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Abstract We consider modulation space and spaces of Schatten–von Neumann
symbols where corresponding pseudo-differential operators map one Hilbert space
to another. We prove Hölder–Young and Young type results for such spaces under
dilated convolutions and multiplications. We also prove continuity properties for such
spaces under the twisted convolution, and the Weyl product. These results lead to con-
tinuity properties for twisted convolutions on Lebesgue spaces, e.g. L p

(ω) is a twisted
convolution algebra when 1 ≤ p ≤ 2 and ω is an appropriate weight.
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0 Introduction

In the paper we consider pseudo-differential operators with small or minimal regular-
ity conditions on the symbols. For such classes we establish continuity properties for
different types of products which are important in the theory of pseudo-differential
operators. Especially we establish Hölder and Young type results for the Weyl prod-
uct, dilated convolution, twisted convolution and dilated multiplication on Schatten–
von Neumann classes, (weighted) Lebesgue spaces and on (weighted) modulation
spaces.
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We recall that the composition of two Weyl operators corresponds to the Weyl
product of the two operator symbols on the symbol side, and the twisted convolu-
tion appears when Weyl product is conjugated by symplectic Fourier transform (see
Sect. 1 for the details). Convolutions and multiplications appear when investigating
Toeplitz operators (also known as localization operators) in the framework of pseudo-
differential calculus. More precisely, each Toeplitz operator Tp(a), with (Toeplitz)
symbol a, agrees with a pseudo-differential operator Op(b) with symbol b. The sym-
bol b is obtained by an ordinary convolution of the Toeplitz symbol a and a symbol
to an operator of rank one. This convolution corresponds to a multiplication on the
Fourier transform side. We remark that Toeplitz operators can be used to approxi-
mate certain pseudo-differential operators with smooth symbols (see, e.g. [7,38]), and
that Toeplitz operators might be convenient to use when estimating kinetic energy in
mechanics (cf. [26]).

Assume that H1 and H2 are Hilbert spaces of tempered distributions on Rd which
contain S(Rd) (we use the same notation for the usual function and distribution spaces
as in [24]). Let Ip(H1,H2), p ∈ [1,∞], be the set of Schatten–von Neumann opera-
tors of order p from H1 to H2, and let swp (H1,H2) be the set of all distributions a ∈
S ′(R2d) such that the corresponding Weyl operators Opw(a) belong to Ip(H1,H2)

(see below or Sect. 1 for notations and strict definitions).
For spaces of the form swp = swp (H1,H2) it is an easy task to establish continuity

properties under the Weyl product and twisted convolution, because such questions
can easily be reformulated into compositions for Schatten–von Neumann operators.
For example, it is well-known that the Hölder condition p−1 +q−1 = r−1 is sufficient
for the embedding

Ip(H2,H3) ◦ Iq(H1,H2) ⊆ Ir (H1,H3)

to hold. Similar properties carry over to the case when the Ip spaces are replaced
by swp spaces, and the composition ◦ is replaced by the Weyl product or the twisted
convolution.

It is more tricky to find continuity relations for dilated multiplications and con-
volutions on the swp spaces, because such products take complicated forms on the
operator side. In this situation we use certain Fourier techniques, similar to those in
[38, Section 3], to get convenient integral formulas. By making appropriate estimates
on these formulas in combination with duality and interpolation, we establish Young
type results for swp spaces under those dilated products.

However, when applying the Fourier technique and performing the estimates, we
need some additional structure on the involved Hilbert spaces, and in our approach we
assume that H1 and H2 are appropriate modulation spaces of Hilbert type. We remark
that this should not be an essential restriction for the applications, since the familly of
modulation spaces of Hilbert types contain every Sobolev space H2

s , weighted Hilbert
Lebesgue space and mixed versions of such spaces.

For Lebesgue and modulation spaces, the difficulties appear in the opposite sit-
uations. That is in contrast to spaces of Schatten symbols, it is tricky to find
results under the Weyl product and the twisted convolution, while finding Hölder–
Young results under convolutions and multiplications are straight-forward. Continuity
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properties for modulation spaces under the Weyl product have been investigated in,
e.g. [19,23,25,32], and in Sect. 2 we use Theorem 0.3′ in [23] to prove continuity
results for modulation and Lebesgue spaces under the twisted convolution. In partic-
ular we obtain a weighted version of the fact that L2 is an algebra under the twisted
convolution.

In order to be more specific, we recall some definitions. Assume that t ∈ R is fixed
and that a ∈ S(R2d). Then the pseudo-differential operator Opt (a) with symbol a is
the linear and continuous operator on S(Rd), defined by the formula

(Opt (a) f )(x) = (2π)−d
∫∫

a((1 − t)x + t y, ξ) f (y)ei〈x−y,ξ〉 dydξ. (0.1)

The definition of Opt (a) extends to each a ∈ S ′(R2d), and then Opt (a) is continuous
from S(Rd) to S ′(Rd) (cf., e.g. [24] or Sect. 1). If t = 1/2, then Opt (a) is equal to
the Weyl operator Opw(a) for a. If instead t = 0, then the standard (Kohn–Nirenberg)
representation a(x, D) is obtained.

The modulation spaces was introduced by Feichtinger [11], and developed fur-
ther and generalized in [12,14–16,18]. We are especially interested in the modulation
spaces M p,q

(ω) (R
d) and W p,q

(ω) (R
d) which are the sets of tempered distributions on Rd

whose short-time Fourier transform (STFT) belong to the weighted and mixed Lebes-
gue spaces L p,q

1,(ω)(R
2d) and L p,q

2,(ω)(R
2d), respectively (cf. (1.16) and (1.17) below for

the definition of the latter space norms). Here the weight function ω should belong
to P(R2d), the set of all polynomially moderated functions on the phase (or time-fre-
quency shift) space R2d , and p, q ∈ [1,∞]. It follows that ω, p and q to some extent
quantify the degrees of asymptotic decay and singularity of the distributions in M p,q

(ω)

and W p,q
(ω) (we refer to [13] for the most updated description of modulation spaces).

In the Weyl calculus of pseudo-differential operators, operator composition corre-
sponds on the symbol level to the Weyl product #, sometimes also called the twisted
product. A problem in this field is to find conditions on the weight functions ω j and
p j , q j ∈ [1,∞], for the map (a1, a2) 	→ a1#a2 on S(R2d) to be uniquely extendable
to a continuous map from Mp1,q1

(ω1)
(R2d) × Mp2,q2

(ω2)
(R2d) to Mp0,q0

(ω0)
(R2d). Here the

modulation spaces Mp,q
(ω) and W p,q

(ω) are obtained by replacing the usual STFT with the
symplectic STFT in the definition of modulation space norms. Important contributions
in this context can be found in [19,23,25,32,37], where Theorem 0.3′ in [23] seems
to be the most general result so far (see also Theorem 2.2).

The Weyl product on the symplectic Fourier transform side corresponds to the
twisted convolution ∗σ . It follows that the continuity questions here above are equiv-
alent to find appropriate conditions on ω j and p j , q j ∈ [1,∞], in order to allow the
map (a1, a2) 	→ a1 ∗σ a2 to be uniquely extendable to a map from W p1,q1

(ω1)
(R2d) ×

W p2,q2
(ω2)

(R2d) to W p0,q0
(ω0)

(R2d), which is continuous in the sense that

‖a1 ∗σ a2‖W p0,q0
(ω0)

≤ C‖a1‖W p1,q1
(ω1)

‖a2‖W p2,q2
(ω2)

, (0.2)

should hold for some constant C > 0 which is independent of a1 ∈ W p1,q1
(ω1)

(R2d) and

a2 ∈ W p2,q2
(ω2)

(R2d). Appropriate assumptions are then
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ω0(X,Y ) ≤ Cω1(X − Y + Z , Z)ω2(Y − Z , X + Z), X,Y, Z ∈ R2d , (0.3)
1

p1
+ 1

p2
− 1

p0
= 1 −

(
1

q1
+ 1

q2
− 1

q0

)
(0.4)

and

0 ≤ 1

q1
+ 1

q2
− 1

q0
≤ 1

p j
,

1

q j
≤ 1

p1
+ 1

p2
− 1

p0
, j = 0, 1, 2. (0.5)

The results for twisted convolution which corresponds to Theorem 0.3′ in [23] is
the following.

Theorem 0.1 Assume that ω0, ω1, ω2 ∈ P(R4d) satisfy (0.3), and that p j , q j ∈
[1,∞] for j = 0, 1, 2, satisfy (0.4) and (0.5). Then the map (a1, a2) 	→ a1 ∗σ a2
on S(R2d) extends uniquely to a continuous map from W p1,q1

(ω1)
(R2d)× W p2,q2

(ω2)
(R2d)

to W p0,q0
(ω0)

(R2d), and for some constant C > 0, the bound (0.2) holds for every

a1 ∈ W p1,q1
(ω1)

(R2d) and a2 ∈ W p2,q2
(ω2)

(R2d).

In the end of Sect. 2 we especially consider the case when p j = q j = 2, and the
involved weightsω j (X,Y ) are independent of the Y -variable, i.e.ω j (X,Y ) = ω j (X).
In this case, W2,2

(ω j )
agrees with L2

(ω j )
, and the condition (0.3) is reduced into

ω0(X1 + X2) ≤ Cω1(X1)ω2(X2). (0.6)

By Theorem 0.1 it now follows that the map (a1, a2) 	→ a1 ∗σ a2 extends to a contin-
uous mapping from L2

(ω1)
× L2

(ω2)
to L2

(ω0)
, and that

‖a1 ∗σ a2‖L2
(ω0)

≤ C‖a1‖L2
(ω1)

‖a2‖L2
(ω2)
, (0.7)

holds when a1 ∈ L2
(ω1)

(R2d) and a2 ∈ L2
(ω2)

(R2d). The latter continuity is a special
case of the following result, also proved in Sect. 2.

Theorem 0.2 Assume that ω j ∈ P(R2d) and p j ∈ [1,∞] for j = 0, 1, 2 satisfy
(0.6) and

max

(
1

p0
,

1

p′
0

)
≤ 1

p1
+ 1

p2
− 1

p0
≤ 1.

Then the map (a1, a2) 	→ a1 ∗σ a2 extends uniquely to a continuous mapping from
L p1
(ω1)

(R2d)× L p2
(ω2)

(R2d) to L p0
(ω0)

(R2d), and

‖a1 ∗σ a2‖L
p0
(ω0)

≤ C‖a1‖L
p1
(ω1)

‖a2‖L
p2
(ω2)
, (0.8)

holds for some constant C which is independent of a1 ∈ L p1
(ω1)

(R2d) and a2 ∈
L p2
(ω2)

(R2d).
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We also prove a generalization of Theorem 0.2 in Sect. 2, which involve mixed
weighted Lebesgue spaces, and use this generalization in Sect. 3 to extend the class
of possible window functions in the definition of modulation space norms.

In Sect. 5 we establish Young type results for dilated multiplications and convolu-
tions for the spaces swp (ω1, ω2) ≡ swp (H1,H2), when H j for j = 1, 2 is modulation

space M2,2
(ω j )

(Rd) = M2
(ω j )

(Rd) with appropriate weights ω j . The involved Schatten
exponents should satisfy the Young condition

p−1
1 + p−1

2 = 1 + r−1, 1 ≤ p1, p2, r ≤ ∞, (0.9)

and the involved dilation factors should satisfy

(−1) j1 t−2
1 + (−1) j2 t−2

2 = 1. (0.10)

or

(−1) j1 t2
1 + (−1) j2 t2

2 = 1. (0.11)

The conditions for the involved weight functions are

ϑ(X1 + X2) ≤ Cϑ j1,1(t1 X1)ϑ j2,2(t2 X2),

ω(X1 + X2) ≤ Cω j1,1(t1 X1)ω j2,2(t2 X2),
(0.12)

where

ω0,k(X) = ϑ1,k(X) = ωk(X), ϑ0,k(X) = ω1,k(X) = ϑk(X). (0.13)

With these conditions we prove

‖a1,t1 ∗ a2,t2‖swr (1/ω,ϑ) ≤ Cd‖a1‖swp1
(1/ω1,ϑ1)‖a2‖swp2

(1/ω2,ϑ2), (0.14)

‖a1,t1a2,t2‖swr (1/ω,ϑ) ≤ Cd‖a1‖swp1
(1/ω1,ϑ1)‖a2‖swp2

(1/ω2,ϑ2), (0.15)

holds for admissible a1 and a2. Here and in what follows we set a j,t = a j (t · ), and we
let p′ ∈ [1,∞] be the conjugate exponent of p ∈ [1,∞], i.e. p and p′ should satisfy
1/p + 1/p′ = 1. More precisely, in Sect. 5 we prove the following two theorems, as
well as multi-linear extensions of these results (cf. Theorems 0.3′ and 0.4′). We remark
that these multi-linear versions generalize Theorem 3.3, Theorem 3.3′ and Corollary
3.5 in [38]. In fact, the latter results follow by letting H1 = H2 = L2 in Theorems 0.3′
and 0.4′.

