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Opinion statement

Laser interstitial thermal therapy (LITT) is a minimally invasive treatment option 
for brain tumors including glioblastoma, other primary central nervous system (CNS) 
neoplasms, metastases, and radiation necrosis. LITT employs a fiber optic coupled 
laser delivery probe stabilized via stereotaxis to deliver thermal energy that induces 
coagulative necrosis in tumors to achieve effective cytoreduction. LITT complements 
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surgical resection, radiation treatment, tumor treating fields, and systemic therapy, 
especially in patients who are high risk for surgical resection due to tumor location 
in eloquent regions or poor functional status. These factors must be balanced with 
the increased rate of cerebral edema post LITT compared to surgical resection. LITT 
has also been shown to induce transient disruption of the blood–brain barrier (BBB), 
especially in the peritumoral region, which allows for enhanced CNS delivery of anti-
neoplastic agents, thus greatly expanding the armamentarium against brain tumors 
to include highly effective anti-neoplastic agents that have poor BBB penetration. 
In addition, hyperthermia-induced immunogenic cell death is another secondary side 
effect of LITT that opens up immunotherapy as an attractive adjuvant treatment for 
brain tumors. Numerous large studies have demonstrated the safety and efficacy of 
LITT against various CNS tumors and as the literature continues to grow on this novel 
technique so will its indications.

Introduction

The term “laser” is an acronym for light amplifi-
cation by stimulated emission of radiation and is 
commonplace in current jargon but was a novel 
device introduced in 1960. Since that time, lasers 
have been used for numerous medical applica-
tions including treatment of melanoma, prostate 
cancer, lung cancer, brain cancer, and epilepsy. The 
first report using a laser to induce hyperthermic 
injury to a tumor was by Bown in 1983 [1]. Next, 
an early in-human report using lasers for treat-
ing brain tumors was published in 1990 [2]. The 
authors used a Nd-YAG (neodymium-doped yttrium 
aluminum garnet) laser to treat five patients. All 

patients reportedly had radiographic resolution of 
their tumors. Although promising, the technique 
failed to gain traction due to inability to monitor 
the temperature produced by the laser. But in the 
early 2000s, advancements in imaging technology 
allowed for improved capacity to monitor thermal 
response of tissues in near real time. Henceforth, 
the technique of laser interstitial thermal therapy 
(LITT) was born. This review will discuss the surgi-
cal technique employed to perform LITT, its safety 
and mechanisms of tissue destruction, its role in the 
treatment of brain tumors, and its utility in amplify-
ing response to adjuvant therapy.

Existing systems

The two leading LITT systems available in the USA are the Visualase 
(Medtronic, Minneapolis, MN) and NeuroBlate (Monteris, Plymouth, MN). 
The first published trial using one of these novel systems was by Carpentier 
et. al. in 2008 [3]. In this publication, four patients with brain metastases 
were treated with LITT. The procedure was well tolerated and led to no tumor 
recurrence in 90 days. The first clinical trial using NeuroBlate in patients with 
recurrent glioblastoma was by Sloan et. al. in 2013 [4]. The median survival in 
this group of ten patients was 316 days, which represented a marked improve-
ment compared to no therapy.
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Technique
Patient selection

The primary consideration for choosing which patients would benefit from 
LITT involves excluding patients better suited for surgical resection. Surgical 
resection is the standard of care for most brain tumors regardless of histology 
or recurrence status. However, some tumors are surgically inaccessible. Specifi-
cally, deep-seated (e.g., basal ganglia, thalamic or periventricular) tumors are 
often considered inoperable. Additionally, LITT is minimally invasive with a 
smaller incision (< 1 cm), thereby making this an attractive option for patients 
with significant comorbidities or wound healing concerns.

Patients who are good candidates for LITT have tumors that are accessible 
using existing stereotactic techniques. Specifically, some stereotactic frames 
struggle to access low-lying tumors including those in the posterior fossa. 
Additionally, there needs to be a relatively “safe” approach to the tumor that 
will not compromise eloquent brain. The extent of thermal injury that LITT 
can deliver is roughly a 3-cm ellipse. Tumors larger than 3 cm can be treated 
with LITT using multiple trajectories for the laser, although this approach 
increases the risk of post-operative symptomatic cerebral edema. Patients 
should also have an adequate baseline functional status, defined by Karnof-
sky Performance Score (KPS) > 60. Patients with poor functional status may 
benefit from LITT but there is a paucity of published data in this group. Due 
to the importance of MR thermometry for LITT, a LITT candidate must be 
capable of undergoing MRI based on body habitus and preexisting metallic 
implants.

