts instead on HΦ2 for Φ2(x) = 1
4 |Gx |2 where G ∈ C

2×2 is
an invertible matrix for which q̃3,0(x, ξ) is elliptic along ΛΦ2 . (While this ellipticity
condition is necessary, the collection of such G is certainly an open set containing the
identity matrix and is therefore nontrivial.) By Theorem 1.2, we see that the ranges of
spectral projections associated with q̃w3,0(x, h Dx ) are precisely the spaces

Em = span{xα : |α| = m} ⊂ HΦ2 .

The spectral projections of this non-selfadjoint operator are orthogonal, yet Corollar-
ies 1.6 and 3.5 indicate exponential growth. Furthermore, following [14], we expect
the resolvent of the operator to be quite large, particularly when close to the spectrum.
This demonstrates the significant complications in the case where F(q) has Jordan
blocks, where the dimension of the range of spectral projections becomes large.

2.4 A high-energy subelliptic estimate

The elliptic estimate in Section 3 of [14], like those in many other works, relies
essentially upon a lower bound for Re 〈u, q̃w(x, h Dx )u〉HΦ2

for u ∈ HΦ2 supported
away from the origin, and this lower bound is a consequence of a lower bound for
the symbol on supp u. Lower bounds for q̃w(x, h Dx ) − z are then obtained from
the triangle inequality. As we have already seen in Example 2.7, quadratic symbols
satisfying (1.5) and (1.6) are generally not bounded from below away from the origin.
Numerics presented in Sect. 2.6 suggest that the lower bounds which hold for elliptic
operators are false in the partially elliptic case, since exponential resolvent growth
appears to persist for energies C/h even when C is taken large.

Instead, we may use a result of Pravda-Starov [25]. In the elliptic case, one may
bound q̃w(x, Dx ) from below (with error) by x2 + D2

x , which corresponds to the
symbol bound

q(x, ξ) ≥ 1

C
|(x, ξ)|2.

In the non-elliptic case, one is forced to accept a lower bound given by a more slowly-
growing symbol.

We recall from Theorem 1.2.1 of [25] the non-semiclassical estimate

||(〈(x, ξ)〉2/(2k0+1))wu||L2(Rn) ≤ C(||qw(x, Dx )u||L2(Rn) + ||u||L2(Rn)).

Here, k0 is defined in (1.8). One might convert this to a semiclassical estimate via
conjugation with the usual unitary change of variables (1.2). This induces a unitary
equivalence between

qw(x, Dx ) ∼ h−1qw(x, h Dx )
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and

(〈(x, ξ)〉2/(2k0+1))w ∼ h−1/(2k0+1) pw0 (x, h Dx )

for

p0(x, ξ) = (h + x2 + ξ2)1/(2k0+1).

Derivatives of this symbol grow rapidly at the origin as h → 0+, and therefore
one could possibly modify the symbol calculus in some way to obtain lower bounds
directly.

To avoid these issues, we follow [22] in passing to the functional calculus for the
operator

Λ2 = 1+ x2 + D2
x ,

since the study of the semiclassical harmonic oscillator x2+ (h Dx )
2 falls well within

the subject of the present work. From (43) in [22] with ν = 0 and δ = 2k0/(2k0 + 1)
for k0 as in (1.8), we have

||(Λ2)1−δu||L2(Rn) ≤ C(||qw(x, Dx )u||L2(Rn) + ||u||L2(Rn)).

Using the same unitary change of variables (1.2), which may be passed inside the
exponent 1− δ via the functional calculus, we have

||(Λ2
h)

1−δu||L2(Rn) ≤ C(h−1||qw(x, h Dx )u||L2(Rn) + ||u||L2(Rn)) (2.21)

for

Λ2
h = 1+ h−1(x2 + (h Dx )

2). (2.22)

We recall that, for all α ∈ N
n
0, there exist Hermite polynomials fα(x; h) of degree

|α| where { fα(x; h)e−x2/2h}α∈N
n
0

orthonormally diagonalizes x2 + (h Dx )
2 acting on

L2(Rn), with eigenvalues

(x2 + (h Dx )
2) fα(x; h)e−x2/2h = h(2|α| + n) fα(x; h)e−x2/2h .

Explicitly, we recall that fα(x; h)e−x2/(2h) may be obtained as the normalization
in L2(Rn) of (x − ih Dx )

αe−x2/(2h). Conjugating with the unitary transformation in
Proposition 2.2 which maps L2(Rn) to HΦ2(C

n) takes the collection { fαe−x2/2h}α∈N
n
0

to some orthonormal collection of

vα(x) = pα(x; h)e−Q0(x)/h (2.23)
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in HΦ2(C
n) with degpα = |α| (see Remark 2.4). Furthermore, because

v0(x) = Ce−Q0(x)/h ∈ HΦ2

for some h-dependent constant C , we have that

||v0||HΦ = |C |2
∫

Cn

exp

(
−1

h
Q0(x)− 1

h
Q0(x)− 2

h
Φ2(x)

)
d L(x) <∞.

We conclude from this that

Φ̃(x) := Φ2(x)+ Re Q0(x) (2.24)

is a strictly convex real-valued quadratic weight.
As in [14], we divide HΦ2 into low and high energy subspaces, where the energy

of a monomial xα is considered to be h−1|α|. We will here use the notation

KC0 = KC0,Φ = {u ∈ HΦ : ∂αu(0) = 0,∀|α| > C0h−1}, (2.25)

HC0 = HC0,Φ = {u ∈ HΦ : ∂αu(0) = 0,∀|α| ≤ C0h−1}. (2.26)

Recall that KC0 and HC0 (with weight function Φ2) are q̃w(x, h Dx )-invariant. We
effectively repeat the proof of Proposition 3.2 in [14], making simple modifications,
to establish a characterization of the localization of high- and low-energy functions in
terms of the spectral projections for a semiclassical harmonic oscillator. We remark that
the semiclassical harmonic oscillator could easily be replaced by the Weyl quantization
of any real-valued elliptic quadratic form with only minor changes due to changing
eigenvalues of the operator. We also remark that the upper bound e−1/(4h) is essentially
arbitrary in that it could be replaced with e−C/h for any fixed C at the price of increasing
C0.

Some of the computations in polar coordinates below were inspired by similar
considerations in Lemma 4.4 of [18].

Lemma 2.9 Let Φ : C
n → R be strictly convex and quadratic, and let Ã be an

unbounded operator on HΦ(Cn) which is unitarily equivalent to the semiclassical
harmonic oscillator x2 + (h Dx )

2 acting on L2(Rn). Specifically, assume that there
exists some Q0 : Cn → C holomorphic and quadratic and {pα(x; h)}α∈N

n
0

holomor-
phic polynomials for which the following hold:

– the weight given by Φ̃(x) := Φ(x)+ Re Q0(x) is strictly convex,
– for each α ∈ N

n
0 , we have degpα = |α|,

– the collection {vα}α∈N
n
0

defined via vα(x) = pα(x)e−Q0(x)/h form an orthonormal
basis for HΦ , and

– the {vα} obey
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Ãvα = h(2|α| + n)vα, ∀α ∈ N
n
0,

and thus diagonalize Ã.

With C1 > 0, writeΠC1 for the spectral projection associated with Ã and the interval
[0,C1]; this may be written explicitly as

ΠC1 u =
∑

α : 2|α|+n≤C1h−1

〈u, vα〉HΦ vα. (2.27)

Then, for every C1 > 0, there exists C0 > 0 sufficiently large and h0 > 0 sufficiently
small for which, for all h ∈ (0, h0] and with HC0 defined in (2.26), we have the estimate

||ΠC1u||HΦ ≤ O(1)e−1/(4h)||u||HΦ , ∀u ∈ HC0 .

Proof Because the {vα : 2|α| + n ≤ C1h−1} are low-energy and the u ∈ HC0 are
high-energy, it is natural to use a radial cutoff function (which does not need to be
smooth) and the Cauchy–Schwarz inequality:

|〈u, vα〉HΦ | ≤ |〈1{|x |≤K }u, vα〉L2
Φ
| + |〈u,1{|x |>K }vα〉L2

Φ
|

≤ ||1{|x |≤K }u||L2
Φ
+ ||1{|x |>K }vα||L2

Φ
||u||HΦ .

From (3.3) in [14] we have the estimate

||1{|x |≤K }u||L2
Φ
≤ OK (1)e

−1/(2h)||u||HΦ
when u ∈ HC0 for C0 taken sufficiently large depending on K .

We will establish the corresponding bound

||1{|x |>K }vα||L2
Φ
≤ OC1(1)e

−1/(2h) (2.28)

for K sufficiently large depending on C1 and for all α with 2|α| + n ≤ C1h−1. With
these two bounds, we may choose C0 sufficiently large depending on the K obtained
from C1 to ensure that

〈u, vα〉HΦ ≤ OC1(1)e
−1/(2h)||u||HΦ ,

uniformly when u ∈ HC0 , when 2|α| + n ≤ C1h−1, and when h is sufficiently small.
The lemma then follows from the simple observation that there are at most O(h−n)

such α: since h−ne−1/(2h) � e−1/(4h) as h → 0+, the lemma is established by the
triangle inequality.

The bound (2.28) follows from the same method as in the proof of Proposition 3.3
in [14]. We begin by switching to the weight Φ̃ by noting that

||1{|x |>K }vα||L2
Φ
= ||1{|x |>K } pα||L2

Φ̃
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and that {pα}α∈N
n
0

forms an orthonormal sequence in HΦ̃ . Furthermore, it follows

from the assumption 2|α| + n ≤ C1h−1 that pα ∈ KC1/2,Φ̃
.

Strict convexity of Φ̃ means that there exist C�,Cu > 0 for which

C�|x |2 ≤ Φ̃(x) ≤ Cu |x |2, ∀x ∈ C
n .

We will write Φ�(x) = C�|x |2 and Φu(x) = Cu |x |2. The reasoning leading to (3.14)
in [14] shows that, when w =∑

|α|≤N aαxα is a polynomial,

||w||2H
Φ̃
≥ ||w||2HΦu

=
∑

|α|≤N

|aα|2
(

h

2Cu

)n+|α|
πnα!. (2.29)

To obtain the reverse estimate for ||1{|x |>K }w||2L2
Φ̃

, we use a similar bound with the

radial weight Φ�, which is convenient because then xα ⊥ xβ when α �= β:

||1{|x |>K }w||2L2
Φ̃

≤ ||1{|x |>K }w||2L2
Φ�

=
∑

|α|≤N

|aα|2
∫

|x |>K

|xα|2e−2C�|x |2/h d L(x).

(2.30)

In one (complex) dimension and integrating on {|x j | > R}, we obtain an upper

bound with exponential decay by factoring out the maximum value of e−C�|x j |2/h on
{R ≤ |x j | <∞}:

∫

|x j |>R

|x j |2α j e−
2
h C�|x j |2 d L(x j ) = 2π

∞∫

R

r2α j+1e−2C�r2/h dr

≤ 2πe−C�R2/h

∞∫

R

r2α j+1e−C�r2/h dr

≤ 2πe−C�R2/h

∞∫

0

r2α j+1e−C�r2/h dr

= 2πe−C�R2/h2α jα j !
(

h

2C�

)α j+1

.

Returning to C
n , we note that in order to have |x | > K there must exist at least one j

for which |x j | > K n−1/2. We therefore estimate
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∫

|x |>K

|xα|2e−
2
h C�|x |2 d L(x) ≤

n∑

j=1

∫

|x j |>K n−1/2

|xα|2e−
2
h C�|x |2 d L(x)

=
n∑

j=1

⎛

⎜⎝
∫

|x j |>K n−1/2

|x j |2α j e−
2
h C�|x j |2 d L(x j )

∏

k �= j

∫

C

|xk |2αk e−
2
h C�|xk |2 d L(xk)

⎞

⎟⎠

≤
n∑

j=1

⎛

⎝2πe−C�K 2/(nh)2α jα j !
(

h

2C�

)α j+1 ∏

k �= j

(2π)2αkαk !
(

h

2C�

)αk+1
⎞

⎠

≤ ne−C�K 2/(nh)
(

h

C�

)n+|α|
πnα!.

Applying this to (2.30) yields the estimate

||1{|x |>K }w||2L2
Φ̃

≤
∑

|α|≤N

|aα|2ne−C�K 2/(nh)
(

h

C�

)n+|α|
πnα!. (2.31)

Uniformly in α for which |α| ≤ h−1C1/2, we have that

(
h

C�

)n+|α|
≤

(
2Cu

C�

)n+C1/(2h) ( h

2Cu

)n+|α|
.

Combining (2.29) and (2.31) with w = pα ∈ KC1/2,Φ̃
then yields

||1{|x |>K } pα||2L2
Φ̃

≤ ne−C�K 2/(nh)
(

2Cu

C�

)n+C1/(2h)

||pα||2H
Φ̃
.

