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Abstract We investigate the application of windowed Fourier frames to the numer-
ical solution of partial differential equations, focussing on elliptic equations. The
action of a partial differential operator (PDO) on a windowed plane wave is close to a
multiplication, where the multiplication factor is given by the symbol of the PDO eval-
uated at the wave number and central position of the windowed plane wave. This can
be exploited in a preconditioning method for use in iterative inversion. For domains
with periodic boundary conditions we find that the condition number with the pre-
conditioning becomes bounded and the iteration converges well. For problems with a
Dirichlet boundary condition, some large and small singular values remain. However
the iterative inversion still appears to converge well.

Keywords Windowed Fourier frame · Symbol · Elliptic PDE · Preconditioner

1 Introduction

Localization in the position-wave number space is an important concept in partial
differential and other operator equations. The large class of pseudodifferential opera-
tors acts approximately local in the position-wave number space. Prominent examples
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where this is put to use in numerics are wavelets and multigrid methods, methods that
are closely related. Multigrid and wavelet approaches are very successful for elliptic
problems, and have been applied also elsewhere. For wavelet concepts we refer to [7],
the multigrid literature is very large, see e.g. the book [19].

Wavelets provide a decomposition in scale and position. However, they have little
resolution in direction, i.e. the direction in the wave-number space. More recently,
a frame of functions [14] called curvelets has been proposed as a tool for numerical
analysis of PDEs [3]. Curvelets provide additional localization in direction. The local-
ization in direction is better and better for the smaller scales by a so called parabolic
scaling: A fourfold smaller scale leads to twice better resolution in direction and twice
better resolution in position. A method of solving a pseudodifferential equation using
curvelets, including a curvelet based approximation for the operator inverse suitable
for use as a preconditioner was introducted in [12]. Approximations of pseudodiffer-
ential operators were discussed in [9].

In this paper we analyze windowed Fourier frames (WFFs), also referred to as
Gabor frames. They provide a decomposition of the position-wave number space
(“phase space”) into rectangular blocks. Compared to curvelets it is a simpler decom-
position, and easier to implement. Compared to wavelets it still offers better directional
resolution, although at somewhat higher (log-linear) cost. WFFs are also simpler than
curvelets in the sense that they are generated by translations and modulations of a
single window function, while for curvelets there is no such set of transformations
that exactly maps the one to the other.

Chan et al. [4] has considered elliptic problems and proposed circulant precondition-
ers to solve the resulting system of equations using iterative techniques, for example,
the conjugate gradient method. They prove that such preconditioners could be chosen
to reduce the condition number from O(n2) to O(n), where n grid points have been
chosen to discretize the problem for a second order elliptic problem. Some popular
preconditioning techniques to solve linear systems using iterative methods have been
discussed in detail in [5], [7, Chap. 1], [11, Chap. 10], [15, Chap. 7] and references
there in. These techniques includes use of positive definite matrices, incomplete LU
and cholesky factorizations, multilevel, multigrid, wavelet preconditioners and so on.
It has been noticed that condition numbers are in control with most preconditioners
and have slower growth compared with the unpreconditioned system.

We believe that, while multigrid and wavelets are very important as preconditioning
methods, other possibilities should also be studied. The particular phase space locali-
zation of wavelets is well suited for elliptic equations, but not for other types of PDE,
for example the Helmholtz equation. WFFs, curvelets or maybe other transforms are
natural candidates to study in more general settings than the elliptic problem.

Our purpose is therefore to introduce a preconditioning method based on WFFs,
and to establish that it performs well for certain discrete PDE’s. We start with straight-
forward elliptic problems, and include an example where the different phase space
localization properties provide an advantage for windowed Fourier preconditioning.
For this study we consider a symmetric second order elliptic BVP with a finite and
a periodic domains. We first discretize the PDE using a standard finite difference
scheme. We use a preconditioner based on WFFs and the symbol of the operator
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while solving the discrete PDE using iterative linear solvers, to speed up the conver-
gence.

The article is organized in the following way. We start by introducing the pre-
conditioners in Sect. 2. We study boundedness and invertibility of a symmetrically
preconditioned operator in Sect. 3. Some numerical test results are presented in Sect. 4.
We finish this study in Sect. 5 with some concluding remarks.

2 Preconditioners based on the symbol of the operator and a WFF

In this section, we focus on introducing and defining the preconditioner based on the
symbol of the partial differential operator and a WFF. As a model problem we consider
the boundary value problem

Lu = f in �, (1)

with Dirichlet and periodic boundary conditions on ∂� where

Lu = −∇ · (a(x)∇u)+ b(x)u(x),

for given real coefficients a(x), and b(x). Here we consider� ⊂ R
d , an open bounded

domain, f : � −→ R is a given function and u : � ∪ ∂� −→ R is an unknown
function. A detailed description of this type of problems can be found in [2,10,16],
and many references therein. We investigate both periodic and non-periodic boundary
value problems.

We make the following assumptions on the coefficients, to ensure that L is bound-
edly invertible. We assume there is some constant C such that a(x) ≥ C . In the case
of Dirichlet boundary conditions we consider b ≥ 0, in the case of periodic boundary
conditions we assume that b ≥ C0 > 0 for some constant C0.

Windowed Fourier frames

We first give a short introduction of WFFs. Let H be a Hilbert space. A sequence
{ψn}n∈� is a frame [14, Section 5.1.1, Definition 5.1] of H if there exist two constants
A > 0, B > 0 such that for any f ∈ H,

A‖ f ‖2 ≤
∑

n∈�
| 〈 f, ψn〉 |2 ≤ B‖ f ‖2. (2)

The index set � might be finite or infinite and one can define a frame operator F1 so
that

F1 f [n] = 〈 f, ψn〉, for all n ∈ �.