Surgical technique

There is significant variation among institutions for the technique used to per-
form LITT. Our institutional method has been previously published by Laurent 
et. al. and entails pre-operative trajectory planning using MRI [5]. For the Neu-
roBlate system, a trajectory through intact skull is necessary for placement of 
the titanium bolt that directs the laser probe. Therefore, pre-operative planning 
in patients who have had prior craniotomies usually also requires a head CT 
to ensure that the planned trajectory avoids the edge of a bone flap or previous 
titanium plate. The biopsy and NeuroBlate bolt placement are performed using 
frame-based stereotaxis and monitored anesthetic care (MAC). However, many 
institutions use general anesthesia. The headring is removed and the patient is 
then transitioned to MRI where the probe driver and laser are inserted into the 
NeuroBlate bolt. Treatment is delivered using the NeuroBlate software and one 
final MRI is obtained prior to removal of the laser and bolt. Postoperatively, the 
patients are monitored in the post-anesthesia care unit prior to being transferred 
to the neurological floor. The majority of patients are discharged the next day 
with close follow-up in neurosurgery clinic. Patients are commonly treated with 
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corticosteroids to treat or prevent post-LITT cerebral edema. In patients in whom 
immunotherapy is being utilized after LITT, corticosteroids are avoided or used 
sparingly to minimize their immunosuppressive effects.

Mechanism of action
Direct tissue effects

The basic premise of LITT is that a laser delivery probe is placed using stere-
otaxis into the tumor bed. This probe utilizes an optical fiber connected to a 
diode laser to deliver light energy in the form of 1064 nm photons which are 
absorbed by tissue chromophores [6, 7]. When these chromophores relax from 
their excited state, thermal energy, via molecular motion, is released. The opti-
mal range of heating is from 42 to 100 °C [8]. This amount of thermal energy is 
sufficient to cause thermal injury, namely coagulation, but not vaporization of 
tissues. The primary issue with vaporization is generation of gas which impairs 
heating of surrounding tissues and could raise intracranial pressure to a danger-
ous level. The thermal dose (cumulative equivalent minutes at 43C or CEM43) 
sufficient to cause tissue necrosis and irreversible cell death in the brain is any-
where from 10 to 60 min [9]. Using the Arrhenius equation, this information 
can be used to extrapolate the time needed to induce tissue necrosis at other 
temperatures [10]. The thermal response of the tissues is monitored in real-time 
utilizing an MRI scanner. Factors that affect how the heat spreads through the 
tumor include tissue consistency, thermal conductivity, and proximity to “heat 
sinks” such as the ventricles, other CSF spaces and blood vessels which shunt 
heat away from the treatment zone. The temperature can be approximated using 
the proton density,  T1 and  T2 relaxation times, diffusion coefficient, or proton 
resonance frequency [10]. Both the NeuroBlate and Visualase systems have pro-
prietary software that can be used to calculate the thermal dose zones.

As stated, the effect of thermal therapy on tissues is coagulation of pro-
teins. This includes irreversible damage to proteins in the cell membrane, cyto-
sol, nucleus, and mitochondria leading to eventual necrotic cell death [11]. In 
addition, there are delayed effects of thermal injury including apoptosis and 
ischemia [12]. An interesting single-patient case-report described the histologic 
findings after administration of LITT in a patient with glioblastoma who experi-
enced progressive symptoms requiring en bloc resection 2 weeks later [13]. The 
thermal-treated tumor contained 3 separate zones: the central acellular necrotic 
zone; the intermediate granulation tissue zone with numerous macrophages; 
and the peripheral zone with viable cells (Fig. 1).

