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Opinion statement

Primary malignant central nervous (CNS) tumors are a devastating group of diseases
with urgent need for improved treatment options. Surgery, radiation, and cytotoxic
chemotherapy remain the primary standard treatment modalities, with molecularly
targeted therapies having proven efficacy in only small subsets of cases. Poly(ADP-
ribose) polymerase (PARP) inhibitors, which have had immense success in the
treatment of extracranial cancers with homologous recombination deficiency
(HRD), are emerging as a potential targeted treatment for various CNS tumors.
Although few primary CNS tumors display canonical BRCA gene defects, preclinical
evidence suggests that PARP inhibitors may benefit certain CNS tumors with func-
tional HRD or elevated replication stress. In addition, other preclinical studies
indicate that PARP inhibitors may synergize with standard therapies used for CNS
tumors including radiation and alkylating agents and may prevent or overcome drug
resistance. Thus far, initial clinical trials with early-generation PARP inhibitors,
typically as monotherapy or in the absence of selective biomarkers, have shown
limited efficacy. However, the scientific rationale remains promising, and many
clinical trials are ongoing, including investigations of more CNS penetrant or more
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potent inhibitors and of combination therapy with immune checkpoint inhibitors.
Early phase trials are also critically focusing on determining active drug CNS
penetration and identifying biomarkers of therapy response. In this review, we will
discuss the preclinical evidence supporting use of PARP inhibitors in primary CNS
tumors and clinical trial results to date, highlighting ongoing trials and future
directions in the field that may yield important findings and potentially impact
the treatment of these devastating malignancies in the coming years.

Introduction

Primary malignant central nervous system (CNS)
tumors constitute ~1% of new cancer diagnoses,
but account for a disproportionate amount of mor-
bidity and mortality. Relative survival has im-
proved slowly over the past several decades, but
5-year overall survival is still only ~36% averaged
across all histologies, indicating a need for addi-
tional therapeutic options [1]. Poly(ADP-ribose)
polymerase (PARP) inhibitors have emerged as a
potential treatment for primary CNS tumors, with
investigation focused primarily on adult-type dif-
fuse gliomas and pediatric-type diffuse high-grade
gliomas (HGG), as defined by the 2021 WHO
classification of tumors of the CNS [2], along with
emerging preclinical studies in specific subsets of
medulloblastoma and ependymoma.

Among adult-type diffuse gliomas, glioblastoma
(GBM) is the most common and most aggressive
subtype. Current standard of care treatment consists
of maximal surgical resection, followed by chemo-
radiation with concurrent and adjuvant temozolo-
mide (TMZ), with potential addition of tumor-
treating fields (TTF) therapy [3, 4]. Unfortunately,
with median survival of just 15 months, recur-
rences are expected, and second-line therapies, in-
cluding bevacizumab and other alkylating agents,
confer minimal therapeutic benefit. Grade 2 and 3
oligodendroglioma and astrocytoma tumors are
characterized by isocitrate dehydrogenase 1 or 2
(IDH1/2) mutations in most cases, and the pres-
ence or absence of 1p/19-codeletion, respectively
[2, 5]. Though less aggressive than GBM, these
gliomas remain uncurable, with recurrences

typically occurring over 2–10 years. Standard man-
agement consists of surgery, often followed by ad-
j u v an t r ad i o th e r apy o r a l k y l a t i n g a g en t
chemotherapy.

Pediatric HGG are a diverse group of highly
aggressive tumors, which are increasingly classified
by molecular characteristics. Diffuse midline glio-
mas (DMG) are characterized by histone H3 lysine
27 (H3K27) alterations, which occur in about
~80% of radiographically diagnosed diffuse intrin-
sic pontine gliomas (DIPG) [6]. Given their loca-
tion in the brainstem, these are treated locally with
radiotherapy alone, but are universally fatal with
median survival of less than 1 year. Pediatric-type
hemispheric gliomas are also classified molecularly,
and efforts are focused on developing more
subtype-specific therapies ranging from targeted
chemotherapy to immunotherapy to vaccine thera-
py, but currently surgical resection and radiation
remain the standard of care [7]. Medulloblastoma,
standardly treated with surgery, craniospinal irradi-
a t ion, and mult iagent chemotherapy, and
ependymoma, managed with surgery and focal ra-
diotherapy, have relatively better outcomes with 5-
year survival rates of ~75% and ~85% [8], but still
entail considerable morbidity which could be ame-
liorated with more targeted therapies.