If the condition (2) is satisfied then F1 is called a frame operator. When A = B the
frame is said to be tight [14, page 155], [6].
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Fig. 1 Example of a function
from a windowed Fourier frame
in one dimension with window
function w(x) =
sin( π2

e−c/x

e−c/x+e−c/(1−x) ), c = 1.5

A window function is simply a function in C∞
0 (R

d), i.e. it is smooth, and zero
outside some chosen finite domain. Let us focus on d = 1, and consider a real sym-
metric (g(t) = g(−t), for all t ∈ R), non-negative window function. We can translate
g by v ∈ R and modulate g by frequency ξ ∈ R as gv,ξ (t) = eiξ tg(t − v), which
are known as windowed Fourier atoms or Gabor atoms. Here ‖gv,ξ (t)‖ = 1 for any
v ∈ R, ξ ∈ R since ‖g‖ = 1. If the functions gv,ξ (x) satisfy the frame condition (2),
then they are called WFFs [14, Section 5.4] and for any f ∈ L2(R), the operator F
defined by

F f (v, ξ) = 〈 f, gv,ξ 〉 =
∫

R

f (t)g(t − v)e−iξ t dt, (3)

is called the WFF operator. In Fig. 1 we present a sample WFF.
A version of the WFF transformation with discrete index set �, is obtained by

restricting (v, ξ) to a rectangular grid with interval size v0 and ξ0 in time and fre-
quency respectively and define [14, page 182]

gn,k = g(t − nv0)e
iξk t ,

where ξk = kξ0, which will be needed in Sect. 4 while implementing the precon-
ditioners for elliptic PDE’s. It is well understood [8,14] that the windowed Fourier
family {gn,k}(n,k)∈Z2 is a frame only if 2π

v0ξ0
≥ 1 and the frame bounds A and B satisfies

A ≤ 2π
v0ξ0

≤ B. Let g be a window function with support [− π
ξ0
, π
ξ0

]. Then {gn,k}(n,k)∈Z2

is a tight frame [14] with a frame bound equal to A, if

2π

ξ0

∞∑

n=−∞
|g(t − nv0)|2 = A > 0 (4)

for all t ∈ R.
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In the discrete setting, we replace the Fourier basis {eikξ0t }k∈Z of L2[−π/ξ0, π/ξ0]
by the discrete Fourier basis {e i2πkn

Nl }0≤k<Nl of C
Nl to construct a discrete WFF. Let us

consider g[n] be a N periodic discrete window function with a support and restricted
to [−N/2, N/2] that is included in [−Nl/2, Nl/2 − 1]. Then following [14] one can
see that if mod (N ,M) = 0 and

Nl

N
M −1∑

m=0

|g[n − m N ]|2 = A > 0 ∀ 0 ≤ n < N

then {gm,k[n] = g[n − m M]ei2πkn/Nl }0≤k<Nl ,0≤m<K is a tight frame in C
N with

frame bound equal to A where K = N
M . For a fixed window position indexed by m,

the discrete WFF coefficients are

F f [m, k] = 〈 f, gm,k〉 =
N−1∑

n=0

f [n]g[n − m M]e− i2πkn
Nl ,

for all 0 ≤ k < Nl .
We set the length of the window equal to 2v0, so that two successive windows have

overlapping support and we choose tight WFFs. So we choose the parameters such
that 2π

ξ0
= 2v0, and g has support in [−v0, v0].

Several choices for the window function are discussed in Appendix. Our initial
criterion for a good window function is the decay of its Fourier transform. We con-
clude that both the windows h5(x) with c = 1.5, d = 0.9 and the window formed
by h4(x) are very well behaved. We experimented with both the windows to define
the preconditioners and recorded the number of iterations needed for convergence
while solving the precondition linear system. The numbers for these two choices of
the window function are approximately equal, preconditioners formed by using the
stretched window h5(x) with c = 1.5, d = 0.9 take a few iterations less than that of
h4(x), but the effect is small. We decide to use the window h5(x) for this study since
we designed it (and it performs a little better).

In order to apply WFFs to the BVP (1) we need to define and organise window
functions for a multi-dimensional and bounded domain � ⊂ R

d , say �̄ = [a, b]d ,
where the domain can be both periodic and non-periodic. Multidimensional window
functions are defined straightforwardly using a tensor product approach. For periodic
domains we assume that the period is a discrete multiple of v0, say Kv0. Then the set
of coefficients becomes periodic with period K . In Sect. 3 we will discuss this further.
For non-periodic problems, we define K + 1 windows in each of the coordinate direc-
tions (instead of K windows) with support 4π

K (in each of the coordinate directions),
considering an extended domain [a − 2π

K , b + 2π
K ]d ⊃ �, by

g j (x) =
{
g(x − jv0) x ∈ �,
0 x /∈ �,
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where j ∈ {1, 2, . . . , (K + 1)d}. Then we have 2d(K + 1), (d > 1) windows that
cross the boundary of �.

Preconditioners

Here we return to our main discussion. First we give a short motivation why a PDO
can be approximated by WFF’s and the symbol of the PDO. For simplicity we start
with BVP (1) in one dimension. Setting

u = g j,k(x) = eiξkxg(x − jv0), x ∈ � ⊂ R,

j ∈ J (the set J is defined in Sect. 3), k ∈ Z, we get

a(x)
∂2u

∂x2 = a(x)
∂

∂x

[
iξkeiξkxg(x − jv0)+ eiξkx d

dx
g(x − jv0)

]

= a(x)

(
−ξ2

k eiξkxg(x − jv0)+ (1 + iξk)e
iξkx d

dx
g(x − jv0)

+ eiξkx
d2

dx2 g(x − jv0)

)

= A1 + B + C,

where A1 is the leading part (when ξk is very large) of the elliptic operator acting
on (1). When ξk is very large, ξ2

k is the dominating term in a(x) d2

dx2 and so the dif-

ferential operator a(x) d2

dx2 can be approximated by a multiplication operator a(x)ξ2
k .

Now let us represent a function u(x) ∈ H using WFFs

u(x) =
∑

j,k

C j,kg j,k(x), x ∈ �

where

C j,k = 〈u(x), g j,k(x)〉 and g j,k(x) = eiξkxg(x − jv0).