Effect on adjuvant therapy

In addition to the direct cytoreduction from tissue necrosis, LITT also 
affords other therapeutic benefits for the treatment of brain tumors. Spe-
cifically, LITT has been demonstrated to disrupt the blood–brain barrier 
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(BBB), improve the efficacy of immunotherapy, and increase sensitization 
to ionizing radiation. The BBB is composed of endothelial cells that form 
tight junctions to protect the brain from the systemic circulation; however, 
it is often a hindrance to CNS delivery of chemotherapy and immunother-
apy. Using dynamic contrast enhanced MRI to estimate the degree of BBB 
disruption through the vascular transfer constant (Ktrans) of gadolinium, 
Leuthardt et. al. (2016) conducted an elegant analysis of LITT-induced 
peritumoral BBB disruption as a part of a clinical trial testing the abil-
ity of LITT to increase CNS delivery and efficacy of the BBB-impermeable 
chemotherapy drug doxorubicin in recurrent glioblastoma (GBM) [14]. 
The peritumoral BBB disruption post LITT was corroborated by the concur-
rent increase in serum levels of brain-specific enolase. These results further 
confirmed that the disruption of the BBB immediately following LITT lasted 
for at least 6 weeks post ablation, which has the potential to allow use of 
chemotherapeutics that are otherwise ineffective for brain tumors due to 
their poor BBB penetration. In the same study, the LITT-doxorubicin com-
bination resulted in a significant improvement in overall survival compared 
to historical controls treated with LITT alone or bevacizumab, a standard 
biologic agent for recurrent GBM [15•]. A recent publication has further 
elucidated the effect on the BBB post LITT. The authors demonstrated that 
in a murine model, LITT decreased tight junction integrity and increased 
brain endothelial cell transcytosis leading to leaking of molecules as large 
as immunoglobins [16].

Hyperthermia has also been shown to lead to increase cytokine 
response, systemic leaking of tumor antigens and improved penetration 
of immune cells, presumably due to the disrupted BBB and the hyper-
thermia-induced immunogenic cell death, thereby improving efficacy 
of natural tumor immune response and engineered immunotherapies 

Fig. 1  Depiction of cellular changes that occur as a result of LITT
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[17–19]. In response to hyperthermic stress, heat shock protein (HSP) 
expression is greatly increased [20]. HSPs serve as molecular chaperones 
facilitating protein folding to prevent protein aggregation and mediate 
activation of inflammatory pathways that often ensue after a hyperthermic 
shock, including increasing the cytotoxicity of natural killer (NK) cells in 
an MHC class I-dependent fashion, and promoting antigen presentation to 
both CD4 + and CD8 + T lymphocytes via MCH class II and class I (Fig. 1) 
[21–25]. Not unexpectedly, recruitment and activation of immune cells to 
the ablated tumor has specifically been demonstrated in response to LITT. 
In a murine hepatic tumor model, LITT increased recruitment of CD8 + T 
cells to the tumor microenvironment [26, 27].

Additionally, hyperthermia can activate the innate immune response via 
release of damage-associated molecular patterns (DAMPs) including HSPs, 
nuclear proteins, and nucleic acids, cellular matrix proteins such as glycans, 
fibronectin, and heparan, as well as others [28]. DAMPs bind to a variety of 
pattern recognition receptors including TLR2 and TLR4 to mediate produc-
tion of proinflammatory cytokines (Fig. 1) [29, 30].

Through these aforementioned mechanisms, LITT is postulated to enhance 
efficacy of immunotherapy. This was first demonstrated in melanoma, which 
is immunologically “hot” yet still able to resist immunotherapy. Specifically, 
LITT with adjuvant ipilimumab which is a CTLA-4 inhibitor leads to a durable 
cure in one patient [31]. In a murine glioma model, a poorly immunogenic 
tumor type, thermal ablation synergized with immune checkpoint blockade 
significantly improved overall survival [32].

Lastly, it is well established that hyperthermia leads to tissue radiosensiti-
zation [33–36]. The mechanism behind this effect is related to hyperthermia-
associated impaired cellular signaling and DNA repair [35, 37]. For example, 
base excision repair at the religation step was shown to be severely impaired 
due to hyperthermia leading to a high mutational burden that eventually trig-
gers apoptosis [34]. In glioma cells specifically, prior hyperthermic treatment 
at 45 °C for 60 min sensitized tumor cells to subsequent radiation [38], likely 
by decreasing AKT activation leading to cell death [37].

In summary, LITT induces hyperthermia which is capable of directly kill-
ing cells via coagulative necrosis. For cells that survive the direct hyperthermic 
assault, they are at risk of destruction by the immune system due to damage to 
the BBB, activation of the innate immune response via DAMPs, and stimula-
tion of the adaptive immune response via HSP-mediated MCH-dependent 
cytotoxicity. These physiologic changes result in increased efficacy of chemo-
therapy, immunotherapy and radiation.