Theorem 0.3 Assume that p1, p2, r ∈ [1,∞] satisfy (0.9), and that t1, t2 ∈ R\0
satisfy (0.10), for some choices of j1, j2 ∈ {0, 1}. Also assume that ω,ω j , ϑ, ϑ j ∈
P(R2d) for j = 1, 2 satisfy (0.12) and (0.13). Then the map (a1, a2) 	→ a1,t1 ∗ a2,t2
on S(R2d), extends uniquely to a continuous mapping from

swp1
(1/ω1, ϑ1)× swp2

(1/ω2, ϑ2)
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to swr (1/ω, ϑ). Furthermore, (0.14) holds for some constant

C = C2
0 |t1|−2/p1 |t2|−2/p2 ,

where C0 is independent of a1 ∈ swp1
(1/ω1, ϑ1), a2 ∈ swp2

(1/ω2, ϑ2), t1, t2 and d.
Moreover, Opw(a1,t1 ∗ a2,t2) ≥ 0 when Opw(a j ) ≥ 0 for each 1 ≤ j ≤ 2.

Theorem 0.4 Assume that p1, p2, r ∈ [1,∞] satisfy (0.9), and that t1, t2 ∈ R\0
satisfy (0.11), for some choices of j1, j2 ∈ {0, 1}. Also assume that ω,ω j , ϑ, ϑ j ∈
P(R2d) for j = 1, 2 satisfy (0.12) and (0.13). Then the map (a1, a2) 	→ a1,t1a2,t2 on
S(R2d), extends uniquely to a continuous mapping from

swp1
(1/ω1, ϑ1)× swp2

(1/ω2, ϑ2)

to swr (1/ω, ϑ). Furthermore, (0.15) holds for some constant

C = C2
0 |t1|−2/p′

1 |t2|−2/p′
2 ,

where C0 is independent of a1 ∈ swp1
(1/ω1, ϑ1), a2 ∈ swp2

(1/ω2, ϑ2), t1, t2 and d.

Some important preparations to the dilated convolution and multiplication results
in Sect. 5 are given in Sect.4, where we consider dual properties for swp (H1,H2).

Here H1 and H2 belong to a broad class of Hilbert spaces containing any M2,2
(ω) space.

More precisely, assume that p < ∞. Then we prove that the dual for swp (H1,H2) can
be identified with swp (H′

1,H′
2) for appropriate Hilbert spaces H′

1 and H′
2 through a

unique extension of the L2 form on S (cf. Theorem 4.12).
In the last section we apply the results in Sect. 5 to prove that the class of trace-

symbols is invariant under compositions with odd entire functions. Here we also show
how Theorem 0.3 can be used to define Toeplitz operators with symbols in dilated swp
spaces, and that such operators fulfill certain Schatten–von Neumann properties.

1 Preliminaries

In this section we introduce some notations and discuss basic results. In the first part
we recall some properties within the theory of pseudo-differential operators. Espe-
cially we discuss the Weyl product and twisted convolution. In the second part we
recall some facts about modulation spaces. The proofs are in general omitted, since
the results in pseudo-differential calculus can be found in [17,24,36], and the essential
parts of modulation space theory can be found in [9,11,14,15,18].

In all these discussions, the Fourier transform F is essential. This is defined as the
linear and continuous map on S ′(Rd), which takes the form

(F f )(ξ) = f̂ (ξ) = (2π)−d/2
∫

f (x)e−i〈x,ξ〉 dx, (1.1)
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when f ∈ L1(Rd). It follows that F is a homeomorphism on S ′(Rd) which restricts
to a homeomorphism on S(Rd) and to a unitary operator on L2(Rd).

Assume that a ∈ S(R2d), and that t ∈ R is fixed. Then the pseudo-differential
operator Opt (a) in (0.1) is a linear and continuous operator on S(Rd). For general
a ∈ S ′(R2d), the pseudo-differential operator Opt (a) is defined as the continuous
operator from S(Rd) to S ′(Rd) with distribution kernel given by

Ka,t (x, y) = (F−1
2 a)((1 − t)x + t y, x − y). (1.2)

Here F2 F is the partial Fourier transform of F(x, y) ∈ S ′(R2d) with respect to
the y variable. This definition makes sense, since the mappings F2 and F(x, y) 	→
F((1 − t)x + t y, y − x) are homeomorphisms on S ′(R2d). Furthermore, by Schwartz
kernel theorem it follows that the map a 	→ Opt (a) is a bijection from S ′(R2d) to the
set of linear and continuous operators from S(Rd) to S ′(Rd).

In particular, for each a ∈ S ′(R2d) and s, t ∈ R, there is a unique b ∈ S ′(R2d)

such that Ops(a) = Opt (b). The relation between a and b is given by

Ops(a) = Opt (b) ⇐⇒ b(x, ξ) = ei(t−s)〈Dx ,Dξ 〉a(x, ξ). (1.3)

(Cf. [24, Sect. 18.5].) Note here that the right-hand side makes sense, since
ei(t−s)〈Dx ,Dξ 〉 on the Fourier transform side is a multiplication by the bounded function
ei(t−s)〈x,ξ〉.

Assume that t ∈ R and a ∈ S ′(R2d) are fixed. Then a is called a rank-one element
with respect to t , if the corresponding pseudo-differential operator is of rank-one, i.e.
for each f ∈ S(Rd) we have

Opt (a) f = ( f, f2) f1, (1.4)

for some f1, f2 ∈ S ′(Rd). By straight-forward computations it follows that (1.4) is
fulfilled, if and only if a = (2π)d/2W t

f1, f2
, where the W t

f1, f2
t-Wigner distribution,

defined by the formula

W t
f1, f2

(x, ξ) ≡ F( f1(x + t · ) f2(x − (1 − t) · ))(ξ), (1.5)

which takes the form

W t
f1, f2

(x, ξ) = (2π)−d/2
∫

f1(x + t y) f2(x − (1 − t)y)e−i〈y,ξ〉 dy,

when f1, f2 ∈ S(Rd). By combining these facts with (1.3), it follows that

W t
f1, f2

= ei(t−s)〈Dx ,Dξ 〉W s
f1, f2

, (1.6)

for each f1, f2 ∈ S ′(Rd) and s, t ∈ R. Since the Weyl case is particulary important to
us, we set W t

f1, f2
= W f1, f2 when t = 1/2. It follows that W f1, f2 is the usual (cross-)

Wigner distribution of f1 and f2.
Next we discuss the Weyl product, twisted convolution and related objects. Assume

that a, b ∈ S ′(R2d) are appropriate. Then the Weyl product a#b between a and b is
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the function or distribution which fulfills Opw(a#b) = Opw(a) ◦ Opw(b), provided
the right-hand side makes sense. More general, if t ∈ R, then the product #t is defined
by the formula

Opt (a#t b) = Opt (a) ◦ Opt (b), (1.7)

provided the right-hand side makes sense as a continuous operator from S(Rd) to
S ′(Rd).

The Weyl product can also, in a convenient way, be expressed in terms of the
symplectic Fourier transform and twisted convolution. More precisely, the symplectic
Fourier transform for a ∈ S(R2d) is defined by the formula

(Fσa)(X) = π−d
∫

a(Y )e2iσ(X,Y ) dY.

Here σ is the symplectic form, which is defined by

σ(X,Y ) = 〈y, ξ 〉 − 〈x, η〉, X = (x, ξ) ∈ R2d , Y = (y, η) ∈ R2d ,

where 〈·, ·〉 denotes the usual scalar product on Rd .
It follows that Fσ is continuous on S(R2d), and extends as usual to a homeomor-

phism on S ′(R2d), and to a unitary map on L2(R2d). Furthermore, F2
σ is the identity

operator.
Assume that a, b ∈ S(R2d). Then the twisted convolution of a and b is defined by

the formula

(a ∗σ b)(X) = (2/π)d/2
∫

a(X − Y )b(Y )e2iσ(X,Y ) dY. (1.8)

The definition of ∗σ extends in different ways. For example, it extends to a contin-
uous multiplication on L p(R2d) when p ∈ [1, 2], and to a continuous map from
S ′(R2d) × S(R2d) to S ′(R2d) (cf. [38]). If a, b ∈ S ′(R2d), then a#b makes sense if
and only if a ∗σ b̂ makes sense, and then

a#b = (2π)−d/2a ∗σ (Fσb). (1.9)

We also remark that for the twisted convolution we have

Fσ (a ∗σ b) = (Fσa) ∗σ b = ǎ ∗σ (Fσb), (1.10)

where ǎ(X) = a(−X) (cf. [36,38,39]). A combination of (1.9) and (1.10) gives

Fσ (a#b) = (2π)−d/2(Fσa) ∗σ (Fσb). (1.11)
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In the Weyl calculus it is many times convenient to use the operator A on S ′(R2d),
defined by the formula

Aa(x, y) = (F−1
2 a)((y − x)/2,−(x + y)), a ∈ S ′(R2d). (1.12)

We note that Aa(x, y) agrees with (2π)d/2 Kw
a (−x, y), where Kw

a is the distribution
kernel to the Weyl operator Opw(a). If a ∈ L1(R2d), then Aa is given by

Aa(x, y) = (2π)−d/2
∫

a((y − x)/2, ξ)e−i〈x+y,ξ〉 dy.

The operator A is important when using the twisted convolution, because for each
a, b ∈ S(R2d) we have

A(a ∗σ b) = Aa ◦ Ab (1.13)

(See [17,36,38,39]). Here and in what follows we have identified operators with their
Schwartz kernels.

In the following lemma we list some facts about the operator A. The result is a con-
sequence of Fourier’s inversion formula, and the verifications are left for the reader.

Lemma 1.1 Let A be as above and let U = Aa where a ∈ S ′(R2d). Then the follow-
ing is true:

(1) Ǔ = Aǎ, if ǎ(X) = a(−X);

(2) JFU = AFσa, where JFU (x, y) = U (−x, y);

(3) A(Fσa) = (2π)d/2 Opw(a) and (Opw(a) f, g) = (2π)−d/2(Aa, ǧ ⊗ f ) when
f, g ∈ S(Rd);

(4) the Hilbert space adjoint of Aa equals Aã, where ã(X) = a(−X). Furthermore,
if a1, a2, b ∈ S(R2d), then

(a1 ∗σ a2, b) = (a1, b ∗σ ã2) = (a2, ã1 ∗σ b), (a1 ∗σ a2) ∗σ b = a1 ∗σ (a2 ∗σ b).

A linear and continuous operator from S(Rd) to S ′(Rn) is called positive semi-def-
inite when (T f, f )L2 ≥ 0 for every f ∈ S(Rd). We write T ≥ 0 when T is positive
semi-definite. A distribution a ∈ S ′(R2d) is called σ -positive if Aa is a positive
semi-definite operator. The set of all σ -positive distributions on R2d is denoted by
S ′+(R2d).

The following result is an immediate consequence of Lemma 1.1.

Proposition 1.2 Assume that a ∈ S ′(R2d). Then

a ∈ S ′+(R2d) ⇐⇒ Aa ≥ 0 as operator ⇐⇒ Opw(Fσa) ≥ 0.

We refer to [38,39] for more facts about σ -positive functions and distributions.
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In the end of Sect. 5 we also discuss continuity for Toeplitz operators. Assume that
a ∈ S(R2d) and h1, h2 ∈ S(Rd). Then the Toeplitz operator Tph1,h2

(a), with symbol
a, and window functions h1 and h2, is defined by the formula

(Tph1,h2
(a) f1, f2) = (aVȟ1

f1, Vȟ2
f2) = (a(2 · )W f1,h1 ,W f2,h2)

when f1, f2 ∈ S(Rd). The definition of Tph1,h2
(a) extends in several ways (cf. e.g.

[6,22,36,38,40,43,44]).
In most of these extensions as well as in Sect. 5, we interprete Toeplitz operators

as pseudo-differential operators, using the fact that

Tph1,h2
(a) = Opt (a ∗ u) when

(1.14)
u(X) = (2π)−d/2W t

h2,h1
(−X),

h1, h2 are suitable window functions on Rd and a is an appropriate distribution on R2d .
The relation (1.14) is well-known when t = 0 or t = 1/2 (cf. e.g. [6,8,30,36,38,40–
42,44]). For general t , (1.14) is an immediate consequence of the case t = 1/2, (1.6),
and the fact that

ei(t−s)〈Dx ,Dξ 〉(a ∗ u) = a ∗ (ei(t−s)〈Dx ,Dξ 〉u),

which follows by integration by parts.
Next we discuss basic properties for modulation spaces, and start by recalling the

conditions for the involved weight functions. Assume that 0 < ω, v ∈ L∞
loc(R

d). Then
ω is called v-moderate if

ω(x + y) ≤ Cω(x)v(y) (1.15)

for some constant C which is independent of x, y ∈ Rd . Here the function v is
called submultiplicative, if (1.15) holds when ω = v. If v in (1.15) can be chosen
as a polynomial, then ω is called polynomially moderate. We let P(Rd) be the set of
all polynomially moderated functions on Rd . If ω(x, ξ) ∈ P(R2d) is constant with
respect to the x-variable (ξ -variable), then we write ω(ξ) (ω(x)) instead of ω(x, ξ).
In this case we consider ω as an element in P(R2d) or in P(Rd) depending on the
situation.

