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Abstract In this article we study the initial boundary value problem of semilinear
parabolic equations ut − �Bu = |u|p−1u on a manifold with conical singularity,
where �B is Fuchsian type Laplace operator investigated in Chen et al. (Calc Var
43:463–484, 2012) with totally characteristic degeneracy on the boundary x1 = 0.

By using a family of potential wells, we obtain existence theorem of global solutions
with exponential decay and show the blow-up in finite time of solutions. Especially,
the relation between the above two phenomena is derived as a sharp condition.
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1 Introduction and main results

In this paper, we study the following initial-boundary value problems for a class of
degenerate parabolic type equations

⎧
⎪⎪⎨

⎪⎪⎩

∂t u − �Bu = |u|p−1u x ∈ intB, t > 0,

u(0, x) = u0(x) x ∈ intB,

u(t, x) = 0 x ∈ ∂B, t ≥ 0

(1.1)
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where 2 < p + 1 < 2n
n−2 = 2∗, and 2∗ is the critical cone Sobolev exponents. Here

B = [0, 1) × X, X is an (n − 1)-dimensional closed compact manifold, which is
regarded as the local model near the conical points, and ∂B = {0} × X. Moreover
the operator �B in (1.1) is defined by (x1∂x1)

2 + ∂2
x2

+ · · · + ∂2
xn

, which is an ellip-
tic operator with conical degeneration on the boundary x1 = 0 (we also called it
Fuchsian type Laplace operator), and the corresponding gradient operator is denoted
by ∇B = (x1∂x1, ∂x2 , . . . , ∂xn ). Near ∂B we will often use coordinates (x1, x ′) =
(x1, x2, . . . , xn) for 0 ≤ x1 < 1, x ′ ∈ X. In this paper, we shall prove the existence
and blow-up theorem for the solutions of problem (1.1).

In the classical case, we have

⎧
⎪⎪⎨

⎪⎪⎩

∂t u − �u = |u|p−1u x ∈ �, t > 0,

u(0, x) = u0(x) x ∈ �,

u(t, x) = 0 x ∈ ∂�, t ≥ 0

(1.2)

where � is an open bounded domain of R
n with smooth boundary ∂� and � is the

standard Laplace operator. It’s well known that problem (1.2) has been studied by many
authors. A powerful technique for treating problem (1.2) is the so called “potential
well method”, which was established by Sattinger [9], Payne and Sattinger [8]. More-
over, potential well method was greatly improved by [7]. Recently, there are some
interesting results about the global existence and blow-up in [5] in which the authors
proved for low energy data u0, i.e. J (u0) < d, problem (1.2) has a global solution in a
standard Sobolev space which will be vanishing if u0 ∈ N+ and blow up if u0 ∈ N−.

Here N+ = {u ∈ H1
0 (�); K (u) > 0} and N− = {u ∈ H1

0 (�); K (u) < 0}. However
they have not proved the asymptotic behavior for the global solution.

In this paper, we shall consider the corresponding problem (1.1) on the manifold
with conical singularities. Similar to the classical case, we introduced the following

functionals on cone Sobolev space H1, n
2

2,0 (B):

J (u) = 1

2

∫

B

|∇Bu|2 dx1

x1
dx ′ − 1

p + 1

∫

B

|u|p+1 dx1

x1
dx ′, (1.3)

K (u) =
∫

B

|∇Bu|2 dx1

x1
dx ′ −

∫

B

|u|p+1 dx1

x1
dx ′. (1.4)

Here the weighted Sobolev space H1, n
2

2,0 (B) will be introduced in the next section. Then

J (u) and K (u) are well-defined and belong to C1(H1, n
2

2,0 (B), R). Now we define

N =
⎧
⎨

⎩
u ∈ H1, n

2
2,0 (B)

∣
∣K (u) = 0,

∫

B

|∇Bu|2 dx1

x1
dx ′ 	= 0

⎫
⎬

⎭
,
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d = inf

⎧
⎨

⎩
sup
λ≥0

J (λu), u ∈ H1, n
2

2,0 ,

∫

B

|∇Bu|2 dx1

x1
dx ′ 	= 0

⎫
⎬

⎭
.

Thus, similar to the results in [7] and [8], one has 0 < d = infu∈N J (u).

Next, we give the following notations with δ > 0,

Kδ(u) = δ

∫

B

|∇Bu|2 dx1

x1
dx ′ −

∫

B

|u|p+1 dx1

x1
dx ′,

Nδ =
⎧
⎨

⎩
u ∈ H1, n

2
2,0 (B)

∣
∣Kδ(u) = 0,

∫

B

|∇Bu|2 dx1

x1
dx ′ 	= 0

⎫
⎬

⎭
, (1.5)

d(δ) = inf
u∈Nδ

J (u).

By making use of the functionals above, we introduce the following potential wells

W =
{

u ∈ H1, n
2

2,0 (B)
∣
∣K (u) > 0, J (u) < d

}
∪ {0},

Wδ =
{

u ∈ H1, n
2

2,0 (B)
∣
∣Kδ(u) > 0, J (u) < d(δ)

}
∪ {0}, 0 < δ <

p + 1

2
,

and the outside sets of the corresponding potential wells are defined as follows

V =
{

u ∈ H1, n
2

2,0 (B)
∣
∣K (u) < 0, J (u) < d

}
,

Vδ =
{

u ∈ H1, n
2

2,0 (B)
∣
∣Kδ(u) < 0, J (u) < d(δ)

}
, 0 < δ <

p + 1

2
.

Therefore we can construct the relation between the properties of the solution
(global existence and blow-up in finite time) and the initial datum u0 via the method
of the potential wells as introduced above.

First we introduce the following definition of the weak solution:

Definition 1.1 u = u(t, x) is called a weak solution of problem (1.1) on intB× [0, T ),

with 0 < T ≤ +∞ being the maximal existence time, if u ∈ L∞(0, T ;H1, n
2

2,0 (B))

with ut ∈ L2(0, T ; L
n
2
2 (B)) and satisfies problem (1.1) in the distribution sense, i.e.