Then we can approximate

a(x)
∂2u

∂x2 ≈
∑

a(x)ξ2
k C j,kg j,k(x) =

∑
a(x)ξ2

k 〈u, g j,k〉g j,k .

Here we observe that the PDO (a(x) ∂
2u
∂x2 ) can be approximately reconstructed by the

tight WFFs and its duals multiplied by the symbol of the PDO if a varies little over the
support of g j,k . This result motivates us to define preconditioners based on symbols
of the PDO’s and WFF’s.

It is to note that we consider x̄ j , j ∈ J , as midpoints of the subdomains of �.
To bound the condition number and to speed up the convergence of iterative solvers
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we are interested in defining preconditioners for a discrete equivalent of (1) based on
the symbol and WFFs. To this end, we define an invertible matrix M

M j̃,k̃; j,k = δ j̃, jδk̃,k

(
1 + a

(
x̄ j

)
ξ2

k

)
.

We solve an equivalent system (of Au = f , in which A is a symmetric discrete equiv-
alent of the operator acting on (1) using a finite difference scheme). Several forms of
preconditioning can be distinguished:

Symmetric preconditioning PAPũ = P f , coupled with Pũ = u, where P =
F∗M− 1

2 F .

Left preconditioning PAu = P f , where P = F∗M−1 F .

Right preconditioning APũ = f , coupled with u = Pũ where P = F∗M−1 F .

In each case F∗ is the conjugate transpose of the frame operator F . The relation
between the left and right preconditioners is established in the following result.

Theorem 2.1 The singular values of the left preconditioned matrix PA and the right
preconditioned matrix AP are equal where P = F∗M−1 F.

Proof We have

(PA)∗ = A∗ P∗ = AP,

since A is symmetric and

P∗ =
(

F∗M−1 F
)∗ =

(
M−1 F

)∗
F = F∗M−1 F,

proves the claim since singular values of PA and (PA)∗ are the same. ��

3 Boundedness and invertibility of the symmetrically preconditioned operator
PLP

A key property of a preconditioner, is that the condition number of the preconditioned
operator is bounded independent of the discretisation. We will show that the symmet-
rically preconditioned operator PLP , where P = F∗M−1/2 F and F stands for tight
WFF operator, considered in the continuous case, defines a continuous map, with con-
tinuous inverse on L2(�). Under a suitable discretisation this can be used to derive the
first mentioned property, although we will not do so (instead we study some discrete
systems numerically in the next section). We prove this in the case of the domain

� = [0, 2π)n = T
n

i.e. [0, 2π ]n with the periodic boundary conditions. In the case of a domain with a
boundary we will see in the section on numerics that there are a few singular values
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that grow if the discretisation parameter becomes small, so that the result appears to
be false.

Theorem 3.1 The self adjoint operator PLP : L2(�) → L2(�) is boundedly invert-
ible, that is, there exists c2 ≥ c1 > 0 such that

c1‖u‖2 ≤ 〈PLPu, u〉 ≤ c2‖u‖2, for all u ∈ H.

By assumption L : H1 → H−1 is boundedly invertible. Therefore, to establish
Theorem 3.1, it is sufficient to show that P is boundedly invertible from L2(�) to
H1(�), and that P is boundedly invertible from H−1(�) to L2(�). In fact it sufficient
to show that P is boundedly invertible from L2(�) to H1(�), as this implies that P∗
is boundedly invertible from H−1(�) to L2(�) and P = P∗.

One may think of T
n as the hypercube [0, 2π [n⊂ R

n or [−π, π [n . Functions on
T

n may be thought as those functions on R
n that are 2π periodic in each of the coor-

dinate directions.Let p ∈ R. The sobolev space H p(�) is the space of all functions
ψ ∈ L2(�) that satisfy

‖ψ‖2
p =

∑

m∈Zn

(
1 + |m|2

)p |am |2 < ∞ (5)

for the Fourier coefficients am of ψ . The space H p(�) is a Hilbert space with the
scalar product defined by

〈φ,ψ〉p :=
∑

m∈Zn

(
1 + |m|2

)p
amb̄m (6)

for φ,ψ ∈ H p(�) with Fourier coefficients am and bm , respectively.
When we consider one window only, the WFF operator F becomes the Fourier

transform operator. So we first prove the invertibility of the operator PLP consider-

ing F as the Fourier transform operator. From here we denote M 1
2

= M− 1
2 . We first

show that Pu ∈ H1(�) for u ∈ L2(�). Here

〈Pu, Pu〉 =
〈
F−1 M 1

2
Fu, F−1 M 1

2
Fu

〉
=

〈
M 1

2
Fu,M 1

2
Fu

〉

where Fu ∈ 
2(Z) is the sequence of Fourier coefficients of u ∈ L2(�). Now using
(6) we have

〈Pu, Pu〉1 =
∑

m∈Zn

(
1 + |m|2

) (
M 1

2

)2 |(Fu)m |2,

where (Fu)m ∈ 
2(Z) are the Fourier coefficients of u ∈ L2(�). Now for any m ∈ Z
n

there exists 0 < Ã < B̃ such that Ã ≤ (1 + |m|2)(M 1
2
)2 ≤ B̃. So one gets

Ã‖u‖2 ≤ ‖Pu‖1 ≤ B̃‖u‖2,
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and

Pu = F−1 M 1
2

Fu ∈ H1(�), if u ∈ L2(�).

Thus there exists 0 < c1 ≤ c2 such that

c1‖u‖2 ≤ 〈PLPu, u〉 ≤ c2‖u‖2,

and that confirms the boundedly invertibility of PLP : L2(�) → L2(�), since L is
boundedly invertible and P∗ = P .