We also remark that the polynomially moderate functions may be considered as
a particular case of (σ, g)-temperate functions as defined in [24, Section 18.5], by
Hörmander.

Letϕ ∈ S ′(Rd) be fixed. Then the short-time Fourier transform Vϕ f of f ∈ S ′(Rd)

with respect to the window function ϕ is the tempered distribution on R2d , defined by

Vϕ f (x, ξ) ≡ F( f ϕ( · − x))(ξ).
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If f, ϕ ∈ S(Rd), then it follows that

Vϕ f (x, ξ) = (2π)−d/2
∫

f (y)ϕ(y − x)e−i〈y,ξ〉 dy.

Assume that ω ∈ P(R2d), p, q ∈ [1,∞] and ϕ ∈ S(Rd)\0 are fixed. Then
the mixed Lebesgue space L p,q

1,(ω)(R
2d) consists of all F ∈ L1

loc(R
2d) such that

‖F‖L p,q
1,(ω)

< ∞, and L p,q
2,(ω)(R

2d) consists of all F ∈ L1
loc(R

2d) such that ‖F‖L p,q
2,(ω)

<

∞. Here

‖F‖L p,q
1,(ω)

=
(∫ (∫

|F(x, ξ)ω(x, ξ)|p dx

)q/p

dξ

)1/q

, (1.16)

and

‖F‖L p,q
2,(ω)

=
(∫ (∫

|F(x, ξ)ω(x, ξ)|q dξ

)p/q

dx

)1/p

, (1.17)

with obvious modifications when p = ∞ or q = ∞. We note that these norms might
attain +∞.

The modulation spaces M p,q
(ω) (R

d) and W p,q
(ω) (R

d) are the Banach spaces which

consist of all f ∈ S ′(Rd) such that ‖ f ‖M p,q
(ω)

< ∞ and ‖ f ‖W p,q
(ω)

< ∞, respectively.

Here

‖ f ‖M p,q
(ω)

≡ ‖Vϕ f ‖L p,q
1,(ω)

, and ‖ f ‖W p,q
(ω)

≡ ‖Vϕ f ‖L p,q
2,(ω)

. (1.18)

We remark that the definitions of M p,q
(ω) (R

d) and W p,q
(ω) (R

d) are independent of the

choice of ϕ ∈ S(Rd)\0 in (1.18) and different ϕ gives rise to equivalent norms (see
Proposition 1.3 below). By Fourier’s inversion formula we get

Vϕ̂ f̂ (ξ,−x) = ei〈x,ξ〉Vϕ̌ f (x, ξ), ϕ̌(x) = ϕ(−x), (1.19)

which gives

f ∈ W q,p
(ω) (R

d) ⇐⇒ f̂ ∈ M p,q
(ω0)

(Rd), ω0(ξ,−x) = ω(x, ξ).

For convenience we set M p
(ω) = M p,p

(ω) , which agrees with W p
(ω) = W p,p

(ω) . Further-

more we set M p,q = M p,q
(ω) and W p,q = W p,q

(ω) when ω ≡ 1.
The proof of the following proposition is omitted, since the results can be found in

[10,11,14–16,18,40–43]. Here we recall that p, p′ ∈ [1,∞] satisfy 1/p + 1/p′ = 1.

Proposition 1.3 Assume that p, q, p j , q j ∈ [1,∞] for j = 1, 2, and ω,ω1, ω2, v ∈
P(R2d) are such that v = v̌, ω is v-moderate and ω2 ≤ Cω1 for some constant
C > 0. Then the following is true:
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(1) f ∈ M p,q
(ω) (R

d) if and only if (1.18) holds for any ϕ ∈ M1
(v)(R

d)\0. Moreover,

M p,q
(ω) is a Banach space under the norm in (1.18) and different choices of ϕ give

rise to equivalent norms;

(2) if p1 ≤ p2 and q1 ≤ q2 then

S(Rd) ↪→ M p1,q1
(ω1)

(Rn) ↪→ M p2,q2
(ω2)

(Rd) ↪→ S ′(Rd);

(3) the L2 product ( · , · ) = ( · , · )L2 on S(Rd) extends uniquely to a continuous

map from M p,q
(ω) (R

n)× M p′,q ′
(1/ω)(R

d) to C. On the other hand, if ‖a‖ = sup |(a, b)|,
where the supremum is taken over all b ∈ S(Rd) such that ‖b‖

M p′,q′
(1/ω)

≤ 1, then

‖ · ‖ and ‖ · ‖M p,q
(ω)

are equivalent norms;

(4) if p, q < ∞, then S(Rd) is dense in M p,q
(ω) (R

d) and the dual space of M p,q
(ω) (R

d)

can be identified with M p′,q ′
(1/ω)(R

d), through the L2-form ( · , · )L2 . Moreover,

S(Rd) is weakly dense in M∞
(ω)(R

d) with respect to the L2-form.

Similar facts hold if the M p,q
(ω) spaces are replaced by W p,q

(ω) spaces.

Proposition 1.3 (1) allows us be rather vague concerning the choice of ϕ ∈ M1
(v)\0

in (1.18). For example, if C > 0 is a constant and A is a subset of S ′, then ‖a‖M p,q
(ω)

≤ C

for every a ∈ A, means that the inequality holds for some choice of ϕ ∈ M1
(v)\0 and

every a ∈ A. Evidently, a similar inequality is true for any other choice of ϕ ∈ M1
(v)\0,

with a suitable constant, larger than C if necessary.

Remark 1.4 Assume that s, t ∈ R. In many applications it is common that functions
of the form

σs(x) = 〈x〉s and σs,t (x, ξ) ≡ 〈x〉t 〈ξ 〉s,

are involved. Here and in what follows we let 〈x〉 = (1+|x |2)1/2, when x ∈ Rd . Then
it easily follows that σs and σs,t are σ|s|-moderate and σ|s|,|t |-moderate, respectively.
For convenience we set

M p,q
s,t = M p,q

(σs,t )
M p,q

s = M p,q
(σs )
,

when σs(x, ξ) = 〈x, ξ 〉s , and

L p
s = L p

(σs )
,

when σs(x) = 〈x〉s . We note that for such weight functions we have

M p,q
s,t (R

d) = { f ∈ S ′(Rd) ; 〈x〉t 〈D〉s f ∈ M p,q(Rd) }, s, t ∈ R
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and

M p,q
s (Rd) = M p,q

s,0 (R
d) ∩ M p,q

0,s (R
d), s ≥ 0

(cf. [41]). Since M2 = L2, we get M2
0,s(R

d) = L2
s (R

d) and that M2
s,0(R

d) agrees with

the Sobolev space H2
s (R

d) which consists of all f ∈ S ′(Rd) such that 〈D〉s f ∈ L2.
We also get M2

s = H2
s ∩ L2

s , when s ≥ 0 (cf. [18,20]).

The symplectic short-time Fourier transform of a ∈ S ′(R2d) with respect to the
window function ϕ ∈ S ′(R2d) is defined by

Vϕa(X,Y ) = Fσ (a ϕ( · − X)) (Y ), X,Y ∈ R2d .

Assume that ω ∈ P(R4d). Then Mp,q
(ω) (R

2d) and W p,q
(ω) (R

2d) denote the modulation
spaces, where the symplectic short-time Fourier transform is used instead of the usual
short-time Fourier transform in the definitions of the norms. It follows that any prop-
erty valid for M p,q

(ω) (R
2d) or W p,q

(ω) (R
2d) carry over to Mp,q

(ω) (R
2d) and W p,q

(ω) (R
2d),

respectively. For example, for the symplectic short-time Fourier transform we have

VFσ ϕ(Fσa)(X,Y ) = e2iσ(Y,X)Vϕa(Y, X), (1.20)

(cf. (1.19)) which implies that

FσMp,q
(ω) (R

2d) = Wq,p
(ω0)

(R2d), ω0(X,Y ) = ω(Y, X). (1.21)

2 Twisted convolution on modulation spaces and Lebesgue spaces

In this section we discuss algebraic properties of the twisted convolution when acting
on modulation spaces of the form W p,q

(ω) . The most general result corresponds to Theo-
rem 0.3′ in [23], which concerns continuity for the Weyl product on modulation spaces
of the form Mp,q

(ω) . Thereafter we use this result to establish continuity properties for
the twisted convolution when acting on weighted Lebesgue spaces.

For completeness we write down the following lemma, where the first part agrees
with Lemma 4.4 in [37] and Lemma 2.1 in [23], and was fundamental in the proofs of
[37, Theorem 4.1] and for the Weyl product results in [23]. The second part follows
from the first one, (1.9), (1.10) and (1.20).

Lemma 2.1 Assume that a1 ∈ S ′(R2d), a2 ∈ S(R2d), ϕ1, ϕ2 ∈ S(R2d) and X,Y ∈
R2d . Then the following is true:

(1) if ϕ = πdϕ1#ϕ2, then ϕ ∈ S(R2d), and the map

Z 	→ e2iσ(Z ,Y )(Vχ1a1)(X − Y + Z , Z) (Vχ2 a2)(X + Z ,Y − Z)
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belongs to L1(R2d), and

Vϕ(a1#a2)(X,Y )

=
∫

e2iσ(Z ,Y )(Vχ1a1)(X − Y + Z , Z) (Vχ2 a2)(X + Z ,Y − Z) d Z;

(2) if ϕ = 2−dϕ1 ∗σ ϕ2, then ϕ ∈ S(R2d), and the map

Z 	→ e2iσ(X,Z−Y )(Vχ1a1)(X − Y + Z , Z) (Vχ2 a2)(Y − Z , X + Z)

belongs to L1(R2d), and

Vϕ(a1 ∗σ a2)(X,Y )

=
∫

e2iσ(X,Z−Y )(Vχ1a1)(X − Y + Z , Z) (Vχ2 a2)(Y − Z , X + Z) d Z .

For completeness we also write down the following restatement of Theorem 0.3′
in [23]. Here the involved weight functions should satisfy

ω0(X,Y ) ≤ Cω1(X − Y + Z , Z)ω2(X + Z ,Y − Z), X,Y, Z ∈ R2d , (2.1)

for some constant C > 0, and the exponent p j , q j ∈ [1,∞] satisfy (0.4) and

0 ≤ 1

p1
+ 1

p2
− 1

p0
≤ 1

p j
,

1

q j
≤ 1

q1
+ 1

q2
− 1

q0
, j = 0, 1, 2. (2.2)

Theorem 2.2 Assume that ω0, ω1, ω2 ∈ P(R4d) satisfy (2.1), and that p j , q j ∈
[1,∞] for j = 0, 1, 2, satisfy (0.4) and (2.2). Then the map (a1, a2) 	→ a1#a2 on
S(R2d) extends uniquely to a continuous map from Mp1,q1

(ω1)
(R2d)× Mp2,q2

(ω2)
(R2d) to

Mp0,q0
(ω0)

(R2d), and for some constant C > 0, the bound

‖a1#a2‖Mp0,q0
(ω0)

≤ C‖a1‖Mp1,q1
(ω1)

‖a2‖Mp2,q2
(ω2)

, (2.3)

holds for every a1 ∈ Mp1,q1
(ω1)

(R2d) and a2 ∈ Mp2,q2
(ω2)

(R2d).

We note that Theorem 0.1 is an immediate consequence of (1.21), (1.11) and The-
orem 2.2. Another way to prove Theorem 0.1 is to use similar arguments as in the
proof of [23, Theorem 0.3′], based on (2) instead of (1) in Lemma 2.1.

We are now able to state and prove mapping results for the twisted convolution on
weighted Lebesgue spaces. We start with the proof of Theorem 0.2 from the introduc-
tion.

Proof of Theorem 0.2 From the assumptions it follows that at most one of p1 and p2
are equal to ∞. By reasons of symmetry we may therefore assume that p2 < ∞.
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Since W2
(ω) = M2

(ω) = L2
(ω) when ω(X,Y ) = ω(X), in view of Theorem 2.2 in

[41], the result follows from Theorem 0.1 in the case p0 = p1 = p2 = 2.
Now assume that 1/p1 + 1/p2 − 1/p0 = 1, a1 ∈ L p1(R2d) and that a2 ∈ S(R2d).