The corresponding estimate holds upon replacing pα ∈ HΦ̃ with vα ∈ HΦ and
changing norms accordingly. Taking a square root and a logarithm reveals that (2.28)
is certainly established for h sufficiently small if

1

2

(
−C�

n
K 2 + C1

2
log

(
2Cu

C�

))
< −1

2
.

This is accomplished by setting K sufficiently large, and this completes the proof.

With the preceding lemma, we are in a position to prove an elliptic-type estimate
upon restricting to u ∈ HC0 . However, the weaker ellipticity forces us to choose our
spectral parameter in a set of size hδ � 1.

Proposition 2.10 Let q(x, ξ) : R
2n → C be a quadratic form which is partially

elliptic and has trivial singular space in the sense of (1.5) and (1.6). LetΦ2 : Cn → R,
strictly convex, real-valued, and quadratic, and let

q̃(x, ξ) = (Mx) · ξ,
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with M in Jordan normal form, be as in the reduction to normal form in Proposition 2.2.
Let δ = 2k0/(2k0 + 1) with k0 from (1.8).

For every C2 > 0 there exists C0 > 0 sufficiently large and h0 > 0 sufficiently
small that, for every u ∈ HC0 = HC0,Φ2 defined in (2.26), every h ∈ (0, h0], and
every z ∈ C with |z| ≤ C2hδ , we have the a priori estimate

||u||HΦ2
≤ O(1)h−δ||(q̃w(x, h Dx )− z)u||HΦ2

.

Proof Let T : L2(Rn)→ HΦ2(C
n) be the unitary operator in Proposition 2.2. Then

write Λ2
h as in (2.21) and write

Λ̃2
h = T Λ2

hT ∗.

From (2.22) and the discussion following, we see that

Ã = h(Λ̃2
h − 1)

is unitarily equivalent to the semiclassicassical harmonic oscillator in the sense of
Lemma 2.9; writeΠC1 for the associated spectral projection onto [0,C1] and {vα}α∈N

n
0

for the associated orthonormal eigenbasis there. Therefore

Λ̃2
hvα = (2|α| + n + 1)vα.

It follows immediately from the fact that the {vα} are orthonormal and the characteri-
zation (2.27) that

||(Λ̃2
h)

1−δu||2HΦ2
=

∑

α∈N
n
0

(2|α| + n + 1)2(1−δ)|〈u, vα〉|2

≥ (1+ C1h−1)2(1−δ)||(1−ΠC1)u||2.

Upon specifying C1 later, we will choose C0 as in Lemma 2.9 and h0 > 0 sufficiently
small such that

||(1−ΠC1)u|| ≥
1

2
||u||, ∀u ∈ HC0 , ∀h ∈ (0, h0]. (2.32)

If we apply this inequality to (2.21), after conjugation by the same T afforded by
Proposition 2.2, we obtain the estimate

1

2
(1+ C1h−1)1−δ||u|| ≤ ||(Λ̃2

h)
1−δu|| ≤ C3(h

−1||q̃w(x, h Dx )u|| + ||u||) (2.33)

for all u ∈ HC0 and for all h ∈ (0, h0].
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From the triangle inequality and the hypothesis |z| ≤ C2hδ , we have, for u ∈ HC0

and h ∈ (0, h0],

||(q̃w(x, h Dx )− z)u|| ≥ ||q̃w(x, h Dx )u|| − |z| ||u||
≥

(
h

2C3
(1+ C1h−1)1−δ − h − C2hδ

)
||u||. (2.34)

We are then free to choose C1 > 0 such that C1−δ
1 /(2C3) = C2 + 1 and choose

C0, h0 > 0 to establish (2.32) by Lemma 2.9. We thus have from (2.34) that

||(q̃w(x, h Dx )− z)u|| ≥ (hδ − h)||u||,

which establishes the proposition so long as h0 < 1.

2.5 Finite-dimensional analysis and proof of Theorem 1.1

The finite-dimensional analysis proceeds identically to the analysis in Section 4 of
[14], as it relies only on the formula

q̃(x, ξ) = (Mx) · ξ

for M in Jordan normal form (see Remark 2.3 above). We obtain the following anal-
ogous proposition to Proposition 4.2, and the remark afterwards, in [14].

Proposition 2.11 Let q(x, ξ) : R
2n → C be a quadratic form which is partially

elliptic and has trivial singular space in the sense of (1.5) and (1.6), and as in Propo-
sition 2.2, consider the operator q̃w(x, h Dx ) acting on HΦ2(C

n) which is unitarily
equivalent to qw(x, h Dx ) acting on L2(Rn). Fix any C0,C1 > 0 and L ≥ 1. We use
Φ0 = |x |2/2 as a reference weight. We assume that KC0 = KC0,Φ0 , defined in (2.25),
is equipped with the HΦ0 norm. First, assume that z ∈ C satisfies

dist(z,Spec q̃w(x, h Dx )) ≥ hL

C1
. (2.35)

Then there exist implicit constants and h0 > 0 sufficiently small where, for all h ∈
(0, h0], we have the following operator norm estimate

||(z − q̃w(x, h Dx ))
−1||L(KC0,Φ0 )

= O(1)exp

(
O(1)h−1 log

1

h

)
.

If we assume instead that F(q) is diagonalizable with no assumptions on z ∈ C,
we have

||(z − q̃w(x, h Dx ))
−1||L(KC0,Φ0 )

≤ (dist(z,Spec q̃w(x, h Dx )))
−1
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Remark 2.12 In [14], exponential upper bounds (with no logarithmic loss) could also
be obtained from the assumption

dist(z,Spec q̃w(x, h Dx )) ≥ 1

C1
.

However, from the rescaling argument (2.38) leading to the proof of Theorem 1.1, we
would need to require

dist(z,Spec q̃w(x, h Dx )) ≥ h−2k0

C1
.

In the non-elliptic case, where k0 > 0, this combined with the assumption that |z| ≤ C2
makes the estimate vacuous for h sufficiently small.

We may then follow the proof of Theorem 1.1 in [14] to establish Theorem 1.1 in the
present work. We begin by assuming our spectral parameter ζ ∈ C obeys |ζ | ≤ C2hδ ,
and we choose C0 > 0 sufficiently large and h0 > 0 sufficiently small that the
conclusion of Proposition 2.10 holds. We henceforth consider only h ∈ (0, h0].

Recalling the definitions (2.25) and (2.26), write τ for the projection uniquely
characterized by the decomposition of HΦ2 into KC0 ⊕HC0 :

HΦ2 � u �→ (τu, (1− τ)u) ∈ KC0 ⊕HC0 .

As in Proposition 3.3 of [14], we have the operator norm bounds

||τ ||L(HΦ2 )
, ||1− τ ||L(HΦ2 )

≤ CeC/h (2.36)

with constants depending on Φ2 and C0. (We will allow C to change from line to
line.) Using analogous considerations which establish (4.13) in [14], we have with
Φ0(x) = |x |2/2 the estimates

||u||HΦ2
≤ CeC/h ||u||HΦ0

, ||u||HΦ0
≤ CeC/h ||u||HΦ2

, ∀u ∈ KC0 ,

where constants depend again only on Φ2 and C0.
We introduce notation for the restricted resolvent norm, with norms in HΦ0 , which

is the quantity bounded in Proposition 2.11:

B(ζ ; h) = ||(q̃w(x, h Dx )− ζ )−1||L(KC0,Φ0 )
.

Because τ and q̃w(x, h Dx ) commute and because we have the exponential bounds in
(2.36), we see that

||τu||HΦ2
≤ CeC/h B(ζ ; h)||(q̃w(x, h Dx )− ζ )u||HΦ2

.
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Using also the estimate from Proposition 2.10, we have

||(1− τ)u||HΦ2
≤ Ch−δeC/h ||(q̃w(x, h Dx )− ζ )u||HΦ2

.

We combine these estimates to obtain

||u||HΦ2
≤ CeC/h(B(ζ ; h)+ h−δ)||(q̃w(x, h Dx )− ζ )u||HΦ2

.

We then rescale using a change of variables like (1.2). Assuming |z| ≤ C2 and
writing ζ = hδz, the above estimate provides that

||u||HΦ2
≤ CeC/h(B(ζ ; h)+ h−δ)||(q̃w(x, h Dx )− hδz)u||HΦ2

= hδCeC/h(B(ζ ; h)+ h−δ)||(h−δq̃w(x, h Dx )− z)u||HΦ2
.

Writing h̃ = h1−δ , a change of variables provides

||u||HΦ2 (C
n;h̃)≤hδCeC/h(B(ζ ; h)+h−δ)||(q̃w(x, h̃ Dx )− z)u||HΦ2 (C

n;h̃) (2.37)

All that remains is to apply Proposition 2.11 to bound B(ζ ; h). We will make
h̃ = h1−δ our semiclassical parameter, and a change of variables shows that

dist(ζ,Spec q̃w(x, h Dx )) = hδdist(z,Spec q̃w(x, h̃ Dx )).

Our strategy will be to show that the hypotheses in Theorem 1.1, in terms of spectral
parameter z and semiclassical parameter h̃, imply conditions on ζ and h which are
sufficient to establish the hypotheses in Proposition 2.11. Recalling that δ = 2k0/(1+
2k0), we obtain the general rule that

dist(ζ,Spec q̃w(x, h Dx )) ≥ f (h)

⇐⇒ dist(z,Spec q̃w(x, h̃ Dx )) ≥ h̃−2k0 f (h̃1+2k0).

(2.38)

For C1, L̃ > 0, under the hypothesis

dist(ζ,Spec q̃w(x, h Dx )) ≥ hL̃

C1
, (2.39)

we have for h sufficiently small

hδCeC/h(B(ζ ; h)+ h−δ) ≤ O(1)exp

(
O(1)h−1 log

1

h

)
. (2.40)

From (2.38), we see that (2.39) is equivalent to having

dist(z,Spec q̃w(x, h̃ Dx )) ≥ h̃(1+2k0)L̃−2k0

C1
.
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This is implied by the assumption

dist(z,Spec q̃w(x, h̃ Dx )) ≥ h̃L

C1
,

taken from Theorem 1.1, if we set L̃ = (L + 2k0)/(1+ 2k0).
On the other hand, if we assume that F(q) is diagonalizable and that

dist(ζ,Spec q̃w(x, h Dx )) ≥ 1

C1
exp (−L̃h−1), (2.41)

we have for h sufficiently small

hδCeC/h(B(ζ ; h)+ h−δ) ≤ O(1)exp (O(1)h−1). (2.42)

Again applying (2.38), we have that (2.41) is equivalent to

dist(z,Spec q̃w(x, h̃ Dx )) ≥ h̃−2k0

C1
exp (−L̃ h̃−1−2k0).

This follows for h sufficiently small under the assumption

dist(z,Spec q̃w(x, h̃ Dx )) ≥ 1

C1
exp (−Lh̃−1−2k0)

so long as we choose any fixed L̃ > L to absorb the polynomially growing h̃−2k0 .
Replacing h with h̃1+2k0 in the upper bounds (2.40) and (2.42) completes the proof

of Theorem 1.1.

2.6 Computation of resolvent norms on energy shells

In Examples 2.7 and 2.8 we have representatives of Theorem 1.4 where one has an
orthogonal decomposition into q̃w(x, h Dx )-invariant subspaces. As mentioned in the
proof of Proposition 2.2, it is easy to see that linear changes of variables leave

Em := span{xα : |α| = m}

invariant. Similarly, if q̃(x, ξ) = (M1x) · ξ , then the Em are q̃w(x, h Dx )-invariant,
even if M1 is not in Jordan normal form. We will use this decomposition to illustrate the
differences in resolvent norm behavior for partially elliptic and fully elliptic operators,
when restricted to high-energy functions.

For this reason, we will analyze both examples acting on the space

HΦ1(C
n; h), Φ1(x) = 1

4
|x |2.
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Following Section 4 of [14], it is easy to check that

ϕα(x) := (2πh)−n/2(α!(2h)|α|)−1/2xα (2.43)

forms an orthonormal basis for HΦ1 . In order to have simpler formulas, we use the
notation that ϕα = 0 if α j < 0 for some j .

It is then elementary that, if q̃(x, ξ) is such that the orthogonal subspaces Em ⊆ HΦ1

are q̃w(x, h Dx )-invariant,

||(q̃w(x, h Dx )− z)−1||L(HΦ1 )
= sup

m∈N0

||(qw(x, h Dx )|Em − z)−1||L(Em ,||·||HΦ1
).

Furthermore, writing Qm as the matrix representation of q̃w(x, h Dx )|Em with respect
to an HΦ1 -orthonormal basis, we have the restricted resolvent norm as the inverse of
the smallest singular value:

||(qw(x, h Dx )|Em − z)−1||L(Em ,||·||HΦ1
)

=
(

inf{√λ : λ ∈ Spec(Qm − z)∗(Qm − z)}
)−1

.

