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Opinion statement
Leiomyosarcoma (LMS) is one of the more common subtypes of soft tissue sarcomas (STS), 
accounting for about 20% of cases. Differences in anatomical location, risk of recurrence and 
histomorphological variants contribute to the substantial clinical heterogeneity in survival 
outcomes and therapy responses observed in patients. There is therefore a need to move 
away from the current one-size-fits-all treatment approach towards a personalised strategy 
tailored for individual patients. Over the past decade, tissue profiling studies have revealed 
key genomic features and an additional layer of molecular heterogeneity among patients, 
with potential utility for optimal risk stratification and biomarker-matched therapies. Fur-
thermore, recent studies investigating intratumour heterogeneity and tumour evolution pat-
terns in LMS suggest some key features that may need to be taken into consideration when 
designing treatment strategies and clinical trials. Moving forward, national and international 
collaborative efforts to aggregate expertise, data, resources and tools are needed to achieve 
a step change in improving patient survival outcomes in this disease of unmet need.
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Introduction

Leiomyosarcoma (LMS) is one of the most com-
mon soft tissue sarcoma (STS) subtypes, accounting 
for 10–20% of cases [1]. The disease arises from the 
smooth muscle cell lineage and therefore can affect 
various anatomical sites. However, LMS commonly 
develops in the uterus, the abdomen, retroperito-
neum and extremities [1]. LMS can also arise from 
the smooth muscle layer of the vasculature, mainly 
affecting the inferior vena cava [2]. Due to the dis-
tinct clinical features of uterine LMS, the disease is 
currently classified as uterine LMS and non-uterine 
LMS. Along with anatomical site heterogeneity, LMS 
displays a range of histomorphological variants. 
While conventional LMS displays a spindle cell histol-
ogy resembling smooth muscle tissue, other variants 
exhibit epithelioid or myxoid appearance [3]. In addi-
tion, dedifferentiated LMS which is characterised by 
reduced expression or loss of smooth muscle markers 
has been described and is associated with worse prog-
nosis [3–5]. For localised LMS, the standard clinical 
management relies on wide surgical excision with clear 
margins. In certain situations, (neo)adjuvant radiation 
and chemotherapy can be considered. However, there 
is a high risk of recurrence in LMS [6, 7], and the treat-
ment options for advanced/ metastatic LMS are lim-
ited and rely on chemotherapy with doxorubicin in 

combination with either ifosfamide or dacarbazine as 
a first-line treatment. Retrospective data suggest that 
ifosfamide may not be as active in LMS compared to 
other STS subtypes. Patients who experience disease 
progression on first-line therapy can be considered 
for other systemic agents including trabectedin [8] or 
pazopanib [8, 9]. The combination of gemcitabine and 
docetaxel, although not recommended as first-line due 
to increased toxicity [10], is considered for patients 
with disease progression on doxorubicin-based first-
line treatment [8]. More recently, doxorubicin com-
bined with trabectedin in first-line treatment of LMS 
has shown promising results in the LMS-04 phase 3 
trial (NCT02997358), as the combination treatment 
significantly prolonged progression-free and overall 
survival of patients compared to doxorubicin mono-
therapy [11]. However, the clinical benefit of current 
treatment options is still very limited, particularly for 
patients with advanced disease [12]. Studies on the 
molecular biology of LMS have reported key genomic 
and proteomic features, revealing significant hetero-
geneity in disease biology and identifying potential 
new therapeutic avenues. Here, we review the current 
molecular understanding of key genetic features and 
inter- and intra-patient heterogeneity in LMS and their 
implications for clinical management.