Then

‖a1 ∗σ a2‖L
p0
(ω0)

≤ (2/π)d/2‖ |a1| ∗ |a2| ‖L
p0
(ω0)

≤ C‖a1‖L
p1
(ω1)

‖a2‖L
p2
(ω2)
,

by Young’s inequality. The result now follows in this case from the fact that S is dense
in L p2

(ω2)
, when p2 < ∞.

For general p0, p1, p2, the result follows by multi-linear interpolation between the
case p0 = p1 = p2 = 2 and the case 1/p1 + 1/p2 − 1/p0 = 1, using Theorem 4.4.1
in [1] and the fact that

(Lq1
(ω)(R

2d), (Lq2
(ω)(R

2d))[θ] = Lq
(ω)(R

2d), when
1 − θ

q1
+ θ

q2
= 1

q

(cf. Chapter 5 in [1]). The proof is complete. ��
By letting p1 = p and p2 = q ≤ min(p, p′), or p2 = p and p1 = q ≤ min(p, p′)

in Theorem 0.2, we get the following:

Corollary 2.3 Assume that ω j ∈ P(R2d) for j = 0, 1, 2 and p, q ∈ [1,∞] sat-
isfy (0.6), and q ≤ min(p, p′) for some constant C. Then the map (a1, a2) 	→
a1 ∗σ a2 extends uniquely to a continuous mapping from L p

(ω1)
(R2d)× Lq

(ω2)
(R2d) or

Lq
(ω1)

(R2d)× L p
(ω2)

(R2d) to L p
(ω0)

(R2d).
In particular, if p ∈ [1, 2] and in addition ω0 is submultitplicative, then

(L p
(ω0)

(R2d), ∗σ ) is an algebra.

In the next section we need the following refinement of Theorem 0.2 concerning
mixed Lebesgue spaces.

Theorem 0.2′ Assume that k ∈ {1, 2}, ω j ∈ P(R2d) and p j , q j ∈ [1,∞] for j =
0, 1, 2 satisfy (0.6) and

max

(
1

p0
,

1

p′
0
,

1

q0
,

1

q ′
0

)
≤ 1

p1
+ 1

p2
− 1

p0
,

1

q1
+ 1

q2
− 1

q0
≤ 1.

Then the map (a1, a2) 	→ a1 ∗σ a2 extends uniquely to a continuous mapping from
L p1,q1

k,(ω1)
(R2d)× L p2,q2

k,(ω2)
(R2d) to L p0,q0

k,(ω0)
(R2d), and

‖a1 ∗σ a2‖L
p0,q0
k,(ω0)

≤ C‖a1‖L
p1,q1
k,(ω1)

‖a2‖L
p2,q2
k,(ω2)

, (0.8)′

holds for some constant C which is independent of a1 ∈ L p1,q1
k,(ω1)

(R2d) and a2 ∈
L p2,q2

k,(ω2)
(R2d).
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Proof The result follows from Minkowski’s inequality when p1 = q1 = 1 or p2 =
q2 = 1. In the case p1 = p2 = q1 = q2 = 2 the result is an immediate conse-
quence of Theorem 0.2. For general p j and q j , the result follows from these cases and
multi-linear interpolation. ��

3 Window functions in modulation space norms

In this section we use the results in the previous section to prove that the class of
permitted windows in the modulation space norms can be extended. More precisely
we have the following.

Theorem 3.1 Assume that p, p0, q, q0 ∈ [1,∞] and ω, v ∈ P(R2d) are such that
p0, q0 ≤ min(p, p′, q, q ′), v̌ = v andω is v-moderate. Also assume that f ∈ S ′(Rd).
Then the following is true:

(1) if ϕ ∈ M p0,q0
(v) (Rd)\0, then f ∈ M p,q

(ω) (R
d) if and only if Vϕ f ∈ L p,q

1,(ω)(R
2d).

Furthermore, ‖ f ‖ ≡ ‖Vϕ f ‖L p,q
1,(ω)

defines a norm for M p,q
(ω) (R

d), and different

choices of ϕ give rise to equivalent norms;

(2) if ϕ ∈ W p0,q0
(v) (Rd)\0, then f ∈ W p,q

(ω) (R
d) if and only if Vϕ f ∈ L p,q

2,(ω)(R
2d).

Furthermore, ‖ f ‖ ≡ ‖Vϕ f ‖L p,q
2,(ω)

defines a norm for W p,q
(ω) (R

d), and different

choices of ϕ give rise to equivalent norms.

For the proof we note that the relation between Wigner distributions (cf. (1.5) with
t = 1/2) and short-time Fourier transform is given by

W f,g(x, ξ) = 2dei〈x,ξ〉/2Vǧ f (2x, 2ξ),

which implies that

‖W f,ϕ̌‖L p,q
k,(ω0)

= 2d‖Vϕ f ‖L p,q
k,(ω)

, when ω0(x, ξ) = ω(2x, 2ξ) (3.1)

for k = 1, 2.
Finally, by Fourier’s inversion formula it follows that if f1, g2 ∈ S ′(Rd) and

f1, g2 ∈ L2(Rd), then

W f1,g1 ∗σ W f2,g2 = ( f̌2, g1)L2 W f1,g2 . (3.2)

Proof of Theorem 3.1 We may assume that p0 = q0 = min(p, p′, q, q ′). Assume
that ϕ,ψ ∈ M p0,q0

(v) (Rd) ⊆ L2(Rd), where the inclusion follows from the facts that
p0, q0 ≤ 2 and v ≥ c for some constant c > 0. Since ‖Vϕψ‖L

p0,q0
k,(v)

= ‖Vψϕ‖L
p0,q0
k,(v)

when v̌ = v, the result follows if we prove that

‖Vϕ f ‖L p,q
k,(ω)

≤ C‖ψ‖−2
L2 ‖Vψ f ‖L p,q

k,(ω)
‖Vϕψ‖L

p0,q0
k,(v)

, (3.3)
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for some constant C which is independent of f ∈ S ′(Rd) and ϕ,ψ ∈ M p0,q0
(v) (Rd).

For reasons of homogeneity, it is then no restriction to assume that ‖ψ‖L2 = 1.
If p1 = p, p2 = p0, q1 = q, q2 = q0, ω0 = ω(2 · ) and v0 = v(2 · ), then

Theorem 0.2′ and (3.2) give

‖Vϕ f ‖L p,q
k,(ω)

= C1‖W f,ϕ̌‖L p,q
k,(ω0)

= C2‖W f,ψ̌ ∗σ Wψ,ϕ̌‖L p,q
k,(ω0)

≤ C3‖W f,ψ̌‖L p,q
k,(ω0)

‖Wψ,ϕ̌‖L
p0,q0
k,(v0)

= C4‖Vψ f ‖L p,q
k,(ω)

‖Vϕψ‖L
p0,q0
k,(v)

,

and (3.3) follows. The proof is complete. ��

4 Schatten–von Neumann classes and pseudo-differential operators

In this section we discuss Schatten–von Neumann classes of pseudo-differential oper-
ators from a Hilbert space H1 to another Hilbert space H2. Schatten–von Neumann
classes were introduced by Schatten in [28] in the case H1 = H2 (see also [31]).
The general situation, when H1 is not necessarily equal to H2, has thereafter been
considered in, e.g. [2,29,45].

Let ON(H j ), j = 1, 2, denote the family of orthonormal sequences in H j , and
assume that T : H1 → H2 is linear, and that p ∈ [1,∞]. Then we set

‖T ‖Ip = ‖T ‖Ip(H1,H2) ≡ sup
(∑

|(T f j , g j )H2 |p
)1/p

(with obvious modifications when p = ∞). Here the supremum is taken over all
( f j ) ∈ ON(H1) and (g j ) ∈ ON(H2). Then Ip = Ip(H1,H2), the Schatten–von
Neumann class of order p, consists of all linear and continuous operators T from
H1 to H2 such that ‖T ‖Ip(H1,H2) is finite. We note that I∞(H1,H2) agrees with
B(H1,H2), the set of linear and continuous operators from H1 to H2, with equality
in norms. We also let K(H1,H2) be the set of all linear and compact operators from
H1 to H2, and equip this space with the operator norm as usual (note that the notation
I�(H1,H2) was used instead of K(H1,H2) in [43]). If H1 = H2, then the shorter
notation Ip(H1) is used instead of Ip(H1,H2), and similarly for B(H1,H2) and
K(H1,H2).

Assume that (e j ) is an orthonormal basis in H1, and that S ∈ I1(H1). Then the
trace of S is defined as

trH1 S =
∑

(Se j , e j )H1 .

For each pairs of operators T1, T2 ∈ I∞(H1,H2) such that T ∗
2 ◦ T1 ∈ I1(H1), the

sesqui-linear form

(T1, T2) = (T1, T2)H1,H2 ≡ trH1(T
∗
2 ◦ T1)
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of T1 and T2 is well-defined. Here we note that T belongs to Ip(H1,H2) if and only
if T ∗ belongs to Ip(H2,H1) with equal norms. We refer to [2,31,45] for more facts
about Schatten–von Neumann classes.

In order for discussing Schatten–von Neumann operators within the theory of
pseudo-differential operators, we assume from now on that the Hilbert spaces
H,H0,H1,H2, . . . are “tempered” in the following sense.

Definition 4.1 The Hilbert space H ⊆ S ′(Rd) is called tempered (on Rd ), if S(Rd)

is contained and dense in H.

Assume that H is a tempered Hilbert space on Rd . Then we let Ȟ and Hτ be the
sets of all f ∈ S ′(Rd) such that f̌ ∈ H and f ∈ H, respectively. Then Ȟ and Hτ are
tempered Hilbert spaces under the norms

‖ f ‖Ȟ ≡ ‖ f̌ ‖H and ‖ f ‖Hτ ≡ ‖ f ‖H,

respectively.
The L2-dual, H′, of H is the set of all ϕ ∈ S ′(Rd) such that

‖ϕ‖H′ ≡ sup |(ϕ, f )L2(Rd )|

is finite. Here the supremum is taken over all f ∈ S(Rd) such that ‖ f ‖H ≤ 1.
Assume that ϕ ∈ H′. Since S is dense in H, it follows from the definitions that the
map f 	→ (ϕ, f )L2 from S(Rd) to C extends uniquely to a continuous mapping
from H to C. The following version of Riesz lemma is useful for us. In order to be
self-contained, we also give a proof.

Lemma 4.2 Assume that H ⊆ S ′(Rd) is a tempered Hilbert space with L2-dual H′.
Then the following is true:

(1) H′ is a tempered Hilbert space which can be identified with the dual space of H
through the L2-form;

(2) there is a unique map TH from H to H′ such that

( f, g)H = (TH f, g)L2(Rd ), f, g ∈ H; (4.1)

(3) if TH is the map in (2), (e j ) j∈I is an orthonormal basis in H and ε j = THe j ,
then TH is isometric, (ε j ) j∈I is an orthonormal basis in H′ and

(ε j , ek)L2(Rd ) = δ j,k .

Proof We have that S ⊆ H′ ⊆ S ′, and since S is dense in H, it follows that S is dense
also in H′.

First assume that f ∈ H, g ∈ S(Rd), and let TH f in S ′(Rd) be defined by (4.1).
By the definitions it follows that TH f ∈ H′, and that TH from H to H′ is isometric.
Furthermore, since the dual space of H can be identified with itself, under the scalar
product of H, the asserted duality properties of H′ follow.
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Let (e j ) j∈I be an arbitrary orthonormal basis in H, and let ε j = THe j . Then it
follows that ‖ε j‖H′ = 1 and

(ε j , ek)L2 = (e j , ek)H = δ j,k .

Furthermore, if

f =
∑

α j e j , ϕ =
∑

α jε j , g =
∑

β j e j and γ =
∑

β jε j

are finite sums, and we set (ϕ, γ )H′ ≡ ( f, g)H, then it follows that ( · , · )H′ defines
a scalar product on such finite sums in H′, and that ‖ϕ‖2

H′ = (ϕ, ϕ)H′ . By continuity
extensions it now follows that (ϕ, γ )H′ extends uniquely to each ϕ, γ ∈ H′, and that
the identity ‖ϕ‖2

H′ = (ϕ, ϕ)H′ holds. This proves the result. ��

In what follows we consider the basis (ε j ) in Lemma 4.2 as the dual basis of (e j ).

Example 4.3 Let H1 = H2
s (R

d), H2 = M2
(ω0)

(Rd) where ω0 ∈ P(R2d), and let
H3 = H(ω, g) be the Sobolev space of Bony–Chemin type with admissible weight ω
and metric g on R2d (cf. [3]). Then H1, H2 and H3 are tempered Hilbert spaces with
duals H′

1 = H2−s(R
d), H′

2 = M2
(1/ω0)

(Rd) and H′
3 = H(1/ω, g), respectively. We

remark that H(ω, g) = M2
(ω)(R

d) when g is the constant euclidean metric on R2d in

view of [21]. If moreover ωs(x, ξ) = σs(ξ) = 〈ξ 〉s , then H(ωs, g) = M2
(ωs )

= H2
s

(cf. Remark 1.4).