In Example 2.8 we have the operator

Q̃3(h) = 2i(x1h Dx1 + x2h Dx2)+ h + x2h Dx1

acting on HΦ1 . A simple computation yields a bidiagonal matrix, represented with
α = (α1, α2):

Q̃3(h)ϕα = h(2|α| + 1)ϕα + h

i
(α1(α2 + 1))1/2ϕ(α1−1,α2+1).

Turning to Example 2.7, from (2.17) we have that (2.16) acting on L2(R2) is
unitarily equivalent to

Q̃2,0(h) = i√
2
(v · h Dx − x · h Dv)+ iv · h Dv + h

2

acting on HΦ1 . Therefore, with ϕα defined in (2.43) and α = (α1, α2), we have a
tridiagonal matrix:

Q̃2,0(h)ϕα = h

2
(2α2 + 1)ϕα

+ h√
2

(
(α1(α2 + 1))1/2ϕ(α1−1,α2+1) − ((α1 + 1)α2)

1/2ϕ(α1+1,α2−1)

)
.

In Fig. 1, we compare ||(Q̃(h)|Em − z)−1|| for Q̃2,0(h) at z = 0.5 + 0.1i and
Q̃3(h) at z = 2 + 0.4i , taken as a function of the energy, mh. We remark that the
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Fig. 1 Log-log graph comparing resolvent norm versus energy mh for (left) a partially elliptic operator
and (right) a fully elliptic operator for h = 0.1, 0.05, 0.025. Dotted lines are for the resolvent norm of a
harmonic oscillator

difference in |z| is explained by the difference in the real part of the eigenvalues of the
two operators. For reference we include the harmonic oscillator with symbol 2i x · ξ
acting on HΦ1 , with resolvent norm taken at z = 2+ 0.4i .

It seems apparent that both operators have maximum resolvent norm at a bounded
value of energy mh. This is proven for non-normal elliptic operators in [14], but the
author knows no proof in the partially elliptic case. There is also an apparent marked
difference between the behavior after the energy passes this peak: in the elliptic case,
the non-selfadjoint behavior is seen in an exponentially large peak, but for high energies
the resolvent norm of the non-selfadjoint operator behaves quite similarly to that of
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the harmonic oscillator. For the partially elliptic Kramers–Fokker–Planck operator, it
seems that exponentially large resolvent norms persist for energies significantly larger
than the energy at which the maximum resolvent norm occurs.

3 Characterization of spectral projections

In Proposition 2.2, we reduce our partially elliptic operators to a normal form whose
action on polynomials is easy to describe. In fact, the monomials form a basis of
generalized eigenvectors for q̃w(x, h Dx ) on the corresponding weighted space HΦ2 .

The goal of this section is to prove Theorem 1.2, which confirms that the spectral
projections defined in (1.14) respect the natural Taylor series decomposition of HΦ2

into monomials. Following the methods of [14], we then have an elementary expo-
nential upper bound for the spectral projections. We compare with the known rate
of exponential growth for Example 2.6, discovered in [4], to see that this elementary
upper bound is in fact sharp for dimension 1.

3.1 Characterization of the spectral projections

We begin the proof of Theorem 1.2 with two elementary lemmas. First, a spectral
projection respects a decomposition, even when not orthogonal, of a Hilbert space H
into invariant subspaces of an operator A.

Lemma 3.1 Let H1,H2 be closed subspaces of a Hilbert space H, complementary
in the sense that H = H1⊕H2. We then have a unique decomposition for v ∈ H into
v = v1 + v2 with v j ∈ H j , and we will write π jv = v j . Let A be a closed densely
defined operator on H such that H1,H2 are A-invariant subspaces. Let A j = A|H j .
As in the assumptions for (1.14), let Ω ⊆ C be such that Spec A = Ω ∪Ω2, where
Ω is contained in a bounded Cauchy domain Δ with Δ ∩Ω2 = ∅. Then

PΩ,A = PΩ,A1π1 + PΩ,A2π2. (3.1)

Proof By the Closed Graph Theorem and the fact that the H j are closed, clearly the
π j are continuous; we record the standard facts that π2

j = π j , that π1 + π2 = 1, and
that π1π2 = π2π1 = 0. The statement that the H j are A-invariant is equivalent to the
statement that [A, π1] = [A, π2] = 0. We see that, when ζ /∈ Spec(A), the resolvent
(ζ − A j )

−1 exists as a bounded linear operator on H j by writing

(ζ − A)−1v = w ⇐⇒ v = (ζ − A)w

and observing that x = y if and only if both π1x = π1 y and π2x = π2 y. The same
facts imply that

(ζ − A)−1 = (ζ − A1)
−1π1 + (ζ − A2)

−1π2, (3.2)

from which (3.1) immediately follows after integrating.
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Remark 3.2 One may view (3.1) as part of a natural extension of the relation

A = A1π1 + A2π2

to the functional calculus:

f (A) = f (A1)π1 + f (A2)π2.

On the level of Taylor series, this follows immediately from noting that A jπ j = Aπ j

and using that [π j , A] = 0 and π1π2 = π2π1 = 0. For non-analytic f satisfying
appropriate hypotheses, this follows from (3.2) and the Helffer–Sjöstrand formula
([6], Theorem 8.1 and remarks thereafter).

The finite-dimensional analysis in [14] summarized in Sect. 2.2 rests on the fact
that q̃w(x, h Dx )|KC0

, with KC0 defined in (2.25), resembles a matrix in Jordan normal
form. The following lemma establishes that such matrices have the usual spectral
projections, given by picking out those basis vectors associated with the Jordan block
corresponding to the eigenvalue.

Lemma 3.3 Let dimH = N < ∞, let A be an operator on H, and let {v j }Nj=1 be a

basis for H with respect to which the matrix (a jk)
N
j,k=1 representing A is Jordan-like

in the sense that (a jk) is upper-triangular and a jk �= 0 �⇒ a j j = akk . Then,
following the notation of (1.14),

P{ζ },A(α1v1 + · · · + αN vN ) =
∑

j : a j j=ζ
α j v j .

Proof The assumption that a jk �= 0 �⇒ a j j = akk implies that we may write H as
a finite direct sum of the A-invariant subspaces

Ez = span{v j : a j j = z}.

In view of Lemma 3.1, it suffices to show that

P{ζ },A|Ez
=

{
1Ez , ζ = z
0, ζ �= z.

Restricted to each such subspace, we have

A|Ez = z + N

with N nilpotent because A is upper-triangular. We expand the integrand in (1.14) in
a finite Neumann series:

(λ− A|Ez )
−1 = (λ− z)−1 +

O(1)∑

j=1

(λ− z)− j−1 N j .
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The lemma then follows from the elementary fact that, for j ∈ N,

∫

|ζ−z|=ε
(λ− z)− j dz

is zero for ε sufficiently small unless j = 1 and ζ = z, in which case one obtains 2π i .

We combine these lemmas to form the characterization of the spectral projections for
q̃w(x, h Dx ) acting as an operator on HΦ2(C

n; h) as in Proposition 2.2, thus proving
Theorem 1.2. Because the spectral projections are continuous and polynomials are
dense in HΦ2 (following Remark 2.5), it suffices to compute a spectral projection for
u a polynomial. Fixing such a u and an h > 0, we may then choose C0 sufficiently large
that u ∈ KC0 defined in (2.25). We recall from [14] that KC0 is q̃w(x, h Dx )-invariant,
and it then follows from Lemma 3.1 that spectral projections for q̃w(x, h Dx ), acting
on u, are identical to the spectral projections for q̃w(x, h Dx )|KC0

.
We recall the characterization of q̃w(x, h Dx ) reviewed in Remark 2.3. In particular,

with respect to the basis {xα}|α|≤C0h−1 for KC0 , we have that

q̃w(x, h Dx )x
α = μαxα +

n−1∑

j=1

γ j hα j

i
xα

′
j ,

writing α′j ∈ N
n
0 for the multi-index obtained from α by decreasing α j by 1 and

increasing α j+1 by 1.
Because γ j = 0 if λ j+1 �= λ j , we have that qw(x, h Dx )xα is a linear combination

only of certain xα
′
j for which μα′j = μα . In the language of Lemma 3.3, this means

that the matrix representation of q̃w(x, h Dx ) acting on KC0 with respect to the basis
{xα}|α|≤C0h−1 is Jordan-like so long as it is upper-triangular: that is to say, writing

q̃w(x, h Dx )x
α =

∑

β

aβαxβ,

we have that aαα = μα for all α and that aβα = 0 if μβ �= μα . To ensure that the
matrix of q̃w(x, h Dx )|KC0

is upper triangular with respect to this basis, it suffices to

equip the α with |α| ≤ C0h−1 with an ordering ≺ in such a way that α′j ≺ α. Since
the degree of a monomial is preserved by q̃w(x, h Dx ), we only need to order the α
with |α| fixed, and we do so by saying that

α ≺ β ⇐⇒
n∑

j=1

jα j >

n∑

j=1

jβ j . (3.3)

Note that this simply reverses the ordering used in the proof of Lemma 4.1 in [14].
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Because each polynomial certainly has a unique expression as

u(x) =
∑

|α|≤N

(α!)−1(∂αu(0))xα,

Theorem 1.2 is therefore proven for any polynomial by applying Lemma 3.3 to
q̃w(x, h Dx ) acting on KC0 with C0 sufficiently large. This extends to all of HΦ2

via density of polynomials and the fact that

∂αu(0) = 0

is an HΦ2 -closed condition, as it is L2
loc(C

n) closed for entire functions and the HΦ2

topology is finer.

3.2 An elementary exponential upper bound

We present the following minor extension of Proposition 3.3 in [14].

Lemma 3.4 Let Φ :Cn →R be strictly convex, real-valued, and quadratic. Let
C�,Cu > 0 be such that

C�|x |2 ≤ Φ(x) ≤ Cu |x |2.

For S ⊆ N
n
0 a finite collection of multi-indices, define M = maxα∈S |α|. Write

τSu(x) =
∑

α∈S

(α!)−1(∂αu(0))xα.

Then

||τS||L(HΦ) ≤
(

Cu

C�

) n+M
2

.

Proof Note that polynomials are dense in HΦ ; see Remark 2.5. It therefore suffices to
consider u ∈ HΦ a polynomial, since continuity of τS follows from the closed graph
theorem. Replacing 1/C1 with C� turns (3.12) of [14] into

||τSu||2HΦ ≤
∑

α∈S

|aα|2
(

h

2C�

)n+|α|
πnα!,

and similarly (3.14) becomes

||u||2HΦ ≥
∑

α∈S

|aα|2
(

h

2Cu

)n+|α|
πnα!.
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When examining the ratio ||τSu||2HΦ /||u||2HΦ , we may factor out (Cu/C�)n+M . This

replaces the C−n−|α|
� in the numerator with C M−|α|

� and likewise for C−n−|α|
u in the

denominator. Since M − |α| ≥ 0 and Cu ≥ C�, the conclusion follows after taking a
square root.

This can be immediately applied to the spectral projections for q̃w(x, h Dx ): because

Reμα ≥ (2|α| + n)h min Im λ j ≥ h

C
|α|,

those α appearing in the expression (1.17) for Πζ0 have modulus bounded by Ch−1,
with constant depending only on q̃ and an upper bound for |ζ0|. This establishes the
following corollary.

Corollary 3.5 With Πz the spectral projection for q̃w(x, h Dx ) and {z} as in
Theorem 1.2,

||Πz||L(HΦ) ≤ CeC/h .

(The constants may be made uniform for z ∈ Ω so long as Ω ⊂ C is bounded.)

Example 3.6 We recall from Example 2.6 that q1(x, ξ) is diagonalized on HΦ1(C
1)

for

Φ1(x) = 1

4
(|x |2 − Re (x,C+x)), C+ = 1

2
(−1+ e−4iθ ).

Notice that

|C+| =
√

1

4
(2− 2 cos 4θ) = | sin 2θ |. (3.4)

The principal advantage of the estimate in Lemma 3.4 is that C� and Cu are easy to
compute as the least and greatest eigenvalues of the 2n × 2n real symmetric matrix
1
2∇2

Re x,Im x
Φ. In this one-dimensional example, and with S = {N }, we easily com-

pute that

∇2
Re x,Im x

Φ1 = 1

2

(
1− Re C+ Im C+

Im C+ 1+ Re C+

)

with eigenvalues (1± |C+|)/2 and therefore, using (3.4),

||τ{N }||L(HΦ1 )
≤

(
1+ | sin 2θ |
1− | sin 2θ |

) n+N
2

. (3.5)

In view of Theorem 1.2 and the unitary equivalence in Proposition 2.2 described
in Example 2.6, the same upper bound holds for the operator norm of the spectral
projection
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ΠN := Pqw1 (x,Dx ),{2N+1} : L2(R1)→ L2(R1)

using the definition in (1.14).
The other notable property of the estimate for this operator is that this rate of expo-

nential growth is optimal, which is proven in [4] and reaffirmed in Corollary 1.7.
Because the formulas are not obviously identical, we indicate the necessary compu-
tations to show equality.