(ut , v)2 + (∇Bu,∇Bv)2 = (|u|p−1u, v)2, ∀ v ∈ H1, n
2

2,0 (B), t ∈ (0, T ) (1.6)

with u(0, x) = u0(x) in H1, n
2

2,0 (B) and
∫ t

0 ‖uτ‖2

L
n
2
2 (B)

dτ + J (u(t)) ≤ J (u0), for

0 ≤ t < T .
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We are now in a position to state our main results. Our first result is concerned with
the global existence and the asymptotic behavior of problem (1.1) with low initial
energy data, i.e. J (u0) < d.

Theorem 1.1 Let u0 ∈ H1, n
2

2,0 (B). Suppose J (u0) < d and K (u0) > 0 or
‖∇Bu0‖

L
n
2
2 (B)

= 0. Then problem (1.1) has a global weak solution u ∈ L∞(0,∞;
H1, n

2
2,0 (B)) with ut ∈ L2(0,∞; L

n
2
2 (B)). Moreover u(t) ∈ W for 0 ≤ t < ∞, and

there exist constants C > 0 and λ > 0 such that

‖∇Bu‖
L

n
2
2 (B)

≤ Ce−λt , 0 ≤ t < ∞.

The following result shows the finite time blow-up for certain solutions of problem
(1.1) with low initial energy data, i.e. J (u0) < d.

Theorem 1.2 Let u0 ∈ H1, n
2

2,0 (B). Suppose J (u0) < d and K (u0) < 0. Then the
existence time of the weak solution for problem (1.1) is finite, i.e. there exists a T > 0
such that

lim
t→T −

t∫

0

‖u‖2

L
n
2
2 (B)

dτ = +∞. (1.7)

In the next two theorems we will show the similar results as in Theorem 1.1 and
Theorem 1.2 with critical initial energy data, i.e. J (u0) = d.

Theorem 1.3 Let u0 ∈ H1, n
2

2,0 (B). Suppose J (u0) = d and K (u0) ≥ 0. Then problem

(1.1) has a global weak solution u ∈ L∞(0,∞;H1, n
2

2,0 (B)) with ut ∈ L2(0,∞; L
n
2
2 (B)).

Moreover the global solution u(t) ∈ W for 0 ≤ t < ∞, and there exist C > 0, λ > 0
and t1 > 0 such that

‖∇Bu‖
L

n
2
2 (B)

≤ Ce−λt , t1 ≤ t < ∞. (1.8)

Theorem 1.4 Let u0 ∈ H1, n
2

2,0 (B). Suppose J (u0) = d and K (u0) < 0. Then the
existence time of the weak solution for the problem (1.1) is finite, i.e. there exists a
T > 0 such that

lim
t→T −

t∫

0

‖u‖2

L
n
2
2 (B)

dτ = +∞.

This paper is organized as follows. In Sect. 2 we will introduce the cone Sobolev
spaces and the corresponding properties (more details can been seen [1–3]). In Sect. 3
we will give some properties of potential wells for problem (1.1) on the manifold with
conical singularity, which is very useful in the process of our main results, moreover



Global existence and nonexistence 333

we introduce the lemma of Komornik [6] which plays a critical role in the study of
exponential asymptotic behavior of the global solution here. In Sect. 4, we give the
proofs for the results of global existence, exponential decay and finite time blowing-up
for our problems.

2 Cone Sobolev spaces

In this section we introduce the manifold with conical singularities and the corre-
sponding cone Sobolev spaces.

Let X be a closed, compact, C∞ manifold. We set X� = (R+ × X)/({0} × X), as
a local model interpreted as a cone with the base X. Next, we Denote X∧ = R+ × X
as the corresponding open stretched cone with the base X.

An n-dimensional manifold B with conical singularities is a topological space with
a finite subset B0 = {b1, . . . , bM } ⊂ B of conical singularities, with the following
two properties:

1. B\B0 is a C∞ manifold.
2. Every b ∈ B0 has an open neighhourhood U in B, such that there is a homeomor-

phism ϕ : U → X� for some closed compact C∞ manifold X = X (b), and ϕ

restricts to a diffeomorphism ϕ′ : U\{b} → X∧.

For simplicity, we assume that the manifold B has only one conical point on the
boundary. Thus, near the conical point, we have a stretched manifold B, associated
with B. Here B = [0, 1) × X, ∂B = {0} × X and X is a closed compact manifold
of dimension n − 1. Also, near the conical point, we use the coordinates (x1, x ′) =
(x1, x2, . . . , xn) for 0 ≤ x1 < 1, x ′ ∈ X.

Recently, the authors in [1] introduced a class of weighted Sobolev spaces (also
see [3,10,11]), and proved the corresponding cone Sobolev inequality and Poincaré
inequality. Also in [1] and [2], by applying these inequalities, the authors proved the
existence theorems for a class of semilinear equations with subcritical and critical
cone Sobolev exponents on the manifolds with conical singularities.

In order to make the paper readable, we shall give some definitions and properties
of the cone Sobolev spaces as follows:

Definition 2.1 Let B = [0, 1) × X be the stretched manifold of the manifold B with
conical singularity. Then the cone Sobolev space Hm,γ

p (B), for m ∈ N, γ ∈ R and
1 < p < +∞, is defined as

Hm,γ
p (B) = {u ∈ W m,p

loc (intB) | ωu ∈ Hm,γ
p (X∧)},

for any cut-off function ω, supported by a collar neighborhood of (0, 1) × ∂B.

Moreover, the subspace Hm,γ
p,0 (B) of Hm,γ

p (B) is defined by

Hm,γ
p,0 (B) := [ω]Hm,γ

p,0 (X∧) + [1 − ω]W m,p
0 (intB),
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where W m,p
0 (intB) denotes the closure of C∞

0 (intB) in Sobolev spaces W m,p(X̃) when
X̃ is a closed compact C∞ manifold of dimension n that containing B as a submanifold
with boundary.

Definition 2.2 Let B = [0, 1) × X. We say u(x) ∈ Lγ
p(B) with 1 < p < +∞ and

γ ∈ R if

‖u‖p
Lγ

p(B)
=
∫

B

xn
1 | x−γ

1 u(x) |p dx1

x1
dx ′ < +∞.