Next we investigate the boundedly invertibility of PLP : L2(�) → L2(�) con-
sidering F as a WFF operator. To define window functions we consider K uniform
subintervals of size 2π

K in each of the coordinate directions so that we can divide
�(= T

n) into K n subdomains. Then we define K n overlapping subdomains with
length 4π

K on each of the coordinate directions and denote them by D j ⊂ � for all
j ∈ J where J = {1, 2, . . . , K̃ } with K̃ = K n . We consider K windows on each
of the coordinate directions. We define window functions g j (x) on � for all j ∈ J
satisfying

∑
j∈J g2

j (x) = 1; where x ∈ �. The support of each g j (x) is contained in
D j . By x j we denote the midpoint of the block D j . Of course for the periodic setting
one needs to consider appropriate boundary domains, in one dimension for example,
D1 = 2π [0, 1

K ] ∪ 2π [ K−1
K , 1). We will also assume that the support of g j stays away

some small distance from the boundaries. The windowing operator is denoted by W ,
defined by

W : L2(�) −→ L2(D1)× L2(D2)× · · · × L2(DK̃ ) (7)

W u = (
g1u, g2u, . . . , gK̃ u

)
. (8)

(W u can also be viewed as an element of the larger space L2(�,C K̃ ).) The adjoint
windowing operator W ∗ then equals

W ∗ (
u1, u2, u3, . . . , uK̃

) =
∑

j∈J

g j u j .

The Fourier transform of the windowed Fourier transform is done on each domain
D j . We will write FD j for this Fourier transform on functions restricted to D j . We
redefine the operator P as

P =
∑

j∈J

g j

(
F−1

D j
M 1

2
FD j

)
g j .

We first study P as an operator H1/2 → H−1/2, starting with a result about W .
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Lemma 3.2 Let W be defined by (8). Then there exists 0 < α < β such that

α‖W u‖H1/2(�,C K̃ )
≤ ‖u‖H1/2(�,C) ≤ β‖W u‖H1/2(�,C K̃ )

. (9)

Proof We consider separately the two inequalities

α‖W u‖H1/2(�,C K̃ )
≤ ‖u‖H1/2(�,C) (10)

and

‖u‖H1/2(�,C) ≤ β‖W u‖H1/2(�,C K̃ )
. (11)

Equation (10) is easy, it follows directly from the continuity of the multiplication by
g j on H1/2. Equation (11) is more difficult. We solve it as follows. Define E(s) to be
the pseudodifferential on� (= T

n , the torus) with symbol (1+‖ξ‖2)s/2. This defines
a self adjoint operator. The Hs norm of a function u is equivalent to ‖E(s)u‖L2 . In
this proof we in fact use this formula for the norm.

We start with the basic estimate

‖W u‖2
H1/2 ≥ 1

2
‖W u‖2

L2
+ 1

C

∥∥E(1/2)W u
∥∥2 (12)

where C ≥ 2 is a constant to be chosen later. For ‖W u‖2
L2

we find the following

‖u‖2
L2 =

〈
u,

∑

j

g2
j u

〉
=

∑

j

〈g j u, g j u〉 = ‖W u‖2
L2
.

For ‖E(1/2)W u‖2 we use the following

‖E(1/2)W u‖2
L2

=
∑

j

〈E(1/2)g j u, E(1/2)g j u〉

=
〈

E(1/2)u, E(1/2)
∑

j

g2
j u

〉
+

∑

j

〈u, [E(1), g j ]g j u〉,

= ‖u‖2
H1/2 +

∑

j

〈u, [E(1), g j ]g j u〉,

where we used that E(1/2)E(1/2) = E(1) and [E(1), g j ] = E(1)g j −g j E(1). The opera-
tor [E(1), g j ] is a pseudodifferential operator of order 0 (follows from [1]). Therefore
we find that there is a constant D such that

∣∣∣∣∣∣

∑

j

〈
u,

[
E(1), g j

]
g j u

〉
∣∣∣∣∣∣
≤ D‖u‖2

L2
.
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We now use what we just described in (12) and we choose C = min(2D, 2). This
yields

‖W u‖2
H1/2 ≥ 1

2
‖u‖2

L2
+ 1

C

(
‖E(1/2)u‖2

L2
− D‖u‖2

L2

)

≥ 1

C
‖E(1/2)u‖2

L2
= 1

C
‖u‖2

H1/2 .

We therefore have proved (11). ��
Using the lemma we can prove the following

Proposition 3.3 P is boundedly invertible H−1/2(�) → H1/2(�).

Proof The operator W maps from H1/2(�) to the Sobolev space H1/2(D1) ×
H1/2(D2)×· · ·× H1/2(DK̃ ). The proposition follows from the lemma we just proved
and the Lax-Milgram theorem, using the Fourier coefficient description of this Sobolev
spaces. ��

Next we study P as an operator L2(�) → H−1(�), by first proving that P is a
pseudodifferential operator.

Proposition 3.4 If the window functions g j (x) ∈ C∞
0 (D j ), then the operator P

defined by

P =
∑

j∈J

Pj =
∑

j∈J

g j S jg j

is a periodic elliptic PsDO of order −1 where S j = F−1
D j

M1/2FD j is a periodic elliptic
PsDO of order −1.

Before we go to prove the proposition, we will need some definitions and results
about periodic pseudodifferential operators [18,20]. Let D(Tn) be the vector space
C∞(Tn) endowed with the usual test function topology. Then any continuous linear
operator A : D(Tn) → D(Tn) can be represented as

(Au)(x) =
∑

ξ∈Zn

σA(x, ξ)û(ξ)e
ix·ξ , (13)

where

σA(x, ξ) = e−ix·ξ Aeix·ξ (14)

is called the symbol of the operator A. Let m ∈ R and 0 ≤ δ < ρ ≤ 1. In our case
δ = 0 and ρ = 1. An operator defined by (13) is called a periodic pseudodifferential
operator (PsDO) of order α if the unique function σA ∈ C∞(Tn ×Z

n) defined by (14)
satisfies

|�αξ ∂βx σA(x, ξ)| ≤ Cσαβm〈ξ 〉m−ρ|α|+δ|β| (15)
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for every x ∈ T
n , for every α, β ∈ N

n and 〈ξ 〉 := (1 + |ξ |2)1/2. Here by Sm
ρ,δ(T

n ×
Z

n) we denote the space of functions σA ∈ C∞(Tn × Z
n) that satisfies (15). If

σA ∈ Sm
ρ,δ(T

n × Z
n), one may denote A ∈ Op Sm

ρ,δ(T
n × Z

n). An operator A ∈
Op Sm

ρ,δ(T
n × Z

n) is called elliptic if, in addition, the symbol σA ∈ Sm
ρ,δ(T

n × Z
n) of

A satisfies |σA(x, ξ)| ≥ C |ξ |m where x ∈ R
n,C > 0 and |ξ | ≥ ξ0 ≥ 0.