PARP is intricately involved in many aspects of
the DNA damage response (DDR), and PARP in-
hibitors have been successful at targeting non-CNS
tumors harboring DDR defects including homolo-
gous recombination deficiency (HRD). In primary
CNS tumors, potential roles for PARP inhibitors
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arise through targeting tumor genetic defects or in
generating synergistic effects with other treatment
modalities including radiation, chemotherapy, or
immunotherapy. Here we will review the rationale

and preclinical evidence for use of PARP inhibitors
in CNS malignancies and discuss completed and
ongoing clinical trials testing PARP inhibitors in
this setting.

Rationale and preclinical evidence for PARP inhibitor use in CNS
tumors
Mechanistic basis of PARP inhibition

The PARP family of enzymes encompasses 17 proteins that catalyze mono- or
poly-ADP-ribosylation of target proteins using NAD+ as a substrate and con-
tribute to diverse cellular functions, including DNA damage repair, transcrip-
tion, and chromatin structure modulation [9]. PARP1 is the dominant member
involved in the DNA damage response, accounting for the majority of
poly(ADP-ribose) (PAR) synthesis in response to genotoxic stress, with PARP2
and PARP3 playing secondary roles. PARP1 binds to DNA single-stranded
breaks (SSBs), where it synthesizes long PAR chains on itself, nearby histones,
and additional target proteins, leading to the recruitment, organization, and
activation of proteins responsible for DNA repair. PARP1 also plays a role in
base excision repair, DNA double-strand break (DSB) recognition and repair,
and replication fork protection and restart [10].

PARP inhibitors are small molecule compounds that competitively bind the
NAD+ binding site, blocking the catalytic activity of PARP. PARP catalytic
inhibition hinders repair of DNA SSBs and base lesions, leading to collapse of
replication forks during replication and generation of DSBs [11, 12]. In addi-
tion, PARP inhibitors can, to varying degrees, non-covalently “trap” PARP at
damaged DNA, generating toxic PARP-DNA complexes that cause additional
replication fork damage [13, 14]. PARP trapping is largely due to inhibition of
its auto-PARylation activity as negatively charged PAR chains facilitate PARP
release from DNA, but is influenced by differences in allosteric interactions
upon PARP inhibitor binding [15–17].

DNA DSBs induced by either SSB repair inhibition or PARP trapping are
proposed to underlie a synthetic lethal interaction between PARP inhibition
and homologous recombination (HR) defects, which most commonly arise
due to BRCA1 or BRCA2 mutations [11, 12, 14]. More recently, evidence has
emerged that PARP plays a role in DNA replication by controlling replication
fork speed and sensing unligated Okazaki fragments and that PARP inhibitors
induce single-stranded DNA gaps behind the replication fork as a consequence
of Okazaki fragment processing defects [18–22]. These ssDNA gaps may lead to
toxicity in BRCA-deficient cells either directly or through the induction of DSB
formation [18, 23].

Targeting CNS tumor genetic defects
PARP inhibitors have established activity in BRCA-mutant tumors, but these
mutations occur infrequently in primary brain tumors [24]. A variety of other
genetic alterations can cause functional HRD leading to PARP inhibitor sensi-
tivity, also referred to as a “BRCAness” phenotype [25]. In CNS tumors, the
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most notable examples are IDH1/2 mutations, found in over 70% of grade II–
III glioma [5]. IDH1/2 mutations generate neomorphic enzymatic activity
leading to excess production of the oncometabolite 2-hydroxyglutarate (2-
HG) [26]. 2-HG acts as a competitive inhibitor of the family of α-
ketoglutarate-dependent dehydrogenases, which includes histone lysine
demethylases and DNA demethylases, resulting in genome-wide epigenetic
remodeling [27–31]. Inhibition of lysine demethylase KDM4B, in particular,
leads to aberrant histone modifications and masking of local chromatin signal-
ing at sites of DNA DSBs, impairing DSB repair and inducing PARP inhibitor
sensitivity [32, 33••]. PARP inhibitor sensitivity is being evaluated clinically in
IDH1/2-mutant glioma, as described below.