In Theorem 3 of [4] (with the necessary changes of notation), Davies and Kuijlaars
proved the exponential rate of growth

lim
N→∞ N−1 log ||ΠN || = 2Re [ f (r(θ)eiθ )]

with

f (z) = log(z + (z2 − 1)1/2)− z(z2 − 1)1/2

and

r(θ) = (2 cos(2θ))−1/2.

Here, we are taking 0 < θ < π/4.
First, with ζ = r(θ)eiθ ,

ζ 2 − 1 = (2 cos 2θ)−1(cos 2θ + i sin 2θ)− 1

= (2 cos 2θ)−1(− cos 2θ + i sin 2θ) = − e−2iθ

2 cos 2θ
.

Recalling the definition of r(θ), we therefore have (ζ 2 − 1)1/2 = ±ir(θ)e−iθ . We
expand

f (r(θ)eiθ ) = log(r(θ)eiθ ± ir(θ)e−iθ )∓ ir(θ)2.

We are taking a real part of f (r(θ)eiθ ), so the second term is irrelevant. Since
2Re log u = log |u|2, we obtain, again using the definition of r(θ), that

2Re [ f (r(θ)eiθ ))] = − log(2 cos 2θ)+ log(|eiθ ± ie−iθ |2) = log

(
1± sin 2θ

cos 2θ

)
.

The fact that projections should grow exponentially quickly indicates that the positive
branch is the right choice. One may then easily check that

(
1+ sin 2θ

cos 2θ

)2

= 1+ sin 2θ

1− sin 2θ

for 0 < θ < π/4, indicating that (3.5) is optimal there. That (3.5) is optimal for θ = 0
is obvious from the fact that 1 is the norm of any spectral projection for a normal
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operator, and the extension to −π/4 < θ < 0 is easily seen by using the Fourier
transform to interchange x and ξ in the definition (2.15) of q1(x, ξ).

Remark 3.7 It is clear that neither Corollary 3.5 nor Corollary 1.6 should be sharp in
general in higher dimensions. Consider some 0 < r1 ≤ r2 ≤ · · · ≤ rn and

Φ(x) = 1

4

n∑

j=1

r j |x j |2,

and note that it is easy to check using polar coordinates that {xα}α∈N
n
0

form an
orthogonal basis for HΦ . Therefore, normalizing the xα , we see that q̃w(x, h Dx )

is orthonormally diagonalizable and therefore normal whenever q̃(x, ξ) = (Mx) · ξ
for M diagonal. (Alternately, Φ may be viewed as coming from the standard weight
Φ0(x) = |x |2/4 after an anisotropic change in semiclassical parameter similar to
(1.2).)

However, both Corollary 3.5 and Corollary 1.6 provide an exponentially growing
upper bound like (rn/r1)

|α|. Since normal operators have orthogonal spectral projec-
tions, we see that these estimates are not necessarily sharp.

4 Dual bases for projections onto monomials

Following the methods of [4], a continuous projection Π onto a one-dimensional
subspace spanψ of a Hilbert space H may be analyzed by treating the resulting
coefficient of ψ as a continuous linear functional on H. Therefore there exists some
unique ψ† where

Πu = 〈u, ψ†〉ψ, ∀u ∈ H.

The operator norm of Π may then be computed from ψ and ψ†:

||Π ||L(H) = ||ψ || ||ψ†||.

When the ranges of spectral projections described in Theorem 1.2 have higher
dimension, formulas for ||Π || like the one above are unavailable. Example 2.8 demon-
strates that one may have a weighted space where the natural projections onto mono-
mials grow exponentially quickly, yet spectral projections associated with a quadratic
operator acting on that weighted space may be orthogonal. We therefore focus on the
simple one-dimensional case

Παu(x) = (α!)−1(∂αu(0))xα : HΦ → HΦ.

We are interested in those Φ which can be obtained from Proposition 2.2, but we
begin by observing that it is equivalent to assume that Φ is real-valued, quadratic,
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and strictly convex. Next, we write a elementary formula describing the family {φ†
α},

which is defined by the relations

〈xα, φ†
β〉HΦ = δαβ,

in terms of adjoints on HΦ , and we derive formulas for these adjoints. After relating
these {φ†

α} to the eigenfunctions of qw(x, h Dx )
∗, we are in a position to prove Theo-

rem 1.4. Finally, we describe how {φ†
α} are unitarily equivalent to {xα} after a change

of weight, thus proving Theorem 1.3.

4.1 Reversibility of the reduction to normal form

In Sect. 2.2, we have a reduction to an operator on HΦ2(C
n; h) forΦ2 a strictly convex

real-valued quadratic weight described in (2.12). Here, we show that every strictly
convex real-valued quadratic weight Φ may be written as Φ2 for some appropriate G
and C+.

We begin with some general facts about real-valued quadratic forms and a useful
decomposition thereof. We may write

Φ(x) = 1

2
(x, Φ ′′xx x)+ (x, Φ ′′x x̄ x̄)+ 1

2
(x̄, Φ ′′̄x x̄ x̄). (4.1)

That Φ is real-valued is equivalent to the two statements

Φ ′′xx = Φ ′′̄x x̄ , (Φ ′′x x̄ )
∗ = Φ ′′x x̄ .

It is natural (see for instance [2], Appendix A) to decomposeΦ into Hermitian and
pluriharmonic parts, obtaining Φ = Φherm +Φplh with

Φherm(x) = (x, Φ ′′x x̄ x̄) = 1

2
(Φ(x)+Φ(i x)) (4.2)

and

Φplh(x) = Re (x, Φ ′′xx x) = 1

2
(Φ(x)−Φ(i x)). (4.3)

We also note that strict convexity ofΦ implies strict plurisubharmonicity ofΦ, which
is in the quadratic case case equivalent to the strict convexity of Φherm. This in turn is
equivalent to having Φ ′′̄xx be a positive definite Hermitian matrix.

We now prove reversibility of Proposition 2.2, summarized in the following propo-
sition.

Proposition 4.1 Let Φ : C
n → R be a strictly convex real-valued quadratic weight.

Then there exists some G and C+, with C+ given by (2.7) for some symmetric A+ with
Im A+ > 0, for which Φ = Φ2 as in (2.12).
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Proof We begin by reducing to the case G+ = 1. Having seen that Φ ′′̄xx is a positive
definite Hermitian matrix, we may write

Φ ′′̄xx =
1

4
G∗G

for some invertible G ∈ C
n×n . We then see that Φ(G−1x) is strictly convex and that

Φ(G−1x) = 1

4
(|x |2 − Re (x, Bx)) (4.4)

for B = −4G−tΦ ′′xx G−1, which is clearly symmetric. We naturally propose that

C+ = B

and set out to find some symmetric A+ with Im A+ > 0 which yields C+ via (2.7).
By Takagi’s factorization (Corollary 4.4.4 of [17]) there exists some unitary

U ∈ C
n×n and a diagonal matrix Σ whose entries, the singular values of C+, are

nonnegative real numbers for which

C+ = UΣU t .

But then, since U is unitary,

Φ1(U
t x) = 1

4
(|x |2 − Re (x,Σx)).

(See also Lemma 5.1 of [16], which provides the same reduction to normal form.) It is
then immediate that strict convexity of Φ1 is equivalent to requiring that the diagonal
entries of Σ must lie in [0, 1). Since the diagonal entries of Σ are the square roots
of the eigenvalues of C∗+C+, this in turn is equivalent to requiring that the selfadjoint
operator 1− C∗+C+ is positive definite.

Since the spectral radius of a matrix is at most its largest singular value and since
the singular values of C+ lie in [0, 1), we see that −1 /∈ Spec C+. We may therefore
solve (2.7) for A+ and propose that

A+ = i(1+ C+)−1(1− C+). (4.5)

Symmetry of A+ follows from symmetry of C+.
We then recall that 1 − C∗+C+ and Im A+ are related through (2.8), where it was

seen that positive definiteness of 1 − C∗+C+ is equivalent to positive definiteness of
Im A+. Since we have established positive definiteness of 1 − C∗+C+ through strict
convexity of Φ1, this completes the proof of the proposition.

Remark 4.2 We also record that the invertible matrix G and the symmetric matrix C+
in (2.12) may be written in terms of derivatives of the weight Φ. We see that we may
make the (non-unique) choice
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G = 2(Φ ′′̄xx )
1/2,

using the usual square root of a positive definite Hermitian matrix. We then note that
we used

C+ = −4G−tΦ ′′xx G−1.

We furthermore note the geometric characterizations that G may be regarded as deter-
mining the Hermitian part of Φ, defined in (4.2), while C+ determines the plurihar-
monic part, defined in (4.3), of the reduced weight function Φ(G−1x).

4.2 Characterization of the dual basis to {xα} in HΦ

The main goal of this section is to obtain a formula for {φ†
α}α∈N

n
0

for which

〈xα, φ†
β〉HΦ = δαβ.

Throughout this section, Φ : C
n → R is real-valued, strictly convex, and quadratic.

We note that these relations determine the φ†
β uniquely in HΦ since the functional

u �→ 〈u, φ†
β〉HΦ is then prescribed on the polynomials, a dense subset of HΦ (see

Remark 2.5). We show that φ†
β ∈ HΦ below as a consequence of (4.14).

We will show that, when

φ
†
0(x) = C0exp

(
1

h
(x, Φ ′′xx x)

)
(4.6)

we have

x∗φ†
0 = 0, (4.7)

where x = (x1, . . . , xn) is a multiplication operator, the adjoint represents x∗ =
(x∗1 , . . . , x∗n ) acting on (HΦ)n , and equality here is naturally in (HΦ)n . So long as the
h-dependent constant C0 is chosen such that

〈1, φ†
0〉HΦ =

∫

Cn

C0exp

(
1

h
(x, Φ ′′xx x)

)
e−2Φ(x)/h d L(x) = 1, (4.8)

it will then be immediate from (4.7) that

〈xα, φ†
0〉HΦ = 〈1, (x∗)αφ†

0〉HΦ = δα,0,

Passing to adjoints, we may then easily see that

〈xα, (β!)−1(∂∗x )βφ
†
0〉HΦ = δαβ.
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Indeed, when α = β we only need to use that ∂βx xβ = β! · 1. When there exists
some j ∈ {1, . . . , n} with α j < β j , we have that ∂βx xα = 0, and if α j ≥ β j for all
j ∈ {1, . . . , n} yet α �= β, then

〈xα, (β!)−1(∂∗x )βφ
†
0〉HΦ = Cαβ〈xα−β, φ†

0〉HΦ = 0

by (4.7).
Once we establish (4.7), we will therefore have that

φ
†
β = (β!)−1(∂∗x )βφ

†
0 . (4.9)

What remains is to express x∗ and ∂∗x in useful ways. We will show that both operators
may be represented as Ax + B(h Dx ) for matrices A, B depending on the weight Φ.

We begin with a bookkeeping rule for adjoints of n-tuples of operators. Let H be a
Hilbert space, and let A = (A1, . . . , An) and B = (B1, . . . , Bn) be operators on Hn

subject to the rule

B = MA, M = (m jk)
n
j,k=1.

Writing B∗ = (B∗1 , . . . , B∗n ), we then have the rule

B∗ = MA∗, (4.10)

obtained by taking complex conjugates of the entries in M but without transposition.
We return to the specific context of HΦ with Φ real-valued, quadratic, and strictly

convex, recalling the decomposition (4.1) and related facts at the beginning of Sect. 4.1.
We now compute the operators x∗ and ∂∗x , with adjoints hereafter in this section

taken in HΦ . We remark that formulas (4.11) and (4.13) below may be obtained from
the unique expression of the symbols x̄ and ξ̄ as holomorphic linear functions of x and
ξ when (x, ξ) ∈ ΛΦ defined in (2.9). For completeness, we include the usual proof
via integration by parts.