Observe that if u(x) ∈ L
n
p
p (B), v(x) ∈ L

n
q
q (B) with p, q ∈ (1,∞) and 1

p + 1
q = 1.

Then we have the following Hölder’s inequality

∫

B

| u(x)v(x) | dx1

x1
dx ′ ≤

⎛

⎝

∫

B

| u(x) |p dx1

x1
dx ′

⎞

⎠

1
p
⎛

⎝

∫

B

| v(x) |q dx1

x1
dx ′

⎞

⎠

1
q

.

(2.1)

In the sequel, for convenience we denote

(u, v)2 =
∫

B

u(x)v(x)
dx1

x1
dx ′, ‖u‖p

L
n
p
p (B)

=
∫

B

|u(x)|p dx1

x1
dx ′.

Proposition 2.1 (cf. [1]) [Poincaré Inequality] Let B = [0, 1) × X be a bounded
subspace in R

n+ with X ⊂ R
n−1, and 1 < p < +∞, γ ∈ R. If u(x) ∈ H1,γ

p,0(B), then

‖u(x)‖Lγ
p(B) ≤ c‖∇Bu(x)‖Lγ

p(B), (2.2)

where ∇B = (x1∂x1 , ∂x2 , . . . , ∂xn ), and the constant c depending only on B.

Proposition 2.2 (cf. [2], Prop. 3.3) For 1 < p < 2∗, the embedding H1, n
2

2,0 (B) ↪→
H0, n

p
p,0 (B) is continuous.

Proposition 2.3 (cf. [2], Prop. 3.4) There exist 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · ,

and λk → +∞, such that for each k ≥ 1, the following Dirichlet problem

{
−�Bφk = λkφk, x ∈ int (B),

φk = 0 on ∂B,
(2.3)

admits non-trivial solution in H1, n
2

2,0 (B). Moreover, we can choose positive {φk}k≥1

constitute an orthonormal basis of Hilbert space H1, n
2

2,0 (B), and the inequality



Global existence and nonexistence 335

λ
1
2
1 ‖u(x)‖

L
n
2
2 (B)

≤ ‖∇Bu(x)‖
L

n
2
2 (B)

, (2.4)

holds.

3 Some auxiliary results

This section is devoted to introduce a family of potential wells for problem (1.1) and
to prove a series of properties which are useful in the proof of our main results listed
in Sect. 4.

The results in the following lemmas give the relations between the functional Kδ(u)

and ‖∇Bu‖
L

n
2
2 (B)

. First, let 1 < p < n+2
n−2 , n ≥ 3. Assume that u ∈ H1, n

2
2,0 (B), u 	= 0,

we denote C∗ = sup
{‖u‖

L
n

p+1
p+1 (B)

/‖∇Bu‖
L

n
2
2 (B)

}
, the constant C∗ can be obtained

from Proposition 2.1 and Proposition 2.2. Thus we have

Lemma 3.1 If 0 < ‖∇Bu‖
L

n
2
2 (B)

< r(δ), then Kδ(u) > 0. In particular, if 0 <

‖∇Bu‖
L

n
2
2 (B)

< r(1), then K (u) > 0, where r(δ) = (
δ

C p+1∗

) 1
p−1 .

Proof From 0 < ‖∇Bu‖
L

n
2
2 (B)

< r(δ), we get

∫

B

|u|p+1 dx1

x1
dx ′ ≤ C p+1∗ ‖∇Bu‖p+1

L
n
2
2 (B)

= C p+1∗ ‖∇Bu‖p−1

L
n
2
2 (B)

‖∇Bu‖2

L
n
2
2 (B)

< δ‖∇Bu‖2

L
n
2
2 (B)

.

Here we use the embedding H1, n
2

2,0 (B) ↪→ H0, n
p+1

p+1,0(B) is continuous and Kδ(u) > 0.

��
Lemma 3.2 If Kδ(u) < 0, then ‖∇Bu‖

L
n
2
2 (B)

> r(δ). In particular, if K (u) < 0,

then ‖∇Bu‖
L

n
2
2 (B)

> r(1).

Proof Notice that Kδ(u) < 0 gives ‖∇Bu‖2

L
n
2
2 (B)

	= 0 and

δ‖∇Bu‖2

L
n
2
2 (B)

<

∫

B

|u|p+1 dx1

x1
dx ′ ≤ C p+1∗ ‖∇Bu‖p+1

L
n
2
2 (B)

= C p+1∗ ‖∇Bu‖p−1

L
n
2
2 (B)

‖∇Bu‖2

L
n
2
2 (B)

.

Hence ‖∇Bu‖p−1

L
n
2
2 (B)

> δ

C p+1∗
= r p−1(δ). ��
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If u ∈ H1, n
2

2,0 (B) and ‖∇Bu‖
L

n
2
2 (B)

	= 0. From (1.3), we deduce that

lim
λ→+∞ J (λu) = −∞,

∂ J (λu)

∂λ
= λ‖∇Bu‖

L
n
2
2 (B)

− λp
∫

B

|u|p+1 dx1

x1
dx ′.

Let ∂ J (λu)
∂λ

∣
∣
λ=λ∗ = 0, then λ∗ =

⎛

⎝

‖∇Bu‖2

L
n
2
2 (B)

∫

B
|u|p+1 dx1

x1
dx ′

⎞

⎠

1
p−1

. Also,

∂2 J (λu)

∂λ2 = ‖∇Bu‖2

L
n
2
2 (B)

− pλp−1
∫

B

|u|p+1 dx1

x1
dx ′.

Hence

∂2 J (λu)

∂λ2

∣
∣
∣
∣
λ=λ∗

= ‖∇Bu‖2

L
n
2
2 (B)

− p‖∇Bu‖2

L
n
2
2 (B)

< 0, as p > 1.

Therefore we have the following lemma:

Lemma 3.3 (i) When λ = λ∗, J (λu) takes the maximum value. Also, J (λu) is
strictly increasing if 0 ≤ λ ≤ λ∗, and is strictly decreasing if λ∗ < λ < +∞.

(ii) K (λ∗u) = 0, and K (λu) > 0 for 0 < λ < λ∗, K (λu) < 0 for λ∗ < λ.