Molecular heterogeneity in LMS
Molecular biology of LMS and inter‑patient heterogeneity

Common genetic alterations

Both uterine and non-uterine LMS are considered to be sarcomas with com-
plex karyotypes [13, 14]. Large-scale genome sequencing studies have identi-
fied TP53, RB1 and PTEN as the most altered genes in LMS [15, 16••, 17, 18, 
19•, 20•]. While the exact frequencies of these alterations vary across study 
cohorts, there is a high level of concordance between paired primary and 
recurrent LMS samples indicating that these genetic alterations are likely to 
be early initiating events in disease development [15, 21••]. In addition, loss 
of function mutations in ATRX are common (16–24% of all LMS reported 
to have deleterious mutations in ATRX [16••, 20•, 22, 23]) and enriched in 
uterine LMS cases [16••, 17]. In addition to alterations in specific genes, wide-
spread somatic copy number alterations and whole genome doubling events 
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have been reported in LMS [16••, 21••]. Consistent with most STS subtypes 
which have an overall low tumour mutational burden (TMB) compared to 
other solid tumours such as lung cancer or melanoma [24], TMB in the major-
ity of LMS cases is low with a median of < 5 mutations/megabase pairs (Mbp) 
compared to median of 10 mutations/Mbp in other solid tumours [19•]. 
However, there is also some TMB heterogeneity within LMS where a subset of 
uterine LMS tumours (15%) have been reported to harbour increased levels 
of tumour mutational burden (TMB > 5 mutations/Mbp) [19•].

Molecular heterogeneity and LMS subtypes

Various transcriptomic studies have shown that there are several molecular 
subtypes within LMS that harbour distinct biology and clinicopathological 
features [19•, 20•, 21••, 25•, 26•, 27–30]. These molecular subtypes appear 
to be conserved in paired primary and relapse patient specimens indicating 
that they are likely to be an intrinsic feature of the disease [21••, 25•, 28]. 
Anderson et al. showed that although genomic structural rearrangements 
including kataegis and chromothripsis varied considerably between primary 
and metastatic specimens, recurrent tumours shared the transcriptional sub-
type and > 60% of clonal substitutions and indel mutations with its primary 
tumours [21••]. However, there is currently no consensus definition of LMS 
molecular subtypes as the results from the different studies are not always 
consistent [27]. That said, transcriptomic studies describing molecular sub-
types in LMS consistently showed three molecular subtypes [20•, 25•, 26•, 
28]. Although there are some discrepancies in the molecular and clinico-
pathological factors defining these LMS subtypes among different studies, 
there appear to be some molecular features, namely anatomical site distri-
bution, immune cell composition and smooth muscle differentiation that 
are associated with the three molecular subtypes. The anatomical site of the 
disease seems to contribute to the molecular stratification of LMS. This is par-
ticularly apparent in uterine LMS as various studies have identified a distinct 
LMS molecular subtype enriched in uterine cases [21••, 26•, 28]. Additionally, 
transcriptomics and proteomics studies have consistently identified a subset 
of dedifferentiated LMS with significantly reduced smooth muscle differentia-
tion markers and myogenic-related signalling [21••, 26•, 31••].

In addition to anatomical site and myogenic markers, studies have 
reported an LMS subtype that is enriched in immune-related signalling and 
immune cell infiltration [19•, 20•, 21••, 28]. This immune-enriched LMS 
molecular subtype has been described to have increased natural killer (NK) 
and mast cell infiltration [19•], higher macrophage infiltration [21••, 28] 
and T cells [28]. In other research using immune deconvolution methods on 
transcriptomic data, Petitprez et al. identified five sarcoma immune clusters 
(SIC A-E) in two independent cohorts of STS including LMS patients [32•]. 
The authors showed that although the majority of LMS patients have lower 
scores for immune signatures (SIC A and B), some LMS cases indeed dis-
played an “immune hot” phenotype and were grouped with the SIC E cluster 
characterised by highest immune scores. Further, a study investigating the 
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immune heterogeneity in LMS identified three different immune consensus 
clusters based on immune deconvolution of transcriptomics data [33••]. The 
study showed that about 15% of LMS samples form an immune hot subtype. 
The authors also reported that these LMS immune clusters are associated 
with SICs defined by Petitprez et al. as well as other immune features includ-
ing higher CD8 + immune cell infiltration. However, many of the studies 
described above rely on single institutional series which are retrospective in 
nature and susceptible to selection bias. In order for molecular subtyping to 
have clinical utility moving forward, it is important that findings need to be 
validated in independent cohorts using similar data acquisition and analyti-
cal approaches.