Safety

Although generally well tolerated, LITT carries risk of certain complications. 
Due to the commercial availability of LITT and selection bias on the part 
of surgeons and patients, there has never been a large randomized clinical 
trial comparing LITT to surgical resection that would permit direct compari-
son of safety metrics. So, all comparisons are based on retrospective reviews 
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which have inherent selection bias. The primary complications observed are 
symptomatic cerebral edema, worsening neurologic deficit, hyponatremia, 
infection, intracranial hemorrhage, and death. It is important to consider 
that the expected progression of intracranial neoplasms includes neurologic 
worsening and eventual death. For this reason, it is often difficult to discern if 
peri-procedural deaths are related directly to the procedure. In the literature, 
we identified two deaths that were definitively not related to disease progres-
sion—one of meningitis and one of malignant cerebral edema [39, 40]. In 
the first report of using the NeuroBlate system by Sloan et. al., of ten patients, 
three had worsening neurologic deficit 14 days after LITT [4]. This resolved in 
two patients but persisted for one patient. The rate of neurologic worsening 
in roughly 30% of patients is similar to other publications [41, 42, 43•]. In 
contrast, the LAANTERN (Laser Ablation of Abnormal Neurological Tissue 
Using Robotic NeuroBlate System) is a multi-center prospective trial that 
followed 233 patients who underwent LITT. This trial did not report minor 
worsening in neurologic exam but stated the rate adverse events was 10.7% 
and that of serious adverse events was only 1.8% [44••]. To reconcile these 
differences, it is important to consider the 7 years that elapsed between these 
publications and that the safety of a technique often improves with continued 
experience and evolution of the technology. Shao et. al. demonstrated in a 
cohort of 238 patients who underwent LITT that early neurologic deficits and 
mortality decreased significantly over time from 15.5% and 4.1% to 4.1% 
and 1.5% respectively [45••]. The acute post-operative neurologic worsening 
post-LITT is often due to a transient increase in cerebral edema. These changes 
are often mild and can be minimized by treating smaller lesions and utilizing 
corticosteroids or hypertonic saline post-operatively. Moreover, the NeuroB-
late system has three different laser output settings. Using a lower laser output 
setting results in slower thermal ablation with the theoretical reduced risk 
of symptomatic cerebral edema. Additionally, some centers employ tubular 
or endoscopic surgical resection following LITT for larger lesions to reduce 
the morbidity associated with cerebral edema[46, 47]. The rate of surgical 
site or deep wound infection following LITT is exceedingly low. Many series 
have no instances of infection and in a series of 100 patients enrolled in the 
LAANTERN trial, only one had an infection [48]. To put these numbers in 
perspective, the rate of neurologic deficit and mortality following craniotomy 
is 13–30% and 0.5–3% respectively [49, 50]. The rate of infection following 
craniotomy is 4–10% [51–56]. So, although LITT does portend surgical risk, 
it is demonstrably safer than craniotomy.

Cost

A concern when adopting a new therapy, in addition to safety and efficacy, 
is cost. LITT is associated with short hospital stays, an average of 33.4 h in 
one large retrospective analysis [44••]. Likewise, the length of ICU admission 
was only 18.8 h on average and the rehospitalization rate was only 1.8%. 
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These factors all contribute to favorable cost profile of LITT. Leuthardt et. al. 
revealed that the cost of LITT is less than that of craniotomy for patients with 
brain metastases [57•]. This calculation considered procedure, in-hospital, 
and post-discharge costs. Since most patients treated with LITT are discharged 
the day after treatment, the hospital costs are generally lower than patients 
who undergo a craniotomy. For patients with high grade glioma, Voigt and 
Barnett modeled the cost of LITT and demonstrated that LITT procedures are 
cost effective and well below the USA threshold value for added cost per life 
years gained [58].