Corollary 4.4 Assume that H is a tempered Hilbert space on Rd . Then

M2
s (R

d) ⊆ H,H′ ⊆ M2−s(R
d),

for some s ≥ 0. Furthermore, M2
s (R

d) is dense in H and H′, which in turn are dense in
M2−s(R

d). A similar fact holds when M2
s and M2−s are replaced by M2

s,s and M2−s,−s ,
respectively.

Proof Since

M2
2s ⊆ M2

s,s ⊆ M2
s and M2−s ⊆ M2−s,−s ⊆ M2−2s

when s ≥ 0, it suffices to consider the case when the modulation spaces are of the
form M2

s,s or M2−s,−s .
The topology in S can be obtained by using the semi-norms

‖ f ‖[s] ≡
∑

|α|,|β|≤s

‖xαDβ f ‖L2 , s = 0, 1, 2, . . . .

From the fact that S is continuously embedded in H and in H′, it therefore follows
that

‖ f ‖H ≤ C‖ f ‖[s] and ‖ϕ‖H′ ≤ C‖ϕ‖[s],

when f ∈ S, provided s is chosen large enough.
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Since the completion of S(Rd) under ‖ · ‖[s] is equal to M2
s,s(R

d) in view of
Remark 1.4, the result follows by a standard argument of approximation, using the
duality properties in Proposition 1.3 (4), together with the facts that S is dense in H,
H′, M2

s,s and M2−s,−s . The proof is complete. ��
Assume that H1,H2 ⊆ S ′(Rd) are tempered Hilbert spaces, t ∈ R is fixed and that

p ∈ [1,∞]. Then we let s A
p (H1,H2) and st,p(H1,H2) be the sets of all a ∈ S ′(R2d)

such that Aa ∈ Ip(H1,H2) and Opt (a) ∈ Ip(H1,H2), respectively. We also let
s A
� (H1,H2) and st,�(H1,H2) be the set of all a ∈ S ′(R2d) such that Aa ∈ K(H1,H2)

and Opt (a) ∈ K(H1,H2), respectively. These spaces are equipped by the norms

‖a‖st,p(H1,H2) ≡ ‖ Opt (a)‖Ip(H1,H2), ‖a‖s A
p (H1,H2)

≡ ‖Aa‖Ip(H1,H2),

‖a‖st,�(H1,H2) ≡ ‖a‖st,∞(H1,H2), ‖a‖s A
� (H1,H2)

≡ ‖a‖s A∞(H1,H2)
.

Since the mappings a 	→ Aa and a 	→ Opt (a) are bijections from S ′(R2d) to the set
of linear and continuous operators from S(Rd) to S ′(Rd), it follows that a 	→ Aa
and a 	→ Opt (a) restrict to isometric bijections from s A

p (H1,H2) and st,p(H1,H2),
respectively, toIp(H1,H2). Consequently, the properties forIp(H1,H2) carry over to
s A

p (H1,H2) and st,p(H1,H2). In particular, elements in s A
1 (H1,H2) of finite rank (i.e.

elements of the form a ∈ s A
1 (H1,H2) such that Aa is a finite rank operator) are dense

in s A
� (H1,H2) and s A

p (H1,H2)when p < ∞. Similar facts hold for st,�(H1,H2) and
st,p(H1,H2). Since the Weyl quantization is particularly important in our consider-
ations we also set

swp = st,p and sw� = st,�, when t = 1/2.

If ω1, ω2 ∈ P(R2d), then we use the notation s A
p (ω1, ω2) instead of s A

p (M
2
(ω1)

,

M2
(ω2)

). Furthermore we set s A
p (ω1, ω2) = s A

p (R
2d) when ω1 = ω2 = 1. In the same

way the notations for st,p, swp , st,� and sw� are simplified.

Remark 4.5 Except for the Hilbert-Schmidt case (p = 2), it is in general a hard task to
find simple characterizations of Schatten–von Neumann classes. Important questions
therefore concern of finding embeddings between Schatten–von Neumann classes and
well-known function and distribution spaces. Here we recall some of such embeddings:

(i) In Chapter 4 in [31], it is proved that if Q is a unit cube on Rd , 1 ≤ p ≤ 2 and
f and g are measureable on Rd and satisfy

⎛
⎜⎝ ∑

xα∈Zn

⎛
⎜⎝

∫

xα+Q

| f (x)|2 dx

⎞
⎟⎠

p/2⎞
⎟⎠

1/p

< ∞,

and similarly for g, then f (x)g(D) ∈ Ip(L2), or equivalently, f (x)g(ξ) ∈
st,p(R2d) when t = 0;
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(ii) Let B p,q
s (Rd) be the Besov space with parameters p, q ∈ [1,∞] and s ∈ R (cf.

[38,40,42,43] for strict definitions). In [38] sharp embeddings of the form

B p,q1
s1 (R2d) ⊆ st,p(R2d) ⊆ B p,q2

s2 (R2d)

is presented. Here

q1 = min(p, p′) and q2 = max(p, p′). (4.2)

We also remark that the sharp embedding B∞,1
s (R2d) ⊆ st,∞(R2d) for certain

choices of t was proved already in [4,5,27,33];

(iii) In [43, Theorem 4.13] it is proved that if ω1, ω2 ∈ P(R2d) satisfy

ω(x, ξ, η, y) = ω2(x − t y, ξ + (1 − t)η)/ω1(x + (1 − t)y, ξ − tη)

and p, q1, q2 ∈ [1,∞] satisfy (4.2), then

M p,q1
(ω) (R

2d) ⊆ st,p(ω1, ω2) ⊆ M p,q2
(ω) (R

2d). (4.3)

In particular, (4.3) covers the Schatten–von Neumann results in [20,32,40],
where similar questions are considered in the case ω1 = ω2 = ω = 1. Fur-
thermore, in [43], embeddings between st,p(ω1, ω2) with ω1 = ω2 and Besov
spaces are established.

Remark 4.6 Assume that t, t1, t2 ∈ R, p ∈ [1,∞], H1,H2 are tempered Hilbert
spaces on Rd and that a, b ∈ S ′(R2d). Then it follows by Fourier’s inversion formula
that the map eit〈Dx ,Dξ 〉 is a homeomorphism on S(R2d) which extends uniquely to
a homeomorphism on S ′(R2d). Furthermore, by (1.3) it follows that ei(t2−t1)〈Dx ,Dξ 〉
restricts to an isometric bijection from st1,p(H1,H2) to st2,p(H1,H2).

The following proposition shows how st,p(H1,H2), s A
p (H1,H2) and other similar

spaces are linked together. The proof is essentially the same as the proof of Proposition
5.1 in [45]. Here and in what follows we let aτ (x, ξ) = a(x,−ξ) be the “torsion” of
a ∈ S ′(R2d).

Proposition 4.7 Assume that t ∈ R, H1,H2 are tempered Hilbert spaces in Rd ,
a ∈ S ′(R2d), and that p ∈ [1,∞]. Then swp (H1,H2) = s A

p (H1, Ȟ2). Furthermore,
the following conditions are equivalent:

(1) a ∈ swp (H1,H2);

(2) Fσa ∈ swp (H1, Ȟ2) = s A
p (H1,H2);

(3) a ∈ swp (H′
2,H′

1);

(4) aτ ∈ s A
p (Hτ

1 ,Hτ
2);

(5) ǎ ∈ swp (Ȟ1, Ȟ2);
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(6) ã ∈ swp (Ȟ′
2, Ȟ′

1);

(7) ei(t−1/2)〈Dξ ,Dx 〉a ∈ st,p(H1,H2).

Proof Let a1 = Fσa, a2 = a, a3 = aτ , a4 = ǎ and a5 = ã. Then the equivalences
follow immediately from Remark 4.6 and the equalities

(Opw(a) f, g) = (Opw(a1) f, ǧ) = ( f,Opw(a2)g)

= (Opw(a3)(x, D) f , g) = (Opw(a4) f̌ , ǧ) = ( f̌ ,Opw(a5)ǧ),

when a ∈ S ′(R2d) and f, g ∈ S(Rd). Here the first equality follows from the fact
that if K (x, y) is the distribution kernel of Opw(a), then K (−x, y) is the distribution
kernel of Opw(Fσa) = (2π)−d/2 Aa (cf. [36,38]). The proof is complete. ��

In Remarks 4.8 and 4.9 below we list some properties for st,p(H1,H2) and
s A

p (H1,H2). These properties follow from well-known Schatten–von Neumann results
in [2,31,45], in combination with (1.7), (1.13) and the fact that the mappings
a 	→ Opt (a) and a 	→ Aa are isometric bijections from st,p(H1,H2) and s A

p (H1,H2),
respectively, to Ip(H1,H2). Here the forms ( · , · )st,2(H1,H2) and ( · , · )s A

2 (H1,H2)
are

defined by the formula

(a, b)st,2(H1,H2) = (Opt (a),Opt (b))I2(H1,H2), a, b ∈ st,2(H1,H2)

and

(a, b)s A
2 (H1,H2)

= (Aa, Ab)I2(H1,H2), a, b ∈ s A
2 (H1,H2).

Finally, the set l∞0 consists of all sequences in l∞ which turns to zero at infinity, and l1
0

consists of all sequences (λ j ) j∈I such that λ j = 0 except for finite numbers of j ∈ I .

Remark 4.8 Assume that p, p j , q, r ∈ [1,∞] for 1 ≤ j ≤ 2, t ∈ R, and that
H1, . . . ,H4 are tempered Hilbert spaces on Rd . Then the following is true:

(1) the set st,p(H1,H2) is a Banach space which increases with the parameter p. If in
addition p < ∞ and p1 ≤ p2, then st,p(H1,H2) ⊆ st,�(H1,H2), st,1(H1,H2)

is dense in st,p(H1,H2) and in st,�(H1,H2), and

‖a‖st,p2 (H1,H2) ≤ ‖a‖st,p1 (H1,H2), a ∈ st,∞(H1,H2); (4.4)

(2) equality is attained in (4.4), if and only if a is of rank one, and then
‖a‖st,p(H1,H2)p = (2π)−d/2‖ f0‖H1‖g0‖H2 , when a is given by (1.5);

(3) if 1/p1 +1/p2 = 1/r , a1 ∈ st,p1(H1,H2) and a2 ∈ st,p2(H2,H3), then a2#t a1 ∈
st,r (H1,H3), and

‖a2#t a1‖st,r (H1,H3) ≤ ‖a1‖st,p1 (H1,H2)‖a2‖st,p2 (H2,H3). (4.5)
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On the other hand, for any a ∈ st,r (H1,H3), there are elements a1 ∈
st,p1(H1,H2) and a2 ∈ st,p2(H2,H3) such that a = a2#t a1 and equality holds in
(4.5);

(4) if H1 ⊆ H2 and H3 ⊆ H4, then st,p(H2,H3) ⊆ st,p(H1,H4).

Similar facts hold when the st,p spaces and the product #t are replaced by s A
p spaces

and ∗σ .

Remark 4.9 Assume that p, p j , q, r ∈ [1,∞] for 1 ≤ j ≤ 2, t ∈ R, and that H1,H2
are tempered Hilbert spaces on Rd . Then the following is true:

(1) the form ( · , · )st,2(H1,H2) on st,1(H1,H2) extends uniquely to a sesqui-lin-
ear and continuous form on st,p(H1,H2) × st,p′(H1,H2), and for every a1 ∈
st,p(H1,H2) and a2 ∈ st,p′(H1,H2), it holds

(a1, a2)st,2(H1,H2) = (a2, a1)st,2(H1,H2),

|(a1, a2)st,2(H1,H2)| ≤ ‖a1‖st,p(H1,H2)‖a2‖st,p′ (H1,H2) and

‖a1‖st,p(H1,H2) = sup |(a1, b)st,2(H1,H2)|,

where the supremum is taken over all b ∈ st,p′(H1,H2) such that ‖b‖st,p′ (H1,H2)

≤ 1. If in addition p < ∞, then the dual space of st,p(H1,H2) can be identified
with st,p′(H1,H2) through this form;

(2) if a ∈ st,�(H1,H2), then

Opt (a) f =
∞∑
j=1

λ j ( f, f j )H1 g j , (4.6)

holds for some ( f j )
∞
j=1 ∈ ON(H1), (g j )

∞
j=1 ∈ ON(H2) and non-negative

decreasing sequence λ = (λ j )
∞
j=1 ∈ l∞0 , where the operator on the right-

hand side of (4.6) convergences with respect to the operator norm. Moreover,
a ∈ st,p(H1,H2), if and only if λ ∈ l p, and then

‖a‖st,p = ‖λ‖l p

and the operator on the right-hand side of (4.6) converges with respect to the norm
‖ · ‖st,p(H1,H2);

(3) If 0 ≤ θ ≤ 1 is such that 1/p = (1 − θ)/p1 + θ/p2, then the (complex) interpo-
lation formula

(st,p1(H1,H2), st,p2(H1,H2))[θ] = st,p(H1,H2)

holds with equality in norms.