(iii) d = inf{supλ≥0 J (λu), u ∈ H1, n
2

2,0 ,
∫

B
|∇Bu|2 dx1

x1
dx ′ 	= 0} = p−1

2(p+1)
C

− 2(p+1)
p−1∗ .

Proof From the discussion above we only need to show (iii). While supλ≥0 J (λu) =
J (λ∗u), we complete the proof from the definition of C∗ directly, ��
Lemma 3.4 d(δ) ≥ a(δ)r2(δ) for a(δ) = 1

2 − δ
p+1 and 0 < δ <

p+1
2 . Moreover we

have

d(δ) = inf
u∈Nδ

J (u) = δ
2

p−1

(
1

2
− δ

p + 1

)
2(p + 1)

p − 1
d, 0 < δ <

p + 1

2
, (3.1)

where Nδ is defined by (1.5).

Proof Let u ∈ Nδ. Similar to Lemma 3.2, we have ‖∇Bu‖
L

n
2
2 (B)

≥ r(δ). Thus

J (u) = 1

2
‖∇Bu‖2

L
n
2
2 (B)

− 1

p + 1

∫

B

|u|p+1 dx1

x1
dx ′

=
(

1

2
− δ

p + 1

)

‖∇Bu‖2

L
n
2
2 (B)

+ 1

p + 1
Kδ(u)=a(δ)‖∇Bu‖2

L
n
2
2 (B)

≥ a(δ)r2(δ).

The first part of this lemma is proved. Now let us prove Eq. (3.1).
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(1) If δ > 0, ū ∈ Nδ is a minimizer of d(δ) = infu∈Nδ
J (u), i.e. J (ū) = d(δ). In this

case we define λ = λ(δ) by ‖∇B(λū)‖2

L
n
2
2 (B)

= ∫

B
|λū|p+1 dx1

x1
dx ′. Then for each

δ > 0, there exists a unique λ which satisfies

λ =
⎛

⎜
⎝

‖∇Bū‖2

L
n
2
2 (B)

∫

B
|ū|p+1 dx1

x1
dx ′

⎞

⎟
⎠

1
p−1

=
(1

δ

) 1
p−1

.

Thus for such λ and λū ∈ N , we get from the definition of d

d ≤ J (λū) = λ2

2
‖∇Bū‖2

L
n
2
2 (B)

− λp+1

p + 1

∫

B

|ū|p+1 dx1

x1
dx ′

= 1

2

(1

δ

) 2
p−1 ‖∇Bū‖2

L
n
2
2 (B)

− 1

p + 1

(1

δ

) p+1
p−1

∫

B

|ū|p+1 dx1

x1
dx ′

=
(1

δ

) 2
p−1

⎛

⎝
1

2
‖∇Bū‖2

L
n
2
2 (B)

− 1

(p + 1)δ

∫

B

|ū|p+1 dx1

x1
dx ′

⎞

⎠

=
(1

δ

) 2
p−1 p − 1

2(p + 1)
‖∇Bū‖2

L
n
2
2 (B)

.

Notice that d(δ) = J (ū) =
(

1
2 − δ

p+1

)
‖∇Bū‖2

L
n
2
2 (B)

, we get

d ≤
(1

δ

) 2
p−1 p − 1

2(p + 1)

(
1

2
− δ

p + 1

)−1

d(δ),

which implies

d(δ) ≥ δ
2

p−1

(
1

2
− δ

p + 1

)
2(p + 1)

p − 1
d, 0 < δ <

p + 1

2
. (3.2)

(2) If δ > 0, and ũ ∈ N is a minimizer of d = infu∈N J (u), i.e. J (ũ) = d. In this
case we define λ = λ(δ) by δ‖∇B(λũ)‖2

L
n
2
2 (B)

= ∫

B
|λũ|p+1 dx1

x1
dx ′. Then for each

δ > 0, there exists a unique λ satisfying

λ =
⎛

⎜
⎝

δ‖∇Bũ‖2

L
n
2
2 (B)

∫

B
|ũ|p+1 dx1

x1
dx ′

⎞

⎟
⎠

1
p−1

= δ
1

p−1 .
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Thus, for λũ ∈ Nδ, we get from the definition of d(δ) that

d(δ) ≤ J (λũ) = δ
2

p−1

(
1

2
− δ

p + 1

)

‖∇Bũ‖2

L
n
2
2 (B)

.

Notice that d = J (ũ) =
(

1
2 − 1

p+1

)
‖∇Bũ‖2

L
n
2
2 (B)

= p−1
2(p+1)

‖∇Bũ‖2

L
n
2
2 (B)

, we get

d(δ) ≤ δ
2

p−1

(
1

2
− δ

p + 1

)
2(p + 1)

p − 1
d, 0 < δ <

p + 1

2
. (3.3)

From (3.2) and (3.3) we obtain the conclusion (3.1). ��
Remark 3.1 We deduce immediately the following results from (3.1).

(a) limδ→0 d(δ) = 0, lim
δ→ p+1

2
d(δ) = 0;

(b) d(δ) is strictly increasing for 0 < δ ≤ 1, is strictly decreasing for 1 < δ <
p+1

2 .

(c) d(δ) takes the maximum at δ = 1, since d ′(δ) = 2(p+1)d
(p−1)2 δ

2
p−1 −1

(1 − δ).

Lemma 3.5 Let 0 < J (u) < d for some u ∈ H1, n
2

2,0 (B), δ1 < δ2 (in fact δ1 < 1 < δ2)

are the two roots of the equation d(δ) = J (u). Then the sign of Kδ(u) are not changed
for δ1 < δ < δ2.

Proof We can deduce ‖∇Bu‖
L

n
2
2 (B)

	= 0 from J (u) > 0. If the sign of Kδ(u) are

changed for δ1 < δ < δ2, then there exists a δ0 ∈ (δ1, δ2) such that Kδ0(u) = 0.

Thus by the definition of d(δ) we have J (u) ≥ d(δ0), which contradicts with J (u) =
d(δ1) = d(δ2) < d(δ0). ��

Now we discuss the invariance of some sets under the flows (1.1). Here we use the
similar methods in [7] and [8].