Proof of proposition 3.4 First we show that the operator S j = F−1
D j

M1/2FD j is a peri-

odic elliptic PsDO with period 4π
K on each of the coordinate directions. Now for any

u ∈ D(Tn) we have S j u = F−1
D j
(M1/2(FD j u(ξ))), with symbol a j (ξ) = M 1

2
(ξ) =

1√
1+ξ2

. Consider vk ∈ Z
n with (vk)k = 1 and (vk)i = 0 if i �= k. Now using

difference calculus

�1
ξk

M 1
2
(ξ) = M 1

2
(ξ + vk)− M 1

2
(ξ)

=
(

1 + a
(
x j

)
(ξ + vk)

2
)−1/2 −

(
1 + a

(
x j

)
ξ2

)−1/2
,

gives

|�1
ξk

M 1
2
(ξ)| ≤ C(1 + |ξ |)−2,

and similarly for higher order differences, and thus M 1
2
(ξ) ∈ S−1

ρ,δ(T
n × Z

n) [18,20].

That is to say that S j is a periodic elliptic PsDO of order m = −1 with period 4π
K on

each of the coordinate directions (using the binomial theorem and the Leibnitz for-
mula for differences [18] one can deduce the similar relation for any α). The previous
statement implies that the distribution kernel of S j , let us denote it here by K (x, y),
has singularities at x = y + 2π

K k, where k ∈ Z
n . Therefore, when it is restricted to

x ∈ supp(g j ), y ∈ supp(g j ), then the singularities are contained in the set x = y.
Then we show that Pj = g j (x)S j (x, ξ)g j (x) is a PsDO for all j ∈ J . Here we

consider g j (x) ∈ C∞
0 (D j ), j ∈ J , and thus g j is a PsDO of order 0. Then it follows

from [13,21] that the composition S jg j is a periodic elliptic PsDO of order −1, and so
is the operator (since S j is a PsDO of order −1) Pj with principal symbol σ j (x, ξ) =
g j (x)a j (ξ)g j (x). Since g j (x) ∈ C∞

0 (D j ), it can be viewed as g j (x) ∈ C∞
0 (�). Thus

for all j ∈ J the symbols σ j (x, ξ) can be extended to σ j ∈ S−1
ρ,δ(�× Z

n).
We have P = ∑

j∈J g j S jg j . Here g j S jg j , j ∈ J are periodic elliptic PsDOs of
order −1. Let us denote the principal symbol of S j by a j . So it follows that P is a
periodic elliptic PsDO of order −1 since P is a sum of PsDOs of order −1. ��

Since P is an elliptic PsDO, it follows from [13,21] and references there in that
there is a parametrix Q such that Q P = I + R with R a smoothing operator. For our
purposes it is sufficient that R is a PsDO of order −1 (see PsDO literature, parame-
trix, for example [1, page 18]). Let us now discuss the kernel of the operator P . The
kernel of P is contained in the kernel of Q P . The operator R is compact. We work
with operators on L2, so it is an operator from L2 to H1, and therefore compact as an
operator on L2. But since this is PsDO theory, we can also work on operators on Hs ,
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and then R is continuous Hs → Hs+1 and compact as an operator on Hs . From the
theory of compact operators, it follows that, for any C > 0, there is at most a finite
dimensional set of vectors in L2, such that ‖Ru‖L2 ≥ C‖u‖ (e.g. set C = 1/2.) Then
it shows also that the kernel of P Q is finite dimensional and hence that the kernel of
P is finite dimensional. Similarly the cokernel of P , which is defined as the kernel
of P is finite dimensional. We claim that the elements of ker(Q P) are in C∞. The
elements of ker(Q P) satisfy u = −Ru. Let us say u ∈ L2. Then Ru ∈ H1 because R
is a PsDO of order −1. But u = −Ru, so in fact u ∈ H1. But then Ru ∈ H2 , because
R is continuous H1 → H2. And so forth. It follows that u ∈ C∞. Since we already
proved in Proposition 3.3 that P is invertible H−1/2 → H1/2, it follows that the kernel
and cokernel of P are the zero sets and that P is invertible Hs → Hs+1, s ∈ R.

Next we study the inverse P−1 and show that it is a PsDO. As P is an elliptic
PsDO, there exists Q ∈ Op(S1) [13,21] such that Q P = I + R and P Q = I + R̃,
where R ∈ Op(S−∞) and R̃ ∈ Op(S−∞). Let us consider V : H1/2 → H−1/2 be the
inverse of P : H−1/2 → H1/2. Then one gets

Q PV = (I + R)V (16)

and

Q PV = Q. (17)

Combining (16) and (17) we have (I + R)V = Q and so

Q − V = RV . (18)

Also one can write

V P Q = Q (19)

and

V P Q = V (I + R̃). (20)

Combining (19), (20) and (18) one gets

Q − V = V R̃ = (Q + (V − Q))R̃ = Q R̃ − RV R̃ ∈ O P(S−∞),

and so V ∈ O P(S1).
From here we may conclude that Theorem 3.1 is proved. However, there is no

estimate of c1, so we add a slightly more direct estimate for the constant c1.