Applications
Metastases

The first published application of LITT for brain tumors in the USA was for 
brain metastases in 2008 by Carpentier et. al [3]. This small pilot clinical trial 
used LITT to treat four patients with metastatic brain tumors who had already 
undergone radiation and chemotherapy. The primary goal of this small study 
was to demonstrate safety of the procedure. The study concluded that the 
procedure was well tolerated and led to gradual radiographic decrease in 
tumor volume. In a follow-up study in 2011, the authors reported treatment 
of fifteen tumors in seven patients [59]. At 30-month follow-up, most lesions 
were radiographically stable, and the median survival was 19.8 months. One 
patient died from systemic disease, two died from other untreated intracranial 
metastases, and only one died from recurrence of a treated tumor. Since these 
early initial reports, there have been numerous small series of LITT for brain 
lesions including metastases, primary brain tumors, and radiation necrosis 
[39, 60, 61]. However, these studies fail to distinguish efficacy for brain metas-
tases and primary brain tumors.

The next large study (laser ablation after stereotactic radiosurgery or 
LAASR) was published in 2018 by Ahluwalia et. al. [62•] reporting on the 
use of LITT in a larger cohort, including 20 patients with recurrent metastatic 
disease after stereotactic radiosurgery (SRS). Progression-free survival and 
overall survival were 54% and 71% respectively at 12 weeks. Although the 
benefit of LITT in treating brain metastases that grow after SRS is that LITT is 
effective for both tumor cytoreduction and radiation necrosis, patients who 
have symptomatic cerebral edema with growing brain metastases will have 
faster resolution of their edema with surgical resection [63]. In comparing 
LITT to surgical resection, a 2019 retrospective chart review series evaluated 
42 patients treated for brain metastases that recurred after radiation [64••], 
of whom, 26 underwent craniotomy and 16 received LITT. Overall and pro-
gression-free survival at 1- and 2-year follow-up was similar between the 
two groups. In summary, LITT has been shown to be safe and effective in the 
management of recurrent brain metastases.

The types of metastatic cancers that have been treated with LITT include 
lung cancer (small cell, non-small cell, and mesothelioma), breast can-
cer, melanoma, colon cancer, colorectal cancer, osteosarcoma, renal cell 
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carcinoma, urothelial cancer, prostate cancer, ovarian cancer, and germ cell 
tumors [61, 62•, 64••, 65–67]. In 2019, Jermakowicz et. al. demonstrated that 
the thermal doses delivered by LITT to brain metastases may be overestimated 
by conventional methods. This means that the thermal dose actually delivered 
is lower than what is expected which may lead to disease recurrence [68]. The-
oretically, certain tumor histologies may be more sensitive to hyperthermic 
therapy. However, definitive data supporting this notion is currently lacking 
and is an important research question to address with future studies on LITT.

Glioblastoma (GBM)

For newly diagnosed GBM, LITT is a secondary option if surgical resection 
is not feasible [69]. Thomas et. al. (2016) compared the characteristics of 
eight patients who underwent LITT for primary GBM to those of thirteen 
patients who underwent LITT for recurrent GBM [70]. The patients with 
newly diagnosed GBM tended to be older, had larger tumors, and were more 
likely to be IDH wild type. The median overall survival for the patients with 
newly diagnosed GBM was unfortunately only eight months despite adju-
vant temozolomide and radiation. In 2019, Mohammadi et. al. compared 
24 patients with newly diagnosed GBM who underwent upfront LITT to a 
matched cohort who underwent biopsy alone [71]. Both groups received adju-
vant temozolomide and radiation. The median overall survival for the LITT 
group was 14.4 months compared to 15.8 months in the biopsy only group. 
The authors note that the survival in the biopsy only group is significantly 
higher than the literature but offer no explanation for the phenomenon. Of 
note, more patients in the biopsy group had IDH mutations (10% vs 0%) 
and MGMT methylations (50% vs 30%) which may have led to the unexpect-
edly increased survival. For the patients that underwent LITT, multivariate 
analysis indicated that extent of ablation, tumor volume, and age correlated 
with overall survival.