Lemma 3.6 Suppose u0(x) ∈ H1, n
2

2,0 (B), 0 < e < d. Let δ1 < δ2 are the two roots of
the equation d(δ) = e. Then we have

(1) All solutions of problem (1.1) with 0 < J (u0) ≤ e belong to Wδ for δ1 < δ < δ2,

provided K (u0) > 0 or ‖∇Bu0‖
L

n
2
2 (B)

= 0;
(2) All solutions of problem (1.1) with 0 < J (u0) ≤ e belong to Vδ for δ1 < δ < δ2,

provided K (u0) < 0.

Proof (1) Let u(t) be a solution of problem (1.1) with initial datum u0(x) satisfying
0 < J (u0) ≤ e < d, K (u0) > 0 or ‖∇Bu‖

L
n
2
2 (B)

	= 0. T is the existence time of

u(t). If ‖∇Bu0‖
L

n
2
2 (B)

= 0, then u0(x) ∈ Wδ. If K (u0) > 0, then from Lemma

3.5 and

0 < J (u0) ≤ e = d(δ1) = d(δ2) < d(δ) ≤ d, δ1 < δ < δ2,
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it follows that Kδ(u0) > 0. That means u0(x) ∈ Wδ for δ1 < δ < δ2. Next we
should prove u(t) ∈ Wδ for δ1 < δ < δ2 and 0 < t < T . Otherwise, we can
find t0 ∈ (0, T ) such that u(t0) ∈ ∂Wδ for some δ1 < δ < δ2. That implies
that Kδ(u(t0)) = 0 and ‖∇Bu‖

L
n
2
2 (B)

	= 0 or J (u(t0)) = d(δ). Since the energy

inequality

t∫

0

‖uτ‖2

L
n
2
2 (B)

dτ + J (u(t)) ≤ J (u0) ≤ e < d(δ),

for δ1 < δ < δ2, and 0 < t < T . (3.4)

Thus it is not possible to get the result J (u(t0)) = d(δ). On the other hand,
if Kδ(u(t0)) = 0, ‖∇Bu‖

L
n
2
2 (B)

	= 0, then by the definition of d(δ) we have

J (u(t0)) ≥ d(δ) which is contradictive with the energy inequality (3.4) again.
(2) Similar to the first part, we can easily deduce that u0(x) ∈ Vδ for δ1 < δ < δ2

provided K (u0(x)) < 0. Next we should prove u(t) ∈ Vδ for δ1 < δ < δ2 and
0 < t < T . Otherwise, if t0 ∈ (0, T ) such that u(t) ∈ Vδ for 0 ≤ t < t0 and
u(t0) ∈ ∂Vδ, i.e. Kδ(u(t0)) = 0 or J (u(t0)) = d(δ) for some δ1 < δ < δ2.

We can deduce that J (u(t0)) = d(δ) is impossible from (3.4). If Kδ(u(t0)) = 0,

then Kδ(u(t)) < 0 for 0 < t < t0 and Lemma 3.2 show that ‖∇Bu(t)‖
L

n
2
2 (B)

>

r(δ) and ‖∇Bu(t0)‖
L

n
2
2 (B)

≥ r(δ) 	= 0. Hence by the definition of d(δ) we get

J (u(t0)) ≥ d(δ) which contradicts with (3.4) again. ��

Remark 3.2 (a) Let u0(x), e and δ be the same as those in Lemma 3.6. Then both sets
Wδ and Vδ are invariant for any δ ∈ (δ1, δ2). Moreover both sets

Wδ1δ2 =
⋃

δ1<δ<δ2

Wδ, and Vδ1δ2 =
⋃

δ1<δ<δ2

Vδ

are invariant respectively under the flow of (1.1), provided 0 < J (u0) ≤ e.
(b) By the definition of d and the proof of Lemma 3.6, we see that K (u0) = 0 and

‖∇Bu‖
L

n
2
2 (B)

	= 0 is impossible provided 0 < J (u0) ≤ e < d. Thus the result

of Lemma 3.6 shows that for any solution of problem (1.1) with 0 < J (u0) ≤ e
which would be not in the region Ue = Nδ1δ2 = ⋃

δ1<δ<δ2
Nδ.

4 Proofs of the main results

In this section we prove the main results by making use of the family of potential wells
introduced above. First we have the following lemma which will be used in the proof
of the asymptotic behavior for global solutions of problem (1.1).
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Lemma 4.1 Let y(t): R
+ → R

+ be a nonincreasing function, and assume that there
is a constant A > 0 such that

+∞∫

s

y(t)dt ≤ Ay(s), 0 ≤ s < +∞,

then y(t) ≤ y(0)e1−t/A, for all t ≥ 0.

Proof of Theorem 1.1 We divide the proof in two steps.

Step 1 Proof of global existence.
From Proposition 2.3, we can choose {w j (x)} as the orthonormal basis of

H1, n
2

2,0 (B)). Now we Construct the following approximate solutions um(t, x) of
problem (1.1) as done in [4] and [7]:

um(t, x) =
m∑

j=1

d jm(t)w j (x), m = 1, 2, . . . ,

which satisfy

(umt , wk)2 + (∇Bum,∇Bwk)2 = (um |um |p−1, wk)2, k = 1, 2, . . . ,

(4.1)

um(0, x) =
m∑

j=1

d jm(0)w j (x) → u0(x) in H1, n
2

2,0 (B)). (4.2)

Multiplying (4.1) and (4.2) by d ′
km(t) and summing for k we can deduce that

‖umt‖2

L
n
2
2 (B)

+ 1

2

d

dt
‖∇Bum‖2

L
n
2
2 (B)

= 1

p + 1

d

dt

∫

B

|um |p+1 dx1

x1
dx ′. (4.3)

Integrating (4.3) with respect to t we obtain

t∫

0

‖umτ‖2

L
n
2
2 (B)

dτ + 1

2
‖∇Bum‖2

L
n
2
2 (B)

− 1

p + 1

∫

B

|um |p+1 dx1

x1
dx ′ = J (um0) < d, (4.4)
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and um ∈ W for sufficiently large m and 0 ≤ t < ∞ by Lemma 3.6. Hence
from (4.4) and