Several other recurrent CNS tumor genetic changes may confer PARP inhib-
itor sensitivity via defects in HR or through effects on replication, though have
yet to enter the clinical arena. First, upregulation of enhancer of zeste homolog
inhibitory protein (EZHIP), a protein that drives H3K27 hypomethylation by
inhibiting polycomb repressive complex 2 (PRC2), characterizes group A pos-
terior fossa ependymoma (PFA), the most common and aggressive subtype, as
well as DIPG/DMG with H3K27 trimethylation loss but without H3K27M
mutations [34–36]. In addition to mimicking the effects of H3K27M muta-
tions, EZHIP overexpression has been shown to suppress HR repair by blocking
BRCA2-PALB2 interaction, leading to PARP inhibitor hypersensitivity [37•].
Second, ATRX mutations, which frequently co-occur in IDH1/2-mutant glioma
and pediatric-type diffuse hemispheric glioma, H3 G34-mutant, have been
linked to increased replication stress [38]. Independently of IDH1/2mutations,
ATRX loss increases PARP inhibitor sensitivity and is a marker for synergy
between PARP and ATR inhibitors [38]. Finally, amplification or upregulation
of the MYCN oncogene occurs in subsets of sonic hedgehog (SHH)–mediated
and group 4 medulloblastoma, portends poor prognosis, and is a driver of
replication stress, which can be enhanced by PARP inhibitors, leading tomitotic
catastrophe [39]. InMYCN-amplifiedmedulloblastomamodels, PARP is highly
expressed in tumor compared to normal cerebellum, and PARP inhibitors in
combination with low-dose CHK1 inhibitor are effective in vitro and in vivo
[40]. Although some of the cancers described here have been enrolled in clinical
trials testing PARP inhibitors, the underlying genetic defects remain to be
directly incorporated into molecularly targeted trial design.

Synergy with radiation and DNA-damaging agents
PARP inhibitors can increase sensitivity to many of the standard DNA-
damaging treatments used in CNS tumors including ionizing radiation. In
glioma cells, PARP inhibitor–mediated radiosensitization is replication-
dependent and likely occurs due to replication collapse at unrepaired SSBs or
PARP-DNA trapped complexes [41]. Importantly, normal brain tissue is largely
nonreplicating and thus relatively protected from enhanced radiation-induced
cytotoxicity mediated by PARP inhibition. The ability of various PARP inhibi-
tors to potentiate radiation sensitivity has been shown in models of glioblas-
toma, pediatric high-grade astrocytoma, DIPG, medulloblastoma, and
ependymoma [42–46]. In a systematic review, the median dose enhancement
ratio generated by PARP inhibitors was 1.3 [47], though this conceivable may
be further enhanced in tumors with intrinsic DDR defects. Moreover, PARP
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inhibitors can radiosensitize glioblastoma stem cells, which have upregulated
DDR and may mediate therapeutic resistance [48, 49].

PARP inhibitors also potentiate the activity of other DNA-damaging agents,
an effect which in CNS tumors has primarily been studied with TMZ. TMZ is a
monofunctional alkylating agent that methylates DNA bases at different sites.
Silencing of the DNA direct repair geneO6-methylguanine-DNA methyltransfer-
ase (MGMT), which occurs in approximately two-thirds of lower grade glioma
and half of GBM, confers sensitivity to TMZ as unrepaired O6-methylguanine
lesions trigger cell death in a mismatch repair (MMR)–dependent manner [50–
52]. However, intrinsic resistance to TMZ exists in MGMT-expressing tumors and
acquired resistance inevitably develops in MGMT-silenced tumors, most com-
monly due to inactivation of MMR [53–57]. As TMZ also generates substantial
N7-methylguanine and N3-methyladenine lesions, which are processed by BER,
PARP inhibition has been postulated as a way to re-sensitize resistant cells to
TMZ [58]. PARP inhibitors may also promote TMZ sensitivity by blocking PARP-
mediated PARylation of MGMT, which has been reported to promote repair of
O6-methylguanine lesions [59]. In addition, PARP enzymes other than PARP1
may play a role as PARP inhibitors can restore sensitivity even upon PARP1
knockout in certain MMR-deficient models [60].