A recent systematic review by Viozzi et. al. summarizes the existing data 
on LITT for newly diagnosed GBM [72]. The review analyzed 11 publications 
from 2013 to 2020. The authors recognize that all the studies are subject to 
selection bias. The median overall survival ranged drastically from 3.3 to 
32.3 months. The lowest median overall survival reported was based on 13 
patients with thalamic tumors, nine of which were glioblastoma. Unfortu-
nately, two patients died in the peri-operative period from an intracranial 
hemorrhage, which likely confounded the median overall survival. As a result, 
the authors of this cohort suggested avoiding treating thalamic tumors > 3 cm 
with LITT. In contrast, the longest median overall survival occurred in group 
of eleven patients all treated by the same surgeon [73]. These patients all 
had newly diagnosed GBM that was considered unamenable for resection. 
Ten patients had tumors in the frontal, parietal, or temporal lobes only one 
tumor was thalamic. No perioperative complications were reported. The stark 
contrast between these two studies suggests that for patients with newly diag-
nosed GBM undergoing LITT, the location of the tumor may affect overall 
response and survival.
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In 16 patients with recurrent GBM (rGBM) treated with LITT, Schwar-
zmaier et. al. (2006) reported a median survival of 11 months after LITT 
[74], which was comparable to survival after salvage SRS in rGBM [75]. Sim-
ilarly, Sloan et. al. in 2013 also reported a median survival of 10.5 months 
in ten patients with rGBM treated with LITT [4]. In one of the largest series 
to date consisting of 41 patients with rGBM treated with LITT, the median 
survival post LITT was 11.8 months [76]. A systematic review published in 
2020 found 17 studies encompassing 203 patients with rGBM treated with 
LITT [77••]. The median overall survival post LITT was 10.2 months. The 
median overall survival from initial diagnosis was only 14.7 months and the 
median progression-free survival was 5.6 months. They report that this rep-
resents a similar survival from the time of recurrence compared to patients 
who undergo craniotomy. The rate of complications was 6.4% with seizures, 
hemiparesis, wound infection, and hemorrhage being the most common. 
There were no LITT-related mortalities. However, this analysis had a large 
selection bias and a study directly comparing surgical resection and LITT 
in patients with rGBM will be necessary to determine the true differences 
in survival outcomes.

In summary, although craniotomy is still the standard treatment for 
newly diagnosed and recurrent GBM, LITT offers a viable option for inoper-
able tumors or when patient characteristics favor a more minimally invasive 
approach. Although there have not been any prospective randomized trials 
comparing LITT to craniotomy, retrospective data suggests similar survival 
and morbidity between the two treatment modalities.

Radiation necrosis

Cerebral radiation necrosis is a complication of radiation treatment esti-
mated to occur in 5–10% of patients [78]. The primary risk factors for 
development of radiation necrosis are related to the dose and type of radia-
tion delivered. Radiation necrosis presents as neurologic or radiographic 
changes and usually occurs within one year of treatment although delayed 
presentations can occur. Symptoms can be treated with dexamethasone, 
hyperbaric oxygen therapy, and bevacizumab [79]. Although not in and 
of itself typically lethal, the symptoms can be debilitating and the need 
for prolonged steroid treatment can cause systemic complications. There 
are two instances where LITT may be utilized to treat radiation necrosis: 
First, when the symptoms are not responsive to medications or in patients 
for whom the medications are not well tolerated; and second, in the event 
that it is unclear if radiographic changes represent disease progression or 
radiation-induced changes [80].

The first case report using LITT for radiation necrosis was in a patient with 
a metastasis who was symptomatic despite medical therapy and was not a 
candidate for surgical resection [81]. The intervention was successful with 
the patient having improved symptoms and radiographic improvement at 
the 7-week follow-up. The patient was also able to be weaned from steroids. 
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Another small case-series demonstrated safety in ten patients with radiation 
necrosis secondary to treatment to brain metastasis or glioblastoma [82]. 
In this cohort, the 6-month survival was 77.8% and the 1-year survival was 
64.8%. Another favorable finding was that 8 of 10 patients were able to be 
weaned from dexamethasone following a 2-week postoperative course. In 
2014, Rao et. al. published a series of sixteen patients who had either radia-
tion necrosis or tumor recurrence [80]. Pathology was not obtained at the 
time of LITT so it is difficult to draw conclusions from this cohort. However, 
the authors hypothesized that the actual histology at the time of LITT had 
little effect on overall outcome. The overall survival at 24 weeks was 57%. 
The next large study to differentiate radiation necrosis from tumor recurrence 
was by Ahluwalia et. al. in 2018 [62•], in which 19 patients who developed 
biopsy proven radiation necrosis after radiation treatment of brain metas-
tasis achieved an overall survival rate at 12 weeks of 100% and at 26 weeks 
of 82.1% without significant decline in cognition or quality of life after 
treatment.