J (um) = 1

2
‖∇Bum‖2

L
n
2
2 (B)

− 1

p + 1

∫

B

|um |p+1 dx1

x1
dx ′

=
(

1

2
− 1

p + 1

)

‖∇Bum‖2

L
n
2
2 (B)

+ 1

p + 1
K (um)

≥ p − 1

2(p + 1)
‖∇Bum‖2

L
n
2
2 (B)

,

it follows that

t∫

0

‖umτ‖2

L
n
2
2 (B)

dτ + p − 1

2(p + 1)
‖∇Bum‖2

L
n
2
2 (B)

< d, 0 ≤ t < ∞, (4.5)

for sufficiently large m. Thus from (4.5) we can deduce that

‖∇Bum‖2

L
n
2
2 (B)

<
2(p+1)

p−1 d, 0 ≤ t < ∞, (4.6)

t∫

0

‖umτ‖2

L
n
2
2 (B)

dτ < d, 0 ≤ t < ∞, (4.7)

∫

B

∣
∣|um |p−1um

∣
∣

p+1
p dx1

x1
dx ′ = ∫

B
|um |p+1 dx1

x1
dx ′

≤ C p+1∗ ‖∇Bum‖p+1

L
n
2
2 (B)

< C p+1∗
(

2(p+1)
p−1 d

) p+1
2

. (4.8)

From (4.6), (4.7) and (4.8) it follows that there exist u and a subsequence still
denoted as {um} such that, as m → ∞,

um → u in L∞(0,∞;H1, n
2

2,0 (B)) weakly star and a.e. in intB × [0,∞),

umt → ut in L2(0,∞; L
n
2
2 (B)) weakly star,

|um |p−1um → |u|p−1u in L∞(0,∞; L
pn

p+1
p+1

p

(B)) weakly star and a.e. in

intB × [0,∞).

Hence in (4.1), for k fixed and m → ∞, we have

(ut , wk)2 + (∇Bu,∇Bwk)2 = (u|u|p−1, wk)2.

On the other hand from (4.2) we obtain u(0, x) = u0(x) in H1, n
2

2,0 (B). By density

we obtain u ∈ L∞(0,∞;H1, n
2

2,0 (B)) with ut ∈ L2(0,∞; L
n
2
2 (B)) is a global

weak solution of problem (1.1). It is obvious that u(t) ∈ W for 0 ≤ t < ∞.



342 H. Chen, G. Liu

Step 2 By Step 1, K (u(t)) ≥ 0 for all t ≥ 0. Thus

J (u0) ≥ J (u(t)) =
(

1

2
− 1

p + 1

)

‖∇Bu‖2

L
n
2
2 (B)

+ 1

p + 1
K (u)

≥ p − 1

2(p + 1)
‖∇Bu‖2

L
n
2
2 (B)

. (4.9)

Hence the definition of C∗ or Proposition 2.2 implies

∫

B

|u|p+1 dx1

x1
dx ′ ≤ C p+1∗

(
2(p + 1)

p − 1
J (u0)

) p−1
2 ‖∇Bu‖2

L
n
2
2 (B)

.

Let C p+1∗
(

2(p+1)
p−1 J (u0)

) p−1
2 = σ (0 < σ < 1 by (iii) of Lemma 3.3 and

J (u0) < d), γ = 1 − σ, then

∫

B

|u|p+1 dx1

x1
dx ′ ≤ (1−γ )‖∇Bu‖2

L
n
2
2 (B)

, i.e. γ ‖∇Bu‖2

L
n
2
2 (B)

≤ K (u(t)).

(4.10)

Let T > 0 be a fixed time, we have d
dt

∫

B
|u(t)|2 dx1

x1
dx ′ = −2K (u(t)), thus

from (2.2) we obtain

T∫

t

K (u(τ ))dτ = 1

2

∫

B

|u(t)|2 dx1

x1
dx ′ − 1

2

∫

B

|u(T )|2 dx1

x1
dx ′

≤ C(B)‖∇Bu(t)‖2

L
n
2
2 (B)

. (4.11)

By (4.9) and (4.11) we have

T∫

t

K (u(τ ))dτ ≤ C(B)

(
2(p + 1)

p − 1
J (u(t))

)

= C1 J (u(t)), for t ∈ [0, T ].

Furthermore, (4.9) and (4.10) imply that

J (u(t)) ≤
(

p − 1

2γ (p + 1)
+ 1

p + 1

)

K (u(t)).

Hence on [0, T ], we obtain
∫ T

t K (u(τ ))dτ ≤ AK (u(t)) with constant

A = C1

(
p−1

2γ (p+1)
+ 1

p+1

)
. Then by the arbitrariness of T > 0, it follows

that
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∞∫

t

K (u(τ ))dτ ≤ AK (u(t)).

That means, from Lemma 4.1, that

K (u(t)) ≤ K (u0)e
1−t/A, t ≥ 0.

Thus we can deduce the asymptotic behavior of the solution immediately
from (4.9). ��

Proof of Theorem 1.2 We shall employ the classical concavity method. Let u(t) be
any solution of problem (1.1) with J (u0) < d and K (u0) < 0, T being the existence
time of u(t). We should prove T < ∞ by contradiction. Let

M(t) =
t∫

0

‖u‖2

L
n
2
2 (B)

dτ.