Similar facts hold when the st,p spaces are replaced by s A
p spaces.
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We may now prove the following.

Proposition 4.10 Assume that p ∈ [1,∞), and that H1 and H2 are tempered Hilbert
spaces on Rd . Then S(R2d) is dense in st,p(H1,H2), s A

p (H1,H2), st,�(H1,H2) and

s A
� (H1,H2). Furthermore, S(R2d) is dense in st,∞(H1,H2) and s A∞(H1,H2) with

respect to the weak∗ topology.

Proof The result is an immediate consequence of Corollary 4.4 Remarks 4.5 (iii) and
4.8 (4). The proof is complete. ��

A problem with the form ( · , · )st,2(H1,H2) in Remark 4.9 is the somewhat compli-
cated structure. In the following we show that there is a canonical way to replace this
form with ( · , · )L2 . We start with the following result concerning polar decomposition
of compact operators.

Proposition 4.11 Assume that t ∈ R, p ∈ [1,∞], H1 and H2 are tempered Hilbert
spaces on Rd and that a ∈ st,�(H1,H2) (a ∈ s A

� (H1,H2)). Then

a ≡
∑
j∈I

λ j W t
g j ,ϕ j

⎛
⎝a ≡

∑
j∈I

λ j Wǧ j ,ϕ j

⎞
⎠

(with norm convergence) for some orthonormal sequences (ϕ j ) j∈I in H′
1 and (g j ) j∈I

in H2, and a sequence (λ j ) j∈I ∈ l∞0 of non-negative real numbers which decreases
to zero at infinity. Furthermore, a ∈ st,p(H1,H2) (a ∈ s A

p (H1,H2)), if and only if
(λ j ) j∈I ∈ l p, and

‖a‖st,p(H1,H2) = (2π)−d/2‖(λ j ) j∈I ‖l p (‖a‖s A
p (H1,H2)

= ‖(λ j ) j∈I ‖l p ).

Proof By Remark 4.9 (2) it follows that if f ∈ S(Rd), then

Opt (a) f (x) =
∑
j∈I

λ j ( f, f j )H1 g j (4.7)

for some orthonormal sequences ( f j ) in H1 and (g j ) in H2, and a sequence (λ j ) ∈ l∞0
of non-negative real numbers which decreases to zero at infinity. Now let (ϕ j ) j∈I be an
orthonormal sequence in H′

1 such that (ϕ j , fk)L2 = δ j,k . Then ( f, f j )H1 = ( f, ϕ j )L2 ,
and the result follows from (4.7), and the fact that

Opt (W
t
g j ,ϕ j

) f = (2π)−d/2( f, ϕ j )L2 g j = (2π)−d/2( f, f j )H1 g j .

The proof is complete. ��
Next we prove that the duals for st,p(H1,H2) and s A

p (H1,H2) can be identified

with st,p′(H′
1,H′

2) and s A
p′(H′

1,H′
2), respectively, through the form ( · , · )L2 .
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Theorem 4.12 Assume that t ∈ R, p ∈ [1,∞) and that H1,H2 are tempered Hilbert
spaces on Rd . Then the L2 form on S(R2d) extends uniquely to a duality between
st,p(H1,H2) and st,p′(H′

1,H′
2), and the dual space for st,p(H1,H2) can be identi-

fied with st,p′(H′
1,H′

2) through this form. Moreover, if � ∈ st,p(H1,H2)
∗ and a ∈

st,p′(H′
1,H′

2) are such that �(b) = (a, b)L2 when b ∈ st,p(H1,H2), then

‖�‖ = ‖a‖st,p′ (H′
1,H′

2)
.

The same is true if the st,p(H1,H2) spaces are replaced by s A
p (H1,H2) spaces.

Proof We only prove the assertion in the case t = 1/2. The general case follows by
similar arguments and is left for the reader. Assume that � ∈ swp (H1,H2)

∗. Since
the map b 	→ Opw(b) is an isometric bijection from swp (H1,H2) to Ip(H1,H2), it
follows from Remark 4.9 (1) that for some S ∈ Ip′(H1,H2) and each orthonormal
basis ( f j ) ∈ ON(H1) we have

�(b) = trH1(S
∗ ◦ Opw(b)) =

∑
(Opw(b) f j , S f j )H2 and

‖�‖ = ‖S‖Ip′ (H1,H2),
(4.8)

when b ∈ swp (H1,H2).
Now let b ∈ swp (H1,H2) be an arbitrary finite rank element. Then

b =
∑

λ j Wg j ,ϕ j and ‖b‖swp (H1,H2) = (2π)−d/2‖(λ j )‖l p ,

for some orthonormal bases (ϕ j ) ∈ ON(H′
1) and (g j ) ∈ ON(H2), and some sequence

(λ j ) ∈ l1
0 . We also let ( f j ) ∈ ON(H1) be the dual basis of (ϕ j ) and a the Weyl symbol

of the operator TH2 ◦ S ◦ TH′
1
. Then a ∈ swp′(H1,H2) and ‖a‖sw

p′ (H1,H2) = ‖�‖. By

straight-forward computations we get

�(b) = trH1(S
∗ ◦ Opw(b)) =

∑
(bw(x, D) f j , S f j )H2

=
∑

λ j (g j , S f j )H2 =
∑

λ j (g j ,Opw(a)ϕ j )L2(Rd )

= (2π)−d/2
∑

λ j (Wg j ,ϕ j , a)L2(R2d ) = (2π)−d/2(b, a)L2(R2d ).

Hence �(b) = (2π)−d/2(b, a)L2(R2d ). The result now follows from these identities
and the fact that the set of finite rank elements are dense in swp (H1,H2). The proof is
complete. ��

5 Young inequalities for weighted Schatten–von Neumann classes

In this section we establish Young type results for dilated convolutions and multiplica-
tions on swp (H1,H2), when H1 and H2 are appropriate modulation spaces of Hilbert
type. Especially we prove multi-linear versions of Theorems 0.3 and 0.4.
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We need some preparations before stating the results. If we have N convolutions,
then the corresponding condition comparing to (0.9) is

p1
−1 + · · · + pN

−1 = N − 1 + r−1, 1 ≤ p1, . . . , pN , r ≤ ∞. (0.9)′

In the same way, (0.10) should be replaced by

(−1) j1 t−2
1 + · · · + (−1) jN t−2

N = 1, (0.10)′

and (0.11) by

(−1) j1 t2
1 + · · · + (−1) jN t2

N = 1. (0.11)′

The condition (0.12) of the involved weight functions is modified into

ϑ(X1 + · · · + X N ) ≤ Cϑ j1,1(t1 X1) · · ·ϑ jN ,N (tN X N ),

ω(X1 + · · · + X N ) ≤ Cω j1,1(t1 X1) · · ·ω jN ,N (tN X N ),
(0.12)′

where

ω0,k(X) = ϑ1,k(X) = ωk(X), ϑ0,k(X) = ω1,k(X) = ϑk(X). (0.13)′

With these conditions we shall essentially prove estimates of the form

‖a1,t1 ∗ · · · ∗ aN ,tN ‖swr (1/ω,ϑ) ≤ Cd‖a1‖swp1
(1/ω1,ϑ1) · · · ‖aN ‖swpN

(1/ωN ,ϑN ), (0.14)′

and

‖a1,t1 · · · aN ,tN ‖swr (1/ω,ϑ) ≤ Cd‖a1‖swp1
(1/ω1,ϑ1) · · · ‖aN ‖swpN

(1/ωN ,ϑN ). (0.15)′

Theorem 0.3′ Assume that p1, · · · , pN , r ∈ [1,∞] satisfy (0.9)′, and that t1, . . . ,
tN ∈ R\0 satisfy (0.10)′, for some choices of j1, . . . , jN ∈ {0, 1}. Also assume that
ω,ω j , ϑ, ϑ j ∈ P(R2d) for j = 1, . . . , N satisfy (0.12)′ and (0.13)′. Then the map
(a1, . . . , aN ) 	→ a1,t1 ∗ · · · ∗ aN ,tN on S(R2d), extends uniquely to a continuous
mapping from

swp1
(1/ω1, ϑ1)× · · · × swpN

(1/ωN , ϑN )

to swr (1/ω, ϑ). Furthermore, (0.14)′ holds for some constant

C = C N
0 |t1|−2/p1 · · · |tN |−2/pN ,
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where C0 is independent of a1 ∈ swp1
(1/ω1, ϑ1), …, aN ∈ swpN

(1/ωN , ϑN ), t1, . . . , tN

and d.
Moreover, Opw(a1,t1 ∗ · · · ∗ aN ,tN ) ≥ 0 when Opw(a j ) ≥ 0 for each 1 ≤ j ≤ N.

Theorem 0.4′ Assume that p1, . . . , pN , r ∈ [1,∞] satisfy (0.9)′, and that t1, . . . ,
tN ∈ R\0 satisfy (0.11)′, for some choices of j1, . . . , jN ∈ {0, 1}. Also assume that
ω,ω j , ϑ, ϑ j ∈ P(R2d) for j = 1, . . . , N satisfy (0.12)′ and (0.13)′. Then the map
(a1, . . . , aN ) 	→ a1,t1 · · · aN ,tN on S(R2d), extends uniquely to a continuous mapping
from

swp1
(1/ω1, ϑ1)× · · · × swpN

(1/ωN , ϑN )

to swr (1/ω, ϑ). Furthermore, (0.15)′ holds for some constant

C = C N
0 |t1|−2/p′

1 · · · |tN |−2/p′
N ,

where C0 is independent of a1 ∈ swp1
(1/ω1, ϑ1), . . . , aN ∈ swpN

(1/ωN , ϑN ), t1, . . . , tN

and d.

We need some preparations for the proof. First we observe that the roles of mul-
tiplications and convolutions are essentially interchanged on the symplectic Fourier
transform side, because

Fσ (a1 ∗ · · · ∗ aN ) = πd N (Fσa1) · · · (FσaN ), (5.1)

holds when a1, . . . , aN ∈ S(R2d). Hence it follows immediately from Lemma 1.1
and Proposition 4.7 that Theorems 0.3′ and 0.4′ are equivalent to the following two
propositions. Here the condition (0.13)′ should be replaced by

ω0,k(X) = ϑ1,k(−X) = ωk(X), ϑ0,k(X) = ω1,k(−X) = ϑk(X). (5.2)

We also recall that a ∈ S ′+(R2d), if and only if the operator Aa is positive semi-definite
(cf. Proposition 1.2).

Proposition 5.1 Assume that p1, . . . , pN , r ∈ [1,∞] satisfy (0.9)′, and that
t1, . . . , tN ∈ R\0 satisfy (0.10)′, for some choices of j1, . . . , jN ∈ {0, 1}. Also assume
that ω,ω j , ϑ, ϑ j ∈ P(R2d) for j = 1, . . . , N satisfy (0.12)′ and (5.2). Then the con-
tinuity assertions in Theorem 0.3 ′ holds after the swp spaces have been replaced by s A

p
spaces.

Proposition 5.2 Assume that p1, . . . , pN , r ∈ [1,∞] satisfy (0.9)′, and that
t1, . . . , tN ∈ R\0 satisfy (0.11), for some choices of j1, . . . , jN ∈ {0, 1}. Also assume
that ω,ω j , ϑ, ϑ j ∈ P(R2d) for j = 1, . . . , N satisfy (0.12)′ and (5.2). Then the con-
tinuity assertions in Theorem 0.4 ′ holds after the swp spaces have been replaced by s A

p
spaces.

Moreover, a1,t1 · · · aN ,tN ∈ S ′+(R2d)when a j,t j ∈ S ′+(R2d) for each j = 1, . . . , N.



128 J. Toft

When proving Propositions 5.1 and 5.2 we need some technical lemmas, and start
with the following classification of Hilbert modulation spaces.

Lemma 5.3 Assume that ω ∈ P(R4d) is such that ω(x, y, ξ, η) = ω(x, ξ), χ ∈
S(Rd)\0 and that F ∈ S ′(R2d). Then F ∈ M2

(ω), if and only if

‖F‖ ≡
(∫∫∫

|Vχ (F( · , y))(x, ξ)ω(x, ξ)|2 dxdydξ

)1/2

< ∞. (5.3)

Furthermore, F 	→ ‖F‖ in (5.3) defines a norm which is equivalent to any M2
(ω) norm.