Proposition 3.5 There are constants 0 < A ≤ B such that

A‖Pu‖H1 ≤ ‖u‖L2 ≤ B‖Pu‖H1 , for any u ∈ L2(�). (21)
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Proof The second inequality follows from the fact that P is a pseudodifferential
operator of order 1. For the first inequality consider the family of pseudodifferential

operators Eλ,s , with symbol Eλ,s(x, ξ) = (1 + ξ2

λ2 )
s/2. Clearly Pu satisfies

‖Pu‖H1 ≥ ‖Eλ,1/2 Pu‖H1/2 = ∥∥P Eλ,1/2u + [Eλ,1/2, P]u∥∥
H1/2

≥ ∥∥P Eλ,1/2u
∥∥

H1/2 − ∥∥[Eλ,1/2, P]u∥∥
H1/2 . (22)

The first term can be estimated by

∥∥P Eλ,1/2u
∥∥

H1/2 ≥ √
λ‖P‖H−1/2→H1/2‖u‖L2 .

The second term can be written as

∑

j

[
Eλ,1/2, g j S jg j

] =
∑

j

[
Eλ,1/2, g j

]
S jg j + g j S j

[
Eλ,1/2, g j

]
(23)

The commutator [Eλ,1/2, g j ] is a pseudodifferential operator whose symbol can esti-
mated in terms of λ, it is given by an asymptotic sum of the form

∞∑

j=0

1

λ j+1 B j

(
x,
ξ

λ

)

where the B j are symbols of order −1/2 − j . It follows that we have the estimate

∥∥[
Eλ,1/2, g j

]∥∥
Hs→Hs ≤ Cλ−1. (24)

Equations (23) and (24) show that the second term on the r.h.s. of (22) can be estimated
by Cλ−1‖u‖L2 . By choosing λ large enough, it follows that the first inequality of (21)
holds. ��

4 Numerical experiments

Now the question arises how efficient it is to solve constant and variable coefficient
PDEs using the proposed preconditioner? Does the preconditioned system converge
faster than the unpreconditioned system while using some iterative solvers for linear
system of equations, for example, the conjugate gradient method? To investigate it, we
experiment our technique focusing elliptic BVPs and compare it with the conjugate
gradient method within the framework of Matlab.
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4.1 One dimensional examples

Let us start with a one dimensional case (d = 1). Then the BVP (1) takes the form

− d

dx

(
a(x)

du(x)

dx

)
+ b(x)u(x) = f (x), ∀ x ∈ � ⊂ R (25)

with

u = 0 on ∂�

where a(x), and b(x) are known functions of x with a(x) �= 0. We approximate
the problem Lu = f using a finite difference scheme. Let us define the grids as
x̂ j = jh, j = 0, 1, 2, . . . , N with grid spacing h, and N ≥ 2. We define the approxi-
mations to the solution u by u j defined on the grid points x̂ j for all j = 0, 1, 2, . . . , N .
The BVP (25) can be approximated by

− 1

h2

(
ai+ 1

2
ui+1 − ui

(
ai+ 1

2
+ ai− 1

2

)
+ ai− 1

2
ui−1

)
+ bi ui = fi , (26)

for all i = 1, 2, . . . , N where ai = a(x̂i ), ui = u(x̂i ), bi = b(x̂i ), fi = f (x̂i ),
ai± 1

2
= ai +ai±1

2 and using boundary condition u0 = uN = 0. We write (26) in the
matrix form as Au = f. In Fig. 2, we plot spectral radius and condition numbers of A
for several choices of system size to demonstrate the polynomial growth of condition
numbers. It is noticed from Fig. 2 (also several articles and books on finite difference
schemes have a clear discussion about the eigenvalues of A, e.g., [2,15,17] and ref-
erences therein) that the condition number of a matrix A grows like O(1/h2) (when
a(x) = 1), and as a result the convergence of any iterative methods become slower.

We consider three examples to address the questions arise in our previous discus-
sion. In the first example, we consider a(x) = 1, b(x) = 0 and observe singular values
and condition numbers of the symmetric and left preconditioned matrices. We also
compare the number of iterations taken by the preconditioned solvers to converge.
Then we repeat our experiments when a(x) varies with x in the second example. Here
we compare condition numbers by varying number of windows (to cover the domain)
to show the efficiency of windowing. We also show the advantage of using the pre-
conditioned CG solver by comparing the number of iterations with the CG solver.
In the third example the coefficient varies discontinuously.

Example 4.1 Consider the BVP

− d2

dx2 u(x) = f (x), ∀ 0 < x < 1,

with boundary conditions

1. u(0) = 0 and u(1) = 0.
2. periodic boundary condition u(0) = u(1).
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Fig. 2 We show spectral radius, and condition number of the matrix operator acting on (26) for various
choices of system sizes with a = 1 and b = 0

The discrete operator A can be found in (26), to enforce the periodicity, when needed,
we define A(N , 1) = A(1, N ) = − 1

h2 . In Fig. 3 we compare singular values of PAP
and PA with the singular values of A (with periodic and non-periodic settings). From
these computations, we notice that most of the singular values are close to one, whereas
the singular values/eigenvalues of A are [15, page 561]

λ j = 4

h2 sin2
(

jπ

2(N + 1)

)
, ∀ j = 1, 2, . . . , N .