Intra‑tumour heterogeneity and clinical implications
Intra-tumour heterogeneity (ITH) is an important consideration in tumour 
progression and treatment response. ITH is a general term that reflects the 
genetic and phenotypic heterogeneity of cancer cell populations within the 
tumour as well as the different microenvironmental elements and their 
spatial and temporal distribution across the tumour over the course of its 
evolution [34]. Various studies on common cancers have reported an asso-
ciation between genomic and transcriptional ITH and inferior clinical out-
comes [35–37]. However, the landscape of ITH and its clinical relevance is 
less well-characterised in STS including LMS. This section summarises the 
current evidence of ITH in LMS and its prognostic and therapeutic relevance. 
Anderson et al. undertook multi-regional sampling of LMS tumours and 
performed genomic and transcriptomic profiling to investigate evolutionary 
patterns in LMS [21••]. The authors used phylogenetic reconstruction of mul-
tiple regions taken from the same tumour and showed that later widespread 
chromosomal rearrangements and kataegis events resulted in distinct tumour 
subpopulations in tumour regions that are only a few centimetres apart. In 
addition, bulk sequencing of paired primary and metastatic regions showed 
early origins of metastasis and seeding of metastatic clones 10–30 years before 
diagnosis [21••], consistent with previous reports from more common cancer 
types [38, 39].

In addition to genetic heterogeneity of tumour cells, stromal components 
including distribution of tumour infiltrating immune cells also contribute to 
ITH. The immune cell infiltrate has been of particular interest in sarcomas 
as this is a potential predictive indicator for response to immunotherapeu-
tic agents [40]. However, the spatial distribution of immune cells has been 
reported to display considerable heterogeneity. In a study investigating the 
use of tumour microarrays in LMS, Lee et al. showed heterogeneous distribu-
tion of tumour infiltrating lymphocytes across tissue microarrays from the 
same tumour sample in some LMS cases [41]. A study by Feng et al. using 
different immune deconvolution methods and multiple LMS tumour regions 
showed distinct immune signatures of samples taken from the same tumour. 
Some LMS patient samples displayed both “immune hot” and “immune cold” 
phenotype when multiple regions were profiled [33••]. Other studies using 
multiplex immunohistochemistry also showed similar findings for different 
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immune cell populations. For example, Manzoni et al. showed heterogeneity 
in spatial distribution of tumour infiltrating lymphocytes as well as myeloid 
cells including macrophages in uterine LMS cases [42]. However, more work is 
needed to further understand the landscape of ITH and evolutionary patterns 
in LMS as intra-tumour genetic diversification and heterogeneity in spatial 
distribution of immune cell populations have important clinical implica-
tions in terms of biopsy sampling and the implementation of personalised 
medicine.

Personalised medicine avenues in LMS

The use of a personalised treatment strategy can help improve clinical out-
comes for cancer patients [43]. The application of patient stratification based 
on molecular subclassification has shown prognostic and predictive clinical 
value in more common cancer types such as lung and breast cancer [44]. 
Developing a similar personalised treatment paradigm for LMS is attractive, 
and over the past decade, several distinct biomarker-matched molecular vul-
nerabilities have been identified. Here, we discuss some of the promising 
therapeutic avenues available for LMS patients based on the different molecu-
lar features of the disease. Key response predictive biomarkers described in 
LMS are summarised in Table 1.