Proof We may assume that ‖χ‖L2 = 1. Let χ1 = χ ⊗ χ , and let F1 F denotes
the partial Fourier transform of F(x, y) with respect to the x variable. By Parseval’s
formula we get

‖F‖2
M2
(ω)

=
∫∫∫∫

|(Vχ⊗χ F)(x, y, ξ, η)ω(x, ξ)|2 dxdydξdη

=
∫∫ (∫∫

|(F (F χ1( · − (x, y))) (ξ, η)ω(x, ξ)|2 dydη

)
dxdξ

=
∫∫ (∫∫

|(F1 (F( · , z) χ( · − x)) (ξ)χ(z − y)ω(x, ξ)|2 dydz

)
dxdξ

=
∫∫ (∫

|(F1 (F( · , z) χ( · − x)) (ξ)ω(x, ξ)|2 dz

)
dxdξ = ‖F‖,

where the right-hand side is the same as ‖F‖ in (5.3). The proof is complete. ��
We omit the proof of the next lemma, since the result agrees with [38, Lemma 3.2].

Lemma 5.4 Assume that s, t ∈ R satisfies (−1) j s−2 + (−1)k t−2 = 1, for some
choice of j, k ∈ {0, 1}, and that a, b ∈ S(R2d). Also let Tj,z for j ∈ {0, 1} and z ∈ Rd

be the operator on S(R2d), defined by the formula

(T0,zU )(x, y) = (T1,zU )(y, x) = U (x − z, y + z), U ∈ S(R2d).

Then

A(a(s · ) ∗ b(t · )) = (2π)d/2|st |−d
∫
(Tj,sz(Aa))(s−1 · )(Tk,−t z(Ab))(t−1 · ) dz.

(5.4)

We note that for the involved spaces in Theorems 0.3′ and 0.4′, and Propositions 5.1
and 5.2 we have

s A
p (1/ω, ϑ) ⊆ s A

p (R
2d) ⊆ s A

p (ω, 1/ϑ), when ω, ϑ ≥ c, (5.5)

for some constant c > 0, and similarily when s A
p is replaced by swp . This is an immedi-

ate consequence of Remark 4.8 (4) and the fact that the embeddings M2,2
(ω) ⊆ M2,2 =
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L2 ⊆ M2,2
(1/ω) hold when ω is bounded from below. In particular, if CB(R2d) is the set

of continuous functions on R2d vanishing at the infinity, then

s A
1 (1/ω, ϑ) ⊆ s A

1 (R
2d) ⊆ CB(R2d) ∩ FCB(R2d) ∩ L2(R2d),

when ω, ϑ ≥ c, (5.6)

and similarily when s A
1 is replaced by sw1 . Here the latter embedding follows from

Propositions 1.5 and 1.9 in [39].

Proof of Proposition 5.1 in the case N = 2 We only consider the case j1 = 1 and
j2 = 0, i.e. t−2 − s−2 = 1 when t1 = s and t2 = t . The other cases follows by
similar arguments and are left for the reader. We start to prove the theorem in the case
p = q = r = 1. By Propositions 4.10, 4.11 and a simple argument of approximations,
it follows that we may assume that a1 = u and a2 = v are rank one elements in S and
satisfy

‖u‖s A
1 (1/ω1,ϑ1)

≤ C and ‖v‖s A
1 (1/ω2,ϑ2)

≤ C,

for some constant C . Then Au = f1 ⊗ f 2, Av = g1 ⊗ g2 and

‖ f1‖M2
(ϑ1)

‖ f2‖M2
(ω1)

≤ C1‖u‖s A
1 (1/ω1,ϑ1)

,

‖g1‖M2
(ϑ2)

‖g2‖M2
(ω2)

≤ C1‖v‖s A
1 (1/ω2,ϑ2)

,

where f1, f2, g1, g2 ∈ S are such that

‖ f1‖M2
(ϑ1)

≤ C2, ‖ f2‖M2
(ω1)

≤ C2, ‖g1‖M2
(ϑ2)

≤ C2, ‖g2‖M2
(ω2)

≤ C2,

for some constants C1 and C2.
Set

F(x, z) = f2(x/s + sz)g1(x/t + t z), G(y, z) = f1(y/s − sz)g2(y/t − t z).

It follows from (5.4) that

A(us ∗ vt )(x, y) = (2π)d/2|st |−d
∫

F(x, z)G(y, z) dz.

This implies that

‖us ∗ vt‖s A
1 (1/ω,ϑ)

≤ (2π)d/2|st |−d
∫

‖F( · , z)‖M2
(ϑ)

‖G( · , z)‖M2
(ω)

dz

≤ C |st |−d I1 · I2, (5.7)
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where

I1 =
(∫∫∫

|Vχ (F( · , z))(x, ξ)ϑ(x, ξ)|2 dxdzdξ

)1/2

,

(5.8)

I2 =
(∫∫∫

|Vχ (G( · , z))(x, ξ)ω(x, ξ)|2 dxdzdξ

)1/2

.

Hence, I1 ≤ C‖F‖M2
(ϑ0)

and I2 ≤ C‖G‖M2
(ω0)

by Lemma 5.3, when ω0(x, y, ξ, η) =
ω(x, ξ) and ϑ0(x, y, ξ, η) = ϑ(x, ξ).

We need to estimate ‖F‖M2
(ϑ0)

and ‖G‖M2
(ω0)

. In order to estimate ‖F‖M2
(ϑ0)

we

choose the window function χ ∈ S(R2d) as

χ(x, z) = χ0(x/s + sz)χ0(x/t + t z),

for some real-valued χ0 ∈ S(Rd). By taking (x1/s +sz1, x1/t + t z1) as new variables
when evaluating Vχ F we get

Vχ F(x, z, ξ, ζ )

= (2π)−d
∫∫

F(x1, z1)χ(x1 − x, z1 − z)e−i〈x1,ξ〉−i〈z1,ζ 〉 dx1dz1

= (2π)−d |st |−d
∫∫

f2(x1)g1(z1)χ0(x1 − (x/s + sz))χ0(z1 − (x/t + t z))

×e−i(〈t−1z1−s−1x1,ξ〉+(st)−1〈t−1x1−s−1z1,ζ 〉 dx1dz1

= |st |−d Vχ0 f2(s−1x + sz, s−1ξ − (st2)−1ζ )Vχ0 g1(t
−1x + t z, t−1ξ − (s2t)ζ ).

Furthermore, by (0.12), (5.2) and the fact that t−2 − s−2 = 1, we obtain

ϑ(x, ξ) = ϑ
(
(t−2x + z)− (s−2x + z), (t−2ξ − (st)−2ζ )− (s−2ξ − (st)−2ζ )

)

≤ Cω1(s
−1x + sz, s−1ξ − (st2)−1ζ )ϑ2(t

−1x + t z, t−1ξ − (s2t)−1ζ )

A combination of these relations now gives

|Vχ F(x, z, ξ, ζ )ϑ(x, ξ)| ≤ C |st |−d J1 · J2, (5.9)

where

J1 = |Vχ0 f2(s
−1x + sz, s−1ξ − (st2)−1ζ )ω1(s

−1x + sz, s−1ξ − (st2)−1ζ )|

and

J2 = |Vχ0 g1(t
−1x + t z, t−1ξ − (s2t)ζ )ϑ2(t

−1x + t z, t−1ξ − (s2t)−1ζ )|.
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By applying the L2 norm in (5.9) and taking

s−1x + sz, t−1x + t z, s−1ξ − (st2)−1ζ, t−1ξ − (s2t)−1ζ

as new variables of integration we get

‖F‖M2
(ϑ)

≤ C |st |−2d‖ f2‖M2
(ω1)

‖g1‖M2
(ϑ2)
. (5.10)

By similar computations it also follows that

‖G‖M2
(ω)

≤ C |st |−2d‖ f1‖M2
(ϑ1)

‖g2‖M2
(ω2)
. (5.11)

Hence, a combination of Proposition 4.11, Lemma 5.3, (5.7), (5.8), (5.10) and (5.11)
gives

‖us ∗ vt‖s A
1 (1/ω,ϑ)

≤ C1|st |−d‖ f1‖M2
(ϑ1)

‖ f2‖M2
(ω1)

‖g1‖M2
(ϑ2)

‖g2‖M2
(ω2)

≤ C2|st |−d‖u‖s A
1 (1/ω1,ϑ1)

‖v‖s A
1 (1/ω2,ϑ2)

.

This proves the result in the case p = q = r = 1.
Next we consider the case p1 = r = ∞, which implies that p2 = 1. Assume that

a ∈ s A∞(1/ω1, ϑ1) and that b, c ∈ S(R2d). Then

(as ∗ bt , c) = |s|−4d(a, b̃t0 ∗ cs0),

where b̃(X) = b(−X), s0 = 1/s and t0 = t/s. We claim that

‖b̃t0 ∗ cs0‖s A
1 (ω1,1/ϑ1)

≤ C |s2/t |2d‖b‖s A
1 (1/ω2,ϑ2)

‖c‖s A
1 (ω,1/ϑ)

(5.12)

Admitting this for a while, it follows by duality, using Theorem 4.12 that

‖as ∗ bt‖s A∞(1/ω,ϑ) ≤ C |s2/t |2ds−4d‖a‖s A∞(1/ω1,ϑ1)
‖b‖s A

1 (1/ω2,ϑ2)
,

which gives (0.14). The result now follows in the case p1 = r = ∞ and p2 = 1 from
the fact that S is dense in s A

1 (1/ω2, ϑ2). In the same way the result follows in the case
p2 = r = ∞ and p1 = 1.

For general p1, p2, r ∈ [1,∞] the result follows by multi-linear interpolation,
using Theorem 4.4.1 in [1] and Remark 4.9 (3).

It remains to prove (5.12) when b, c ∈ S(R2d). The condition (0.10) is invariant
under the transformation (t, s) 	→ (t0, s0) = (t/s, 1/s). Let

ω̃ = 1/ω1, ϑ̃ = 1/ϑ1, ω̃1 = 1/ω,

ϑ̃1 = 1/ϑ, ω̃2 = ϑ2 and ϑ̃2 = ω2.

If X1 = −(X + Y )/s and X2 = Y/s, then it follows that

ω(X1 + X2) ≤ Cϑ1(−s X1)ω2(t X2)
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and

ϑ(X1 + X2) ≤ Cω1(−s X1)ϑ2(t X2),

is equivalent to

ω̃(X + Y ) ≤ Cϑ̃1(−s0 X)ω̃2(t0Y )

and

ϑ̃(X + Y ) ≤ Cω̃1(−s0 X)ϑ̃2(t0Y ).

Hence, the first part of the proof gives

‖b̃t0 ∗ cs0‖s A
1 (ω1,1/ϑ1)

= ‖b̃t0 ∗ cs0‖s A
1 (1/ω̃,ϑ̃)

≤ C |s0t0|−2d‖b̃‖s A
1 (1/ω̃2,ϑ̃2)

‖̃c‖s A
1 (1/ω̃1,ϑ̃1)

= C |s0t0|−2d‖b̃‖s A
1 (1/ϑ2,ω2)

‖̃c‖s A
1 (ω,1/ϑ)

= C |s0t0|−2d‖b‖s A
1 (1/ω2,ϑ2)

‖̃c‖s A
1 (ω,1/ϑ)

,

and (5.12) follows. The proof of the case N = 2 is complete. ��
Remark 5.5 A proof without any use of interpolation in the case of trivial weight is
presented in Sect. 2.3 in [36].

We need the following lemma for the proof of Proposition 5.1 in the general case.

Lemma 5.6 Letω j,k andϑ j,k be as in Proposition 5.1, and assume thatρ, t1, . . . , tN ∈
R\0 fulfills (0.10)′ and ρ−2 + (−1) jN t−2

N = 1. For t ′j = t j/ρ set

ω̃(X) = inf ω j1,1(t
′
1 X1) · · ·ω jN−1,N−1(t

′
N−1 X N−1) and

ϑ̃(X) = inf ϑ j1,1(t
′
1 X1) . . . ϑ jN−1,N−1(t

′
N−1 X N−1),

where the infima are taken over all X1, . . . , X N−1 such that X = X1 + · · · + X N−1.
Then the following is true:

(1) ω̃, ϑ̃ ∈ P(R2d);

(2) for each X1, . . . , X N−1 ∈ R2d it holds

ω̃(X1 + · · · + X N−1) ≤ ω j1,1(t
′
1 X1) · · ·ω jN−1,N−1(t

′
N−1 X N−1), and

ϑ̃(X1 + · · · + X N−1) ≤ ϑ j1,1(t
′
1 X1) · · ·ϑ jN−1,N−1(t

′
N−1 X N−1);

(3) if C is the same as in (0.12)′, then for each X,Y ∈ R2d it holds

ω(X + Y ) ≤ Cω̃(ρX)ωN (tN Y ) and ϑ(X + Y ) ≤ Cϑ̃(ρX)ϑN (tN Y ).
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Proof The assertion (2) follows immediately from the definitions of ω̃ and ϑ̃ , and (3)
is an immediate consequence of (0.12)′.