In the periodic case there is a singular value zero due to the constant solutions.
In Figs. 4 and 5, we show the condition numbers of the symmetric and the left

preconditioned operators considering A as a periodic and a non-periodic operator
respectively. We notice that the condition numbers of PAP and PA appear to be
bounded when A is periodic. The condition number of PAP grows as O(N )whereas
condition number of PA grows similar to the unpreconditioned operator A when A
is non-periodic. We also notice from Fig. 5 that λ3

λN−2
grows much slower or hardly at

all for both the Fourier frame preconditioned operators PAP and PA (non-periodic
operators), whereas λ3

λN−2
grows as of λ1

λN
for the unpreconditioned operator A (λ3

is the third highest singular value and λN−2 is the third lowest singular value). Thus
analyzing Figs. 3, 4, and 5 we expect that the left preconditioner and the symmetric
preconditioner would perform well since most of the singular values are clustered to a
constant for the both preconditioned system (though the condition number of the left
preconditioner grows as of A when we consider a non periodic boundary condition).
The condition number of PA and AP are the same, so we present experimental results
of the left preconditioned system only.
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Fig. 3 Here we plot singular values of the preconditioned operators (non-periodic operator (left figure)
and periodic operator (right figure)) where K = 4 and Nl = 26. From here A appearing on the figures
represents the discrete operator A

Fig. 4 Condition numbers of the operators for various choices of system sizes (periodic case)

Then we focus on solving the problem using the conjugate gradient solvers. We
present the number of iterations taken to converge for three different choices of solvers
considering f (x) = exp(2π(x − 0.5)) in Fig. 6. From this experiment we notice that
both the SPCG and the LBICG take a very few iterations to converge compared to the
CG (for both the periodic and the non-periodic boundary value problems).

This is to note that we have considered windowed sine frames (WSF) as well for
the same computations. It produces the similar results as of WFF, so one can also use
WSF for the computations as well.
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Fig. 5 Condition numbers of the windowed Fourier frame preconditioned operators (non-periodic case)
for various choices of system size

Fig. 6 Number of iterations taken by various solvers to converge (we consider 4 windows here) considering
boundary conditions (1) u(0) = 0 u(1) = 0 (left figure), (2) u(0) = u(1) (right figure)

We have experimented with the preconditioner considering a simple constant coef-
ficient BVP in Example 4.1. This preconditioner is actually designed for variable
coefficient problems. In the following example we aim to demonstrate the advantage
of windowing for such problems.

Example 4.2 Consider the periodic BVP

− d

dx

(
a(x)

du(x)

dx

)
+ b(x)u(x) = f (x), ∀ 0 ≤ x ≤ 1,
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Fig. 7 We show the condition numbers for various choices of use of number of window functions. This
left figure shows the efficiency of windowing by reducing the condition number. The right figure shows the
efficiency of windowing by reducing the number of iterations significantly

where a(x) = 10 − 9.5 cos(2πx), b(x) = 1 and

f (x) =
{

exp(x) when 0 < x ≤ 0.25
exp(−x) if 0.25 < x ≤ 1.

We use the scheme (26) and consider tol = 10−10. In Fig. 7, we compare con-
dition number of the discrete symmetric preconditioned variable coefficient operator
in 0 ≤ x ≤ 1 by varying the number of windows to cover the domain. From this
experiment we notice that the more subdivisions of the domain (using windows) one
considers, the smaller the condition number becomes. Then we compare the number
of iterations taken by the CG method and the SPCG method (considering 8 windows to
cover the periodic [0, 1] domain) and notice the good behavior of the preconditioned
system.

Example 4.3 Consider the BVP

− d

dx

(
a(x)

du(x)

dx

)
+ b(x)u(x) = f (x), ∀ 0 < x < 1,

with boundary conditions u(0) = 0 and u(1) = 0, where b(x) = 1 for all
0 < x < 1, f (x) as a random function and

a(x) =
{

exp(x) when 0 < x < 0.5
exp(−x) if 0.5 ≤ x < 1.
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Fig. 8 The left figure shows condition numbers for different choices of windows, and the right figure
shows the number of iterations taken to converge by the conjugate gradient method and the symmetric
preconditioned conjugate gradient method

We use the scheme (26) and consider tol = 10−10. In Fig. 8 we notice that the condi-
tion number keeps growing but more slowly for large N , while the number of iterations
appears to becomes constant or close to constant.

4.2 Two dimensional examples

Here we apply our technique in two dimensions. We consider one example where the
operator is very strong in one direction to demonstrate the advantage of using the exact
symbol. For the other example we consider an operator that contains strongly varying
coefficient a(x, y) acting on it to demonstrate further the advantage of windowing.

Example 4.4 Consider

Lu(x, y) = −10
∂2u(x, y)

∂x2 − 1

10

∂2u(x, y)

∂y2 = f (x, y),

and� ⊆ R
2 with u|∂� = 0. Now let� = (0, 1)2 be the unit square and similar to one

dimensional case, we define ∇y = ∇x = h = 1/N > 0 and x̂i, j = (ih, jh), i, j =
0, 1, 2, . . . , N . The results have been compared in Fig. 9. Here we notice that the WFF
preconditioners designed with the exact symbol performs significantly better.

Example 4.5 Consider

Lu(x, y) = − ∂

∂x

(
a(x)

∂u(x, y)

∂x

)
− ∂

∂y

(
b(y)

∂u(x, y)

∂y

)
= f (x, y),
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Fig. 9 In the left figure, we compare number of iterations considering the exact symbol S(ξ, η) = 1 +
10ξ2 + 1

10η
2 and an isotopic symbol S(ξ, η) = 1 + ξ2 + η2. Here we use Nl,x = Nl,y = 22:7 (thus

N = 25:10 is the number of points on each direction). In the right figure we compare relative residuals for
each iteration number considering Nl,x = Nl,y = 24. For this computation we consider Kx = Ky = 4

windows in each directions, f (x, y) = e−(x+y) and tol = 10−10

in a periodic domain � = [0, 1]2, where a(x) = 10 − 9.5 cos(2πx) and b(y) = 1.
For this computations we consider symmetric preconditioned solvers only. In Fig. 10,
we compare the Fourier preconditioned conjugate gradient method (one Fourier trans-
form only, considering no windowing) and the WFF preconditioned conjugate gradient
method (4 windows in each direction). Here we observe that the preconditioned solver
based on the WFF performs better than the Fourier preconditioned solver.