Then Ṁ(t) = ‖u‖2

L
n
2
2 (B)

and

M̈(t) = 2(ut , u)2 = 2((u|u|p−1, u)2 − ‖∇Bu‖2

L
n
2
2 (B)

) = −2K (u). (4.12)

We can obtain

M̈(t) = −2

⎛

⎝‖∇Bu‖2

L
n
2
2 (B)

−
∫

B

|u|p+1 dx1

x1
dx ′

⎞

⎠

= −2(p + 1)J (u) + (p − 1)‖∇Bu‖2

L
n
2
2 (B)

≥ 2(p + 1)

t∫

0

‖uτ‖2

L
n
2
2 (B)

dτ + (p − 1)λ1 Ṁ(t) − 2(p + 1)J (u0), (4.13)

where λ1 is constructed by (2.4). Since

⎛

⎝

t∫

0

(uτ , u)2dτ

⎞

⎠

2

=
⎛

⎝
1

2

t∫

0

d

dτ
‖u‖2

L
n
2
2 (B)

dτ

⎞

⎠

2

= 1

4

(

Ṁ(t) − 2‖u0‖2

L
n
2
2 (B)

Ṁ(t) + ‖u0‖4

L
n
2
2 (B)

)

,
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we obtain

M M̈− p+1

2
Ṁ2 ≥ 2(p+1)

⎧
⎪⎨

⎪⎩

t∫

0

‖u‖2

L
n
2
2 (B)

dτ

t∫

0

‖uτ‖2

L
n
2
2 (B)

dτ −
⎛

⎝

t∫

0

(uτ , u)2dτ

⎞

⎠

2
⎫
⎪⎬

⎪⎭

+(p − 1)λ1 M Ṁ − (p + 1)‖u0‖2

L
n
2
2 (B)

Ṁ

−2(p + 1)J (u0)M + p + 1

2
‖u0‖4

L
n
2
2 (B)

.

By cone Hölder inequality (2.1) we get

M M̈ − p + 1

2
Ṁ2 ≥ (p − 1)λ1 M Ṁ − (p + 1)‖u0‖2

L
n
2
2 (B)

Ṁ − 2(p + 1)J (u0)M.

(4.14)

(a) If J (u0) ≤ 0, then M M̈ − p+1
2 Ṁ2 ≥ (p − 1)λ1 M Ṁ − (p + 1)‖u0‖2

L
n
2
2 (B)

Ṁ .

First we prove K (u) < 0 for t > 0. Otherwise, we must have t0 > 0 such that
K (u(t0)) = 0 and K (u(t)) < 0 for all 0 ≤ t < t0. Hence from Lemma 3.2
we have ‖∇Bu‖

L
n
2
2 (B)

> r(1) for 0 ≤ t < t0. Then ‖∇Bu(t0)‖
L

n
2
2 (B)

≥ r(1)

and J (u(t0)) ≥ d, which contradicts with the energy inequality. So we obtain
M̈(t) > 0 from (4.12) immediately. Since Ṁ(0) = ‖u0‖2

L
n
2
2 (B)

≥ 0, then there

exists a t0 ≥ 0 such that Ṁ(t0) > 0 and

M(t) ≥ Ṁ(t0) + Ṁ(t0)(t − t0) > Ṁ(t0)(t − t0), t ≥ t0.

Thus for sufficiently large t we have (p − 1)λ1 M > (p + 1)‖u0‖2

L
n
2
2 (B)

and

M M̈ − p + 1

2
Ṁ2 > 0. (4.15)

(b) If 0 < J (u0) < d, we can obtain u(t) ∈ Vδ for 1 < δ < δ2 and t > 0 by
Lemma 3.6. Here δ2 is the larger root of equation d(δ) = J (u0). From the result
of Lemma 3.2 we have ‖∇Bu‖

L
n
2
2 (B)

> r(δ) for 1 < δ < δ2. So we get Kδ2(u) ≤ 0

and ‖∇Bu‖
L

n
2
2 (B)

≥ r(δ2) for t > 0. By (4.12), we obtain

M̈(t)=−2K (u)=2(δ2 − 1)‖∇Bu‖2

L
n
2
2 (B)

− 2Kδ2(u) ≥ 2(δ2 − 1)r2(δ2), t ≥0,

Ṁ(t) ≥ 2(δ2 − 1)r2(δ2)t + Ṁ(0) ≥ 2(δ2 − 1)r2(δ2)t, t ≥ 0,

M(t) ≥ (δ2 − 1)r2(δ2)t
2 + t M(0) ≥ (δ2 − 1)r2(δ2)t

2, t ≥ 0.
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Hence for sufficiently large t, we have

1

2
(p − 1)λ1 M(t) > (p + 1)‖u0‖2

L
n
2
2 (B)

,
1

2
(p − 1)λ1 Ṁ(t) > (p + 1)J (u0).

Combining with (4.14) we get (4.15) immediately for sufficient large t again.

By a directly computation we can see that

(M−α)′′ = −αM−α−2(M M̈ − (α + 1)Ṁ2).

Let α = p−1
2 , (4.15) implies (M− p−1

2 )′′ < 0 for sufficiently large t. That means, for
t > t̃, that

M− p−1
2 (t) ≤ M− p−1

2 (t̃)

(

1 −
(

p − 1

2

)
Ṁ(t̃)

M(t̃)
(t − t̃)

)

,

which implies that there exist a T > 0 such that

lim
t→T − M− p−1

2 (t) = 0.

Theorem 1.2 is proved. ��

Proof of Theorem 1.3 Let μm = 1− 1
m and u0m = μmu0, m = 2, 3, . . . . We consider

the following problem

⎧
⎪⎪⎨

⎪⎪⎩

∂t u − �Bu = |u|p−1u x ∈ intB, t > 0,

u(0, x) = u0m(x) x ∈ B,

u(t, x) = 0 x ∈ ∂B, t ≥ 0.

(4.16)

From K (u0) ≥ 0 and Lemma 3.3, we have μ∗ = μ∗(u0) ≥ 1. Therefore K (u0m) > 0
and J (u0m) = J (μmu0) < J (u0) = d. Here

J (u0m) = 1

2
‖∇Bu0m‖2

L
n
2
2 (B)

− 1

p + 1

∫

B

|u0m |p+1 dx1

x1
dx ′

=
(

1

2
− 1

p + 1

)

‖∇Bu0m‖2

L
n
2
2 (B)

+ 1

p + 1
K (u0m) > 0.
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So it follows from Theorem 1.1 that, for each m, problem (4.16) admits a global weak

solution um(t) ∈ L∞(0,∞;H1, n
2

2,0 (B)) with umt ∈ L2(0,∞; L
n
2
2 (B)) and um(t) ∈ W

for 0 ≤ t < ∞, satisfying

(umt , v)2 + (∇Bum , ∇Bv)2 = (|um |p−1um , v)2, for any v ∈ H1, n
2

2,0 (B), and t ∈ (0,∞),

t∫

0

‖umτ ‖2

L
n
2
2 (B)

dτ + J (um(t)) ≤ J (u0m) < J (u0) = d. (4.17)

By a direct computation we can see that

t∫

0

‖umτ‖2

L
n
2
2 (B)

dτ +
(

1

2
− 1

p + 1

)

‖∇Bum‖2

L
n
2
2 (B)

+ 1

p + 1
K (um) < d.