A retrospective comparison of LITT to craniotomy in patients with radia-
tion necrosis after radiation treatment of cerebral metastasis demonstrated that 
progression free survival and overall survival in patients undergoing LITT for 
radiation necrosis were significantly better than those with tumor recurrence 
[64••]. Of note, for patients with histologically confirmed radiation necrosis, 
overall survival rates post LITT were 94.4%, 73.8%, 73.8%, and 63.2%, as com-
pared to post resection rates of 100%, 93.3%, 71.8%, and 64.6% at 6, 12, 18, 
and 24 months, respectively.

More recently, a 2020 retrospective review on LITT administered to 20 
patients with radiation necrosis secondary to glioblastoma or metastasis. 
The mean overall survival in this group was 14.3 months. Interestingly, radi-
cal ablation (ablation larger than the area of enhancement) led to the low-
est risk of disease progression. Additionally, nine patients were able to be 
weaned from their preoperative steroids. Only four patients experienced a 
complication, one each with a new neurologic deficit, a seizure, a CSF leak, 
and a pulmonary embolus. In conclusion, numerous retrospective analyses 
have demonstrated that LITT is an effective treatment modality for radiation 
necrosis.

Other primary brain tumors

LITT has been investigated for treating other surgically inaccessible pri-
mary brain tumors including high-grade gliomas, chordomas, meningi-
omas, solitary fibrous tumors, and low-grade gliomas including infiltrat-
ing gliomas, pilocytic astrocytomas, ependymomas, and subependymal 
giant cell astrocytomas [60, 73, 83]. As with metastases, certain tumor 
types and locations may be more sensitive to thermal ablation. Dural-
based lesions such as meningiomas and solitary fibrous tumors and men-
ingiomas in general as compared to other tumor types have significantly 
lower percent extent of ablation, with the average extent reaching only 
80% in one series [73, 83]. Further research on this topic is required to 
establish clear guidelines.
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Active clinical trials

Despite the growing evidence of clinical benefits of LITT, there are still many 
remaining questions regarding how this therapy is compared across different 
tumor types and to other treatment modalities. Additionally, it is currently 
unclear if LITT may be particularly beneficial in conjunction with certain sys-
temic therapies. Table 1 summarizes current ongoing clinical trials using LITT.

Conclusion

LITT utilizes photons generated from a stereotactically implanted laser to 
thermally ablate tumors and other abnormal cerebral tissue. LITT works by 
inducing coagulative necrosis to the abnormal tissue as well as disrupting 
the peritumoral BBB that potentially increases efficacy of cytotoxic chemo-
therapy, immunotherapy and radiotherapy. Several studies have demonstrated 
safety and efficacy in using this novel approach for brain metastases, radia-
tion necrosis, and primary brain tumors. We expect as surgical experience 
improves and more patients are treated with LITT that this modality will 
become a mainstay as a valuable treatment strategy for CNS tumors.
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Table 1  Actively recruiting clinical trials incorporating LITT (information obtained from clinicaltrials.gov)

Trial Name Principle Investigator(s) (Institution)

Laser Ablation of Abnormal Neurological Tissue Using Robotic NeuroB-
late System (LAANTERN)

Leuthardt (Washington University School of 
Medicine)

LITT and Pembrolizumab in Recurrent Brain Metastasis (TORCH) Rahman, Tran (University of Florida)
MK-3475 in Combination With MRI-guided Laser Ablation in Recurrent 

Malignant Gliomas (PROGRESS)
Campian, Tran (Washington University School 

of Medicine, University of Florida)
LITT Followed by Hypofractionated RT for Newly Diagnosed Gliomas Mishra (University of Maryland)
LITT Followed by Hypofractionated RT for Recurrent Gliomas Mishra (University of Maryland)
Laser Interstitial Thermotherapy (LITT) Combined With Checkpoint Inhibi-

tor for Recurrent GBM
Sloan (Case Western)

Expedited Laser Interstitial Thermal Therapy + Chemoradiation For Newly 
Diagnosed High Grade Gliomas

Yu (Cleveland Clinic)

Avelumab With Laser Interstitial Therapy for Recurrent Glioblastoma Hormigo (Mount Sanai)
MR-guided LITT Therapy in Patients With Primary Irresectable Glioblas-
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