Note that holomorphic and antiholomorphic derivatives ∂x and ∂x̄ are formally
antisymmetric on the unweighted space L2(Cn, d L(x)). There is a dense subset of
u, v ∈ HΦ with sufficient decay at infinity to justify the following computation:

〈h Dx u, v〉HΦ =
∫

Cn

(h Dx u(x))v(x)e−2Φ(x)/h d L(x)

= −
∫

Cn

u(x)h Dx

[
v(x)e−2Φ(x)/h

]
d L(x)

= −
∫

Cn

u(x)v(x)
h

i

(
−2

h

)
∂xΦ(x)e

−2Φ(x)/h d L(x)

=
∫

Cn

u(x)v(x)
2

i

(
Φ ′′xx x +Φ ′′x x̄ x̄

)
e−2Φ(x)/h d L(x).
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For instance, one may take |u(x)| ≤ ON ,h(1)〈x〉−N eΦ(x)/h and v(x) obeying similar
estimates, as in page 8 of [27]. This gives

〈(
i

2
h Dx −Φ ′′xx x

)
u, v

〉

HΦ

= 〈u, Φ ′′x x̄ xv〉HΦ ,

from which

(
Φ ′′x x̄ x

)∗ = −Φ ′′xx x + i

2
h Dx ,

which leads immediately to

x∗ = (Φ ′′x x̄ )
−1

(
−Φ ′′xx x + i

2
h Dx

)
(4.11)

in view of (4.10).
We recall from Sect. 4.1 thatΦ ′′x x̄ is a positive definite Hermitian matrix. We there-

fore have that, if

φ
†
0(x) = C0 exp

(
1

h
(x, Fx)

)
, F ∈ C

n×n, Ft = F,

then

x∗φ†
0(x) = (Φ ′′x x̄ )

−1
(
−Φ ′′xx x + i

2
· h

i

(
1

h

)
2Fx

)
φ

†
0(x).

Thus x∗φ†
0(x) = 0 exactly when

F = Φ ′′xx .

We recall Definitions (4.2) and (4.3). That φ†
0 ∈ HΦ follows from the convenient

fact that

|C−1
0 φ

†
0(x)|2 = exp

(
2

h
Φplh(x)

)
,

and so

|φ†
0(x)|2e−2Φ(x)/h = |C0|2exp

(
−2

h
Φherm(x)

)
, (4.12)

where we have seen that Φherm(x) is strictly convex. That 〈1, φ†
0〉HΦ is finite follows

from the Cauchy–Schwarz inequality, since both ||1||2HΦ and ||C−1
0 φ

†
0 ||2HΦ may now

be seen as integrals of 1 against exp (−2Φ̃(x)/h) for some Φ̃ which is a real-valued
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strictly convex quadratic form. We may therefore choose an h-dependent constant C0
such that (4.8) holds, and we will compute this constant below.

Moving on to (h Dx )
∗, we obtain from (4.11) that

Φ ′′x x̄ x = −Φ ′′xx x∗ − i

2
(h Dx )

∗,

and so

(h Dx )
∗ = −2

i
(Φ ′′xx x∗ +Φ ′′x x̄ x)

= 2

i

(
−Φ ′′x x̄ +Φ ′′xx (Φ

′′
x x̄ )

−1Φ ′′xx

)
x −Φ ′′xx (Φ

′′
x x̄ )

−1h Dx . (4.13)

The former formulation is particularly convenient because x∗φ†
0 = 0. It follows

from (4.11) and the Leibniz rule that

x∗( f g) = f · (x∗g)+ i

2
((Φ ′′x x̄ )

−1h Dx f ) · g.

Therefore

(∂x )
∗( f φ†

0) = −
i

h
(h Dx )

∗( f φ†
0)

= 2

h
Φ ′′xx x∗( f φ†

0)+
2

h
Φ ′′x x̄ x( f φ†

0)

= 2

h
Φ ′′xx

(
f x∗φ†

0 +
i

2
((Φ ′′x x̄ )

−1h Dx f )φ†
0

)
+ 2

h
Φ ′′x x̄ x f φ†

0

=
[(

2

h
Φ ′′x x̄ x +Φ ′′xx (Φ

′′
x x̄ )

−1∂x

)
f

]
φ

†
0 .

We conclude that

φ†
α = (α!)−1

[(
2

h
Φ ′′x x̄ x +Φ ′′xx (Φ

′′
x x̄ )

−1∂x

)α
1

]
φ

†
0 . (4.14)

Since this formula makes it apparent that each φ†
α is a polynomial times φ†

0 , we deduce
φ†
α ∈ HΦ immediately as a consequence of (4.12).

To compute C0 in (4.6), we write

〈1, φ†
0〉HΦ =

∫

Cn

C0e
i
h Q(x) d L(x) (4.15)

with

Q(x) = −i(x̄, Φ ′′xx x̄)+ 2iΦ(x) = i(x, Φ ′′xx x)+ 2i(x, Φ ′′x x̄ x̄). (4.16)
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We may apply Lemma 13.2 in [33] to see that, when

Q : Cn ∼ R
n
Re x × R

n
Im x → C

is a quadratic form with Im Q strictly convex, we have

∫

Cn

e
i
h Q(x) d L(x) =

(
det

(
1

2π ih
∇2

Re x,Im x Q

))−1/2

.

We then note that

det

(
1

2π ih
∇2

Re x,Im x Q

)
= (2π ih)−2n det∇2

Re x,Im x Q,

since ∇2
Re x,Im x Q is a 2n-by-2n matrix. Next, we use block matrices to write

Q(x) =
((

Re x
Im x

)
,

1

2
∇2

Re x,Im x Q

(
Re x
Im x

))
=

((
x
x̄

)
,

1

2
∇2

x,x̄ Q

(
x
x̄

))

=
((

1 i
1 −i

)(
Re x
Im x

)
,

1

2
∇2

x,x̄ Q

(
1 i
1 −i

)(
Re x
Im x

))
.

We therefore have that

∇2
Re x,Im x Q =

(
1 1
i −i

)
∇2

x,x̄ Q

(
1 i
1 −i

)
.

Recall that we are considering 2n-by-2n matrices formed of n-by-n blocks, and so in
this context

det

(
1 1
i −i

)
= (−2i)n .

We may conclude that

∫

Cn

e
i
h Q(x) d L(x) =

(
det

(
1

2π ih
∇2

Re x,Im x Q

))−1/2

= ((−2i)2n(2π ih)−2n det∇2
x,x̄ Q)−1/2 = (πh)n(∇2

x,x̄ Q)−1/2. (4.17)

With Q(x) given by (4.16), we may write in block form

∇2
x,x̄ Q(x) =

(
∂2

x Q ∂x̄∂x Q
∂x∂x̄ Q ∂2

x̄ Q

)
= 2i

(
Φ ′′xx Φ ′′x x̄
Φ ′′̄xx 0

)
.
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Permuting n rows to interchange rows in the block matrix representation, we therefore
have

det(∇2
x,x̄ Q) = (2i)2n(−1)n det

(
Φ ′′̄xx 0
Φ ′′xx Φ ′′x x̄

)
= 22n det(Φ ′′̄xx ) det(Φ ′′x x̄ ).

SinceΦ ′′̄xx = (Φ ′′x x̄ )
t , the two determinants are equal. From (4.15) and (4.17) we obtain

C0 =
(

2

πh

)n

detΦ ′′x x̄ =
(

2

πh

)n

detΦ ′′x x̄ , (4.18)

since Φ ′′x x̄ is a positive definite Hermitian matrix.
We end this section with an elementary lemma that proves the well-known fact that

the collection {φ†
α}α∈N

n
0

form the eigenfunctions of the adjoint operator

(Q̃(h))∗HΦ = (q̃w(x, h Dx ))
∗
HΦ

when

q̃(x, ξ) = (Mx) · ξ

with M in Jordan normal form.

Lemma 4.3 Let both the quadratic form q̃(x, ξ) = (Mx) · ξ : C
2n → C and the

strictly convex quadratic weight Φ2 : C
n → R be obtained from applying Proposi-

tion 2.2 to a quadratic q : R2n → C which is partially elliptic and has trivial singular
space in the sense of (1.5) and (1.6).

Then {φ†
α}α∈N

n
0

given by (4.14) form a basis of eigenfunctions for

q̃w(x, h Dx )
∗
HΦ2

: D(q̃w(x, h Dx )
∗)→ HΦ2 ,

where specifically φ†
α is a generalized eigenvector of q̃w(x, h Dx )

∗
HΦ2

with eigenvalue

μα , with μα defined in (1.12).

Proof We work in the space HΦ2 with corresponding inner products and adjoints
throughout. What follows is essentially the classical proof which generates the eigen-
functions of the harmonic oscillator via creation-annihilation operators, with small
modifications.

We recall from Remark 2.3 that we may write

q̃w(x, h Dx ) = Q̃ D(h)+ Q̃N (h)

for Q̃ D(h) = q̃wD(x, h Dx ) and Q̃N (h) = q̃wN (x, h Dx ). We begin by focusing on

Q̃ D(h) =
n∑

j=1

2λ j x j h Dx j +
h

i

n∑

j=1

λ j ,
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and we show that

Q̃ D(h)
∗φ†
α = μαφ†

α. (4.19)

We have that

Q̃ D(h)
∗ =

n∑

j=1

2λ j (h Dx j )
∗x∗j + μ0,

and so the fact that

Q̃ D(h)
∗φ†

0 = μ0φ
†
0

follows immediately from the fact that x∗φ†
0 = 0.

The statement (4.19) for all φ†
α follows by induction. For u, v ∈ D(Q̃ D(h)) ⊂ HΦ ,

using the definition of Q̃ D(h) and the Leibniz rule for derivatives gives the relation

〈u, Q̃ D(h)
∗∂∗x j

v〉 = 〈∂x j Q̃ D(h)u, v〉

=
〈
2h
λ j

i
∂x j u, v

〉
+

〈
Q̃ D(h)∂x j u, v

〉

=
〈

u,−2h
λ j

i
∂∗x j
v + ∂∗x j

Q̃ D(h)
∗v

〉
.

We apply this to v = φ†
α under the induction assumption Q̃ D(h)∗φ†

α = μαφ
†
α , and

immediately see from (4.9) that Q̃ D(h)∗φ†
α+e j

= μα+e jφ
†
α+e j

for e j = (δ jk)
n
k=1 the

standard basis vector. Having established the base case α = 0, we have proven (4.19).
Now write

Q̃N (h) =
n−1∑

j=1

γ j x j+1h Dx j ,

recalling that γ j ∈ {0, 1} and that γ j = 0 whenever λ j+1 �= λ j . We now show that
Q̃N (h)∗ is nilpotent on each {φ†

α}|α|=m , though the degree of nilpotency naturally
may increase with m. We continue to write e j for the standard basis vector. A similar
approach shows that, for u ∈ D(Q̃ D(h)),

〈u, Q̃N (h)
∗φ†
α〉 =

n−1∑

j=1

γ j (α!)−1〈∂αx x j+1h Dx j u, φ
†
0〉

=
n−1∑

j=1

γ j (α!)−1〈(∂α−e j+1
x + x j+1∂

α
x )h Dx j u, φ

†
0〉
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=
n−1∑

j=1

γ j (α!)−1(−ih〈u, (∂∗x )α+e j−e j+1φ
†
0〉)

+
n−1∑

j=1

γ j (α!)−1〈∂αx h Dx j u, x∗j+1φ
†
0〉.

The second term vanishes because x∗φ†
0 = 0, and we therefore have that Q̃N (h)∗φ†

α

is a linear combination of {γ jφ
†
α+e j−e j+1

}n−1
j=1. From (1.12) and the fact that γ j = 0

when λ j+1 �= λ j , we conclude that

γ j �= 0 �⇒ μα+e j−e j+1 = μα j .

Having seen that Q̃N (h)∗ takes φ†
α to a linear combination of some φ†

β which are

also eigenvectors of Q̃ D(h)∗ with eigenvalue μα , we therefore have that, for K ∈ N,

(q̃w(x, h Dx )
∗ − μα)Kφ†

α = (Q̃N (h)
∗)Kφ†

α.

The argument of Lemma 4.1 in [14], which is essentially the observation that Q̃N (h)
acts to strictly decrease the ordering (3.3), then shows that

(q̃w(x, h Dx )
∗ − μα)Kφ†

α = 0

for K sufficiently large depending on α.
Since we now know that the φ†

α are generalized eigenfunctions of q̃w(x, h Dx )
∗,

the proof of the lemma is complete once we show that the {φ†
α}α∈N

n
0

have dense span

in HΦ2 . Via (4.14) we see that φ†
α/φ

†
0 is a polynomial of degree |α| with leading term

((2/h)(Φ2)
′′
x x̄ x)α , and since (Φ2)

′′
x x̄ is invertible by strict plurisubharmonicity of Φ2,

we see that

span{φ†
α}α∈N

n
0
= C[x1, . . . , xn]φ†

0 ⊆ HΦ2 .