Tyrosine kinase inhibitors
Pazopanib is a multitarget tyrosine kinase inhibitor (TKI) and is thought to 
mediate its anticancer effect through the inhibition of a range of TKI involved 
in angiogenesis and oncogenic signalling [58]. Pazopanib has been approved 
by the Food and Drug Administration (FDA) for selected advanced STS 
patients including LMS following results from the multicentre phase III PAL-
LETTE study which showed improved progression-free survival in advanced 
non-adipocytic STS patients treated with pazopanib compared to placebo 
control [9]. There was, however, no improvement in overall survival, and 
responses vary considerably among patients, indicating the need for a predic-
tive biomarker to help select patients for pazopanib treatment. One example 
of such biomarker development was undertaken by Heilig et al. who defined a 
pazopanib efficacy predictor (PEP) score using genomics and transcriptomics 
profiling on tumour tissue samples prior to pazopanib treatment [45••]. The 
PEP score was developed based on the mRNA expression of three tyrosine 
kinase genes (NTRK3, IGF1R and KDR) which was significantly associated 
with progression-free survival in a training dataset (n = 62) as well as a valida-
tion cohort (n = 43). Furthermore, the score was not associated with clinical 
outcome in pazopanib-naïve comparison cohorts suggesting its predictive, 
rather than prognostic value. Other efforts investigating biomarkers of pazo-
panib response in STS have shown that mutations in TP53, PD-L1 expression, 
PDGFRA expression, and FGFR1 expression also significantly correlate with 
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progression-free survival outcome in pazopanib-treated patients [46, 47, 59, 
60]. However, many of these findings are limited to small cohort sizes and 
often lack external validation.

Targeting homologous recombination deficiency in LMS
Genomics and transcriptomics studies using LMS patient cohorts have dem-
onstrated frequent alterations in crucial components of homologous recom-
bination repair (HRR) of DNA double-strand breaks. These include deleteri-
ous single base substitutions or genomic alterations affecting key genes in this 
pathway such as BRCA1, BRCA2, RAD51, ATM, CHECK1, CHECK2, XRCC1, 
XRCC3, PTEN and FANCA1 and FANCA2 [17, 20•, 21••, 61], suggesting 
homologous recombination deficiency (HRD) and a “BRCAness” phenotype. 
HRD is associated with increased sensitivity to DNA double-strand break-
inducing agents such as poly (ADP-ribose) polymerase (PARP) inhibitors 
[62]. Olaparib, an FDA-approved PARP inhibitor for some ovarian, breast, 
pancreatic and prostate cancers, has been assessed in various clinical studies 
including LMS patients, particularly in the uterine LMS setting [50•, 51, 52•, 
63]. Recent clinical trials have utilised the combination of olaparib together 
with other chemotherapeutic agents [48•, 55, 64] to further impair the abil-
ity of cancer cells to repair DNA damage and ultimately lead to apoptosis 
[65]. Ingham et al. assessed the combination of olaparib and temozolomide 
in a phase 2 clinical trial comprised of 22 advanced uterine LMS patients 
(NCT03880019). The study showed an overall objective response rate of 27% 
[55]. However, the authors reported considerable myelosuppression lead-
ing to dose reduction and toxicity. On the other hand, a phase 1b clinical 
trial (TOMAS) investigated the combination of olaparib with trabectedin, 
which binds to minor groove of DNA causing single- and double-strand 
breaks [48•]. The trial included 55 bone and soft tissue sarcoma patients and 
showed that the combination was safe and tolerable. The phase 2 multicentre 
TOMAS2 study compared the combination of olaparib and trabectedin to 
single agent trabectedin (NCT03838744) [64] and reported potential benefit 
of the combination treatment with 20% of patients in the combination arm 
showing durable response for over a year.

Due to heterogeneity in responses to PARP inhibition, there is a need 
to identify response-predictive biomarkers to enhance patient stratification. 
Increased PARP1 basal expression was associated with improved response 
to PARP inhibition in the TOMAS trial [48•]. In a preclinical study that pre-
ceded TOMAS, a synergistic effect of combining trabectedin and olaparib 
in sarcoma cell lines and mouse models was associated with PARP1 basal 
expression. Further evaluation using gene silencing and overexpression 
experiments confirmed a functional relevance of PARP1 expression in pre-
dicting treatment response [49•]. Additionally, prolonged clinical responses 
to olaparib have been reported in advanced LMS patients with BRCA1/2 
mutations [50•, 51, 52•]. However, the correlation between BRCA1/2 muta-
tional status and response is unclear as some studies reported no correlation 
with outcome [48•]. Other putative biomarkers to predict response to PARP 
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inhibition include RAD51. In the clinical trial conducted by Ingham et al. 
(NCT03880019) discussed above, the absence of RAD51 foci in patient sam-
ples was assessed as a biomarker for HRD. Patients with absent RAD51 foci 
had prolonged median progression-free survival compared to homologous 
recombination proficient patients [55]. Other studies assessed the use of HRD 
scores and polygenic mutational signatures as a putative predictive biomarker 
for PARP inhibitor response [53, 54]. However, it should be noted that all 
these biomarkers need to be further validated in independent cohorts and 
assessed prospectively to better understand their predictive relevance.