In vitro, PARP inhibitors reliably restore the activity of TMZ in MGMT-
expressing or MMR-deficient glioma or medulloblastoma cells, while generally
having a limited effect on MGMT-deficient cells that are already highly TMZ-
sensitive [58–63]. In contrast, in vivo studies using patient-derived xenograft
models have suggested that the sensitizing effects of PARP inhibitors are limited
to those with intrinsic TMZ sensitivity, possibly because PARP inhibitor con-
centrations needed to induce re-sensitization are difficult to achieve clinically, at
least with certain PARP inhibitors [64–66]. Co-treatment with PARP inhibitors
in TMZ-sensitive cells has also been shown to prevent the emergence of TMZ
resistance [67]. In light of these preclinical findings, PARP inhibitors have been
investigated in human trials in both TMZ-naive and TMZ-resistant tumors, as
discussed below.

Combination with immunotherapy
Tumors exploit inhibitory immune checkpoints, such as cytotoxic T
lymphocyte–associated protein 4 (CTLA-4) and programmed cell death protein
1 (PD-1), to suppress T cell effector function and escape immune surveillance
[68]. Antibodies targeting CTLA-4 and PD-1/PD-L1 pathways block the inter-
action of inhibitory molecules with their ligand on tumor cells or antigen-
presenting cells, thereby reinvigorating the anti-tumor immune response [68].
Immune checkpoint blockade (ICB) has shown substantial clinical efficacy in
patients with various solid tumors but only subsets of patients respond [68].
Putative predictive biomarkers of ICB response include high tumor mutational
burden (TMB), increased number of tumor-infiltrating lymphocytes (TILs), an
inflammatory gene signature, positive PD-L1 expression, and MMR deficiency/
microsatellite instability [69–72]. GBM is considered to have an immunologi-
cally “cold” tumor microenvironment, with low TMB and multiple immuno-
suppressive mechanisms [73–75]. Consequently, ICB has been largely ineffec-
tive in clinical trials of adult GBM, with two randomized controlled trials failing
to show a benefit with nivolumab over bevacizumab in recurrent GBM or with
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the addition of nivolumab to RT and TMZ in newly diagnosed GBM [73, 76,
77]. Nevertheless, observed responses with ICB in pediatric patients with recur-
rent hypermutant GBM harboring germline MMR deficiencies suggest it may
still hold promise for the treatment of primary CNS tumors [78, 79]. These
findings also beget the prospect of targeting DNA damage repair pathways in
order to sensitize gliomas to ICB.

In other solid tumors, PARP inhibition has been shown to enhance tumor
immunogenicity and response to ICB through DNA damage–induced activa-
tion of immune recognition pathways and increased neoantigen formation
[80–82]. In the setting of HRD, PARP inhibition creates DSBs resulting in
cytosolic dsDNA fragments that are detected by cGMP-AMP synthase (cGAS),
ultimately leading to activation of stimulator of interferon genes (STING) and
production of type I interferons (IFNs) [82–85]. The enhanced expression of
proinflammatory cytokines and chemokines serves to increase recruitment of
TILs [83, 86–88]. Through DNA damage–mediated generation of type I IFNs
and inhibition of GSK3β, PARP inhibitors have also been shown to induce a
compensatory increase in the expression of PD-L1 [70, 82, 84–86, 88, 89]. The
genomic instability induced by PARP inhibitionmay also serve to increase TMB,
thereby leading to more tumor-specific neoantigens that can be recognized by
cytotoxic T cells, as has been seen in the setting of MMR-deficient tumors [71,
90–92]. Moreover, via release of type I INFs and other proinflammatory cyto-
kines, PARP inhibition has been shown to enhance antigen presentation by
increasing expression of major histocompatibility complex class I (MHC I) on
tumor cells and promoting the recruitment and activation of antigen-presenting
cells [83, 87, 88, 93]. Of note, while TMB has emerged as a biomarker of ICB
response in multiple tumor types, treatment-induced hypermutation has not
been consistently associated with ICB response in GBM [72, 91, 94, 95].