We furthermore see from (4.12) that, with the strictly convex weight (Φ2)herm defined
in (4.2), we have that the map

HΦ2 � u(x) �→ C0

φ
†
0(x)

u(x) ∈ H(Φ2)herm

is unitary and takes span{φ†
α} to the polynomials C[x1, . . . , xn]. Since polynomials

are dense in any strictly convex quadratically weighted HΦ (Remark 2.5), this shows
that the {φ†

α} have dense span in HΦ2 and completes the proof of the lemma.
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4.3 Proof of Theorem 1.4

We are now in a position to prove Theorem 1.4.
Let q̃ and Φ2 be provided from Proposition 2.2 applied to some quadratic form q

which is partially elliptic with trivial singular space in the sense of (1.5) and (1.6). We
will proceed by showing that each condition in Theorem 1.4 is equivalent to showing
that (Φ2)plh = 0, using definition (4.3), or equivalently that (Φ2)

′′
xx = 0.

If T is an n-by-n invertible matrix with real entries and V,W are two subspaces of
C

n , it is easy to see that

V = W ⇐⇒ T (V ) = T (W ).

We have such a transformation on C
2n appearing in the κ in (2.3) in the reduction to

normal form. For this κ we have

κ(Λ−) = {(y,−iy)}y∈Cn , κ(Λ+) = {(y, A+y)}y∈Cn ,

and so we see that condition 2 in Theorem 1.4 is equivalent to claiming that A+ = i .
By the Definition (2.7) of C+ in the reduction to normal form and (2.12), we see
furthermore that this condition is equivalent to the claim that (Φ2)

′′
xx = 0.

On the FBI transform side and using the notation of (1.14), write

Π̃μα = P{μα},q̃w(x,h Dx ) : HΦ2 → HΦ2

for the spectral projection for q̃w(x, h Dx ) and {μα}, with μα defined in (1.12). In
view of Theorem 1.2, condition 3 is equivalent to claiming that Π̃μ0 , whose range is
the set of constant functions, is an orthogonal projection. It is sufficient to show that

〈(1− Π̃μ0)u, Π̃μ0 u〉HΦ2
= 0

for each polynomial u, because polynomials are dense in HΦ2 and we know that Π̃μ0

is continuous (e.g. from Lemma 3.4). Since

(1− Π̃μ0)

⎛

⎝
∑

|α|≤N

aαxα

⎞

⎠ =
∑

1≤|α|≤N

aαxα

and

Π̃μ0

⎛

⎝
∑

|α|≤N

aαxα

⎞

⎠ = a0,

condition 3 is equivalent to the condition that the constant function 1 is orthogonal
to any polynomial vanishing at the origin. This is turn is equivalent to requiring the
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constant function 1 to be orthogonal to any polynomial multiplied by any x j :

〈x j p(x), 1〉HΦ2
= 0, ∀p(x) ∈ C[x1, . . . , xn], ∀ j = 1, . . . , n.

Taking adjoints and using the density of polynomials in HΦ2 gives the equivalent
condition

x∗HΦ2
1 = 0. (4.20)

Via (4.11), we thus have that

x∗HΦ2
1 = −((Φ2)

′′
x x̄ )

−1(Φ2)
′′
xx x = 0,

which establishes that condition 3 is also equivalent to the statement (Φ2)
′′
xx = 0.

The same unitary equivalence from Proposition 2.2 makes condition 1 equivalent
to

ker(q̃w(x, h Dx )
∗ − μ0) = ker(q̃w(x, h Dx )− μ0),

where the right-hand side is the span of the constant function. From Lemma 4.3, it is
clear that this is equivalent to assuming that φ†

0 is a constant function. We have already
seen in (4.6) that this is the same as insisting that (Φ2)

′′
xx = 0.

This completes the proof of the theorem. Some numerical analysis based on the
resulting decomposition in Remark 1.5 is presented above in Sect. 2.6.

4.4 Transferring ∂∗x to a multiplication operator

In the reduction to normal form in Proposition 2.2, we reduce qw(x, h Dx ) acting on
L2(Rn) to an operator q̃w(x, h Dx ) acting on HΦ2(C

n; h) for which the monomials
form a basis of generalized eigenvectors. We have seen in Lemma 4.3 that the {φ†

α} of
Sect. 4.2 form a basis of generalized eigenvectors for q̃w(x, h Dx )

∗
HΦ2

. It is therefore

natural to expect that applying Proposition 2.2 to qw(x, h Dx )
∗ would convert the {φ†

α}
into {xα} in a different weighted space.

We do not reference qw(x, h Dx )
∗ here explicitly; we merely use the fact that taking

adjoints of quantizations acting on L2(Rn) takes the complex conjugate of the principal
symbol. We only need to consider the obvious effect on the stable manifolds defined
in (1.10):

Λ±(q̄) = Λ∓(q).

Given this strategy, the computations which follow are natural and routine, but are
included for completeness.
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In view of Proposition 4.1, we assume that Φ is in the form given by (2.12). We
begin with the case G = 1, meaning that we take

Φ(x) = Φ1(x) = 1

4
(|x |2 − Re (x,C+x))

for

C+ = (1− i A+)−1(1+ i A+), At+ = A+, Im A+ > 0.

This will be easily extended, since (∂x )
∗
HΦ2

= ((i/h)ξw)∗HΦ2
may be computed as an

operator on HΦ1 because the change of variables which maps HΦ1 to HΦ2 quantizes the
map (x, ξ) �→ (G−1x,Gtξ). This means that there is a unitary equivalence between
(∂x )

∗
HΦ2

and

((
Gt i

h
ξ

)w)∗

HΦ1

= Gt (∂x )
∗
HΦ1

. (4.21)

We therefore continue with Φ1 and apply this computation afterwards.
We then apply (4.13) and (4.11) with derivatives taken from (2.12) when G = 1,

the identity matrix. We obtain

(∂x )
∗
HΦ1

= 1

2h

(
(1− C∗+C+)x + 2

i
C∗+h Dx

)
(4.22)

and

x∗HΦ1
= C+x + 2ih Dx . (4.23)

We then invert the FBI transform described in the proof of Proposition 2.2 with
canonical transformation from (2.5),

�A+ =
(

1 −i
−(1− i A+)−1 A+ (1− i A+)−1

)
.

Recalling that

�−1
A+({x = 0}) = Λ− = {(y,−iy)}y∈Cn

and

�−1
A+({ξ = 0}) = Λ+ = {(y, A+y)}y∈Cn ,
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we reverse the roles ofΛ+ andΛ− by taking their complex conjugates. We straighten
Λ+ to {(y,−iy)} as in the proof of Proposition 2.2. From (2.3) we recall that with

κ =
(

(Im A+)1/2 0
−(Im A+)−1/2Re A+ (Im A+)−1/2

)

we have

κ(Λ+) = {(y,−iy)}y∈Cn ,

and we furthermore note that

κ(Λ−) = {(y, Ã+y)}y∈Cn ,

where here

Ã+ = (Im A+)−1/2(i − Re A+)(Im A+)−1/2. (4.24)

We expect that canonical transformations of these Lagrangian planes should be
performed via unitary operators quantizing these canonical transformations, since we
have the rule

Λ±(q ◦ κ−1) = κ(Λ±(q)).

We only need to recall, following the proof of Proposition 2.2, that there exists some
unitary transformation

T̃0 : HΦ1 → H
Φ

†
1

quantizing the complex linear canonical transformation K−1 with

K = �A+ ◦ κ−1 ◦ �−1
Ã+
.

Here

Φ
†
1 (x) =

1

4
(|x |2 − Re (x, C̃+x))

for

C̃+ = (1− i Ã+)−1(1+ i Ã+).

All that remains is to compute K and discover what becomes of the symbols of
(∂x )

∗
HΦ1

and x∗HΦ1
by computing, using (4.22) and (4.23),

σ((∂x )
∗
HΦ1

) ◦ K = 1

2h

(
(1− C∗+C+)y + 2

i
C∗+η

)∣∣∣∣
(y,η)=K (x,ξ)

(4.25)
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and

σ(x∗HΦ1
) ◦ K = (C+y + 2iη)|(y,η)=K (x,ξ). (4.26)

Note that the symbols σ((∂x )
∗
HΦ1

) and σ(x∗HΦ1
) naturally take their inputs from ΛΦ1

defined in (2.9), while σ((∂x )
∗
HΦ1

) ◦ K and σ(x∗HΦ1
) ◦ K take their inputs from Λ

Φ
†
1

for Φ†
1 associated with Ã+.

We decompose the maps involved in K as much as possible:

�A+ =
(

1 0
0 (1− i A+)−1

)(
1 −i

−A+ 1

)
,

κ−1 =
(

1 0
Re A+ 1

)(
(Im A+)−1/2 0

0 (Im A+)1/2
)
,

and

�−1
Ã+
=

(
1 i

Ã+ 1

)(
(1− i Ã+)−1 0

0 1

)

In addition to the definition (4.24) of Ã+, we compute

(1− i Ã+)−1 =
(
(Im A+)−1/2(Im A+ − i(i − Re A+))(Im A+)−1/2

)−1

= (Im A+)1/2(1+ i A∗+)−1(Im A+)1/2. (4.27)

It is then easy to show that

κ−1 ◦ �−1
Ã+
=

(
1 i
i i A∗+

)(
(1+ i A∗+)−1 0

0 1

)(
(Im A+)1/2 0

0 (Im A+)−1/2

)

and, recalling definition (2.7) of C+, that

K =
(

2(1+ i A∗+)−1(Im A+)1/2 i(1− i A∗+)(Im A+)−1/2

iC+(1+ i A∗+)−1(Im A+)1/2 2(1− i A+)−1(Im A+)1/2
)
.

We now wish to compute the symbols corresponding to (∂x )
∗
HΦ1

and x∗HΦ1
. From

(4.25), we have

2hσ((∂x )
∗
HΦ1

) ◦ K

= (1− C∗+C+)
(

2(1+ i A∗+)−1(Im A+)1/2x + i(1− i A∗+)(Im A+)−1/2ξ
)

+2

i
C∗+

(
iC+(1+ i A∗+)−1(Im A+)1/2x + 2(1− i A+)−1(Im A+)1/2ξ

)
.

The coefficient of x is clearly 2(1+ i A∗+)−1(Im A+)1/2.
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We expect the coefficient of ξ to vanish. Using (2.8), we have that the coefficient
of ξ is

i(1− C∗+C+)(1− i A∗+)(Im A+)−1/2 + 4

i
C∗+(1− i A+)−1(Im A+)1/2

= 4i(1+ i A∗+)−1(Im A+(1− i A+)−1(1− i A∗+)
−(1− i A∗+)(1− i A+)−1Im A+)(Im A+)−1/2.

Since A+ is symmetric, we see that the coefficient of ξ vanishes if and only if the
matrix

Im A+(1− i A+)−1(1− i A∗+)

is symmetric. The computation

Im A+(1− i A+)−1(1− i A∗+) =
1

2i
(A+ − A∗+)(1− i A+)−1(1− i A∗+)

= 1

2
(1− i A+ − (1− i A∗+))(1− i A+)−1(1− i A∗+)

= 1

2
(1− (1− i A∗+)(1− i A+)−1(1− i A∗+))

yields an obviously symmetric matrix. This completes the proof that the coefficient of
ξ is zero, and so

σ((∂x )
∗
HΦ1

) ◦ K = 1

h
(1+ i A∗+)−1(Im A+)1/2x .

Next, from (4.26), we have

σ(x∗HΦ1
) ◦ K

= C+
(

2(1+ i A∗+)−1(Im A+)1/2x + i(1− i A∗+)(Im A+)−1/2ξ
)

+2i
(

iC+(1+ i A∗+)−1(Im A+)1/2x + 2(1− i A+)−1(Im A+)1/2ξ
)
.

Here, it is easy to see that the coefficient of x vanishes. We then compute

σ(x∗HΦ1
) ◦ K = i(1− i A+)−1 ((1+ i A+)(1− i A∗+)+ 4Im A+

)
(Im A+)−1/2ξ

= i(1− i A+)−1(1− i A+)(1+ i A∗+)(Im A+)−1/2ξ.

We therefore arrive at the conclusion that

σ(x∗HΦ1
) ◦ K = i(1+ i A∗+)(Im A+)−1/2ξ.



Spectral projections and resolvents for quadratic operators 205

We now extend our discussion from Φ1 to include Φ2 as in (2.12). As a result, our
new unitary transformation

T̃ : HΦ2 → H
Φ

†
1

may be obtained by composing T̃0 with the unitary change of variables

HΦ2 � u(x) �→ | det G|−1u(G−1x) ∈ HΦ1 . (4.28)

As in the discussion leading up to (4.21), it is straightforward to use the canonical
transformation quantized by the change of variables u(x) �→ | det G|u(Gx) to obtain
the following unitary equivalences:

T̃ (∂x )
∗
HΦ2

T̃ ∗ = 1

h
Gt (1+ i A∗+)−1(Im A+)1/2x : H

Φ
†
1
→ H

Φ
†
1

(4.29)

and

T̃ x∗HΦ2
T̃ ∗ = iG−1(1+ i A∗+)(Im A+)−1/2h Dx : H

Φ
†
1
→ H

Φ
†
1
.