5 Conclusions

We study WFFs focusing on elliptic boundary value problems and present new pre-
conditioners based on the symbol of the operator and WFFs. From this study we
conclude that the preconditioners based on WFFs work well for elliptic problems,
most of the singular values clustered to a constant approximately for both precondi-
tioned operators (SPCG and LBICG). For periodic domains, the condition number is
bounded. However, when a non-periodic domain is considered, there are a few very
large and a few very small singular values, which cause the condition number of the
symmetrically preconditioned system to grow O(N ) whereas the condition number
of left preconditioned system grows close to O(N 2). This affects the convergence of
the CG method relatively little, as it concerns only a few singular values, but a better
definition of such a preconditioner on a bounded domain is clearly a question for
further research.

As expected both the SPCG and the LBICG take very few iterations to converge
compared to the unpreconditioned CG method. For multidimensional PDEs, if the
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Fig. 10 We compare number of iterations considering symmetric preconditioner with 4 windows and with-
out windows. We consider the symbol S(ξ, η) = 1+a(x)ξ2 +b(y)η2. Here we use Kx = Ky = 4, Nl,x =
Nl,y = 23:7 (thus N = 26:10 is the number of points on each directions). For this computation we consider

f (x, y) = e−(x+y) and tol = 10−10

problem is strongly dominant in one direction then the use preconditioners based on
the exact symbols is recommended. We notice that the use of reasonably many win-
dows (while defining the preconditioner) has an advantage for PDEs with strongly
varying coefficients.

Appendix: Window function construction

The window function plays an important role in the preconditioner, therefore we dis-
cuss its construction. A priori, the objective is to select a window function that satisfies
the properties described in Sect. 2 and decays rapidly in the frequency domain. It is
well known that smooth functions have fast decay for large frequencies [14]. So we
want to form window functions that have at least some vanishing derivatives at both
ends of the support. In [14] there are some general rules for constructing window
functions, as well as some specific examples, we make use of this and also compare
some of the example with a construction of our own. We present a schematic window
function and two translations in Fig. 11.

To design g(x), we consider a monotone increasing function h(x) (Ck or C∞) such
that

h(x) =
{

0 if x ≤ −1,
1 if x ≥ 0,

(27)
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Fig. 11 The figure shows window function g(x) has support [−1, 1], the left and the right half graphs are
the translations of the function

and satisfies

h2(−1/2 + y)+ h2 (−1/2 − y) = 1, −1 ≤ x ≤ 0. (28)

Then to form a function g with support on [−v0, v0] we take

g =
{

h(x/v0) for x < 0
h(−x/v0) for x ≥ 0.

then (28) ensures that (4) holds. Of course a variation is possible. For example we
can take a parameter 1/2 < a < 1, and, let g(x) = 0 for |x| > a, g(x) = 1 for
|x| < 1 − a, and g described by a dilated version of h for 1 − a < |x| < a.

In Fig. 12, we show some examples of monotone increasing functions. First we
have a class of functions, with different c, given by

h1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ≤ 0,

sin

(
π
2

e− c
x

e− c
x +e

− c
1−x

)
if 0 < x < 1,

1 if x ≥ 1,

(we need to translate this backward by 1 to have a function h satisfying the descrip-

tion above). This is constructed using the standard profile ha(x) = e− 1
x

e− 1
x +e

− 1
1−x

, that

goes smoothly from 0 to 1 on [0, 1] and satisfies ha(x)+ ha(1 − x) = 1. Taking the
sin(π2 ha(x)) instead of ha transforms the property ha(x) + ha(1 − x) = 1 into the
similar property (28) for the squares.
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Fig. 12 The figure shows several monotone increasing functions h(x) in [−1, 0]. It is, in fact, showing left
half of the window functions considered in this study

Two functions from [14] are

h2(x) =
⎧
⎨

⎩

0 if x ≤ −1,
sin

(
π
2 sin2

(
π
2 (1 + x)

))
if − 1 < x < 0,

1 if x ≥ 0.

or

h3(x) =
⎧
⎨

⎩

0 if x ≤ −1,
cos

(
π
2 sin2

(
π
2 x

))
if − 1 < x < 0,

1 if x ≥ 0.

We also find another profile function following [14]. Here we consider a monotone
increasing function (denote it as mallat on the legend of the figures) in [−1, 0]

h4(x) =

⎧
⎪⎨

⎪⎩

0 if x ≤ −1

sin
(
π
4

(
1 + sin

(
π
2 sin

(
π
2 sin

(
π(2x+1)

2

)))))
if − 1 < x < 0

1 if x ≥ 0.

It is to note that if we consider two sine functions or four sine functions inside
sin(π/4(1 + f (x))), then the decay in the frequency domain is not as fast as of
considering three sine functions defined by h4(x), so we decide to use h4(x) as a
representative for this class of profile functions.

Here to find a good window function which has fast decay in frequency domain,
we try several window functions g(x), where g(x) is defined from g as given above.
It can be observed that the windows with profile function h1(x), and the window with
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Fig. 13 The figure shows several |ĝ| in a logarithmic scale. We consider the window function with profile
function h1(x) with c = [1, 1.3, 1.5, 1.7, 1.9], h5(x) with c = 1, 1.5, and d = 0.9, as well as considering
h2(x), h3(x) and h4(x)

profile function h4(x) are smoother than the other windows and have faster decay all
over the frequency domain.

We also define a dilated variant of the profile h1(x), effectively throwing out some
of the zeros and ones on the outside of [0, 1]. We define the dilated profile function by

h5(x) = h1(1/2 + d(x − 1/2)), for some suitable 0 < d < 1.

In Fig. 13, we compare several window functions to find out which one has faster
decay in the frequency domain. Analyzing the graphs, we notice that the window func-
tions defined from monotone increasing functions h2(x) and h3(x) have slow decay
in the frequency domain. All other windows have quite similar decay in the frequency
domain. We observe that the window function formed by the monotone increasing
function h4(x) and the stretched variant with d = 0.9 and c = 1.5 behave very well
when ξ/π is in the range of 20–60, a region that one might still expect to be relevant,
with relative size of the Fourier coefficients between 10−4 and 10−8.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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