As described previously, IDH1/2mutations confer a “BRCAness” phenotype
and sensitivity to PARP inhibitors, making these tumors prime candidates in
which to explore PARP inhibitor and immunotherapy combinations. However,
in addition to inducing HR defects, 2-HG accumulation has also been shown to
impair T cell recruitment via decreased tumor cell production of CXCL10 and
impaired T cell activity [96, 97]. In turn, inhibition of mutant IDH1/2 results in
increased PD-L1 levels, improved T cell infiltration, and enhanced response to
ICB in mouse models [96, 98]. Additional studies are needed to elucidate the
interplay between DNA damage–mediated immune activation, IDH1/2-in-
duced BRCAness, and 2-HG-mediated immunosuppression.

PARP inhibitors under clinical investigation in CNS tumors

No PARP inhibitors are yet approved for treatment of CNS tumors, but those
currently under clinical investigation in the brain tumor setting include the
following: three of the four PARP inhibitors that are currently FDA-approved for
other indications (olaparib, niraparib, and talazoparib), the highly investigated
PARP inhibitor veliparib, two PARP inhibitors with clinical approval in China for
ovarian cancer (pamiparib and fuzuloparib), and two novel compounds designed
for CNS penetration and PARP1 selectivity (AZD9574 and NMS-293) (Table 1).

The intrinsic potency of different PARP inhibitors correlates most closely
with their PARP trapping potential, which itself is dependent on both their
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catalytic inhibition and allosteric retention type [13, 16, 17]. Talazoparib is the
strongest PARP trapping inhibitor, followed by olaparib, niraparib, and
pamiparib all with similar trapping potencies, followed by veliparib which
has significantly less trapping [13, 16, 99, 100]. NMS-293 has been reported
to be non-PARP trapping [101], while data for fuzuloparib and AZD9574 are
not yet available. Non-PARP trappers such as veliparib have limited single agent
potency and are typically investigated in combination with cytotoxic agents. All
the PARP inhibitors listed have approximately equipotent activity against
PARP1 and PARP2, except for the next-generation compounds AZD9574 and
NMS-293 which have 98000-fold and 9200-fold selectivity for PARP-1 respec-
tively [102, 103]. It is thought that PARP-2 inhibition may contribute to
hematologic toxicity and so PARP-1 selectivity may confer an improved toxicity
profile while maintaining tumor control efficacy [104].

The various PARP inhibitors also differ in their pharmacokinetic and pharma-
codynamic properties, with penetration of the blood–brain barrier being a key
parameter for CNS tumor efficacy. Olaparib and talazoparib are known substrates
of the P-glycoprotein efflux pump and have poor distribution to brain tissue in the
presence of an intact blood–brain barrier [105••, 106, 107]. However, as described
below, phase 0 clinical trial data suggests olaparib may sufficiently penetrate
tumors with a disrupted blood–brain barrier [105••]. Niraparib and pamiparib
have moderately improved brain-to-plasma (B:P) ratios (0.1 and 0.2), veliparib
and AZD9574 have high intact brain penetration (B:P ~0.3-1), andNMS-293may
have substantially higher CNS accumulation (B:P ~4-10) [66, 101, 107–109].

Clinical trials of PARP inhibitors in CNS tumors
IDH1/2-mutant glioma PARP inhibitor trials

Based on the preclinical studies demonstrating that IDH1/2 mutations confer
susceptibility to PARP inhibitors, several clinical trials have been initiated
testing PARP inhibitors in IDH1/2-mutant gliomas (Table 2). Two clinical trials
(OLAGLI and ETCTN10129) testing standard dose olaparib as monotherapy
have recently reported results [110, 111]. The OLAGLI trial enrolled 35 patients
with recurrent high-grade IDH-mutant glioma after radiotherapy and at least
one line of alkylating chemotherapywhile ETCTN10129 enrolled 15 patients in
the glioma cohort with recurrent IDH1/2-mutant contrast-enhancing glioma. In
both studies, pre-specified primary endpoints of 6-month progression-free
survival (PFS-6) or overall response rate (ORR) by RANO criteria were not
met, although there was some demonstration of benefit in these heavily pre-
treated populations, with prolonged SD seen in subsets of patients.