In order to prove (1) we assume that X = X1 +· · ·+ X N−1. Since ω j1,1 ∈ P(R2d),
it follows that

ω̃(X + Y ) ≤ ω j1,1(t
′
1(X1 + Y )) . . . ω jN−1,N−1(t

′
N−1 X N−1)

≤ ω j1,1(t
′
1 X1) . . . ω jN−1,N−1(t

′
N−1 X N−1)v(Y ),

for some v ∈ P(R2d). By taking the infimum over all representations X = X1 +
· · · + X N , the latter inequality becomes ω̃(X + Y ) ≤ ω̃(X)v(Y ). This implies that
ω̃ ∈ P(R2d), and in the same way it follows that ϑ̃ ∈ P(R2d). The proof is complete.��
Proof of Proposition 5.1 for general N We may assume that N > 2 and that the prop-
osition is already proved for lower values on N . The condition on t j is that c1t−2

1 +
· · · + cN t−2

N = 1, where c j ∈ {±1}. For symmetry reasons we may assume that
c1t−2

1 + · · · + cN−1t−2
N−1 = ρ−2, where ρ > 0. Let t ′j = t j/ρ, ω̃ and ϑ̃ be the same

as in Lemma 5.6, and let r1 ∈ [1,∞] be such that 1/r1 + 1/pN = 1 + 1/r . Also set
ω0 = ω̃ and ϑ0 = ϑ̃ . Then c1(t ′1)

−2 +· · ·+cN−1(t ′N−1)
−2 = 1, r1 ≥ 1 since pN ≤ r ,

and

1/p1 + · · · + 1/pN−1 = N − 2 + 1/r1.

By the induction hypothesis and Lemma 5.6 (2) it follows that

b = a1,t ′1 ∗ · · · ∗ aN−1,t ′N−1
= ρd(2N−4)(a1,t1 ∗ · · · ∗ aN−1,tN−1)(·/ρ)

makes sense as an element in s A
r1
(1/ω0, ϑ0), and

‖b‖s A
r1
(1/ω0,ϑ0)

≤ C
N−1∏
j=1

|t ′j |−2d/p j ‖a‖s A
p j
(1/ω j ,ϑ j )

,

for some constant C . Since 1/r1 + 1/pN = 1 + 1/r , it follows from Lemma 5.6 (3)
that bρ ∗ aN ,tN makes sense as an element in s A

r (1/ω, ϑ), and

‖(a1,t1 ∗ · · · ∗ aN−1,tN−1) ∗ aN ,tN ‖s A
r (1/ω,ϑ)

= ρ−d(2N−4)‖bρ ∗ aN ,tN ‖s A
r (1/ω,ϑ)

≤ C1‖a1‖s A
p1
(1/ω1,ϑ1)

· · · ‖aN ‖s A
pN
(1/ωN ,ϑN )

,

where

C1 = Cρd(4−2N−2/r1)|tN |−2d/pN

N−1∏
j=1

|t ′j |−2d/p j = C
N∏

j=1

|t j |−2d/p j .

This proves the extension assertions. The uniqueness as well as the symmetry asser-
tions follow from the facts that S is dense in s A

p when p < ∞ and dense in s A∞ with
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respect to the weak∗ topology, and that at most one p j is equal to infinity due to the
Young condition. The proof is complete. ��

Proof of Proposition 5.2 The continuity assertions follow by combining Proposition
4.7, Proposition 5.1 and (5.1).

When verifying the positivity statement we may argue by induction as in the proof
of Proposition 5.1. This together with Proposition 1.2 and some simple arguments of
approximation shows that it suffices to prove that asbt is positive semi-definite when
±s2 ± t2 = 1, st �= 0, and a, b ∈ S(R2d) ∩ S ′+(R2d) are rank-one element.

We write

asbt = π−dFσ (Fσas ∗ Fσbt ) = π−d |st |−2dFσ ((Fσa)1/s ∗ (Fσb)1/t ).

If we set for any U ∈ S(R2d),

U0,z(x, y) = U1,z(−y,−x) = U (x + z, y + z),

then it follows from Lemmas 1.1 and 5.4 that

A(asbt )(x, y) = (2/π)d/2|st |−d
∫
(Aa) j,z/s(sx, sy)(Ab)k,−z/t (t x, t y) dz,

for some choice of j, k ∈ {0, 1}. Since a, b ∈ S′+ are rank-one elements, it follows
that the integrand is of the form φz(x) ⊗ φz(y) in all these cases. This proves that
A(asbt ) is a positive semi-definite operator. ��

Remark 5.7 Theorem 0.3′ can also be generalized to involve st,p spaces, for general
t ∈ R.

In fact, assume that p j , r , t j , ω, ω j , ϑ and ϑ j for 1 ≤ j ≤ N are the same as
in Theorems 0.3 and 0.4. Also assume that t ∈ R, and let τk = t when jk = 0 and
τk = 1 − t when jk = 1 (the numbers jk are the same as in (0.10)′).

Then the mapping (a1, . . . , aN ) 	→ a1,t1 ∗ · · · aN ,tN on S(R2d), extends uniquely
to a continuous mapping from

sτ1,p1(1/ω1, ϑ1)× · · · × sτN ,pN (1/ωN , ϑN )

to st,r (1/ω, ϑ). Furthermore it holds

‖a1,t1 ∗ · · · ∗ aN ,tN ‖s A
r (1/ω,ϑ)

≤ Cd‖a1‖sτ1,p1 (1/ω1,ϑ1) . . . ‖aN ‖sτN ,pN (1/ωN ,ϑN ).

(5.13)

where C = C N
0 |t1|−2a/p1 · · · |tN |−2/pN for some constant C0 which is independent of

N , t1, . . . , tN and d.
Moreover, Opt (a1,t1 ∗ · · · ∗ aN ,tN ) ≥ 0 when Opτ j

(a j ) ≥ 0 for each 1 ≤ j ≤ N .
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When proving this we first assume that a1, . . . , aN ∈ S. By Proposition 4.7 we get

‖a1,t1 ∗ · · · ∗ aN ,tN ‖st,r (1/ω,ϑ) = ‖e−i(t−1/2)〈Dx ,Dξ 〉(a1,t1 ∗ · · · ∗ aN ,tN )‖swr (1/ω,ϑ)

= ‖b1 ∗ · · · ∗ bN ‖swr (1/ω,ϑ),

where

bk = e−i(−1) jk (t−1/2)〈Dx ,Dξ 〉/t2
k (ak(tk · )) = (e−i(−1) jk (t−1/2)〈Dx ,Dξ 〉ak)(tk · ).

Hence by Theorem 0.3′ we get

‖a1,t1 ∗ · · · ∗ aN ,tN ‖st,r (1/ω,ϑ) ≤ C I1 · · · IN ,

where

Ik = ‖e−i(−1) jk (t−1/2)〈Dx ,Dξ 〉ak‖swpk
(1/ωk ,ϑk ) = ‖ak‖sτk ,pk (1/ωk ,ϑk ).

This gives (5.13).
The result now follows from (5.13) and the fact that S is dense in st,p(ω1, ω2)when

p < ∞, and dense in st,∞(ω1, ω2) with respect to the weak∗ topology.

6 Some applications and further extensions

In this section we apply the results in previous section. We use Proposition 5.2 to
prove that if v is submultiplicativ, then s A

1 (1/v, v) is stable under composition with
odd entire analytic functions. Thereafter we use Theorem 0.3 to extend the defini-
tion of Toeplitz operators to include appropriate dilations of swp as permitted Toeplitz
symbols.

We start by considering compositions of elements in s A
1 (1/v, v)with analytic func-

tions. In these considerations we restrict ourself to the case when v = v̌ ∈ P(R2d) is
submultiplicative. We note that each element in s A

1 (1/v, v) is a continuous function
which turns to zero at infinity, since (5.6) shows that s A

1 (1/v, v) ⊆ CB(R2d).
Since our investigation also involve positivity, we recall from [38] that a ∈ C(R2d)∩

S ′(R2d) is called σ -positive, if Aa ≥ 0. We let C+(R2d) be the set of all σ -positive
functions, i.e. C+(R2d) = C(R2d) ∩ S′+(R2d).

It follows that any product of odd numbers of elements in s A
1 (1/v, v) are again in

s A
1 (1/v, v). In fact, assume that a1, . . . , aN ∈ s A

1 (1/v, v), |α| is odd, and that t j = 1.
Then it follows from Theorem 5.2 that aα1

1 . . . aαN
N ∈ s A

1 (1/v, v), and

‖aα1
1 · · · aαN

N ‖s A
1 (1/v,v)

≤ Cd|α|
0

∏
‖a j‖α j

s A
1 (1/v,v)

, (6.1)

for some constant C0 which is independent of α and d.
Furthermore, if in addition a1, . . . , aN are σ -positive, then the same is true for

aα1
1 . . . aαN

N . The following result is an immediate consequence of these observations.
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Proposition 6.1 Assume that a1, . . . , aN ∈ s A
1 (1/v, v), where v = v̌ ∈ P(R2d) is

submultiplicative, C0 is the same as in (6.1), and assume that R1, . . . , RN > 0. Also
assume that f, g are odd analytic functions from the polydisc

{ z ∈ CN ; |z j | < C0 R j }

to C, with expansions

f (z) =
∑
α

cαzα and g(z) =
∑
α

|cα|zα.

Then f (a) = f (a1, . . . , aN ) is well-defined and belongs to s A
1 (1/v, v). One has the

estimate

‖ f (a)‖s A
1 (1/v,v)

≤ g(C0‖a1‖s A
1 (1/v,v)

, . . . ,C0‖aN ‖s A
1 (1/v,v)

).

If in addition a1, . . . , aN ∈ C+(R2d), then g(a) ∈ C+(R2d).

An open question for the author is whether the results on dilated convolutions and
multiplications in the present section are true for other dilations. This might then lead
to improvements of Proposition 6.1. In this context we note that sw1 (R

2d), and there-
fore sw∞(R2d) by duality, are not stable under dilations (see Proposition 2.1.12 in [36]
or Proposition 5.4 in [39]).

For rank one elements we also have the following generalization of [38, Proposition
4.10].

Proposition 6.2 Assume that v, v1 ∈ P(R2d) are even, submultiplicative and fulfill
v1 = v( · /√2 ). Also assume that u ∈ sw∞(1/ω, ω) is an element of rank one, and let
a(X) = |u(X/√2)|2. Then a ∈ sw1 (1/v1, v1), and Opw(a) ≥ 0.

Proof Since u is rank one, it follows from Proposition 4.7 that u, u ∈ sw1 (1/v, v),
which implies that a ∈ sw1 (1/v1, v1) in view of Theorem 0.3. The result now follows
from this fact and Proposition 4.10 in [38]. ��

We finish the section by applying our results on Toeplitz operators. The following
result, parallel to Theorems 3.1 and 3.5 in [45], generalizes [40, Proposition 4.5].

Theorem 6.3 Assume that p ∈ [1,∞] and ω,ω0, ϑ, ϑ j ∈ P(R2d) for j = 0, 1, 2
satisfy

ω(X1 − X2) ≤ Cω0(
√

2 X1)ϑ2(X2), and

ϑ(X1 − X2) ≤ Cϑ0(
√

2 X1)ϑ1(X2)

Then the definition of Tph1,h2
(a) extends uniquely to each a ∈ S ′(R2d) and h j ∈

M2
(ϑ j )

for j = 1, 2 such that a(
√

2 · ) ∈ swp (1/ω0, ϑ0), and for some constant C it
holds

‖ Tph1,h2
(a)‖Ip(M2

(1/ω),M
2
(ϑ)
) ≤ C‖a(

√
2 · )‖swp (1/ω0,ϑ0)‖h1‖M2

(ϑ1)
‖h2‖M2

(ϑ2)
.
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Furthermore, if h1 = h2 and Opw(b) ≥ 0, where b = a(
√

2 · ), then Tph1,h2
(a) ≥ 0.

Proof Since Wh2,h1 ∈ sw1 (1/ϑ1, ϑ2), the result is an immediate consequence of (1.14)
and Theorem 0.3. ��

We finish the section by presenting some possibilities of further extensions to the
case when the symbols belong to appropriate classes of ultra-distributions. In fact, it
seems that the analysis in Sect. 4 works also for a larger family of Hilbert spaces,
where S and S ′ in Definition 4.1 are replaced by appropriate classes of Gelfand–
Shilov spaces and their duals. Furthermore, the conditions on the weights in the def-
inition of weighted Lebesgue and modulation spaces in Sects. 2–5 can be relaxed
in such way that it is only assumed that v in (1.15) should be subexponential. Such
modulation spaces are then not necessary contained in D′. We refer to [18,34] for
an introduction to such spaces and we refer to [34,35] and the references therein for
an introduction to pseudo-differential operators in context of modulation spaces with
subexponentially moderated weights and Gelfand–Shilov spaces.
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