Since K (um) ≥ 0, we can deduce (4.6), (4.7) and (4.8) for each m. Hence there exist
a u and a subsequence still denoted as {um}, such that, as m → ∞,

um → u in L∞(0,∞;H1, n
2

2,0 (B)) weakly star and a.e. in intB × [0,∞),

umt → ut in L2(0,∞; L
n
2
2 (B)) weakly star,

|um |p−1um → |u|p−1u in L∞(0,∞; L
pn

p+1
p+1

p

(B)) weakly star and a.e. in int

B × [0,∞).

The proof of global existence for the solution is the same as that in the first part of the
Theorem 1.1.

Now it sufficient to show the asymptotic behavior of the solution. Let u(t) be
the global solution of problem (1.1) with J (u0) = d, K (u0) > 0, then we obtain
K (u(t)) ≥ 0 for 0 ≤ t < ∞. Next we consider the following two cases

(i) Assume that K (u(t)) > 0 for 0 ≤ t < ∞. Then from (ut , u)2 = −K (u) < 0,

it follows that ‖ut‖
L

n
2
2 (B)

> 0 and
∫ t

0 ‖uτ‖2

L
n
2
2 (B)

dτ is strictly increasing for

0 ≤ t < ∞. Taking any t1 > 0 and letting

d1 = J (u(t1)) = J (u0) −
t∫

0

‖uτ‖2

L
n
2
2 (B)

dτ,

then by the energy inequality we get 0 < J (u) ≤ d1 < d for t1 ≤ t < ∞.

Similar to the proof of Theorem 1.1, we can deduce the exponential decay (1.8)
if we take t = t1 as the initial time.

(ii) Assume that there exists a t1 > 0 such that K (u(t1)) = 0 and K (u) > 0
for 0 ≤ t < t1. We also have ‖ut‖

L
n
2
2 (B)

> 0 and
∫ t

0 ‖uτ‖2

L
n
2
2 (B)

dτ is strictly

increasing for 0 ≤ t < t1. From the energy inequality we can also deduce that
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J (u(t1)) ≤ J (u0) −
t∫

0

‖uτ‖2

L
n
2
2 (B)

dτ < d,

which implies that the result ‖∇Bu(t1)‖
L

n
2
2 (B)

	= 0 is not true. If ‖∇B

u(t1)‖
L

n
2
2 (B)

= 0, i.e. J (u(t1)) = 0, then we get J (u) ≤ 0 for t1 ≤ t < ∞
from

J (u(t1)) ≥
t∫

t1

‖uτ‖2

L
n
2
2 (B)

dτ + J (u), t1 ≤ t < ∞.

Hence from

1

2
‖∇Bu‖2

L
n
2
2 (B)

≤ 1

p + 1

∫

B

|u|p+1 dx1

x1
dx ′

≤ 1

p + 1
C p+1∗ ‖∇Bu‖p−1

L
n
2
2 (B)

‖∇Bu‖2

L
n
2
2 (B)

,

it follows that either ‖∇Bu‖
L

n
2
2 (B)

= 0 for t1 ≤ t < ∞, hence (1.8) holds;

or ‖∇Bu‖
L

n
2
2 (B)

≥ (
p+1

2C p+1∗
)

1
p−1 , for t1 ≤ t < ∞, which is impossible since

‖∇Bu‖
L

n
2
2 (B)

= 0. This completes the proof. ��

Proof of Theorem 1.4 Let u(t) be a solution of problem (1.1) with J (u0) = d and
K (u0) < 0, T is the existence time of u(t). We need to prove that T < +∞. From the
continuities of J (u) and K (u) with respect to t, we know that there exists a sufficient
small t1 > 0 with t1 < T such that J (u(t1)) > 0 and K (u) < 0 for 0 ≤ t ≤ t1. So
we can deduce (ut , u)2 = −K (u) > 0 and ‖ut‖

L
n
2
2 (B)

> 0, for 0 ≤ t ≤ t1. Therefore
∫ t

0 ‖uτ‖2

L
n
2
2 (B)

dτ is strictly increasing for 0 ≤ t ≤ t1, and we can choose t1 such that

0 < d1 = d −
t1∫

0

‖uτ‖2

L
n
2
2 (B)

dτ < d.

From the energy inequality, we have

0 < J (u(t1)) = J (u0) −
t1∫

0

‖uτ‖2

L
n
2
2 (B)

dτ < J (u0) = d.
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In Theorem 1.2, if we take t = t1 as the initial time, then the Theorem 1.2 implies
that the existence time T of u(t) is finite and

lim
t→T −

t∫

0

‖u‖2

L
n
2
2 (B)

dτ = +∞.

��
Remark 4.1 From Theorem 1.1, Theorem 1.2, Theorem 1.3 and Theorem 1.4, we can
moreover obtain the following exact conditions for the global existence of solutions
for problem (1.1):

Let u0 ∈ H1, n
2

2,0 (B), and J (u0) ≤ d. Then the sign of K (u0) makes critical role on
the solutions of problem (1.1), namely

(1) When K (u0) ≥ 0, problem (1.1) admits a global weak solution u ∈ L∞(0,∞;
H1, n

2
2,0 (B)) with ut ∈ L2(0,∞; L

n
2
2 (B)).

(2) When K (u0) < 0, there is no global weak solution for problem (1.1), that the
solution of problem (1.1) blows up in finite time in the sense of

lim
t→T −

t∫

0

‖u‖2

L
n
2
2 (B)

dτ = +∞.

Therefore, by means of cone Poincaré inequality (2.2), we have

lim sup
t→T −

‖∇Bu‖
L

n
2
2 (B)

= +∞.
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