Ongoing studies in IDH1/2-mutant glioma are investigating PARP inhibitors
with improved CNS penetration or in combination with alkylating chemother-
apy, with an emphasis on correlative studies to determine intratumoral drug
activity. ABTC-1801 is testing the combination of pamiparib and TMZ in recur-
rent IDH1/2-mutant glioma. Preliminary phase 0 data demonstrated mean
unbound concentrations of pamiparib of 920-fold the in vitro IC50 for PARP
inhibition in both enhancing and non-enhancing tumors. In the phase I com-
ponent of the study, the regimen of pamiparib 60 mg twice daily and low-dose
metronomic TMZ (20 mg daily) was found to have tolerable hematologic
toxicity and will be used as the recommended phase II dose (RP2D) [112•].
The PNOC017 trial is similarly testing pamiparib in combination with TMZ in
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newly diagnosed or recurrent IDH1/2-mutant glioma in young adults, also with
a phase 0 component to evaluate intratumoral drug concentration. Talazoparib is
being tested in combination with carboplatin in recurrent HGG with IDH1/2
mutations or other DDR deficiencies, using low-dose single-fraction whole brain
radiotherapy to improve drug brain penetration (TAC-GReD trial). AZD9574 is
being tested in recurrent IDH1/2-mutant non-enhancing glioma in module 2 of
the CERTIS1 trial (NCT05406700). Finally, two phase 0 trials (NCT05406700
and NCT05076513) are investigating brain penetration of niraparib and bio-
markers of drug response in IDH1/2-mutant glioma.

Glioblastoma trials of PARP inhibitors in combination with TMZ and/or radiotherapy
The preclinical findings suggesting that PARP inhibition can induce radiosensi-
tization and mitigate TMZ resistance in glioblastoma models have been a pre-
dominant focus of PARP inhibitor trials in CNS tumors, with multiple different
PARP inhibitors being tested in a variety of different regimens. Veliparib was the
first PARP inhibitor to be combined clinically with radiotherapy and TMZ in the
treatment of newly diagnosed GBM, but was found to have unacceptable dose-
limiting hematologic toxicities in combination with concurrent chemoradiation
even when given at a low dose of 10 mg twice daily (4 of 12 patients with dose-
limiting thrombocytopenia) and even with de-escalation to every other week
administration of veliparib (3 of 6 patients with dose-limiting hematological
toxicity) (NCT00770471) [113]. Three subsequent trials have thus combined
veliparib with radiotherapy or TMZ independently but overall have yielded
negative results. Veliparib in combination with TMZ was investigated in a phase
I/II trial in patients with recurrent GBM previously treated with TMZ but failed to
improve 6-month PFS (NCT01026493) [114]. More recently, the randomized
phase II VERTU trial investigated veliparib and radiotherapy followed by adju-
vant veliparib and TMZ, with standard concurrent radiotherapy and TMZ follow-
ed by adjuvant TMZ as control arm, in patients with newly diagnosed MGMT
promoter-unmethylated GBM [115•]. There were similar toxicity and health-
relatedQOLoutcomes between arms, but no improvement in survival compared
to historical benchmarks. Of note, the trial was non-comparative in design and
insufficiently powered to detect moderate differences in survival. Finally, the
complementary Alliance A07112 trial, a large randomized placebo-controlled
trial investigating the addition of veliparib to adjuvant TMZ in newly diagnosed
MGMT promoter-methylated GBM, found no significant improvement in OS or
PFS with veliparib [116•]. An unplanned analysis suggested that concurrent
veliparib may limit the emergence of TMZ resistance in subsets of cancers, but
this remains to be further investigated. Correlative translational studies from
both the VERTU and Alliance trials, including expression or polymorphisms of
DNA repair genes, have yet to be reported.