Alternative lengthening of telomeres (ALT)
Alternative lengthening of telomeres (ALT) is a mechanism utilised by ~ 10% 
of cancers to maintain telomere length and therefore achieve replicative 
immortality in a telomerase-independent fashion [66]. Using different 
methods to assess ALT status, various studies have reported a high propor-
tion of ALT-positive LMS tumours [20•, 67–69]. In a study by Chudasama 
et al., DNA C-circles, an ALT-specific biomarker, were detected in 78% of LMS 
patients (n = 49) [20•]. ALT is commonly associated with ATRX alterations 
which have been associated with shorter progression-free survival in uterine 
LMS patients [61]. However, the high frequency of ALT in LMS cannot be 
explained by ATRX alterations alone as some ALT-positive tumours—assessed 
by DNA C-circles—did not have ATRX alterations, and alterations of other 
telomere maintenance genes including RBL2 and SP100 showed significant 
association with positive ALT status [20•]. Targeting the molecular players 
utilised in ALT may be a promising therapeutic strategy in LMS. For example, 
targeting the ATR kinase is thought to lead to synthetic lethality by inducing 
DNA double-strand breaks at telomeres. Cells with ATRX mutations demon-
strated increased sensitivity to ATR inhibition [56]. A study using a panel of 
soft tissue sarcoma cell lines including 3 LMS cell lines showed that target-
ing ATR with the ATR inhibitor VE-822 resulted in a synergistic effect when 
combined with gemcitabine [70]. However, this effect was shown to be ALT 
independent, and thus, more studies and future clinical trials are needed to 
better evaluate the therapeutic vulnerabilities of ALT-positive tumours.

Targeting the LMS immune microenvironment

Results from clinical trials and retrospective cohort studies assessing the 
use of immune checkpoint inhibitors (ICIs) in LMS have thus far been dis-
appointing, with no to modest efficacy observed in patients. This remains 
true when using multiple ICIs or ICIs in combination with chemotherapy 
or targeted therapies (immunotherapy trials in LMS reviewed in ref [71]). 
Recent studies exploring the immune biology of LMS have identified certain 
immune features that may help select patients for immunotherapeutic strate-
gies [32•, 33••, 57••]. For example, in the study by Petitprez et al. discussed 
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earlier, the authors evaluated specimens from the SARC028 clinical trial and 
demonstrated that cases with a SIC E signature had an improved objective 
response rate (ORR) to pembrolizumab compared to patients with the other 
SIC signatures [32•]. In addition, using fluorescent multiplexed immunohis-
tochemistry, the same study showed enrichment in tertiary lymphoid struc-
tures (TLS) in SIC E patients as 82% of these patients were identified to have 
one or more TLS. Although the LMS cases assessed in this study cohort were 
very limited (n = 6) and none were SIC E tumours, the study nonetheless 
demonstrates the potential utility of TLS as an immune biomarker of SIC 
status and response to pembrolizumab in STS. These results are also consist-
ent with analysis from the PEMBROSARC trial which showed the presence of 
TLS as a potential predictor of response to pembrolizumab [57••]. The study 
reported a 6-month non-progression rate of 40% in TLS-positive patients 
(n = 30 including 4 LMS cases), compared to 4.9% in TLS-negative patients 
in the TLS-unselected cohort (n = 41 including 13 LMS cases).

Programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule 
expressed on a range of normal, tumour and immune cells. PD-L1 expres-
sion has been associated with poor prognosis in STS including LMS [72], but 
its role as a response predictive biomarker to anti-PD-1 and anti-PD-L1 ICI 
in LMS is unclear. PD-L1 expression has been shown to be associated with 
response to pembrolizumab in some STS histological subtypes [73], but the 
predictive value of PD-L1 has not been robustly evaluated in STS, and more 
research in this area is required.