Because φ†
0 was defined via the equation x∗HΦ2

φ
†
0 = 0, we know that

h Dx T̃ φ†
0 = 0.

We conclude that T̃ φ†
0 ∈ H

Φ
†
1

is a constant function, and since T̃ is unitary, we may

determine the constant through the equality

||T̃ φ†
0 ||HΦ†

1

= ||φ†
0 ||HΦ2

. (4.30)

We begin with ||φ†
0 ||HΦ2

, recalling having already computed C0 in (4.18). Noting from
(2.12) that

(Φ2)
′′
x x̄ =

1

4
Gt G,

we have that

C0 =
(

2

πh

)n

det(Φ2)
′′
x x̄ = (2πh)−n| det G|2.

We refer to the observation (4.12) to see that

||φ†
0 ||HΦ2

= |C0| ||1||H(Φ2)herm
.
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The change of variables (4.28) allows us to see that

||1||H(Φ2)herm
= | det G|−1||1||H(Φ1)herm

,

but it is clear from (2.6) and (4.2) that (Φ1)herm = 1
4 |x |2. Therefore

||φ†
0 ||HΦ2

= (2πh)−n| det G|
⎛

⎝
∫

Cn

exp

(
− 1

2h
|x |2

)
d L(x)

⎞

⎠
1/2

= (2πh)−n| det G|(2πh)n/2 = (2πh)−n/2| det G|. (4.31)

We know that there exists some C̃0 for which T̃ φ†
0 = C̃0, and so we need to compute

||T̃ φ†
0 ||HΦ†

1

= |C̃0| ||1||H
Φ

†
1

. (4.32)

(Naturally, we are only interested in the absolute value of C̃0.) In order to apply (4.17),
we write

∫

Cn

exp

(
−2

h
Φ

†
1 (x)

)
d L(x) =

∫

Cn

e
i
h Q(x) d L(x)

for

Q(x) = i

2

(
|x |2 − Re (x, C̃+x)

)
.

Then

∇2
x,x̄ Q(x) = i

2

(−C̃+ 1
1 −C̃∗+

)
.

To avoid issues with block matrices, we perform row reduction by adding to the first
row the result of postmultiplying the second row by C̃+ and permute n rows, obtaining

det

(−C̃+ 1
1 −C̃∗+

)
= det

(
0 1− C̃∗+C̃+
1 −C̃∗+

)
= (−1)n det

(
1 −C̃∗+
0 1− C̃∗+C̃+

)
.

At this point, it becomes clear that

det(∇2
x,x̄ Q) =

(
i

2

)2n

(−1)n det(1− C̃∗+C̃+) = 2−2n det(1− C̃∗+C̃+).

We therefore conclude from (4.17) that

||1||H
Φ

†
1

= (2πh)n/2 det(1− C̃∗+C̃+)−1/4. (4.33)
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We see from (4.24) that Im Ã+ = (Im A+)−1. We may then use (2.8) and (4.27) to
compute that

1− C̃∗+C̃+ = (1+ i Ã∗+)−1(4Im Ã+)(1− i Ã+)−1

= 4(Im A+)1/2(1− i A+)−1(1+ i A∗+)−1(Im A+)1/2,

and therefore, again using (2.8),

det(1− C̃∗+C̃+) = det(1− C∗+C+). (4.34)

We therefore use (4.32) and (4.33) to obtain

||T̃ φ†
0 ||HΦ†

1

= |C̃0|(2πh)n/2 det(1− C∗+C+)−1/4.

From (4.30) and (4.31) we then compute that

|C̃0| = (2πh)−n| det G| det(1− C∗+C+)1/4. (4.35)

So far, we therefore have from (4.9) and (4.29) a unitary equivalence between
φ†
α ∈ HΦ2 and

C̃0(α!)−1(2h)−|α|
(

2Gt (1+ i A∗+)−1(Im A+)1/2x
)α ∈ H

Φ
†
1
.

We then make a final change of variables u(x) �→ | det G̃|u(G̃x) with

G̃ = 1

2
(Im A+)−1/2(1+ i A∗+)(G∗)−1. (4.36)

Writing as usual Φ†
2 (x) = Φ†

1 (G̃x), we have from the unitary equivalence

||φ†
α||HΦ2

= |C̃0|(α!)−1(2h)−|α|| det G̃| ||xα||H
Φ

†
2

.

Using (2.8) and (4.36), it is easy to see that

| det G̃|2 = det(1+ i A∗+)det(1+ i A∗+) det(4Im A+)−1| det G|−2

= det(1− C∗+C+)−1| det G|−2.

Combining this with (4.35) gives

|C̃0| | det G̃| = (2πh)−n det(1− C∗+C+)−1/4.
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In order to simplify

Φ
†
2 (x) =

1

4
(|G̃x |2 − Re (G̃x, C̃+G̃x))

= 1

4
(〈x, (G̃)∗G̃x〉 − Re (x, (G̃)t C̃+G̃x)),

we may compute

4(Φ†
2 )
′′̄
xx = (G̃)∗G̃, 4(Φ†

2 )
′′
xx = −(G̃)t C̃+G̃.

First, using (2.8),

(G̃)∗(G̃) = 1

4
G−1(1− i A+)(Im A+)−1(1+ i A∗+)G−t

= G−1(1− C∗+C+)−1G−t .

Then we have

(G̃)t C̃+(G̃) = 1

4
G−1(1+ i A∗+)(Im A+)−1/2(Im A+)1/2(1+ i A∗+)−1

×(−1− i A+)(Im A+)−1/2(Im A+)−1/2(1+ i A∗+)G−t

= −1

4
G−1(1+ i A+)(Im A+)−1(1+ i A∗+)G−t

= −G−1C+(1− C∗+C+)−1G−t .

Following Remark 4.2, we seek to write Φ†
2 using an invertible matrix G† and a

symmetric matrix C†
+ for which

(Φ
†
2 )
′′̄
xx =

1

4
(G†)∗G†

and

(Φ
†
2 )
′′
xx = −

1

4
(G†)t C†

+G†.

It is natural then to define

E = (1− C∗+C+)−1/2

via the usual selfadjoint positive definite functional calculus. We then write

G† = E(G∗)−1 (4.37)
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and

C†
+ = −E−t C+E . (4.38)

The formula for Φ†
2 then follows from the formula (2.12): in the same way, since Φ

is quadratic and real-valued, it is sufficient to identify the derivatives

(Φ
†
2 )
′′̄
xx =

1

4
(G†)∗G†, (Φ

†
2 )
′′
xx = −

1

4
(G†)t C†

+G†. (4.39)

With this Φ†
2 , we have that

||Πα||L(HΦ2 )
= ||xα||HΦ2

||φ†
α||HΦ2

= (2πh)−n det(1− C∗+C+)−1/4(α!)−1(2h)−|α|||xα||HΦ2
||xα||H

Φ
†
2

.

As the h-dependence can be eliminated by a simple change of variables, this proves
Theorem 1.3.

5 Computation for norms of spectral projections

We here perform explicit computations using Theorem 1.3 in order to obtain informa-
tion about the norms of spectral projections. Throughout, we assume h = 1, in view
of (1.15).

We begin in Sect. 5.1 by using polar coordinates to reduce (1.18) to an integral on the
unit sphere {|ω| = 1}, which immediately gives Corollary 1.6. In Sect. 5.2, we consider
the case of (spatial) dimension n = 1 and use Laplace’s method to deduce the complete
asymptotic expansion in Corollary 1.7. We then expand the discussion to arbitrary n
in Sect. 5.3, proving the general rate of exponential growth in Corollary 1.8. Finally,
we present the numerical computation of these rates of growth for certain examples
in Sect. 5.4.

5.1 Reduction to the unit sphere

In view of Theorem 1.3, it is appropriate to study

J (Φ, α) := (2π)−n2−|α|(α!)−1||xα||2HΦ . (5.1)

since

||Πα||2L(HΦ) = det(1− C∗+C+)−1/2 J (Φ, α)J (Φ†, α). (5.2)
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Write

||xα||2HΦ =
∫

Cn

|xα|2e−2Φ(x) d L(x)

=
∫

|ω|=1

∞∫

0

r2|α|+2n−1|ωα|2e−2r2Φ(ω) dr d L(ω)

= 2|α|+n−1(|α| + n − 1)!
∫

|ω|=1

|ωα|2(4Φ(ω))−|α|−n d L(ω),

where d L(ω) is induced by Lebesgue measure restricted to {|ω| = 1}.
We may see that

(2π)−n (|α| + n − 1)!
α! 2n−1

∫

|ω|=1

|ωα|2 d L(ω) = 1 (5.3)

through explicit computation of ||xα||2HΦ where Φ(x) = 1
4 |x |2. Alternately, we may

note that Φ(x) = Φ†(x) = 1
4 |x |2 are the weight function and dual weight function

obtained when considering the operator

n∑

j=1

r j (x
2
j + (h Dx j )

2) (5.4)

for r j > 0 chosen rationally independent. This may be directly deduced from com-
puting thatΛ± = {(x,±i x)}x∈Cn . The rational independence of the r j means that all
its eigenvalues, obtained from (1.12), are distinct, and since the symbol is real-valued,
the operator is selfadjoint and so the spectral projections all have norm one. We then
may combine our computation of ||xα||2HΦ in polar coordinates with (5.1) and (5.2) to
arrive at the conclusion that, in this case,

1 = J (Φ, α)2 =
⎛

⎜⎝
2|α|+n−1(|α| + n − 1)!

(2π)n2|α|α!
∫

|ω|=1

|ωα|2 d L(ω)

⎞

⎟⎠

2

,

proving (5.3).
Regarding

C(α; n) =
∫

|ω|=1

|ωα|2 d L(ω) = 2πn α!
(|α| + n − 1)! (5.5)
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as a normalizing factor, we obtain

J (Φ, α) =
∫

|ω|=1

(4Φ(ω))−|α|−n |ωα|2 d L(ω)

C(α; n)
. (5.6)

For μα defined via (1.12) with h = 1, recalling that Im λ j > 0, we may write

m = min Im λ j , M = max Im λ j .

Then, for any α ∈ N
n
0,

(2|α| + n)m ≤ Reμα ≤ (2|α| + n)M.

We then compute that μβ = μα implies that

m

M
|α| − n

2

(
1− m

M

)
≤ |β| ≤ M

m
|α| + n

2

(
M

m
− 1

)
.

It is then elementary that

#{β : μβ = μα} = O(1+ |α|n−1).

(See, for instance, the proof of (68) in [31].)
Corollary 1.6 then follows from the triangle inequality and the elementary bound

J (Φ, α) =
∫

|ω|=1

(4Φ(ω))−|α|−n |ωα|2 d L(ω)

C(α; n)

≤
(

inf|ω|=1
4Φ(ω)

)−|α|−n ∫

|ω|=1

|ωα|2 d L(ω)

C(α; n)
= O(1)

(
inf|ω|=1

4Φ(ω)

)−|α|

applied to (5.2).

5.2 Asymptotic expansion in one dimension

In the dimension 1 case, we may write N instead of α. We note from (5.5) that
C(N , 1) = 2π . Furthermore, {|ω| = 1}, as a subset of C with measure induced by
Lebesgue measure dRe x dIm x , is the same as {eit : 0 ≤ t < 2π} with measure dt .
Then

J (Φ, N ) = 1

2π

2π∫

0

(4Φ(eit ))−N−1 dt.
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Using (4.1) in dimension 1, we see that

Φ(eit ) = Φ ′′x x̄

(
1+ Re ((Φ ′′x x̄ )

−1Φ ′′xx e2i t )
)
.

The dimension 1 case is particularly simple to analyze because complex numbers
commute. Following Remark 4.2, we may take

G = 2(Φ ′′̄xx )
1/2, C+ = −Φ

′′
xx

Φ ′′̄xx
.

We then have that

Φ(eit ) = G2

4

(
1− Re (C+e2i t )

)
= G2

4
(1− |C+| cos(2t + arg C+)) .

We furthermore have G > 0, sinceΦ ′′̄xx is positive definite Hermitian in any dimension.
We also note that |C+| < 1 by strict convexity of Φ, either as shown in the proof
of Proposition 4.1 or, more simply, by observing that strict convexity requires that
Φ(e−i arg C+/2) > 0. Making a change of variables τ = t + arg(C+)/2 reduces the
study of J (Φ, N ) to the study of

J (Φ, N ) = 1

2π
(G2)−N−1

2π∫

0

(1− |C+| cos 2t)−N−1 dt. (5.7)

We turn to Φ† in the dimension 1 case, where

G† = (1− |C+|2)−1/2G−1, C†
+ = −C+.