Olaparib has been tested in several GBM trials, starting with the OPARATIC
trial, which evaluated the pharmacokinetics, safety, and tolerability of olaparib
and TMZ for recurrent GBM. As with veliparib, olaparib exacerbated TMZ-related
hematological toxicity, but dose reduction of olaparib to 150 mg 3 days/week
was determined to be tolerable with daily TMZ 75mg/m2 [105••]. Olaparib was
detected in all tumor core and margin specimens at doses sufficient for in vitro
radiosensitization, despite failing to cross the blood–brain barrier in preclinical
models. The PARADIGM study performed dose escalation of olaparib with
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radiotherapy in patients with newly diagnosed GBM who were not eligible for
standard chemoradiation. In this setting, olaparib was well tolerated at doses up
to 200mg twice daily, which notably are higher than those achievable in patients
receiving radiotherapy to extracranial sites [117]. Ongoing trials are testing
olaparib with both TMZ and radiotherapy to determine optimal dosing.
PARADIGM-2 is a phase I study stratified byMGMTpromotermethylation status
evaluating concurrent and adjuvant olaparib with radiotherapy and TMZ in the
MGMT-methylated cohort and with radiotherapy alone in the MGMT-
unmethylated cohort [118]. Contemporaneously, the OLA-TMZ-RTE study is
dose-escalating olaparib in combination with the conventional Stupp regimen
[3] in newly diagnosed unresectable or partially resectable GBM [119]. Both
PARADIGM-2 and OLA-TMZ-RTE have planned correlative studies of candidate
predictive biomarkers including analysis of DNA repair pathways.

Pamiparib, niraparib, fuzuloparib, andNMS-293 are currently in early phase
studies. Pamiparib was studied in combination with radiotherapy and/or TMZ
in a phase I/II trial in newly diagnosed or recurrent GBM (NCT03150862).
Pamiparib at a dose of 60 mg twice daily was generally well tolerated and
resulted in a modified disease control rate of 69.8% in the upfront setting and
an ORR of 9.1% in the recurrent setting, supporting further evaluation of these
combinations [120, 121]. An ongoing phase 0 study with exploratory phase II
component is comparing pharmacokinetics and intratumoral drug exposure of
pamiparib versus olaparib, with patients displaying a pharmacokinetic re-
sponse going on to receive concurrent PARP inhibitor, radiotherapy, and TMZ
(NCT04614909). A phase I study of niraparib in advanced cancer established a
maximum tolerated dose (MTD) of 40 mg daily with TMZ and showed activity
in one subject with GBM (NCT01294735) [122], while two ongoing phase II
studies are investigating full-dose niraparib alone or in combination with
radiotherapy for recurrent GBM (NCT05297864, NCT04715620). Finally,
fuzuloparib and NMS-293 are being tested in combination with TMZ in recur-
rent GBM in phase II and I/II trials (NCT04552977, NCT04910022).

PARP inhibitor-immunotherapy trials
To date, the majority of clinical data regarding the efficacy of combined PARP
inhibition and ICB has come from trials in patients with extracranial solid
tumors. Early results have indicated the combination of PARP inhibition and
ICB is generally well tolerated with evidence of anti-tumor activity in a subset of
patients with germline BRCA1/2 mutations and relapsed ovarian carcinoma
and HER2-negative metastatic breast cancer [123–126].

There is emerging data on combined PARP inhibition and ICB in glioma,
with several clinical trials currently in progress. In a phase 2 basket trial of
olaparib in combination with durvalumab in IDH-mutant solid tumors
(NCT03991832), early interim results from the glioma arm (N = 9) showed
the combination is generally well tolerated although there was limited anti-
tumor activity with only 1 patient demonstrating a partial response and a
median PFS of 2.5 months [127]. A non-randomized phase II trial is investi-
gating the combination of pembrolizumab with olaparib and TMZ in patients
with recurrent gliomas (NCT05188508). This trial includes patients with grade
II and III IDH-mutated gliomas as well as IDH wild-type gliomas with genetic
mutations inHR genes. A recently initiated randomized phase II trial is studying
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pembrolizumab, olaparib, and TMZ in recurrent GBM (NCT05463848). This
trial includes a surgical “window-of-opportunity” in which a cohort of patients
will receive treatment before and after surgical resection allowing for evaluation
of the immunomodulatory effects in the tumor microenvironment.