Novel immune targets: targeting the macrophages
Most clinical trials assessing the efficacy of immunotherapy in STS have 
focused on targeting lymphocyte-based immune checkpoint inhibitors, 
mainly targeting programmed cell death 1 (PD-1) or its ligand (PD-L1) and 
cytotoxic T-lymphocyte associated protein 4 (CTLA-4) molecules. On the 
other hand, studies have shown increased macrophage infiltration, particu-
larly CD163 + macrophages in the immune microenvironment of STS and 
in particular LMS [74, 75]. Consistent with the immunosuppressive nature 
of CD163 + macrophages, some reports have shown an association between 
increased CD163 + infiltration in LMS and worse prognosis [74] which is in 
line with studies in other cancers [76, 77]. Thus, macrophage-directed thera-
peutics may form a promising strategy in the treatment of LMS. Targeting the 
immune checkpoint protein CD47 and its receptor SIRPa has shown exciting 
results in a range of solid and haematological malignancies [78]. In LMS cell 
lines co-cultured with peripheral blood mononuclear cells (PBMC)-derived 
macrophages, treatment with anti-CD47 monoclonal antibodies resulted in 
increased phagocytic capacity [79]. Results from a phase 1/2 clinical trial 
investigating the combination of doxorubicin together with the recombinant 
protein TTI-621 which acts as a decoy receptor for SIRPa are being evaluated 
in metastatic and high-grade LMS (NCT04996004) [80].

In addition to CD47, recent studies investigated more novel mac-
rophage-directed therapeutic strategies including the CD40/CD40L as 
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well as CSF1/CSF1R axes. CD40 is a surface molecule expressed by mac-
rophages, and its activation leads to enhanced antigen presentation and 
indirect activation of T cells. A phase II clinical trial assessing the safety and 
efficacy of targeting CD40 with the CD40 agonist APX005M in advanced 
STS patients including LMS, is under evaluation (NCT03719430) [81]. 
CSF1R is predominantly expressed by monocytes including macrophages, 
and macrophages with active CSF1R-mediated signalling are associated 
with pro-tumoural phenotype. In other cancer types, the inhibition of 
this pathway through targeting CSF1R increases macrophage polarisation 
towards proinflammatory phenotype and therefore increases antitumour 
activity [82]. CSF1R inhibition led to reprogramming of tumour-associated 
macrophages and boosted antitumour T cell responses in cancers with 
high macrophage infiltration in pancreatic cancer models [83]. An ongo-
ing phase 1b trial is assessing the safety and efficacy of the combination of 
CSF1R inhibition and PD-1 inhibition in high-grade sarcomas including 7 
LMS cases (NCT04242238) [84]. Results from these trials combined with 
more in-depth study of the immune landscape of LMS will provide exciting 
future therapeutic opportunities.

Future perspectives and role of international collaborations

The implementation of personalised medicine strategies in LMS is still in 
its infancy. More work is needed to evaluate predictive biomarkers prospec-
tively in clinical trials and to understand their functional and mechanistic 
role in preclinical studies. Due to the rare and heterogeneous nature of LMS, 
national and international collaborations are needed to address key bio-
logical and clinical questions. These include efforts to achieve consensus 
molecular definitions of LMS molecular subtypes and establish molecular 
biomarkers of therapeutic relevance [27]. International consortia such as the 
LMS SPORE (https://​www.​rogel​cance​rcent​er.​org/​leiom​yosar​coma-​spore) and 
the Sarcoma Accelerator Consortium (https://​sarco​maacc​elera​tor.​org.​uk/) can 
help to facilitate curation and sharing of clinical and molecular datasets as 
well as to develop new research studies using cutting edge methods such as 
single-cell sequencing, spatial profiling and liquid biopsies. Working together 
with patient-partnered initiatives in LMS such as the Leiomyosarcoma Project 
(https://​lmspr​oject.​org/) and the Count Me In initiative provides an added 
opportunity to address patient-led research priorities which will ultimately 
advance our biological understanding of this rare and aggressive disease.
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