We use the same reasoning which provided (5.7) to obtain

J (Φ, N )J (Φ†, N ) = (1− |C+|2)N+1

⎛

⎝ 1

2π

2π∫

0

(1− |C+| cos 2t)−N−1 dt

⎞

⎠
2

. (5.8)

We turn to finding an asymptotic expansion for the integral.
Such integrals are well-studied by means of Laplace’s method (see for instance

Chapter 3 of [21]). We rewrite the integral in (5.8) as

2π∫

0

(1− |C+| cos 2t)−N−1 dt = 2

π/2∫

−π/2
exp ((N + 1)R(t)) dt, (5.9)

for

R(t) = − log(1− |C+| cos 2t).
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Since the case C+ = 0 is trivial (and corresponds to a normal operator), we assume that
C+ �= 0. Therefore the function R(t) for t ∈ [−π/2, π/2] has a unique maximum at
t = 0 since |C+| is positive. We therefore know that there exists a complete asymptotic
expansion

e−(N+1)R(0)

π/2∫

−π/2
exp ((N + 1)R(t)) dt ∼

∞∑

j=0

a j N− j−1/2 (5.10)

for some sequence of real numbers {a j }∞j=0 and

a0 =
√
−2π

R′′(0)
=

√
π(1− |C+|)

2|C+| . (5.11)

Of course, e−(N+1)R(0) = (1− |C+|)N+1.
We deduce from (5.2), (5.8), and (5.9) that

||ΠN ||2 = 1

π2 (1− |C+|2)−1/2
(

1+ |C+|
1− |C+|

)N+1

×
⎛

⎜⎝(1− |C+|)N+1

π/2∫

−π/2
exp ((N + 1)R(t)) dt

⎞

⎟⎠

2

.

From (5.10), we obtain the asymptotic expansion

(
1− |C+|
1+ |C+|

)N/2

||ΠN || ∼
∞∑

j=0

c j N− j−1/2

for

c j = 1

π
(1− |C+|2)−1/4

(
1+ |C+|
1− |C+|

)1/2

a j .

The computation of c0 in Corollary 1.7 immediately follows, completing the proof of
the corollary.

5.3 Rates of exponential growth in any dimension

We now consider the case where n may be arbitrary. We will prove the exponential
rate of growth in Corollary 1.8 as a straightforward consequence of (5.6), Laplace’s
method, and Stirling’s approximation. The analysis here is not particularly deep, and
we presently do not attempt to analyze the suprema involved or to make estimates
uniform.
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We consider β ∈ (R+)n with |β| = ∑n
j=1 β j = 1 fixed throughout this section

and analyze J (Φ, λβ) defined in (5.6) as λ→∞.
We here use only the most elementary version of Lapace’s method for multidimen-

sional integrals. Specifically, we assume that f ∈ C∞(M; [0,∞)) for M a compact
boundaryless manifold of real dimension m equipped with a natural volume μ, a pos-
itive measure with smooth density with respect to any coordinate chart. Then there
exists some C > 0 for which

1

C
λ−m/2

(
sup
M

f

)λ
≤

∫

M

f (x)λ dμ(x) ≤ μ(M)
(

sup
M

f

)λ
, (5.12)

valid for λ ∈ R+ sufficiently large. The right-hand bound is trivial, and the left-hand
bound is easily obtained from estimating f from below in local coordinates

ϕ : Rm ⊇ U → V ⊆ M, ϕ(0) = x0

centered at some x0 where f attains its maximum:

( f ◦ ϕ)(y) ≥ (sup
M

f )− Cy2.

The error induced by multiplying by a cutoff function localizing to a neighborhood of
y = 0 is exponentially small in λ, and so we have the estimate (5.12) for λ sufficiently
large.

We note that strict convexity ofΦ certainly means that (Φ(ω))−n ∼ 1 when |ω| = 1.
We also note that, when λ ∈ R+,

|ωλβ |2 =
∣∣∣∣∣∣

n∏

j=1

ωλβ j

∣∣∣∣∣∣

2

= |ωβ |2λ.

Applying the upper bound in (5.12) with

f (ω) = (4Φ(ω))−1|ωβ |2

for fixed β with |β| = 1 then gives

log
∫

|ω|=1

(4Φ(ω))−λ|β|−n|ωλβ |2 d L(ω)

≤ log

(
sup
|ω|=1

(4Φ(ω))−1|ωβ |2
)
+ log C(0, n)+ log sup

|ω|=1
(4Φ(ω))−n,

recalling from (5.5) that C(0, n) is the induced Lebesgue measure of {|ω| = 1}. A
similar application of the lower bound in (5.12) gives



Spectral projections and resolvents for quadratic operators 215

log
∫

|ω|=1

(4Φ(ω))−λ|β|−n|ωλβ |2 d L(ω)

≥ log

(
sup
|ω|=1

(4Φ(ω))−1|ωβ |2
)
− log C − 2n − 1

2
log λ+ log inf|ω|=1

(4Φ(ω))−n .

Naturally, when we consider the limit λ→∞, we have log λ$ 1.
We therefore have that, for β ∈ (R+)n fixed with |β| = 1 and for λ sufficiently

large,

log
∫

|ω|=1

(4Φ(ω))−λ|β|−n|ωλβ |2 d L(ω)

= λ log

(
sup
|ω|=1

(4Φ(ω))−1|ωβ |2
)
+O(log λ). (5.13)

We then use Stirling’s approximation in the form

Γ (x + 1) =
( x

e

)x √
2πx(1+O(x−1)), x →+∞.

In the end, the projections discussed only make sense when λβ ∈ N
n
0, but we may

regardless follow (5.5) and write

C(λβ; n) = 2πn

Γ (λ+ n)

n∏

j=1

Γ (λβ j + 1).

We may ignore terms where β j = 0 as these yield a factor of 1; the same result
follows if we use the usual convention that 0 log 0 = 0. We also reiterate that we are
considering β fixed, since this application of Stirling’s approximation cannot be said
to hold uniformly in β, particularly when some β j → 0.

We analyze the three pieces of Stirling’s approximation separately: the error factor
1 + O(x−1), the exponential (x/e)x , and the square root

√
2πx . By the Neumann

series, for λ sufficiently large, we have

1

1+O(λ−1)

∏

j : β j �=0

(1+O(λ−1)) = 1+O(λ−1).

For the exponential in the denominator, we note that

log

[(
λ+ n − 1

e

)λ+n−1
]
= (λ+ n − 1) (log(λ+ n − 1)− 1)

= (λ+ n − 1)
(

log λ− 1+O(λ−1)
)
= λ (log λ− 1)+O(log λ),
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in particular using the Taylor expansion of log(x + h) ≈ log x + h/x to approximate
log(λ+ n − 1). We also have that, using

∑
j :β j �=0 β j = |β| = 1,

log

⎛

⎝
∏

j : β j �=0

(
λβ j

e

)λβ j

⎞

⎠ =
∑

j : β j �=0

λβ j (log λ+ logβ j − 1)

= λ log λ− λ+ λ
∑

j : β j �=0

β j logβ j .

Therefore we have the contribution

log

⎛

⎝ 1

((λ+ n − 1)/e)λ+n−1

∏

j : β j �=0

(
λβ j

e

)λβ j

⎞

⎠ = λ
∑

j : β j �=0

β j logβ j +O(log λ).

The contribution from the square root is negligible:

log

⎛

⎝ 2πn

√
2π(λ+ n − 1)

∏

j : β j �=0

√
2πλβ j

⎞

⎠ = O(log λ), λ→+∞.

We therefore conclude that, for λ sufficiently large,

log C(λβ; n) = λ
∑

j : β j �=0

β j logβ j +O(log λ). (5.14)

From (5.6), (5.13), and (5.14), we have that

log J (Φ, λβ) = λ
⎛

⎝log

(
sup
|ω|=1

(4Φ(ω))−1|ωβ |2
)
−

∑

j : β j �=0

β j logβ j

⎞

⎠+O(log λ).

Finally, we have from (5.2) that

λ−1 log ||Πλβ ||L(HΦ) =
1

2
log

(
sup
|ω|=1

(4Φ(ω))−1|ωβ |2
)

+1

2
log

(
sup
|ω|=1

(4Φ†(ω))−1|ωβ |2
)
−

∑

j : β j �=0

β j logβ j + (λ−1 log λ).

This proves Corollary 1.8.

Remark 5.1 We can see that the role of
∑
β j logβ j is nontrivial by examining the case

(5.4), a self-adjoint operator with simple eigenvalues and weights Φ(x) = Φ†(x) =
1
4 |x |2. The norms of the spectral projections are uniformly one, and therefore the rate
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of exponential growth limλ→∞ λ−1 log ||Πλβ || is zero for every β. This allows us to
indirectly deduce that

log

(
sup
|ω|=1

|ωβ |2
)
=

∑

j : β j �=0

β j logβ j .

5.4 Numerical computation of growth rates in dimension 2

In order to show new information which may be obtained through Corollary 1.8, we
consider Examples 2.7 and 2.8. The author feels that these numerical computations
shed some light on the connection between the norms of spectral projections and
geometry and may point to interesting directions for future work.

In dimension 2, we naturally parameterize β ∈ (R+)2 with |β| = 1 via

β = (1− t, t), t ∈ [0, 1].

Following Corollary 1.8, we will study

g(β,Φ) = lim
λ→∞
λβ∈N

n
0

λ−1 log ||Πλβ ||HΦ .

We will focus on the case of Examples 2.7 and 2.8, as well as Theorem 1.4, with

ΦG(x) = 1

4
|Gx |2, G ∈ GLn(C).

For GKFP as in (2.18), we record g(β,ΦGKFP) in Fig. 2. It seems apparent that a
maximum occurs at β = (1/2, 1/2). We furthermore see that the exponential growth
rate decreases significantly as β → (0, 1) or β → (1, 0), but certainly does not
approach zero; we remark that this corresponds to spectral projections onto eigenvalues
whose argument approaches π/4 or −π/4.

We may also observe an apparent connection between the geometry of Φ and Φ†

and the exponential growth rates. From Corollary 1.7, we see that in dimension 1 the
upper bounds given by Proposition 3.5 and Corollary 1.6 are identical and sharp. In the
case where Φ(x) = ΦG(x), it is easy to see that the bounds given by Proposition 3.5
and Corollary 1.6 are again identical and are equal to the logarithm of the condition
number of G:

g(β,ΦG) ≤ log(||G|| ||G−1||). (5.15)

This simply follows from writing the minimum ofΦ on the unit sphere as the square of
the least singular value of G and observing that the maximum ofΦ and the reciprocal
of the minimum of Φ† are both given by the square of the greatest singular value of
G.
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Fig. 2 Growth rates g(β,ΦGKFP ) versus β = (1− t, t)
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Fig. 3 Growth rates g((1/2, 1/2),ΦGε ) versus log ε

As discussed in Remark 3.7, this estimate is not generally sharp. However, it appears
to be sharp or extremely nearly sharp for the maximum growth rate for GKFP, to an
error of less than 10−12:

g((1/2, 1/2),ΦGKFP) ≈ 0.8814 ≈ log
(
||GKFP|| ||G−1

KFP||
)
.

We may also consider Gε from (2.20). One may compute that the profile of Gε

appears similar to that of GKFP, with a strict maximum atβ = (1/2, 1/2); we therefore
examine g((1/2, 1/2),Gε) in Fig. 3 as a function of log ε.
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We may note that (5.15) gives an accurate picture of the growth of the spectral
projections as ε→ 0+. In fact, the relative error

|g((1/2, 1/2),Gε)− log(||Gε|| ||G−1
ε ||)|

g((1/2, 1/2),Gε)

is extremely small for small ε, e.g. error ≤ 10−13 when log ε = −6, but increases
steadily to nearly 0.1 when ε = 1. The author therefore considers the connection
between condition number and spectral projection growth to be a nontrivial and inter-
esting question.

As a final note, we may observe that the phenomenon of g(β,G) having a maximum
at β = (1/2, 1/2) is not true for all Φ, particularly when Φplh �= 0, defined in (4.3).
In fact, let us consider the simplest such example:

Φ(x1, x2) = Φ1(x1)+Φ2(x2) = 1

4

(
|x1|2 − Re (ax2

1 )
)
+ 1

4
|x2|2, |a| < 1.

Using Theorem 1.3 and decomposing for instance

||xλβ ||2
L2
Φ

=
⎛

⎝
∫

C

|x1|2λβ1e−2Φ1(x1)/h d L(x1)

⎞

⎠

⎛

⎝
∫

C

|x2|2λβ2 e−2Φ2(x2)/h d L(x2)

⎞

⎠ ,

it becomes clear that

g(β,Φ) = β1g(1, Φ1)+ β2g(1, Φ2).

From Corollary 1.7, we see that g(β,Φ) is linear in β1:

g(β,Φ) = 1

2
log

(
1+ |a|
1− |a|

)
β1.
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