Pediatric brain tumor PARP inhibitor trials
A Pediatric Brain Tumor Consortium (PBTC) phase I trial of veliparib and TMZ
was performed to evaluate the pharmacokinetics and MTD of veliparib in
combination with TMZ in recurrent pediatric brain tumors (PBTC-027). As in
the adult setting, dose reductions were required of TMZ due to high hemato-
logical toxicity, and the RP2Dwas veliparib 25mg/m2 twice daily and TMZ 135
mg/m2 daily [128]. This study was followed by the PBTC-033 phase I/II trial in
upfront DIPG in which veliparib 65 mg/m2 twice daily was combined with
radiotherapy followed by adjuvant veliparib and TMZ at the previously estab-
lished RP2D. The treatment was tolerated, but the study was closed at interim
analysis due to lack of survival benefit compared with historical controls [129].
This regimen is now being tested in newly diagnosed pediatric HGG without
H3K27M mutations in ACNS1721, with the hypothesis that drug entry and
efficacy may differ between brainstem and hemispheric HGG. Planned explor-
atory analyses will investigate associations of tumor genomic, transcriptomic,
and epigenetic alterations and germline alterations in HRD and energy metab-
olism genes with treatment response and outcome. Finally, talazoparib was
investigated in combination with TMZ in a large study of recurrent pediatric
solid tumors including CNS tumors (ADVL1411). Results revealed promising
activity in CNS tumors with 1 PR and 5 SD, including 3 prolonged SD, in 13
subjects with CNS malignancies, which may prompt further study particularly
given the relatively poor blood–brain barrier penetration of talazoparib and the
low dose of TMZ used in the study [130].

Toxicity considerations

PARP inhibitors are generally well tolerated as monotherapy, with fatigue,
gastrointestinal symptoms (nausea, vomiting, diarrhea), and hematological
changes (anemia, thrombocytopenia, and neutropenia) being the most com-
mon side effects. Adverse event rates are comparable across the different ap-
proved PARP inhibitors [131]. In CNS trials, PARP inhibitors are also relatively
well tolerated in combination with partial brain radiotherapy at doses compa-
rable to standard monotherapy regimens [115•, 117]. In contrast, concurrent
PARP inhibitor and alkylating chemotherapy exacerbate hematological toxicity,
requiring significant dose reductions to 20–25% of standard monotherapy
doses and/or intermittent dosing strategies. Thus, one critical issue being ad-
dressed in early phase studies is whether dose reductions necessary for co-
treatment with TMZ will be sufficient to yield active intratumoral drug concen-
trations and ultimately clinical benefit.

Future perspectives

PARP inhibitors have revolutionized cancer therapy for BRCA-deficient cancers
and confer benefit in tumors harboring other HR defects or more generally
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displaying platinum sensitivity. In addition, this potential is now recognized to
expand to other BRCAness phenotypes and to open the door for novel combi-
nation strategies in HR-proficient cancers. In CNS tumors, there is strong
preclinical evidence that PARP inhibitors can target tumors with altered path-
ways related to HR or replication stress and can synergize with standard brain
cancer therapies. However, early results from clinical trials testing monotherapy
olaparib in IDH1/2-mutant tumors and veliparib combined with radiotherapy
or TMZ in GBM and pediatric HGG have been disappointing. These results
suggest that PARP inhibitors alone in non-BRCA-mutant tumors may be insuf-
ficient and that clinically active drug delivery, which must include penetration
of both enhancing and non-enhancing tumor, remains a challenge inmalignant
brain tumors. A variety of next-generation PARP inhibitors with potential for
greater efficacy (with enhanced PARP trapping or PARP1 selectivity) or im-
proved brain penetration are currently under investigation. In addition, ad-
vances in drug delivery across the blood–brain barrier, for example, using
nanoparticles or convention-enhanced delivery, may allow for more effective
PARP inhibitor treatment strategies [132–134]. Finally, accumulating preclini-
cal data also suggests a role for combining PARP inhibitors with other DNA
damage response modulators, for example, ATR or CHK1 inhibitors [38, 40,
135]. Altogether, the use of PARP inhibitors in the treatment of primary CNS
tumors remains promising and carefully designed trials incorporating validated
biomarkers and tissue endpoints will be critical for their success.
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